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Interpolation and Polynomial Approximation




Pnpu lation

Introduction

A census of the population of the United States 1= taken every 10 vears.

Year | 1950 | 1960 | 1970 | 1980 | 1990

Population ‘ 151,326 ‘ 179323 | 203302

{in thousands)

Pl ,
1 % 108
. 1975 ?
»
2 % 10% L a
. 2020 ?
| = 10% 4
1650 1860 1970 1080 1900 2000 ¢
Year

226,542 ‘ 249 633
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3.1 Interpolation and the Lagrange Polynomial MAP2220

One of the most useful and well-known classes of functions mapping the set of real numbers
into itself is the algebraic polynomials, the set of functions of the form

-P.I'i!{_-r} = QpXx" +ﬂr:|—l-rﬂ_] + -+ apx + ap,

where n 15 a nonnegative integer and ay. . ...a, are real constants.
Y4 y=fIx) + &
-~ ¥=P@

- Loy=fi)
L-¥y=flx)— €

Theorem 3.1 (Weierstrass Approximation Theorem)

Suppose that f 1s defined and continuous on [a, b]. For each € = (), there exists a polynomial
Pix). with the property that

| f(x) = P(x)] < €. forallxin][a.b]. -



Polindmios de Taylor seriam bons interpoladores ? MAP2220

¥ ¥ 3

X= ] X
Pox)y =1, Pi(x)=1+nx, P;(x)=1+x+? Pix)=14+x+—+—,

2> "6
P 1+ +'{2+'¥3+'K4 d Psx)=1+ +'IE+I3+'{4+IE

X)=1l4+x4+—+—+4+—, an N=14xr+—4+—4—+—.
+() Ty T T 5 2> 76 T 24 120

Erro dependente da distancia relativa ao ponto de expansao
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Although better approximations are obtained for f(x) = ¢e* if higher-degree Taylor
polynomials are used, this is not true for all functions. Consider, as an extreme example,
using Taylor polynomials of various degrees for f(x) = 1/x expanded about x; = 1 to
approximate f(3) = 1/3. Since

fo =x" floy=—x72 f'a) = (=227,
and, in general.

the Taylor polynomials are O = (=D,

P,(x) = E*’(m“ —lj*zzn:{—l)*u_n“.
k=0

To approximate f(3) = 1/3 by P,(3) for increasing values of n, we obtain the values in
Table 3.1—rather a dramatic failure! When we approximate f(3) = 1/3 by P,(3) for larger
values of n. the approximations become increasingly inaccurate.




Lagrange Interpolating Polynomials

Deﬁne the fl:ll]{:tiﬂﬂs

X — X X —AXp
and L,(x) = :
Xo — Xy X1 — Xo

Lo(x) =

The linear Lagrange interpolating polynomial through (xq. vo) and (xy. vy) is

X—x X —X
flxp) +
Xg — X X —Xp

P(x) = Lo(x) f(xo) + L1 (x) f(x1) =

Note that
Lo(xg) =1, Lo(x;) =0, Lj(xp) =0, and Lj(x) =1,
which implies that
Pxp) =1- f(x0) +0- f(x1) = fxo) = Yo

Px))=0- flxg)+1- flx)) = flx)) =.

:_} fxy).
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So P is the unique polynomial of degree at most one that passes through

[-}"—D1 }Iﬂ] and {Il V1 }



Example 1
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Determine the linear Lagrange interpolating polynomial that passes through the points (2, 4)
and (3. 1).

Solution In this case we have

x—35 1 x—2 1
Ly(x) = 73 = —E(:‘t —35) and Li(x) = 5_9 = E(:‘k —2),
S0
] 1 4 20 1 2
Px)y=—(x=35)-44+-(x=-2)- 1 =—= —+-x— - =—x+6.
(x) 3(1 ) +3(I ) 3J~:+3—|—3J|: 3 X+
The graph of vy = P(x) is shown in Figure 3.3. |
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To generalize the concept of linear interpolation, consider the construction of a poly-
nomial of degree at most n that passes through the n 4+ 1 points

(Xp. f(xp)), (xp, f(xp)), .o (Xns (X))

Y A

w ¥
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In this case we first construct, for each £k = 0.1.....n., a function L, ;(x) with the
property that L, x(x;) = O when i # k and L,x(xx) = 1. To satisty L, (x;) = O for each
i # k requires that the numerator of L, 4 (x) contain the term

(X —xo)(x —xp) - - (X — Xp—1) (X — A1) - -+ (X — X))

To satisfy L, ; (x;) = 1, the denominator of L, ;(x) must be this same term but evaluated at
X = Xx;.. Thus

(X —Xp) -+ (X — X )X — Xgp) - - (X — Xp)
(X — Xg) ==+ (X — X )0 — Xggg) - - - (X — X))

Lﬂ.f.‘ (xX) =

A sketch of the graph of a typical L, (when n 1s even) is shown in Figure 3.5.

Lu..i:(x} A

1__
m/‘"\/\/"\ﬂ .
/e X

— I xk+] " om x
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If xg. xp..... X, are n + 1 distinct numbers and f is a function whose values are given at
these numbers, then a unique polynomial P(x) of degree at most n exists with

f(x;) = P(x;), foreachk =0.1.....n
This polynomial is given by
P{I} - f'[—xﬂ}Ln_D{-I} +---+ f(.l'ﬂ]f_,,m {:‘} — Z f{-x.i;]Ln_k (I}'! {31]
k=0
where, foreachk =0,1,....n,

(X —Xp)(X —x) - (X = X )X — Xpgy) - - - (X — Xp)

Lyp(x) = — _ - (3.2)
(X — Xo) (X — X)) === (0 — Xe— 1)) (X — Xpgy) - - - (X — X))
(x — x;)
— H =
(X — x;)
e#.i.

We will write L, x(x) simply as L (x) when there is no confusion as to its degree.



Example 2 MAP2220
(a) Use the numbers (called nodes) xo = 2, x; = 2.75, and x, = 4 to find the second

Lagrange interpolating polynomial for f(x) = 1/x.

(b) Use this polynomial to approximate f(3) =1/3.

Solution (a) We first determine the coefficient polynomials Ly(x), Li(x), and Lz(x). In
nested form they are

(x—=275)x—-4) 2
— = Z(x—2T5)x - 4),
bW =G250-s 30 2Pe-9

Li(x) = =——(x—=2(x—4
».75 =g hens—a 1Y 0D

(x —2)(x — 2.75)
Lx) = = 2= 2 —275)
=g ya_2s 5NN

Also, f(xo) = f(2) = 1/2, f(x)) = f(2.75) =4/11, and f(xp) = f(4) = 1/4,s0
2
Px) =) flx)Li(x)
k=l

= —(1—2?‘5]{1 —4) — %(1—2]{1—4}4— —(x — 2)(x = 2.75)
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(b) An approximation to f(3) = 1/3 (see Figure 3.6) is

9 105 49 29
(3) = = ———+ — = —— &~ 0.32955.
f(3) = P(3) S RET, +44 28 0.32055
Recall that in the opening section of this chapter (see Table 3.1) we found that no Taylor
polynomial expanded about x; = 1 could be used to reasonably approximate f(x) = 1/x

at x = 3. N
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Theorem 3.3

Suppose Xg. Xi.....X, are distinct numbers in the interval [a, b] and f € C"*![a, b]. Then,

for each x in [a, b]. a number £(x) (generally unknown) between xp. xj.....X,. and hence
in (a, b), exists with

f-(ﬂ+]}(«§{x}]
(n+1)!

fx)=Px)+ (X — X)) (X —Xp) - - - (X — Xy), (3.3)

where P(x) 1s the interpolating polynomial given in Eq. (3.1). O
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Proof Note first that if x = x;, forany k =0, 1,...,n, then f(x;) = P(x;), and choosing
£(x;) arbitrarily in (a. b) yields Eq. (3.3).
Ifx #x, forallk =0,1,...,n, define the function g for t in [a, b] by

(t —x0)(f —x1) -+ (1 — Xp)
(X —x0)(X —Xx1) -+ (X — Xn)

X;)
(_.

g(t)y= f(t) —P(t) — [f(x) — P(x)]

= f(t) —P(t) = [f(x) —

i=0

Since f € C""'[a,b],and P € C™]a, b]. it follows that g € C"*'[a, b]. For t = x;, we have

[i—"]:
Xi)

(k) = f(x) — P(x) — [f(x) — P(x)] H —[f(x) = P(x)] -0 =0.

Moreover,

200) = 100 = P00 = 1) =PI [ | - = £0) = P@) ~ [£(0) = P)] = 0.
i=0 -

— X;)
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Theorem 1.7 |(Rolle’s Theorem)

Suppose f € Cla, b] and f is differentiable on (a., b). If fia) =

(a, b) exists with f'(¢) = 0. (See Figure 1.3.)

Sla) = f18)

MAP2220

f k), then a number ¢ in
[ |

Theorem 1.10 (Generalized Rolle's Theorem)

Suppose [ £ Cla, b] i1s n times differentiable on (a, b). If fix) = 0 at the n 4+ 1 distinct
numbers a < xy < x] < ... < x, = b, then a number ¢ in (xp.x,). and hence in (a. b).

exists with " (c) = 0.
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Thus g C’”“[a, b], and g i1s zero at the n 4+ 2 distinct numbers x, xp, Xy, ....X,. By
Generalized Rolle’s Theorem 1.10, there exists a number & in (a, b) for which ¢""+! (&) = 0.
S0

drr!-l'] s {.I _I!.}

in+1) “(n+1) (n+1) : i d”+| ’ “_IF}
0=g" V(&) ="V - P" V(&) —[f(x) - P)] |1 . (34

However P(x) is a polynomial of degree at most n, so the (n+ 1)st derivative, PUtD(xy,
is identically zero. Also, []_g[(f — x;)/(x — x;)] is a polynomial of degree (n + 1), so

I —X; 1 .
H ( I_} _ [ﬂ” T r]} e (lower-degree terms in f),
- !':D' — |.

and

dtl S (t—x)  (n41)!
drrr+l i {I —I;] o ]_[?:D{I —.1.'!'] .

s
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Equation (3.4) now becomes

1)!
0= fD(E) —0 = [£(x) — P60,
FTE) fix) TG —x)
and, upon solving for f(x), we have
o e
f[.I]—PI:I}—I—mg{I—IJ. " = =

The error formula in Theorem 3.3 1s an important theoretical result because Lagrange
polynomials are used extensively for deriving numerical differentiation and integration
methods. Error bounds for these technigues are obtained from the Lagrange error formula.

Note that the error form for the Lagrange polynomial is quite similar to that for the Tay-
lor polynomial. The ath Taylor polynomial about xg concentrates all the known information
at x; and has an error term of the form

FDE )
(n+ 1)!

{.I' _ ID}J‘E+| .

The Lagrange polynomial of degree n uses information at the distinct numbers xp. xy, . ..,
x, and, in place of (x — xp)", its error formula uses a product of the n + 1 terms (x — xp),

{I_-I]]!"=+[.-I_-Iﬂ}:

Jlr[.rz+|'| [E{ﬂ}
(n+ 1)!

(x —xp)(x —xp) - - (¥ — x,).



Example 3 NAP2220
In Example 2 we found the second Lagrange polynomial for f(x) = 1/x on |2, 4] using the

nodes xp = 2, x; = 2.75, and x2 = 4. Determine the error form for this polynomial, and
the maximum error when the polynomial 1s used to approximate f(x) forx s [2.4].

Solution Because f(x) = x—', we have

ffix)=—=x2 frx)=2", and ["(x)= —6x*

As a conseguence, the second Lagrange polynomial has the error form

%[x—xﬂ}{x—xmx—xﬂ = —(E0)) Ha=2)(x=2.75)(x—4), for&(x)in(2,4).

The maximum value of (£(x))~* on the interval is 2-* = 1/16. We now need to determine
the maximum value on this interval of the absolute value of the polynomial

35 49
)= =Dx=2TNx—-4) =x" — le +5x- 22.

Because

35 49 . 35 49 |
D, (_H - Tf + 5 - 12) =3 - Jxt o =50 -T2 -7,

the critical points occur at

x= E+ with g (E) - and x= I+ with g (%) = —E.

3 1) 108° 2 16
Hence, the maximum error 1s
G5) o 3
3l [(x — xo)(x —x1)(x —x2)| = Iﬁ-ﬁ‘_lﬁ —SIEMD.DDSEE-. m



Example 4 MAP2220

Suppose a table 1s to be prepared for the function f(x) = €%, for x in [0, 1]. Assume the
number of decimal places to be given per entry i1s d > 8 and that the difference between
adjacent x-values, the step size, 1s h. What step size i will ensure that linear interpolation
gives an absolute error of at most 10~° for all x in [0, 117

Solution Let xg.x,. ... be the numbers at which f is evaluated, x be in [(),1], and suppose
J satisfies x; < x < x;,y. Eq. (3.3) implies that the error in linear interpolation is

fAE) | f2 (&)

£ = P)| = [T =) — x| = [ — )| = )]

The step size is h, so x; = jh, x;s1 = (j + 1)k, and

() — Py < '[2;1’3}' Ix — jhy(x — G + D)
Hence
f@) = Pl = =5 < max | —jh)( =G+ D]
<5, max 1@ —jhe =G+ Dhl
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Consider the function g(x) = (x — jh)(x — (j + Dh), for jh < x < (j + 1)h. Because

h
gX)=x—-0G+ D)+ (x—jh) =2 (-r —jh — E) :

the only critical point for g is at x = jh + h/2, with g(jh + h/2) = (h/2)" = h* /4.
Since g(jh) = 0 and g((j + 1)h) = 0, the maximum value of |g'(x)| in [jh. (7 + 1)hA]

must occur at the critical point which implies that

}1 hE
f(x) — P()| < = max |g(x)| = % 7= @

~ 2 g=r=xy 8

Consequently, to ensure that the the error in linear interpolation is bounded by 109, it is
sufficient for i to be chosen so that

eh” < 1075, This impliesthat h < 1.72 x 102,

Because n = (1 — 0)/h must be an integer, a reasonable choice for the step size 1s

h = 0.001. [
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EXERCISE SET 3.1

1.

b

For the given functions f(x), let xp = 0, x; = 0.6, and x; = 0.9. Construct interpolation polynomials
of degree at most one and at most two to approximate f(0.45), and find the absolute error.

a.  fix) =cosx c. fx)=Inix+1)

bh. flx)y=+T+x d. f(x)=tanx

For the given functions f(x), letx; = 1.1, = 1.25,and x> = 1.6. Construct interpolation polynomials
of degree at most one and at most two to approximate f(1.4), and find the absolute error.

a. flx)=sinmx c. filx)=log,,(3x—1)

bh. fixyi=4x—-1 d fix)=é&"—x

Use Theorem 3.3 to find an error bound for the approximations in Exercise 1.
Use Theorem 3.3 to find an error bound for the approximations in Exercise 2.
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