
The ‘hygiene hypothesis’ for autoimmune and allergic diseases:
an updatecei_4139 1..9

H. Okada, C. Kuhn, H. Feillet
and J.-F. Bach
INSERM U1013, Necker-Enfants Malades

Hospital, Paris, France

Summary

According to the ‘hygiene hypothesis’, the decreasing incidence of infections in
western countries and more recently in developing countries is at the origin of
the increasing incidence of both autoimmune and allergic diseases. The
hygiene hypothesis is based upon epidemiological data, particularly migra-
tion studies, showing that subjects migrating from a low-incidence to a high-
incidence country acquire the immune disorders with a high incidence at the
first generation. However, these data and others showing a correlation
between high disease incidence and high socio-economic level do not prove a
causal link between infections and immune disorders. Proof of principle of
the hygiene hypothesis is brought by animal models and to a lesser degree by
intervention trials in humans. Underlying mechanisms are multiple and
complex. They include decreased consumption of homeostatic factors and
immunoregulation, involving various regulatory T cell subsets and Toll-like
receptor stimulation. These mechanisms could originate, to some extent, from
changes in microbiota caused by changes in lifestyle, particularly in inflam-
matory bowel diseases. Taken together, these data open new therapeutic per-
spectives in the prevention of autoimmune and allergic diseases.
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Introduction

Changes of lifestyle in industrialized countries have led to a
decrease of the infectious burden and are associated with the
rise of allergic and autoimmune diseases, according to the
‘hygiene hypothesis’. The hypothesis was first proposed by
Strachan, who observed an inverse correlation between hay
fever and the number of older siblings when following more
than 17 000 British children born in 1958 [1]. The original
contribution of our group to the field was to propose for the
first time that it was possible to extend the hypothesis from
the field of allergy, where it was formulated, to that of
autoimmune diseases such as type 1 diabetes (T1D) or mul-
tiple sclerosis (MS) [2]. The leading idea is that some infec-
tious agents – notably those that co-evolved with us – are
able to protect against a large spectrum of immune-related
disorders. This review summarizes in a critical fashion recent
epidemiological and immunological data as well as clinical
studies that corroborate the hygiene hypothesis.

The strongest evidence for a causal relationship between
the decline of infections and the increase in immunological

disorders originates from animal models and a number of
promising clinical studies, suggesting the beneficial effect of
infectious agents or their composites on immunological
diseases.

In this review, we shall attempt to evaluate the arguments
in favour of the hygiene hypothesis with particular interest
on the underlying mechanisms.

Evolving epidemiology of allergic and
autoimmune diseases

The rising incidence of atopic and autoimmune
diseases

In 1998, about one in five children in industrialized coun-
tries suffered from allergic diseases such as asthma, allergic
rhinitis or atopic dermatitis [3]. This proportion has tended
to increase over the last 10 years, asthma becoming an
‘epidemic’ phenomenon [4]. The increasing prevalence of
asthma is important in developed countries (more than 15%
in United Kingdom, New Zealand and Australia) but also in
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developing countries, as illustrated by a prevalence greater
than 10% in Peru, Costa Rica and Brazil. In Africa, South
Africa is the country with the highest incidence of asthma
(8%) [5]. Unfortunately, data from most other African coun-
tries are unavailable [6]. The prevalence of atopic dermatitis
has doubled or tripled in industrialized countries during the
past three decades, affecting 15–30% of children and 2–10%
of adults [7]. In parallel, there is also an increase in the
prevalence of autoimmune diseases such as T1D, which now
occurs earlier in life than in the past, becoming a serious
public health problem in some European countries, espe-
cially Finland, where an increasing number of cases in chil-
dren of 0–4 years of age has been reported [8]. The incidence
of inflammatory bowel diseases (IBD), such as Crohn’s
disease or ulcerative colitis [2] and primary biliary cirrhosis
[9] is also rising. Part of the increased incidence of these
diseases may be attributed to better diagnosis or improved
access to medical facilities in economically developed
countries. However, this cannot explain the marked increase
in immunological disorder prevalence that has occurred over
such a short period of time in those countries, particularly
for diseases which can be diagnosed easily, such as T1D or
MS [10–12].

The decreasing incidence of infectious diseases

Public health measures were taken after the industrial revo-
lution by western countries to limit the spread of infections.
These measures comprised decontamination of the water
supply, pasteurization and sterilization of milk and other
food products, respect of the cold chain procedure, vaccina-
tion against common childhood infections and the wide use
of antibiotics. The decline is particularly clear for hepatitis A
(HAV), childhood diarrhoea and perhaps even more spec-
tacular for parasitic diseases such as filariasis, onchocercosis,
schistosomiasis or other soil-transmitted helminthiasis [13].
In countries where good health standards do not exist,
people are chronically infected by those various pathogens.
In those countries, the prevalence of allergic diseases remains
low. Interestingly, several countries that have eradicated
those common infections see the emergence of allergic and
autoimmune diseases.

Uneven distribution

The geographical distribution of allergic and autoimmune
diseases is a mirror image of the geographical distribution of
various infectious diseases, including HAV, gastrointestinal
infections and parasitic infections. There is an overall
North–South gradient for immune disorders in North
America [14], Europe [2] and also in China [15] with
intriguing exceptions such as asthma in South America or
T1D and MS in Sardinia. There is also a West–East gradient
in Europe: the incidence of T1D in Bulgaria or Romania is
lower compared to western Europe, but is increasing fast

[16]. This gradient cannot be fully explained by genetic
differences. Indeed, the incidence of diabetes is sixfold higher
in Finland compared to the adjacent Karelian republic of
Russia, although the genetic background is the same [17].

Additionally, migration studies have shown that offspring
of immigrants coming from a country with a low incidence
acquire the same incidence as the host country, as rapidly as
the first generation for T1D [18] and MS [19,20]. This is well
illustrated by the increasing frequency of diabetes in families
of immigrants from Pakistan to the United Kingdom [21] or
the increasing risk of MS in Asian immigrants moving to the
United States [22]. The prevalence of systemic lupus erythe-
matosus (SLE) is also much higher in African Americans
compared to West Africans [23].

These data do not exclude the importance of genetic
factors for those immunological disorders, as assessed by the
high concordance of asthma, T1D or IBD in monozygotic
twins: for example, the concordance rate for atopic derma-
titis among monozygotic twins is high (77%) compared to
dizygotic twins (15%) [7]. The difference in some genetic
factors according to ethnicity [human leucocyte antigen
(HLA) gene difference between Caucasian and Asian, for
example] is well documented, but probably plays a minor
role in geographical distribution in view of migrant data.

Search for risk factors at the origin of the increase of
immunological disorders

Several factors, such as socio-economic indices, may explain
the difference in the prevalence of immunological disorders
according to time and geographical distribution. In fact,
there is a positive correlation between gross national product
and incidence of asthma, T1D and MS in Europe [2]. This is
true at the country level, but also at that of smaller regions,
such as Northern Ireland, where the low incidence of T1D is
correlated with low average socio-economic level, as evalu-
ated by conventional indices [24]. Similar results have been
obtained in the province of Manitoba in Canada for Crohn’s
disease [25]. This correlation has even been demonstrated at
the individual level for atopic dermatitis, as family income is
correlated directly with the incidence of the disease [26].
However, this does not pinpoint which factor within the
socio-economic indices is directly responsible for the
immunological disorder. Several epidemiological studies
have indicated a positive correlation between sanitary con-
ditions and T1D [24] or MS [27], suggesting a possible role
of infections. Other factors are often incriminated, such as
air pollution for asthma [28], but their role has not been
demonstrated convincingly. For example, it has been shown
that in East Germany before the fall of the Berlin Wall, where
the air pollution was greater, the incidence of asthma was
lower than in West Germany [29].

Vitamin D production is linked to sun exposure, and has
been shown recently to have immunomodulatory effects
[30]. However, this does not explain the West–East gradient
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of T1D in Europe, or the huge difference between Finland
and its neighbouring Karelian region, where people have the
same sun exposure level [31].

Epidemiological data indicating a direct link between
the decreasing level of infectious burden and the rising
incidence of immunological disorders

Several epidemiological studies have investigated the protec-
tive effect of infectious agents in allergic and autoimmune
diseases. The presence of one or more older siblings protects
against development of hay fever and asthma [1], of MS [32]
and also of T1D [33], as does attendance at day care during
the first 6 months of life in the case of atopic dermatitis and
asthma [34].

Interestingly, exposure to farming and cowsheds early in
life prevents atopic diseases, especially if the mother is
exposed during pregnancy [35,36]. It has also been shown
that prolonged exposure to high levels of endotoxin during
the first year of life protects from asthma and atopy [37].
However, these data have been contradicted by other studies
showing an increased prevalence of asthma correlated with
higher levels of endotoxins in urban housing [38,39]. The
level of endotoxins is higher in farms as compared to cities,
and subjects are in contact with a greater variety of microbial
compounds in farms, which could explain this discrepancy.

Do helminth parasites protect against atopy? Epidemio-
logical data of cross-sectional studies revealed that Schisto-
soma infections have a strong protective effect against
atopy, as reviewed recently [40]. Hookworms such as
Necator americanus also seem to protect from asthma. In
contrast, Ascaris lumbricoides and Trichuris trichiura have
no significant effect on disease. Parasitic infections have
been almost eradicated in European countries since the
Second World War, concomitant with the increase of
atopy and allergy. This trend can explain part of the epi-
demiological difference between Europe and Africa, but
cannot explain readily the intra-European North–South
gradient.

Proof of principle of the causal relationship
between decline of infectious diseases and
increase of immunological disorders

We have seen that there is a strong correlation between
changes in lifestyle and modifications of the incidence of
allergic or autoimmune diseases, but this does not prove a
causal relationship between these two observations. This is a
crucial question, as many factors unrelated to infections are
a consequence of lifestyle, such as food habits, quality of
medical care or dinner time gradient from North to South
Europe. The answer to this question comes from animal
models of autoimmune and allergic diseases and, to a lesser
degree, from clinical intervention studies.

Animal models

The incidence of spontaneous T1D is directly correlated with
the sanitary conditions of the animal facilities, for both the
non-obese diabetic (NOD) mouse [2] and the bio-breeding
diabetes-prone (BB-DP) rat [41]: the lower the infectious
burden, the higher the disease incidence. Diabetes has a very
low incidence and may even be absent in NOD mice bred in
‘conventional’ facilities, whereas the incidence is close to
100% in female mice bred in specific pathogen-free (SPF)
conditions. Conversely, infection of NOD mice with a wide
variety of bacteria, virus and parasites protects completely
(‘clean’ NOD mice) from diabetes [2]. Similarly, mycobacte-
ria (e.g. complete Freund’s adjuvant) prevent induction
of experimental autoimmune encephalomyelitis [42] and
ovalbumin-induced allergic asthma [43]. Data obtained in
our laboratory show that living pathogens are not required,
as bacterial extracts are sufficient to afford protection [44].

Increased atopy after anti-parasitic treatments

It has been shown that helminth eradication increases atopic
skin sensitization in Venezuela [45], in Gabon [46] and in
Vietnam [40]. However, in a small study of 89 Venezuelan
adults and children with asthma there was a clinical
improvement, and specific immunoglobulin E (IgE) levels
decreased after anti-helminthic treatment [47], while a
similar deworming treatment showed no effect in Ecuador
[48]. It is difficult to explain these contradictory data, which
may relate to the complexity of asthma pathophysiology. In
the same vein, one might also mention the increased atopy
observed after vaccination with Streptococcus pneumoniae in
South Africa [49].

Prevention of allergic and autoimmune diseases
by infections

In a prospective study in Argentina, 12 patients with MS with
high peripheral blood eosinophilia were followed. These
patients presented parasitic infections and showed a lower
number of MS exacerbations, increased interleukin (IL)-10
and transforming growth factor (TGF)-b secretion by
peripheral blood mononuclear cells (PBMC) [50].

Similarly, deliberate administration of ova from the
swine-derived parasite Trichuris suis, every 3 weeks for 6
months to 29 patients with active Crohn’s disease, improved
symptoms in 21 of 29 patients (72%) with no adverse events
[51]. T. suis ova were also given to patients with active ulcer-
ative colitis, with significant improvement (43% improve-
ment versus 17% for placebo) [52].

Another helminth, Necator americanus, has also been used
in Crohn’s disease, patients being inoculated subcutaneously
with infective larvae. There was a slight improvement of
symptoms, but the disease reactivated when immunosup-
pressive drugs were reduced [53].
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Probiotics

Probiotics are non-pathogenic microorganisms that are
assumed to exert a positive influence on host health and
physiology [54]. Encouraging results were first shown in
a double-blind randomized placebo-controlled trial in
Finland, where Lactobacillus GG taken daily by expectant
mothers for 2–4 weeks before delivery and postnatally for 6
months could decrease significantly the incidence of atopic
dermatitis [55]. Perinatal protection lasted up to 7 years [56].
Another trial showed improvement of atopic dermatitis
using other strains of probiotics [57]. However, a German
group using the same protocol did not find any protective
effect after 2 years [58]. Additionally, a recent study of 445
pregnant women in Finland who were treated with the same
protocol as the initial Finnish study, but with freeze-dried
Lactobacillus GG, failed to show any significant effect on
eczema, allergic rhinitis or asthma 5 years after treatment.
The only difference observed was a decreased IgE-associated
allergic disease in caesarean-delivered children [59].

In T1D, only experimental data are available. The protec-
tive effect of a probiotic [60] and a bacterial extract [44] was
reported on the onset of diabetes in NOD mice. A pilot study
in humans, the PRODIA study (probiotics for the prevention
of beta cell autoimmunity in children at genetic risk of type
1 diabetes), was begun in 2003 in Finland in children carry-
ing genes associated with disease predisposition [61].

The case of probiotics in IBD is more complex because of
the possible local anti-inflammatory effect, which could
explain the relief of symptoms without changes in disease
progression, as implicated in the hygiene hypothesis. Follow-
ing a number of uncontrolled studies in a small cohort of 14
paediatric patients with newly diagnosed ulcerative colitis,
probiotic treatment induced a significant rate of remission
compared to the control group (93% versus 36%) and a
lower relapse rate [62].

In brief, there are data suggesting that probiotics may have
a favourable role in immune disorders, but the case is far
from proven and requires further investigation. Additionally,
although side effects are very low they might not be non-
existent, as shown in a set of patients with acute pancreatitis
[63]. Thus, probiotics should not be considered as totally
harmless, particularly in the immunodeficient host, and
more safety studies are needed. As mentioned by Sharp et al.,
‘probiotics may have unpredictable behaviour like all micro-
organisms, such as unanticipated gene expression in non-
native host environment, or acquired mutations occurring
spontaneously via bacterial DNA-transfer mechanisms’.

Is there a role for microbiota changes in the
hygiene hypothesis?

The human gut is the natural niche for more than 1014 bacteria
of more than 1000 different species [64]. Immediately after
birth, the human gut is colonized with different strains of

bacteria. This commensal microbiota is important in shaping
the immune system, for other basic physiological functions
[65] as well as for the integrity of the intestinal barrier [66].
Interestingly, the intestinal flora was different in a small group
of allergic Estonian and Swedish children compared to the
control group, with a higher count of aerobic bacteria such as
coliforms and Staphylocccus aureus and a decreased propor-
tion of Lactobacilli, or anaerobes such as Bifidobacterium or
Bacteroides [67,68]. However, this difference was not seen in a
larger birth cohort study comparing three European baby
populations [69]. Additionally, this study showed a slower
acquisition of typical faecal bacteria such as Escherichia coli,
especially in children delivered by caesarian section or chil-
dren without siblings. It should be noted that all these studies
were based on the analysis of culturable bacteria, and only
atopic dermatitis and skin prick test were evaluated.

In autoimmune diseases the microbiota also seems to
modulate the immune response. In NOD mice deficient
for the myeloid differentiation primary response gene 88
(MyD88) signalling molecule it has been shown that micro-
biota protect mice from diabetes via a MyD88-independent
pathway [70]. Using the metagenomic approach, it has been
demonstrated that the biodiversity of the faecal microbiota
of patients with Crohn’s disease is diminished, especially for
the Firmicutes phylum [71,72]. Faecalibacterium prautsnitzii
is one of the Firmicutes that was particularly depleted, and it
has been shown that this deficient commensal bacterium
could improve IBD in a murine model of the disease [73].
This protective effect was also obtained with the supernatant
of F. prautsnitzii culture, demonstrating the importance of
one of the secreted molecules for its anti-inflammatory
effect. Another bacterium, Bacteroides fragilis, has also been
shown to protect animals from experimental colitis, and this
protective effect was linked to a single microbial molecule,
polysaccharide A [74]. As mentioned above, with regard to
IBD these data must be interpreted with caution before
extrapolating to other autoimmune disorders where the
disease site is extra-intestinal. First, the respective anti-
inflammatory and immunomodulatory effects of protective
bacteria remain to be determined. Secondly, this protective
effect should be discussed in the context of disease-
promoting bacteria such as Helicobacter hepaticus.

In brief, there is an increasing amount of data showing
that microbiota changes could contribute to the modulation
of immune disorders but evidence is still slim, except in IBD.
It is to be hoped that studies which provide a fair description
of the molecular changes following intestinal infections will
help in analysing the question further. The recent report by
Fumagalli et al. is a good illustration of this new approach
[75].

Mechanisms of the hygiene hypothesis

When considering the multitude of infectious agents that
can induce protection from various immunological disor-
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ders, it is not surprising that more than one single mecha-
nism has been found.

T helper type 1 (Th1)–Th2 deviation

Th1–Th2 deviation was the first major candidate mecha-
nism for explaining the protective influence of infectious
agents from immunological disorders. Th1 T cells produce
inflammatory cytokines such as IL-2, interferon (IFN)-g
and tumour necrosis factor (TNF)-a that are operational
in cell-mediated immunity (including autoimmune diabe-
tes). In contrast, Th2 T cells that produce IL-4, IL-5, IL-6
and IL-13 contribute to IgE production and allergic
responses. Given the reciprocal down-regulation of Th1
and Th2 cells, some authors suggested initially that in
developed countries the lack of microbial burden in early
childhood, which normally favours a strong Th1-biased
immunity, redirects the immune response towards a Th2
phenotype and therefore predisposes the host to allergic
disorders. The problem with such an explanation is that
autoimmune diseases, which in most cases are Th1 cell-
mediated, are protected by infections leading to a Th1
response and that atopy may be protected, as seen above, by
parasites which induce a Th2 response. These observations
fit with the concept of a common mechanism underlying
infection-mediated protection against allergy and auto-
immunity. Several hypotheses may explain these common
mechanisms.

Antigenic competition /homeostasis

It has been known for several decades that two immune
responses elicited by distinct antigens occurring simulta-
neously tend to inhibit each other. Numerous mechanisms
were evoked to explain antigenic competition that might be
pertinent to the hygiene hypothesis. The development of
strong immune responses against antigens from infectious
agents could inhibit responses to ‘weak’ antigens such as
autoantigens and allergens. Among the mechanisms that
explain antigenic competition, attention has been drawn
recently to lymphocyte competition for cytokines, recogni-
tion for major histocompatibility complex (MHC)/self-
peptide complexes and growth factors necessary to the
differentiation and proliferation of B and T cells during
immune responses within the frame of lymphocyte
homeostasis. Similarly to red blood cell mass, which is
restored to normal levels after a haemorrhage with the help
of erythropoietin, CD4 and CD8 T lymphocytes are restored
to normal levels after a lymphopenia. Homeostatic factors
that play an equivalent role to that of erythropoietin have
not been elucidated completely; however, cytokines such as
IL-2, IL-7, and IL-15 are known to play a crucial role. Regu-
latory T cells that we discuss below may also be implicated in
the mechanism of antigenic competition.

Immunoregulation

Another mechanism involves regulatory T cells which can
suppress immune responses distinct from reponses against
the antigen in question, here antigens expressed by infectious
agents (a phenomenon called bystander suppression). The
problem is complicated by the multiplicity of regulatory
lymphocytes involving diverse cytokines that mediate their
differentiation or their regulatory effects. The role of
CD4+CD25+forkhead box P3 (FoxP3+) T cells has been sug-
gested by transfer experiments performed in a murine para-
site model [76]. The role of such cells is also suggested by the
observation that CD28–/– NOD mice devoid of CD4+CD25+

FoxP3+ regulatory T cells (Tregs) lose their sensitivity to the
protective effect of bacterial extract (our unpublished data).
It has also been reported that in cord blood from newborns
of mothers exposed to farming, CD25+FoxP3 cells were
up-regulated [77]. This observation should be interpreted
with caution because of the uncertain specificity of these
markers in man.

Other data suggest a role for IL-10-producing B cells [78],
natural killer (NK) T cells [79] and more generally cytokines
such as IL-10 [80] and TGF-b [81] whatever the cell type
producing these cytokines. More work is needed in experi-
mental models to delineate further the involvement of regu-
latory mechanisms in the protective effects of the various
infections relevant to the hygiene hypothesis. It might
emerge that different mechanisms are operational according
to the protective infection.

Non-antigenic ligands

All the mechanisms mentioned previously are based on the
notion that the hygiene effect is due to the decrease of
immunological responses elicited against infectious agents.
A number of experiments indicate that infectious agents can
promote protection from allergic diseases through mecha-
nisms independent of their constitutive antigens, leading to
stimulation of non-antigen specific receptors. This concept
is well illustrated by the example of Toll-like receptors
(TLRs). Knowing the capacity of TLRs to stimulate cytokine
production and immune responses, it might be predicted
that TLR stimulation by infectious ligands should trigger or
exacerbate allergic and autoimmune responses. This has
indeed been demonstrated in some experimental models
[82,83].

Surprisingly, and paradoxically, it has also been observed
that TLR stimulation could prevent the onset of spontane-
ous autoimmune diseases such as T1D in NOD mice, an
observation made for TLR-2, -3, -4, -7 and -9 [84] (and our
unpublished data). In this model, treatment with TLR ago-
nists before disease onset prevents disease progression
completely. The mechanisms underlying such protections
are still ill defined, but could involve production of immu-
noregulatory cytokines and the induction of regulatory T
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cells or NK T cells. Similar data have been observed in an
ovalbumin-induced model of asthma [85].

Concerning HAV, it was shown initially that atopic dis-
eases were less common in subjects that have been exposed
to the virus [86]. It was difficult to say whether this associa-
tion was due to a direct protective effect of HAV infection or
explained only by the fact that HAV exposure is a matter of
poor hygiene. Data obtained by Umetsu et al. have shown
that HAV could influence T cells directly, notably Th2 cells
that express the HAV receptor [87], a finding corroborated
by the observation that atopy prevalence is associated with
HAV receptor gene polymorphisms in anti-HAV antibody-
positive subjects. In fact, recent data indicate that the HAV
receptor, the TIM-1 protein (T cell, immunoglobulin
domain and mucin domain), could play an important role in
the severity of HAV and its putative effect on atopic diseases.

Gene–environment interactions

An interesting approach to identify mechanisms underlying
allergic and autoimmune diseases consists in searching for
associations between these diseases and polymorphisms of
various genes, notably those coding for molecules involved
in immune responses. It is interesting to note that such an
association has been found for genes implicated in the
control of infection. Among them, polymorphism in genes
of the innate immune response such as CD14, TLR2, TLR4,
TLR6 or TLR10, and intracellular receptors such as NOD1
and NOD 2 [also known as caspase-recruitment domain
(CARD)4 and CARD15, respectively], appears to be impor-
tant [88,89]. Mouse studies have shown that these gene–
environment interactions explain a proportion of the
phenotypic variance. One of those genes is CD14, which is
important in lipopolysaccharide (LPS)/TLR-4 signalling.
Many association studies have highlighted the role of the
CD14–159CT polymorphism and allergic inflammation
[90].

Therapeutic strategies

The notions presented above open new, interesting, thera-
peutic perspectives for the prevention of allergic and
autoimmune diseases. Of course, contaminating children or
adults at high risk of developing these diseases by infectious
agents cannot be envisioned, at a time when medical
progress has allowed the reduction of major infectious
diseases. It should be mentioned, however, that even if we do
not believe that this is not the best strategy for the future,
some groups have used living parasites such as T. suis in the
prevention of IBD, as mentioned above, or living Lactobacilli
in the prevention of atopic dermatitis. These approaches
present the obvious limitation of insufficient standardiza-
tion, and hazards linked to unpredictable disease course in
subjects presenting an unknown immunodeficiency by con-

tamination with xenogeneic virus in the case of swine-
derived parasites.

Conversely, the use of bacterial extracts, already shown to
be efficacious in a number of experimental models and in
the clinic, such as OM-85 in T1D, should be envisioned
seriously [44]. These extracts, which represent the mixture of
a wide spectrum of chemically ill-defined components, are
also submitted to the criticism of poor standardization. On
the other hand, they are a better representation of the
various components of bacteria known for their protective
effects. The same comments apply to parasitic extracts,
shown to be effective in T1D [91]. In the long-term future,
one would like to use chemically defined components of
protective infectious agents, such as TLR agonists, polysac-
charide A or the active substance secreted by F. prautsnitzii.
In any event, the use of bacterial extracts or chemically
defined products will be confronted with the double
problem of the timing of administration (sufficiently early in
the natural history of the disease), and of safety. Indeed, any
side effects are unacceptable in young subjects who are
apparently healthy and whose risk of developing the disease
in question is not demonstrated absolutely.
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