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BACKGROUND: Pathogens cause agricultural
devastationandhuge economic losses.Up to30%
of our crops are lost before or after harvest to path-
ogensandpests,wastingwater andhumaneffort.
Diseases and pests aremajor problems for sustain-
able agriculture in the face of populationgrowth.
Similarly, microbial infection remains a major
cause of humanmortality andmorbidity, respon-
sible for ~25% of deaths worldwide in 2012. We
lackvaccines for severalmajor infectiousdiseases,
andantibiotic resistance is an ever-growing concern.
Plant and animal innate immune systems

respond to pathogen infection and regulate

beneficial interactions with commensal and
symbiotic microbes. Plants and animals use
intracellular proteins of the nucleotide binding
domain (NBD), leucine-rich repeat (NLR) super-
family to detect many kinds of pathogens. Plant
and animal NLRs evolved from distinct deriv-
atives of a common ancestral prokaryotic adeno-
sine triphosphatase (ATPase): the NBD shared
by APAF-1, plant NLR proteins, and CED-4 (NB-
ARC) domain class and that shared by apoptosis
inhibitory protein (NAIP), CIITA, HET-E, TP1
(NACHT) domain class, respectively. Animals
and fungi can carry both NB-ARC and NACHT

domain proteins, but NACHT domain proteins
are absent from plants and several animal taxa,
such as Drosophila and nematodes. Despite the
vast evolutionary distance between plants and
animals, we describe trans-kingdom principles of
NLR activation. We propose that NLRs evolved
for pathogen-sensing in diverse organisms be-
cause the flexible protein domain architecture
surrounding the NB-ARC and NACHT domains
facilitates evolution of “hair trigger” switches,
into which a virtually limitless number of micro-
bial detection platforms can be integrated.

ADVANCES: Structural biology is beginning to
shed light on pre- and postactivation NLR archi-
tectures. Various detection and activation plat-
forms have evolved in both plant and animal
NLR surveillance systems. This spectrum ranges

from direct NLR activa-
tion, through binding of
microbial ligands, to indi-
rect NLR activation after
the modification of host
cellular targets, or decoys
of those targets, by micro-

bial virulence factors. Homo- and heterotypic
dimerization and oligomerization of NLRs add
complexity to signaling responses and can enable
signal amplification. NLR population genomics
across the plant and animal kingdoms is in-
creasing owing to application of new capture-
based sequencing methods. A more complete
catalog of NLR repertoires within and across
species will provide an enhanced toolbox for ex-
ploiting NLRs to develop therapeutic interventions.

OUTLOOK:Despite breakthroughs in our mo-
lecular understanding of NLR activation, many
important questions remain. Biochemical mech-
anisms of NLR activation remain obscure. Events
downstream of plant NLR activation and out-
puts such as transcription of defense genes,
changes in cell permeability, localized cell death,
and systemic signaling remain opaque. We do
not know whether activated plant NLRs oligo-
merize or, if they do, how this is achieved, given
the diversity of subcellular sites of activation ob-
served for various NLRs. It is not clear whether
and how the different N-terminal domains of plant
NLRs signal. We have increasing knowledge re-
garding how animal NLRs assemble and signal,
although knowledge gaps remain. Therapeutic in-
terventions in humans targeting NLRs remain on
the horizon. Design of novel recognition capabili-
ties and engineering of new or extended NLR
functions to counter disease in animals and plants
provides tantalizing future goals to address plant
and animal health problems worldwide.▪
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NLR tree. Evolution of NLR genes followed diverging pathways for plant and animal species.
Numbers of NLR genes per genome identified computationally range widely, as shown on this
stylized evolutionary tree (branches not to scale). The numbers of NLRs can vary markedly even
across genomes from closely related taxa. NLRs likely derived from a common ancestor that
expressed both NACHTand NB-ARC type NBDs. NACHT is found in animal NLRs, and NB-ARC in
plant NLRs. Both occur in fungi. A variety of N- and C-terminal domains have been evolutionarily
recruited onto NBDs, including those characteristic of NLRs.The asterisk for tomato indicates that
experimental evidence exists to give this precision, as discussed in the main text. The double
asterisk for wheat indicates the number of NLRs per diploid genome (wheat is hexaploid). NLR-
like fungal proteins lack the LRR domain characteristic of NLRs and are thus not included here.
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REVIEW
◥

INNATE IMMUNITY

Intracellular innate immune
surveillance devices in plants
and animals
Jonathan D. G. Jones,1*† Russell E. Vance,2*† Jeffery L. Dangl3*†

Multicellular eukaryotes coevolve with microbial pathogens, which exert strong selective
pressure on the immune systems of their hosts. Plants and animals use intracellular proteins
of the nucleotide-binding domain, leucine-rich repeat (NLR) superfamily to detect many types
of microbial pathogens.The NLR domain architecture likely evolved independently and
convergently in each kingdom, and the molecular mechanisms of pathogen detection by plant
and animal NLRs have long been considered to be distinct. However, microbial recognition
mechanisms overlap, and it is now possible to discern important key trans-kingdom principles
of NLR-dependent immune function. Here, we attempt to articulate these principles.We
propose that the NLR architecture has evolved for pathogen-sensing in diverse organisms
because of its utility as a tightly folded “hair trigger” device into which a virtually limitless
number of microbial detection platforms can be integrated. Recent findings suggest means
to rationally design novel recognition capabilities to counter disease.

M
ulticellularity creates nutrient niches for
microbial colonization,which in turn drives
natural selection for hosts with effective
innate immunity. In plants and animals,
innate immunity involves both cell sur-

face receptors (1) and intracellular receptors of
the NLR [nucleotide binding domain (NBD) and
leucine-rich repeat (LRR)] superfamily (2–4).NLRs
play critical roles in organismal health in both
plants and animals; absence or dysfunction can
result in organ failure and death (Fig. 1). NLRs
were originally referred to as “Nod-like receptors,”
but we do not favor this name because it arose
only in the mammalian literature, and the of-
ficial consensus nomenclature is that NLR stands
for “NBD-LRR domain-containing” (5). Plant NLRs
are present in angiosperms and gymnosperms,
and even in bryophytes and liverworts, but not
in the single-celled alga Chlamydomonas. NLR
immune receptors are also found in diverse ani-
mals, from corals, sea urchins (6, 7), and primi-
tive chordates (8) to fish (9) and mammals (10).
Even though chordates and plant genomes carry
NLR genes, genes encoding these proteins have
not been found in several animal lineages such
as nematodes and arthropods. Yet, NLR-like pro-
teins with similar core architecture, but lacking
LRR domains, are present in filamentous fungi,

where they can play a role in heterokaryon incom-
patibility (11, 12). Thus, NLRs and fungal NLR-like
proteins represent a protein architecture deployed
across kingdoms for host defense and/or self-
nonself discrimination. In this Review, we focus
on an illustrative handful of themost exciting cur-
rent conceptual developments inNLRbiology and
refer the reader to excellent recent publications
for further details (13–19). We hope to convey the
enthusiasm of this rapidly advancing field as an
area of active basic research that is at the cusp of
exploitation to address pressing plant and animal
health problems worldwide.

NLR architecture: Evolution sculpts
sensitive switches
Plant and animal NLRs share a similar modular
domain architecture, including the core NBD and
LRR domain, although in both clades there is sub-
stantial diversity in N- and C-terminal accessory
domains (Fig. 2). The NBD falls within the STAND
[signal transduction adenosine triphosphatase
(ATPases) with numerous domains] AAA+ ATPase
superfamily, which typically includes Walker A
(P-loop) and Walker B motifs involved in nucleo-
tide binding and hydrolysis (20, 21). The NBD
is associated with adjacent a-helical domains
(22–24). Plant NLRs use a subtype of STAND
NBD called the NB-ARC (nucleotide-binding, Apaf1,
Resistance, CED4), associated with two a-helical
domains. This domain, also known as the Apop-
totic ATPase (Ap-ATPase) domain (25), is shared
with animal proteins that lack LRRs and are in-
volved in apoptosis such as mammalian Apaf-1,
DrosophilaDARK and nematode CED4, and likely
evolved froma class of prokaryotic ATPases. Animal
NLRs, in contrast, carry a distinct NBD subtype,
the NACHT (NAIP, CIITA, HET-E, and TP1) do-

main, associated with three a-helical domains,
that also likely derived from a distinct prokary-
otic ancestral domain (20, 22, 26). Both NACHT
and NB-ARC domains are in fungi, where they
have recruited diverseN- and C-terminal domains
but not LRRs (12). Thus, plant and animal NLRs
likely evolved from distinct ancestral NBD line-
ages based on differential expansion from a com-
mon ancestor of these STANDAAA+ATPases (27).
Although the focus of this Review is on NLRs

involved in innate pathogen-detection, some
mammalian NLRs appear to have distinct func-
tions, including transcriptional regulation in
adaptive immunity (28, 29). Nevertheless, de-
spite considerable NLR diversity in sequence and
function, all NLR and NLR-like proteins are pre-
sumed to involve a similar switch-like activation
mechanism. Indeed, studies of Apaf1 and its
homologs have established the paradigm for
our current understanding of NLR activation
(30). In this model, preactivation states of NLR
proteins feature intra- and potentially intermolec-
ular domain interactions to keep the NBD con-
formational equilibrium in a suppressed but not
fully inactive state (17, 31, 32). In response to spe-
cific pathogen effector (virulence) proteins or other
specific stimuli, the intramolecular interactions are
altered, and the NBD is believed to exchange ade-
nosine diphosphate (ADP) for adenosine triphos-
phate (ATP), likely driving NLR oligomerization
in at least some cases. NLRs can hydrolyze ATP to
ADP, but this activity does not drive oligomeriza-
tion. Whether ATP hydrolysis plays an important
role in NLR regulation is unclear; ATP hydrolysis
may convert activated NLRs to an inactive state.
NLR oligomerization is believed to initiate sig-

naling by the proximity-induced recruitment and
activationofdownstreammolecules viaN-terminal
accessory signaling domains (33). TheseN-terminal
domains vary considerably (Fig. 2) but are com-
monly coiled-coil or TIR domains in plant NLRs,
or domains in the death-fold superfamily (such
as CARD or Pyrin domains) in animal NLRs. The
putative signaling molecules recruited to plant
NLRs have not been identified, but several such
molecules recruited to animal NLRs have been
described. These include a kinase (RIPK2) that is
recruited to NOD1/2, a protease (caspase-1) that
is recruited directly to NLRC4 and NLRP1, and
a Pyrin-CARD–containing adaptor protein (ASC)
that recruits caspase-1 indirectly to several NLRs,
including NLRP3. Interestingly, the pyrin domain
of NLRP3 is also believed to propagate signaling
by nucleating the oligomerization of ASC into
polymerized filaments that coalesce into mas-
sive intracellular “specks” (34). The essentially
irreversible conversion of ASC from a soluble to
filamentous form is reminscent of the biochem-
ical behavior of prions, and indeed, the ASC
Pyrin domain exhibits prion-like properties when
expressed in yeast. Mutations in ASC that disrupt
its prion activities in yeast also abrogate its ability
to signal in mammalian cells (35). Conversely, a
yeast prion domain can functionally replace the
N-terminal Pyrin domain in ASC (35). Highly co-
operative polymerization that produces a “hair-
trigger” all-or-none signaling output might be
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desirable in proteins that need to respond rapidly
and sensitively to pathogen invasion. It is tempt-
ing to speculate that polymerization may be a
common feature of signaling downstream of both
plant and animal NLRs, although this remains
to be established experimentally.
In both plant and animal NLRs, deletion of the

LRR domain can result in constitutive NLR ac-
tivation. Thus, a primary function of the LRR
domain is likely to be negative regulation of NBD-
mediated oligomerization. A structure of mouse
NLRC4 suggests that autoinhibition is at least
partly mediated by direct contact between the
NBD and LRR (36), although whether this is gen-
eralizable to all NLRs remains to be seen. Once
activated, NLRs often induce a characteristic cell
death response termed the “hypersensitive re-
sponse” in plants and “pyroptosis” in animals.
Cell death is believed to restrict pathogen rep-
lication at the site of infection and, in animals,
results in the release of soluble mediators that
recruit and activate additional immune cells. In-
appropriate spontaneous NLR activation can lead
to autoimmune conditions in both plants and
animals. These syndromes can be more severe at
cold temperatures in both plants and animals,
resulting in chilling sensitive ectopic cell death in
plants and familial cold autoinflammatory syn-
drome (FCAS) in humans (37, 38). These exam-
ples suggest that intra- or intermolecular NLR
interactions required for autoinhibition can be
perturbed at the nonpermissive temperature, or
that ATP hydrolysis is attenuated at lower tem-
peratures, shifting the equilibrium from the in-
active toward the activated state.
Although the induced oligomerization model

has underpinned investigations of animal NLR
activation, it has not been demonstrated for plant
NLRs. Activation of the tobaccoN andArabidopsis
RPP1NLRs correlateswith self-association (39, 40),
but whether this represents the formation of
oligomers, as in the case of Apaf1 and some
animal NLRs, or simply homodimers remains
unclear. Theremay be diversity in both the resting-
state architectures of plant NLRs and in their
modes of activation by microbial signals that are
tuned by natural selection; no universal general-
ization may exist. For example, heterogeneity in
the subcellular site of activation of a given NLR
is potentially determined by the precise local-
ization of the microbial effector target that ac-
tivates it. There may be additional structural
constraints imposed by requirements for inter-
action with partner “helper” NLRs, with mi-
crobial effector target domains, or decoys of these,
or because of integration of target decoy domains
into the NLR itself (3, 41–44).
Subsequent to NLR activation, plant and ani-

mal innate immunity mechanisms likely differ
greatly, although we remain quite ignorant of
postactivation mechanisms in plants. Neverthe-
less, despite remarkable diversity in upstreamand
downstream signaling events, we are forced to
contemplate what is so fundamentally advan-
tageous about the NLR architecture that could
explain why it arose convergently in plants and
animals to play a role in pathogen detection and

aaf6395-2 2 DECEMBER 2016 • VOL 354 ISSUE 6316 sciencemag.org SCIENCE

Fig. 1. NLRs make a major contribution to organismal health. (A and B) Isogenic potato plants that
either (A) express or (B) lack a specific NLR (Rpi-vnt1) conditioning resistance to the oomycete
pathogen Phytophthora infestans, the causal agent of potato late blight. (C and D) Livers from (C)
normal NLRC4+ (resistant) and (D) NLRC4-deficient (susceptible) mice after lethal infection with
Chromobacterium violaceum (white bacterial lesions are visible). (E) Arabidopsis expressing the NLR-
encoding RPP5 gene undergoes protective localized cell death (trypan blue–stained cells; debris of dead
pathogen stained intensely in the center) in response to the Arabidopsis downy mildew pathogen
(Hyaloperonospora arabidopsidis) strain NoCo2. (F) Successful downy mildew colonization of leaf tissue
from isogenic susceptible Arabidopsis that lack RPP5 (trypan blue–stained hyphae and intracellular
pathogen haustoria). (G) Destruction of mouse intestinal tissue after NLRC4 activation showing
sloughing of epithelial cells into the intestinal lumen. The sloughing response is believed to prevent
bacterial invasion into deeper tissue. (H) Normal mouse intestinal tissue showing elongated villi and
intact intestinal epithelium.C
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defense activation (27, 45). The full spectrum of
mechanisms in each kingdom suggests that there
is scope for more conceptual similarities than
previously suspected. Given this diversity, we
propose that one advantage of the NLR archi-
tecture may simply be its ability to function as a
robust on-off switch in diverse signaling contexts.
To illustrate the flexibility of the NLR architec-
ture, we articulate below four distinct mecha-
nisms of pathogen sensing (“direct,” “guard,”
“decoy,” and “integrated decoy”) (Fig. 3) and
discuss how these four mechanisms can be ap-
plied to individual and paired plant and animal
NLRs. It remains to be seen whether these four
mechanisms are the main modes of action of
all NLRs or whether we are only scratching the
surface.

Division of labor: Sensors and helpers

Specific NLR responses can require a pair of
NLR proteins in which one senses the ligand
whereas the other (the “helper NLR”) is required
for its downstream signaling (46, 47). In mam-
mals, the NAIP/NLRC4 inflammasomes are com-
posed of sensor/helper NLR pairs. In this system,
a NAIP sensor NLR is activated by direct binding
to a specific bacterial protein ligand (such as
flagellin) (48, 49), leading to recruitment ofNLRC4
as a helper NLR. NLRC4 does not appear to bind
directly to ligands but instead functions down-
streamofNAIPs to recruit and activate caspase-1,
a key executioner of inflammasome signaling
pathways. Structural analyses demonstrate that
in the absence of stimulation, NLRC4 (and pre-
sumably NAIPs) are retained in the cytosol as
monomers, autoinhibited via intradomain inter-
actions (36, 50, 51). Recognition of microbial
molecules by NAIPs exposes a donor “catalytic”
surface on the NAIP that binds to a “receptor”
surface on NLRC4, provoking a conformational
change in NLRC4 that exposes its catalytic sur-
face. This in turn propagates the recruitment of
additionalNLRC4monomers to forma ring-shaped
oligomer that appears to contain oneNAIP and 9
to 11 NLRC4 molecules. This striking stoichiom-
etry suggests that NAIP activation is a hair trig-
ger for NLRC4-mediated signal amplification.
The concept of sensors and helpers also ap-

plies to some plant NLRs. Plant genomes encode
variable numbers of NLRs, with an atypical N-
terminal coiled-coil domain called a CC-R (52) that
correlates with helper NLR function. Resistance
to the Tobacco Mosaic Virus requires both the
sensor TIR NLR protein N and the helper CC-R
NLR protein NRG1 (53). In Arabidopsis, the five
CC-R–encoding genes comprise two paralogous
NLR families that function as helper NLRs (47, 54).
One of them, a member of the ADR CC-R family,
has both canonical, P-loop–dependent signaling
functions in cell death control and a noncanonical
P-loop–independent function as a helper NLR for
several effector sensor NLRs. The noncanonical
function suggested a requirement as a scaffold,
much like NLRC4, which can also exhibit P-loop–
independent functions in transduction of effector-
activated NAIP signals (48). A given NLR might
be operating by both of thesemechanisms, depend-

ing on the activation context, as demonstrated for
ADR1-L2 (54). Little is known about how the CC-R
domain is integrated into activation mechanisms,
but the fact that it is evolutionarily ancient and
monophyletic suggests a generalizable function
in plant NLR biology.
Natural NLR variants featuring degenerate

NBD consensus sequences exist, and there is evi-
dence to suggest that they may participate in non-
canonical activation mechanisms. The rice Pb1
NLR family lacks a P-loop motif but nonetheless
conditions broad spectrum resistance to rice blast,
potentially by acting as a helper NLR (55). This is
likely evolutionarily conserved, because there are
Pb1 homologs in maize. The small collection of
Arabidopsis and Arabidopsis lyrata proteins con-
taining variant P-loop residues is also likely to
alter or impair the canonical activation mecha-
nism outlined above (56). These include NLRs
with integrated decoy domains that function in
NLRpairs that are encoded together and function
together. For example, in the RPS4/RRS1 gene
pair, RRS1 is the sensor NLR, and its P-loop is
not required to activate signaling (57).

Guards and decoys: Getting the most
from the NLR receptor repertoire

Plant NLRs were first revealed by cloning
Resistance (R) genes that confer the capacity to
activate defense upon detection of specific pathogen
effectors. There is selective pressure for pathogens
tomutate their effectors to evade NLR-dependent
surveillance, which in turn selects for evolution of

either new R gene alleles, or other R genes, that
restore resistance. This “gene-for-gene” coevolution
led to the hypothesis that NLR proteins might
directly interact with the recognized effector, and
in some cases this prediction was fulfilled (58).
However, inmost cases, direct interaction between
a plant NLR and the “recognized” effector is not
observed. Instead,many plantNLRs appear to mo-
nitor the state of self proteins, termed “guardees,”
whose primary function is in defense signaling
and as such are frequently targeted by pathogen
effectors. If a pathogen virulence protein alters
the guardee’s structure, then the associated NLR
is activated. The “guard” strategy thus allows a rela-
tively small repertoireofNLRs (~150 inArabidopsis)
to protect against diverse pathogen effectors
(3, 59, 60). For example, NLR proteins RPM1 and
RPS2 act at the plasma membrane to monitor
the state of the plasma membrane–associated
defense regulator RIN4. RPM1 detects phospho-
rylation of a specific threonine residue on RIN4 pro-
voked by the pathogen effectors AvrB or AvrRpm1
(61, 62) and mediated via a receptor-like cytoplas-
mic kinase (63). This effector-modulated phos-
phorylation interferes with both RIN4-dependent
mesophyll defense responses (62) and stomatal
immunity (64). In contrast, RPS2 is activated by
cleavage of RIN4 by the bacterial cysteine pro-
tease effector AvrRpt2 (65, 66).
Similarly, RPS5 monitors the state of protein

kinase PBS1, also at the plasmamembrane (67, 68).
PBS1 is targeted for proteolytic cleavage by plasma
membrane–localized AvrPphB. Illustrating the

SCIENCE sciencemag.org 2 DECEMBER 2016 • VOL 354 ISSUE 6316 aaf6395-3

Fig. 2. Diversity of NLR and NLR-like architectures (“NLR-o-gram”). Domain structures of represent-
ativewell-studiedNLRproteins fromhuman andArabidopsis are shown approximately to scale. Definitions
of acronyms are provided in Box 1.The NACHTand NB-ARC domains are sometimes defined as including
the associated helical domains, but these domains are shown separately here for clarity. Humans contain
additional NLRs not known to be directly involved in pathogen sensing.
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flexibility of the guard strategy, the RPS5/PBS1
system has been engineered to expand RPS5
function to recognize other protease cleavage sites
engineered into PBS1 (69).

Mutations of a guarded protein, such as PBS1,
can result in no enhanced disease susceptibility.
This suggests that paralogs of genuine targets of
virulence proteins may have evolved to resemble
that target, thus “luring” pathogens to reveal
themselves by their action on a protein that is
not required for defense. This concept was elab-
orated as the “decoy” model (41). Given the
extensive functional redundancy of plant pro-
teins, it is formally difficult to distinguish between
redundant guardees and decoys; absence of evi-
dence that a given protein is involved in host
defense is not sufficient evidence to prove that
it is a decoy. Nevertheless, PBS1 is likely a decoy
for a class of cytosolic kinases that function during
defense activated by cell surface receptors (63, 70).
Additionally, tomato NLR Prf has evolved an ex-
tended N-terminal domain of unknown function
that acts as a detection platform with which to

monitor effector-targeted protein kinases of the
Pto family that are, in turn, likely decoys for the
defense-relevant kinase domains of pattern re-
cognition receptor LRR-kinases (71). Likewise, the
Arabidopsis NLR ZAR1 monitors the state of
multiple pseudokinases (72) that are likely decoys
for effectors that target receptor-like cytoplasmic
kinases involved in defense signaling.
Inmammals, the concepts of guards and decoys

have not been extensively discussed. The mam-
malian NOD1 and NOD2 NLRs were originally
proposed to function as direct detectors of bac-
terial peptidoglycan fragments, which is con-
sistent with a direct ligand-receptor model for
NLR activation in animals (73–75). However, crys-
tallographic proof that NOD1 and NOD2 bind
directly to peptidoglycan-derived ligands is lack-
ing. Instead, NOD1 and NOD2 might indirectly
sense pathogens via responsiveness to disruption
of host cell physiology (76, 77). For example, acti-
vation of the host cytoskeletal regulators Rac1
and Cdc42 by the secreted Salmonella virulence
factor SopE results in NOD1 activation (76). NOD1

and NOD2 also appear to be responsive to
pathogen-induced ER stress (77). These results
are consistent with NOD1 and NOD2 exhibiting
guard-type activation, although it remains un-
clear how this is to be reconciled with genetic evi-
dence that NOD1 and NOD2 can also be activated
by peptidoglycan.
Mammalian NLRP3 also acts as a guard of

cellular integrity because it can be activated by
disruption of cellular ion gradients. The molec-
ular mechanism of NLRP3 activation remains
unresolved, but the essential role of NEK7 kinase
in NLRP3 activation (78–80) is reminiscent of the
role of protein kinases in plant NLR activation.
Thus, the guard-type activation mechanism first
described in plantsmay also be germane to NLR-
mediated pathogen detection in animals.

Integrated decoys

An evolutionary challenge for sensor/helper,
guard/guardee, or guard/decoy NLR systems is
that if the correspondingNLR genes are unlinked
and exhibit allelic variation, inappropriate allelic

aaf6395-4 2 DECEMBER 2016 • VOL 354 ISSUE 6316 sciencemag.org SCIENCE

Fig. 3. Diverse strategies for NLR-mediated detection of pathogens. Four conceptually distinct strategies are illustrated.The details of how each strategy is
implemented for a specific NLR example may vary. The guard and decoy strategies are analogous: In both cases, the guardee or decoy proteins are involved in
maintaining the NLR in an inhibited state, and in both cases, the inhibition is relieved upon effector-mediated modification of the guardee or decoy. Guardees
are distinguished from decoys by having an additional and separate function in host defense, whereas decoys are merely mimics of host defense proteins.
Guardees are thus the “intended” targets of effectors, whereas decoys are inadvertently targeted by effectors.
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combinations may be generated that can result
in microbe-independent autoimmunity (81, 82).
Such untoward consequences may facilitate selec-
tion for genetic linkage of NLR pairs that function
together. Intriguingly, in multiple plant genomes
a given NLR may be closely linked and diver-
gently transcribed from another NLR gene that
is required for its function. For example, rice
RGA4 and RGA5 are two linked NLRs required
for recognition of two effectors from the rice
blast pathogen (Magnaporthe oryzae) (83). Sim-
ilarly, Arabidopsis RPS4 and RRS1 are two linked
NLRs that are both required to confer recognition
of two bacterial effectors, AvrRps4 and the YopJ
family acetyltransferase PopP2, and an uniden-
tified fungal molecule (84). In both of these ex-
amples, the two NLR components appear to be
preassociated (57) rather than associating only
upon effector perception, as occurs with NAIPs
and NLRC4 (48).
RRS1 carries aWRKY transcription factor (TF)

DNA binding domain toward its C terminus.
Arabidopsis encodes ~90 WRKY TFs, many of
which are implicated in innate immunity in
plants (85). Conceivably, then, WRKY proteins
might be targets for pathogen effectors because

their inactivation should result in elevated sus-
ceptibility. Recent data (86, 87) fulfill this expec-
tation: The effector PopP2 acetylates two lysines
in the canonicalWRKYGQKDNA-bindingmotif,
and the GQK lysine is crucial for RPS4/RRS1–
dependent defense activation. Another unrelated
bacterial effector, AvrRps4, also binds to theWRKY
domain. The RPS4/RRS1 complex converts the
effector-dependent modification of the RRS1
WRKY domain into defense activation. Integra-
tion of the guarded decoy domain into RRS1, an
indispensable and linked partner to RPS4, re-
duces the risk of recombination giving rise to
inappropriate allelic combinations of what could
be three unlinked proteins, whichmight result in
autoimmunity. There are at least nine such linked
NLR pairs in the reference Arabidopsis genome.
Importantly, these exhibit decoy domain diversity
at orthologous positions across the Brassicaceae,
suggesting that the rapid shuffling of integrated
decoy domains onto existing functionalNLR pairs
is a useful evolutionary strategy.
The discovery of linked paired NLRs in plants

creates a new opportunity. Functional transfer of
plant NLRs across species barriers has proven
largely impossible. This restricted taxonomic func-

tionality is poorly understood but, if solved, could
greatly enhance prospects for crop disease control
through genetics rather than chemistry. For ex-
ample, RPS4 andRRS1 confer effector recognition
and Colletotrichum fungus resistance when co-
transformed into Solanaceae or Cucurbitaceae
(88). This is consistent with the idea that re-
stricted taxonomic functionality for one NLR
arises from a requirement for the appropriate
helper or partner NLR. The additional required
NLRs are usually hard to identify, but in the case
of paired NLR genes, comprise each other. Sys-
tematic transfer of pairedNLRs betweenplant taxa
may provide additional recognition capacities that
would enable elevated crop disease resistances.
Overcoming taxonomic functionality restric-

tion may require more than paired NLR genes.
The tomato Prf/Pto guard/guardee pair confers
recognition of two widespread Pseudomonas ef-
fectors but does not appear to function outside
the Solanaceae. Prf/Pto function requires the
helper NLRs NRC2a, 2b, and NRC3 (46). A fuller
understanding of how sensors functionally inte-
grate with helpers is required to rationally ex-
pand and transfer useful disease resistance.
The concept of integrated decoysmay bewide-

ly applicable (42). Genome-wide analyses of plant
NLR genes led to the discovery of many inte-
grated domains in plant NLR proteins (42–44).
There is an overlap between the list of integrated
domains and the list of domains found to be fre-
quent interactors of pathogen effectors in large-
scale yeast 2-hybrid screens (43,89). This correlation
is consistent with the view that selection favors
integration into NLRs of protein domains that
are targets, or decoys of targets, of pathogen ef-
fectors. For example, the riceNLRRGA5 carries a
C-terminal RATX1 (related to yeast copper trans-
porter ATX1) or HMA (heavy metal–associated)
domain and likely binds metals. Effectors AVR-
Pia and AVR1-CO39 fromM. oryzae interact with
this domain and trigger RGA4-dependent defense.
Another rice gene pair, Pikp-1 and Pikp-2, recog-
nizes a different effector, Avr-Pik, which exists
in the fungal population as a series of alleles
(AvrPikA-D). Structural studies have illustrated
how effectors interact with the HMA domain that
is locatedbetween theCCand theNB-ARCdomain
of Pikp-1 (90). But why do pathogens evolve ef-
fectors that interact withHMAdomain proteins?
A clue is provided by the observation that the
recessive disease-resistance gene Pi21 contains an
HMA domain (91). Recessive disease resistance
genes are typically interpreted as “Susceptibility”
(S) genes encoding proteins in the host required
for pathogen proliferation. Genes that encode
such effector targets are promising candidates
for genome editing; loss of function of the Pi21
HMA domain protein results in enhanced disease
resistance. The role of HMA proteins in suscep-
tibility remains to be established, but conceivably
themetal-binding domainmay influence host cell
redox status, resulting in a more congenial envi-
ronment for the pathogen.
Integrated decoy mechanisms have not been

implicated inactivationofmammalianNLRs.How-
ever, a conceptually similar mechanism appears
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Box 1. Definitions for the acronyms used in this paper.

ADR1: Activated disease resistance 1

ASC: Apoptosis-associated speck-like protein containing a CARD

BIR: Baculovirus inhibitor-of-apoptosis repeat

CARD: Caspase activation and recruitment domain

CC-R: Coiled coil domain-RPW8-like

CC: Coiled coil

FIIND: Function-to-find domain

HD1/2: Helical domain 1/helical domain 2

HMA: Heavy metal associated (same domain as RATX)

LRRs: Leucine-rich repeats

NACHT: NAIP, CIITA, HET-E, TP1 domain

NAIP: NLR family, apoptosis inhibitory protein

NB-ARC: Nucleotide binding domain shared by APAF1, R genes, CED-4

NBD: Nucleotide binding domain

NLR: Nucleotide binding domain, leucine-rich repeat–containing

NLRC4: NLR family, CARD domain–containing 4

NLRP1/3: NLR family, Pyrin domain–containing 1 and 3

NOD1/2: Nucleotide-binding oligomerization domain–containing 1 and 2

PBS1: AvrPphB susceptible 1

PYD: Pyrin domain

RIPK2: Receptor interacting protein serine/threoning kinase 2

RATX: Related to ATX1 (same domain as HMA)

RGA5: Resistance gene analog5

RIN4: RPM1 interacting protein 4

RPM1: Resistance to Pseudomonas maculicola 1

RPP1: Resistance to Peronospora parasitica 1

RPS4/5: Resistance to Pseudomonas 4 and 5

RRS1: Resistance to Ralstonia solanacearum 1

STAND: Signal transduction ATPases with numerous domains

TIR: Toll-like, interleukin-1 receptor resistance protein

WD40: tryptophan (W), aspartate (D) 40 amino acids

WHD: Winged Helix Domain

WRKY: tryptophan (W), arginine (R), lysine (K), tyrosine (Y) motif-containing domain
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to underlie activation of mouse and rat NLRP1,
an NLR that is activated by lethal factor, a viru-
lence factor secreted by the anthrax bacterium
Bacillus anthracis (92). Lethal factor is a protease
that anthrax uses to degrademitogen-activated
protein kinases, kinases involved in host defense.
As a countermeasure, certain rodent NLRP1 pro-
teins are activated in response to direct cleavage
by lethal factor. Cleavage results in removal of an
N-terminal fragment of NLRP1 that normally
holds NLRP1 in the “off” state, and cleavage of
NLRP1 has been shown to be both necessary and
sufficient to activate NLRP1B (93, 94). Thus, the
NLRP1 N terminus appears to behave like an in-
tegrated decoy domain, mimicking the cleavage
site of the true effector targets. Unlike rodent
NLRP1 proteins, human NLRP1 carries a pyrin
domain at its N terminus. Interestingly, because
NLRP1 signals via its C-terminal CARD, the N-
terminal Pyrin domain is not required for sig-
naling and currently is of unknown function (95).
It is tempting to speculate that it serves as an
integrated decoy to detect putative pyrin-target-
ing effector proteins.

Mining NLR repertoires and recognition
strategies across taxa

Defining the repertoire of NLRs across species,
or even across genotypes of the same species,
requires an assessment of genetic diversity. We
usually lack comprehensive catalogs of the di-
versity of NLRs present in species or strains of
interest. Because NLR repertoire diversity is
important for disease resistance in natural pop-
ulations, definition of the pan-NLRome of any
plant or animal species will catapult us beyond
the limited understanding obtained by sequenc-
ing a single reference genome. In addition to the
paired NLR genes described above, NLR-encod-
ing genes typically exist as clustered families of
closely related paralogs, or as true allelic series.
Assembly of short-readwhole-genome data often
results in assembly errors in NLR loci. Sequence
capture enables NLR gene enrichment sequenc-
ing (RenSeq) (96), and long-read DNA sequenc-
ing technology enables reads of complete NLRs
to be obtained (97). Using biotinylatedRNAprobes
designed to capture the repertoire of 450 NLRs
predicted to be in the reference diploid potato
genome, 750 NLRs were identified (96). These
kinds of analyses on multiple accessions of plant
species, combinedwith RenSeq applied to cDNA,
will facilitate better insight into the repertoire of
and genetic variation in NLRs, including those
with integrated domains. Combined with muta-
genesis, these methods accelerate isolation of
useful resistance genes (98). Because integrated
domains are envisaged as effector targets, a wide-
spread understanding of their diversity will result
in a broader understanding of the cellular pro-
cesses usurped by pathogens (43). Plant genomes
carry many genes encoding N- and C-terminal
truncations of the canonical NLR structure, and
these are also captured with RenSeq. Such “pieces”
of NLRs do not fit the current mechanistic ac-
tivation paradigm outlined above because many
lack an active NBD. Nevertheless, their sequen-

ces are not degenerating into pseudogenes, and
some are capable of signalingwhen overexpressed
or mutated and are likely to contribute to overall
NLR functional diversity (47, 99).
Sequencing approaches such as RenSeq have

not yet been applied to catalog animal NLR re-
pertoires. One might anticipate that sequence
capture methods would reveal considerable di-
versity in domain architectures as well as poly-
morphism, thus revealing some NLR families
that are under diversifying selection and that are
likely to be coevolving with pathogens in ex-
tremely large populations. Primitive vertebrates
and invertebrates can carry large families of NLRs.
For example, the coral Acropora digitifera carries
~500 NLRs, Amphioxus carries ~118 NLRs, and
sea urchins carry ~203. There is no knowledge of
the extent of diversity of NLRs in populations of
these animals.
Mammals also display considerable diversity

between species in their NLR repertoires. For ex-
ample, unlike mice, the human reference genome
appears to lack multiple NAIP paralogs, although
it will be interesting to know whether this is true
across all human populations. Short-read exome
sequences are often difficult to assemble for para-
logous and repetitive gene families; thus, RenSeq-
type approaches could be valuable for assessing
animal NLR diversity. Little is known about in-
traspecific variation in mammalian NLR reper-
toires, and sequence capture of NLRs could reveal
diversity in innate immune surveillance capacity.
Such insights could also be useful to engineer
novel pathogen-resistance into animal species.
For example, the NLRC4/NAIP alleles of appro-
priate strains of mice could enable enhanced re-
sistance to Salmonella if expressed in transgenic
chickens.

Toward synthetic detection platforms

Despite breakthroughs in our molecular under-
standing of NLR activation, knowledge of subse-
quent signaling steps and mechanisms remains
weak. The pathways that connect NLR activation
to outputs such as transcription of defense genes,
changes in cell permeability, localized cell death,
and systemic signaling remain poorly understood.
Do activated, or dimerized, or oligomerized plant
NLRs recruit new signaling proteins? How dis-
tinct are the signaling pathways controlled by the
various N-terminal signaling domains recruited
to the NLR chassis during evolution? Are in-
tegrated decoy domain NLRs modular? Can we
engineer new or additional decoy domains into
them to create or extend NLR function? As more
structural and mechanistic information emerges
on how plant and animal NLRs function, the en-
gineering of novel, bespoke, and useful recog-
nition capacities in plant and animal immune
systems will become a more realistic goal.
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