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Abstract

Cachexia and muscle wasting are well recognized as common and partly reversible features of chronic obstructive pulmonary
disease (COPD), adversely affecting disease progression and prognosis. This argues for integration of weight and muscle main-
tenance in patient care. In this review, recent insights are presented in the diagnosis of muscle wasting in COPD, the patho-
physiology of muscle wasting, and putative mechanisms involved in a disturbed energy balance as cachexia driver. We
discuss the therapeutic implications of these new insights for optimizing and personalizing management of COPD-induced
cachexia.
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Introduction

Chronic obstructive pulmonary disease (COPD) is one of the
leading causes of death worldwide. It has been estimated
that COPD-related mortality rates will even increase in the
coming decades. This increase is not only related to the prev-
alence of smoking, but also ageing and reduced mortality
from other common causes of death play a role.1 Addition-
ally, COPD is a major contributor to global disease burden,
accounting for 43.3million disability-adjusted life years
in 2010.2 The disease is characterized by persistent airflow
obstruction, resulting from inflammation and remodelling of
the airways, and may include development of emphysema.
Furthermore, systemic disease manifestations and acute
exacerbations influence disease burden and mortality risk.3

Extending the classical descriptions of the ‘pink puffer’ and
‘blue bloater’, recent unbiased statistical approaches4,5 sup-
port the concept that body weight and body composition
discriminate pulmonary phenotypes and are predictors of
outcome. Extra-pulmonary degenerative manifestations that
may occur in COPD include osteoporosis6 and muscle wasting.
The prevalence of muscle wasting is relatively high in COPD:
15–40% depending on definition and disease stage.7,8 Impor-
tantly, muscle wasting not only contributes to diminished

skeletal muscle function, reduced exercise capacity, and de-
creased health status,9,10 but is also a determinant of
mortality in COPD, independent of airflow obstruction.8,11

Muscle wasting in COPD has been demonstrated by
decreases in fat-free mass (FFM) at whole body level, but also
specifically at the level of the extremities.12 Whole body and
trunk FFM reduction are more pronounced in the emphyse-
matous phenotype, whereas reduced FFM in extremities is
not different between the pulmonary phenotypes.13,14 In
addition, muscle wasting is apparent as a decrease in the size
of individual muscle fibres, and this muscle fibre atrophy in
COPD seems selective for type II fibres in peripheral mus-
cle,15,16 which is in line with other chronic diseases prone
to cachexia such as chronic heart failure.17 Furthermore, a
shift in muscle fibre composition from type I (oxidative) to
type II (glycolytic), accompanied by a decrease in oxidative
capacity, culminates in reduced muscle endurance.18 This not
only contributes to reduced exercise capacity19 but may also
affect muscle mass in COPD,20 because type I and II fibres
display different responses to anabolic and catabolic signals.21,22

While unintended weight loss was initially considered to
be an indicator of inevitable and terminal progression of
the disease process, there is now convincing evidence that
it is an independent determinant of survival, arguing for
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weight maintenance in patient care. There are indications
that the pathophysiology of unintended weight loss is differ-
ent between clinically stable COPD and during acute flare-ups
of the disease. To date, data in acute exacerbations of COPD
are, however, very limited. Therefore, lung cancer is used as
a comparative acute pulmonary cachexia model.

A recent unbiased statistical approach suggests that not all
COPD patients but only the emphysematous phenotype
is prone to cachexia,4 although the informative value of
available clinical studies is limited by a cross-sectional study
design. The last two decades have also yielded insight in the
impairments of the processes governing muscle mass and
identified putative triggers of muscle wasting in COPD. How-
ever, it remains unclear to what extent acute flare-ups of
COPD may accelerate chronic wasting of muscle mass and
whether muscle wasting involves similar mechanisms as in
other chronic diseases or in lung cancer cachexia. In this
review, we present recent insights in the pathophysiology of
muscle wasting in COPD and (putative) mechanisms involved
in the pathophysiology of a disturbed energy balance as
important driver of cachexia, which may lead to novel targets
for clinical management of cachexia in COPD.

Recent developments in identifying
muscle wasting in COPD

Incorporation of body composition into nutritional assess-
ment has been a major step forward in understanding
systemic COPD pathophysiology, since changes in weight and
classification of body mass index (BMI) do not account for
(hidden) body compositional shifts in fat mass (FM), FFM,
and bone mineral density. In clinical research, bioelectrical
impedance analysis is commonly used to identify cachexia.
Traditionally, reference values for fat-free mass index (FFMI)
in COPD were developed based on age-specific and gender-
specific 10th percentile values.8 These reference values were
defined as abnormally low, based on well-established adverse
effects of low FFMI on physical performance and survival in
normal to underweight COPD patients.7,11 However, this
might underestimate low muscle mass in the increasing
proportion of overweight to obese COPD patients.23 The
recent European Respiratory Society statement on nutritional
assessment and therapy in COPD24 proposed dual-energy
X-ray absorptiometry (DEXA) as the most appropriate method
for body composition analysis in COPD, mostly because it
combines screening for osteoporosis with assessment of FM
and FFM at the regional level in addition to whole body level.
Consequently, body composition assessed by DEXA also
allows measurement of appendicular skeletal muscle mass
(ASM), which has been demonstrated to be stronger related
to physical functioning than total FFM.23 Moreover, we
recently showed that this particularly applies to overweight
to obese COPD patients.23,25

Whereas low muscle mass is prevalent in ±15% of well-
functioning elderly in the general aged population,26 a higher
prevalence can be expected in COPD as a reflection of accel-
erated ageing.25 Indeed, Van de Bool et al. recently identified
low ASM in even 87% of Dutch COPD patients eligible for
pulmonary rehabilitation, along with a high persisting preva-
lence across all BMI categories.23 The ASM-wasted pheno-
type was not only associated with impaired strength but in
men also with decreased endurance capacity. Coexistent ab-
dominal obesity was identified in 78% of muscle-wasted pa-
tients, which appeared to have a protective effect on
physical functioning.23 Physiological alterations in terms of
less hyperinflation and a larger inspiratory capacity in obese
COPD patients contribute to certain advantages during phys-
ical activity.27 In addition, mortality rates in advanced COPD
are the lowest among obese subjects.28 This prognostic
advantage typically reflects the ‘obesity paradox’, because
obesity, on the other hand, is also associated with increased
risk of cardiovascular and metabolic diseases.

Although clinically useful estimates can be derived by DEXA,
a more precise distinction between muscle mass, visceral and
subcutaneous adipose tissue requires more advanced imaging
technologies. This could be relevant in COPD as Van den Borst
et al. and Furutate et al. recently reported a higher visceral ad-
ipose tissue in older-age patients with COPD compared with
age-matched healthy controls, despite comparable
subcutaneous adipose tissue and BMI.29,30

McDonald et al.31 recently demonstrated that CT-derived
pectoralis muscle area (PMA) provides a more clinically rele-
vant measure of COPD-related outcomes in comparison with
BMI, as lower PMA was associated with more severe expira-
tory airflow obstruction, lower quality of life, and impaired
exercise capacity. Because gender differences have been docu-
mented in body composition and its functional implications,23

Diaz et al. explored gender differences in computed tomogra-
phy (CT)-derived PMA and observed lower PMA in women
compared with men.32 CT scans are often used to exclude
other underlying illnesses, and therefore, chest CT-derived
analysis of body composition may be an attractive diagnostic
tool to combine screening for pulmonary and systemic pathol-
ogy. However, it first needs to be properly validated against ref-
erence methods of whole body and regional body composition
to allow use in clinical practice. Furthermore, due to the radi-
ation exposure, use of CT scans for body composition
assessment is only admissible when scans are already
performed to screen for pulmonary pathology.

New insights in the pathophysiology of
muscle wasting in chronic obstructive
pulmonary disease

The loss of muscle mass and cross sectional area in COPD
patients as determined by imaging techniques has been
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confirmed at the cellular level, that is, a reduction in muscle
fibre cross-sectional area.16 As reviewed by Langen et al.33

and Remels et al.,20 triggers of muscle wasting include hypox-
emia, oxidative stress, inflammation, impaired growth factor
signalling, oral glucocorticoids, disuse, and malnutrition,
some of which are influenced by smoking.34 Wasting of
skeletal muscle is due to a net catabolic state, which may
result from an imbalance in muscle protein synthesis and
breakdown (protein turnover), as well as from an imbalance
in myonuclear accretion and loss (myonuclear turnover).

Protein turnover

To get insight in the rate of (muscle) protein turnover in
COPD, information on (muscle) protein synthesis and break-
down is required. Both increased and normal rates of whole
body protein turnover have been reported in patients with
COPD,35,36 but the relative contribution of muscle versus
other tissues to protein turnover is unknown. Rutten et al.
observed an increase in myofibrillar protein breakdown in
cachectic COPD patients compared with non-cachectic
patients and controls,35 but no data are available regarding
muscle protein synthesis rate, except for a small study show-
ing depressed muscle protein synthesis rates in malnourished
patients with emphysema.37 Numerous studies, however,
have addressed molecular regulation of anabolic and cata-
bolic pathways in the quadriceps muscle of COPD patients,
which provides some insight in altered muscle protein turn-
over in muscle-wasted COPD patients.

Proteolytic signalling

Several environmental triggers can lead to catabolic signalling
in the skeletal muscle, mediated by transcriptional regulators
including nuclear factor kappa-light-chain-enhancer of acti-
vated B cells (NF-κB) and forkhead box O transcription factors
(FOXOs). NF-κB activity is increased in COPD patients com-
pared with controls38,39 and in cachectic COPD patients
compared with non-cachectic COPD patients.38,40 Further-
more, limb muscle NF-κB activity is increased in patients with
lung cancer cachexia.41 FOXO mRNA and protein expression
are increased in patients with COPD,38,39,42–45 seemingly
independent of body composition, although it is noticeable
that in all studies, the patient group showed signs of emphy-
sema. In the COPD patient group, FOXO-1 protein expression
was higher in limb muscles than in respiratory muscles, while
this difference was not found in controls.46 Interestingly, the
respiratory muscles of COPD patients show an opposite fibre
type shift compared with limb muscles, that is, towards more
type I fibres.47,48 This will have implications for the expression
levels of constituents of atrophy signalling pathways.22,49 In-
creased catabolic signalling through FOXO and NF-κB can

induce gene expression of key factors in both the ubiquitin
proteasome system (UPS)50,51 and the autophagy lysosome
pathway.33,52

Ubiquitin proteasome-mediated degradation

The ubiquitin 26S-proteasome pathway consists of coordi-
nated actions of the ubiquitin conjugating and ligating
enzymes that link ubiquitin chains onto proteins to mark
them for degradation by the proteasome.53,54 These enzymes
include tripartite motif containing 63, E3 ubiquitin protein
ligase (TRIM63, referred to as MURF1), F-box protein 32
(FBXO32, referred to as ATROGIN1), and neural precursor cell
expressed, developmentally downregulated 4, E3 ubiquitin
protein (NEDD4).

MURF1 limb and respiratory muscle mRNA and protein
expression appear unaltered in COPD patients compared with
controls,38,40,55–57 although one study reported increased
MURF1 protein expression in the limb muscles of cachectic
COPD patients.39 In COPD patients, MURF1 protein expres-
sion is relatively increased in limb muscle than in the respira-
tory muscle, while this difference was not found in controls.46

Furthermore, cachectic COPD patients show increased limb
muscle mRNA expression of MURF1 compared with a control
population.44 ATROGIN1 mRNA and protein expression are in-
creased in limb muscles,38–40,44,56,57 but unaltered in respiratory
muscles of patients with COPD.55 Similarly, ATROGIN1 mRNA
expression is increased in the limb muscles of smokers.58

Furthermore, Doucet et al. found that COPD patients display a
higher ATROGIN1 protein expression in limb muscles than in
respiratory muscles, while this difference was not found in
controls.46 Additionally, limb muscle NEDD4 protein expression
is increased in patients with COPD.57 Total poly-ubiquitinated
protein is increased in limb muscles of COPD patients compared
with healthy controls39,56 and in cachectic COPD patients
compared with non-cachectic COPD patients.38

Taken together, the majority of the literature suggests that
wasting in COPD is accompanied by an increase in UPS activa-
tion. The increase in catabolic signalling in cachectic COPD pa-
tients is site specific. This may reflect disuse atrophy of the
limb muscle with maintained or increased respiratory muscle
activity, or it may result from an interaction between inactiv-
ity and other triggers of atrophy, such as smoking.

Autophagy-lysosome-mediated degradation

The autophagy-lysosome pathway is a protein degradation
pathway, which recently gained interest in the context of
COPD-associated muscle dysfunction. Upon activation,
autophagosomes form and mature to subsequently fuse with
lysosomes. The autophago-lysosomes degrade the cargo and
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release amino-acids for de novo protein synthesis or other
metabolic fates.59

Signalling through v-akt murine thymoma viral oncogene
(AKT) regulates mechanistic target of rapamycin (serine/thre-
onine kinase) complex 1 (MTORC1) activity and downstream
of MTORC1, unc-51 like autophagy activating kinase 1
(ULK1) activity, thereby regulating autophagy initiation.60,61

Inhibitory MTORC1-mediated ULK1 phosphorylation is de-
creased in limb muscles of COPD patients compared with
controls,45 which may implicate an increase in autophagic
flux induction. The increase of FOXO mRNA and protein
expression in COPD patients may induce the transcription of
autophagy-related genes. However, it should be taken into
account that FOXO transcriptional activity is also regulated
by post-translational modifications. Plant et al. found that
the mRNA expression of autophagy-related genes Beclin-1
and microtubule-associated protein 1 light chain 3 alpha
(MAP1LC3A, referred to as LC3) is unaltered in the limb mus-
cles of COPD patients compared with controls.57 Limb muscle
sequestosome 1 (SQSTM1, referred to as P62) mRNA expres-
sion, however, is increased in COPD patients.45 Although the
mRNA expression of autophagy-related genes and the activa-
tion of ULK1 may give some insight in the level of autophagy
initiation, it does not directly reflect the level of autophagic
flux. In muscle biopsies, the conversion of LC3BI to LC3BII
can be used as a measure for autophagic flux. Furthermore,
P62 is used as a marker for autophagic flux, because it is bro-
ken down by the lysosome. In the limb muscles of COPD
patients, the LC3BII/I ratio is increased,39,45 pointing to an
increase in the autophagic flux. In contrast, P62 protein
expression is increased, pointing to a decrease in autophagic
flux.45 However, it cannot be excluded that the increase in
P62 protein expression is due to the increase in P62 transcrip-
tion. The number of autophagosomes was found to be
increased in the limb muscle of COPD patients,39,45 which
suggests an increase in autophagic flux. However, it is only
possible to speculate on the level of autophagic flux in the
limb muscles of patients with COPD based on the currently
applied markers, as these incompletely cover autophagic flux,
autophagy induction, and autophagic-lysosomal degradation.
Therefore, autophagic flux markers should be analysed
coupled to the activity status of upstream regulators such
as MTORC1 and AMP-activated protein kinase (AMPK) in
muscle biopsies. Moreover, besides its role in protein break-
down, autophagy also acts as a quality control mechanism
for proteins and intracellular components.62,63 Therefore, an
impaired autophagic flux in COPD patients may have conse-
quences for the integrity and function of intracellular compo-
nents such as the nucleus and mitochondria.

It currently is unknown if the autophagic-lysosome path-
way activity is altered during acute exacerbations of COPD,
because most studies were conducted in stable COPD
patients. However, in lung cancer cachexia, LC3BII protein
expression and BCL2/ adenovirus E1B 19kDa interacting

protein 3 (BNIP3) mRNA expression are induced,41 pointing
to an increase in autophagy. From this, autophagy induc-
tion in skeletal muscle might be anticipated during acute
stages of COPD wasting.

Protein synthesis signalling

A major anabolic pathway is the insulin-like growth factor 1
(IGF1)/phosphatidylinositol-4,5-bisphosphate 3-kinase, cata-
lytic subunit alpha (PIK3CA referred to as PI3K)/AKT path-
way. Most studies found an increase in IGF1 mRNA
expression in the limb muscle of COPD patients compared
with controls,42,43,64 although Crul et al. found a decrease
in IGF1 mRNA expression in stable COPD patients.65 Unfor-
tunately, this study did not provide body composition data.
Cachectic COPD patients seem to have a lower limb muscle
IGF1 mRNA and protein expression than non-cachectic
COPD patients.40 Furthermore, during an acute exacerba-
tion, muscle IGF1 mRNA expression is lower in COPD
patients than in controls, although IGF1 protein expression
remains unaltered.65

Even though IGF1 mRNA expression is increased in limb
muscles of COPD patients, AKT activation remains unal-
tered.39,45,57 AKT activity is relatively increased in cachectic
patients compared with non-cachectic patients and healthy
controls,40,44 while the decrease in IGF1 mRNA expression
in this group would generally implicate a decrease of
IGF1/AKT signalling. Interestingly, an increase in AKT activa-
tion is also observed in patients with lung cancer-related
cachexia,41 suggesting it may be a common feature of pulmo-
nary cachexia. The discrepancy in IGF1 mRNA expression and
AKT activation suggests altered regulation at the IGF-receptor
or IGF-receptor protein expression level.66

Signalling through AKT inhibits the upstream inhibitor of
MTORC1, thereby inducing MTORC1 activation and subse-
quent phosphorylation of its downstream targets eukaryotic
translation initiation factor 4E-binding protein 1 (EIF4EBP1,
also called 4EBP1) and ribosomal protein S6 kinase,
70kDa, polypeptide 1 (PRPS6KB1, also called p70S6K).67

The increased AKT activation in the limb muscle of cachec-
tic patients compared with non-cachectic COPD patients
is paralleled by an increase in phosphorylation of the
downstream targets 4E-BP1 and p70S6K.44 P70S6K phos-
phorylation is unaltered in COPD patients compared with
controls,44 while ribosomal protein S6 (RPS6 referred to
as S6) phosphorylation was even decreased in COPD
patients.45 Together, these studies show an increase in pro-
tein synthesis signalling in the limb muscles of cachectic
COPD patients compared with non-cachectic COPD patients,
but no alteration in the general COPD population. In
patients with lung cancer-related cachexia, AKT activation
is increased without concurrent activation of MTOR or its
downstream targets.41 This may indicate that, although
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impaired AKT signalling is found in lung cancer cachexia,
AKT signalling is largely intact in COPD-induced muscle
wasting. However, one limitation of these studies concerns
the evaluation of the activation status of protein synthesis
signalling solely in a basal state. Although the current data
may suggest that the protein synthesis pathway is a prom-
ising target for the treatment of COPD-induced muscle
wasting, the integrity of the anabolic response should be
further addressed.

Only limited data are available on anabolic signalling in
respiratory muscles of COPD patients, and although the
results also point to an increase in anabolic signalling, it
remains unclear if this is different between cachectic and
non-cachectic COPD patients. Martinez-Llorens et al. found
an increase in IGF1 mRNA expression in the intercostal
muscles of patients with COPD.68 Doucet et al. compared
the ratio of quadriceps to diaphragm AKT activation in COPD
patients with controls and found a lower ratio in COPD.20 This
implicates that the AKT activation is relatively higher in the
diaphragm than in the quadriceps. In line with this, the
p70S6K phosphorylation is relatively higher in the diaphragm,
while 4E-BP1 phosphorylation is higher in the quadriceps.20

Interestingly, Tannerstedt et al. showed a difference in
anabolic response between type-I and type-II muscle fibres,
with increased AKT phosphorylation and downstream path-
way activation in the type-II fibres.69 In contrast, in COPD,
the respiratory muscle with a shift towards more type-I
fibres displayed a larger AKT activation and downstream sig-
nalling than the limb muscles with a shift towards more
type-II fibres. Therefore, the shift in fibre type does not
explain the variation in AKT phosphorylation and down-
stream signalling between the limb muscle and respiratory
muscle. Other discriminating factors, such as the muscle
activity level, may be more closely linked to differences in
AKT phosphorylation.

Taken together, anabolic signalling is increased in the
skeletal muscle of patients with COPD, with an even larger
increase in the diaphragm than the limb muscles. One
may speculate that the increased activation of AKT signalling
in the respiratory muscles is an attempt to preserve
respiratory function by compensating catabolic triggers,
although it may also reflect intrinsic alterations in muscle
fibre composition.

Myonuclear turnover

Besides the turnover of proteins, the turnover of myonuclei
appears essential for muscle regeneration.70–72 Furthermore,
although at a lower rate, myonuclear turnover might be
indispensable for the maintenance of skeletal muscle mass.
The regulated loss of a nucleus may involve apoptosis.
Increased apoptosis, as determined by an increase in terminal
deoxynucleotidyl transferase dUTP nick end labelling (TUNEL)
staining and poly (ADP-ribose) polymerase cleavage in

the skeletal muscle of cachectic COPD patients has been
reported.73 In the diaphragm of COPD patients with muscle
wasting, elevated caspase-3 levels indicated an increase in
apoptosis.55 No difference in apoptosis measured by TUNEL
staining or caspase-3 was found in COPD patients with main-
tained muscle mass compared with controls.74 A possible
alteration in apoptosis in the muscle of COPD patients remains
inconclusive due to the lack of studies and the use of different
markers. Furthermore, the possible role of apoptotic signalling
in the skeletal muscle atrophy remains obscure,75 and multinu-
cleated muscle fibres may utilize other mechanisms for
selective myonuclear loss, such as autophagy.76

To replenish the myonuclear pool, satellite cells are essen-
tial.72 In contrast to muscle wasting in ageing,77,78 the
number of satellite cells per muscle fibre is unaltered in the
limb and respiratory muscles of patients with COPD
compared with controls.68,79–81 Furthermore, no differences
in satellite cell number have been reported between
muscle-wasted and non-muscle-wasted COPD patients.80

Upon activation, satellite cells proliferate, differentiate,
and fuse with myofibres. Activation and proliferation of satel-
lite cells in the limb muscles does not seem to differ between
COPD patients and age-matched controls based on number
of satellite cells 24 h after a resistance-exercise bout.81 How-
ever, molecular markers of satellite cell activation may be
more sensitive than satellite cell number to quantify the
satellite cell response.

In a basal condition, myogenic factor 5 mRNA expression is
unaltered in the limb muscles of patients with COPD com-
pared with controls.57 Myogenic differentiation 1 (MYOD1)
mRNA expression40 and protein expression appear similar in
the limb muscles of COPD patients and healthy controls.57

Furthermore, Myogenin (MYOG) mRNA expression is unal-
tered in COPD patients.57 However, in cachectic COPD
patients, MYOD140 and MYOG38,39 protein expression are
reduced compared with controls, while no alteration in
MYOG protein expression was found in the limb muscles of
cachectic compared with non-cachectic COPD patients.38 It
should be considered that in different populations and
disease stages, the course of the satellite cell response might
be altered, which may have implications for the timing of the
measurements.

A negative regulator of myogenesis is myostatin (MSTN).82

Limb muscle MSTN mRNA expression is increased in COPD
compared with controls,57,83 while no difference seems to
be present between cachectic and non-cachectic COPD
patients.40 The increased MSTN mRNA expression in COPD
patients may be partially explained by smoking status, as this
increase is also found in smokers.58 MSTN protein expression
is unaltered in the limb muscle of COPD patients, indepen-
dent of the pulmonary phenotype,38–40 while the circulatory
level of MSTN is increased in COPD compared with control
subjects.84 It should be noted that Snijders et al. showed a
delayed response in MSTN protein levels upon a single bout
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of resistance exercise in the elderly, while basal levels did not
seem to differ.85 This implies that in the absence of a
myogenic trigger, intrinsic alterations in satellite cell plasticity
responses in muscle of COPD patients may be masked.

Centrally localized myonuclei in myofibres are considered
derived from newly fused satellite cells prior to their final
location peripherally in the myofibre against the sarcolemma.
COPD patients with preserved muscle mass have higher
amounts of central nuclei in the limb muscle than muscle-
wasted COPD patients and controls.80 This could be interpreted
as an attempt to counteract atrophic signalling in COPD
patients, which may be essential to preserve muscle mass.
However, as there is only indirect evidence that central
myonuclei reflect recent regenerative events, central nuclei
could also reflect an increase in myonuclear turnover to com-
pensate for increased loss of myonuclei.

To gain further insight in the regulation of myonuclear turn-
over and possible defects in COPD-induced skeletal muscle
wasting, it is essential to incorporate satellite cell activation
stimuli and sensitive techniques to monitor myonuclear accre-
tion and turnover in the study design. This will require further
development of new techniques, in parallel with novel ex vivo
and in vitro approaches to monitor myonuclear accretion and
possibly myonuclear loss, and assessment of the role of alter-
ations in myonuclear turnover in muscle atrophy.

Loss of muscle oxidative phenotype

Besides the importance of the muscle quantity for muscle
function, the quality of the muscle should also be considered.
This is highlighted by the finding that muscle mass-specific
muscle strength and endurance are reduced in patients with
COPD.86–88 A well-established qualitative alteration in the
skeletal muscle of COPD patients is the loss of oxidative
phenotype (OXPHEN) characterized by a muscle fibre type I
to type II shift and a loss of oxidative capacity.20,88,89 The loss
of OXPHEN is associated with increased oxidative stress,88,90

which may render the muscle more susceptible to muscle
atrophy.38 In addition, type II fibres are generally more sus-
ceptible to atrophy stimuli including, for example, inflamma-
tion21 and hypoxia.22 Therefore, the loss of OXPHEN in
COPD may accelerate the loss of muscle mass, thereby linking
muscle quality to muscle quantity. This is supported by the
fact that non-symptomatic smokers already exhibit reduced
mitochondrial capacity and a similar fibre-type shift.91

Although less extensively investigated, striking similarities
are reported regarding muscle oxidative metabolism in
chronic heart failure.92 As these patients also share other
systemic features and lifestyle characteristics (e.g. muscle
wasting and low physical activity level) comparative analyses
between well-phenotyped patients with COPD and chronic
heart failure may provide more insight in common and
disease-specific denominators and mechanisms.

Therapeutic perspective

Because muscle wasting may result from alterations in the
protein and myonuclear turnover, targeting key pathways in
these processes will be required to combat muscle wasting.

Ubiquitin proteasome system activity is increased in the
muscles of cachectic COPD patients, which implicates the
atrogenes MURF1 and ATROGIN1 as targets to normalize
UPS activity. This is supported by the finding that in a cell cul-
ture model and in a mouse model of muscle disuse, MURF1
inhibition and knockout, respectively, prevented muscle fibre
atrophy.93,94 Pharmacological inhibitors that target specific
ubiquitin-conjugating and deconjugating enzymes are being
developed to treat cancer, neurodegenerative disorders, and
autoimmune diseases95 but may also be highly relevant for
the treatment of COPD-induced muscle wasting. Further-
more, exercise training may attenuate MURF1 expression,
as was observed in the skeletal muscle of chronic heart failure
patients.50,96 In contrast to exercise training, one bout of
exercise leads to an increase in MURF1 expression, albeit
blunted in COPD,97,98 while the increase in proteolytic signal-
ling is reduced by branched-chain amino acid supplementa-
tion in a healthy population.97

Autophagy is disturbed in patients with COPD, although it
remains unclear whether there is an increased induction of
autophagy or an inhibition of autophagic-lysosomal degrada-
tion. Low amino acid availability can activate autophagy by in-
hibition of MTOR.99 In line with this, branched-chain amino
acid supplementation leads to an inhibition of autophagy by
activation of MTOR.100 Furthermore, overall low energy
status, DNA damage, and hypoxia can inhibit MTOR through
AMPK and hypoxia inducible factor 1, alpha subunit
(HIF1-α)101,102 and thereby induce autophagy. Interestingly,
exercise targets these factors, and exercise training results
in elevated levels of basal autophagy.103 However, exercise
leads to an increase in muscle mass and strength in COPD
patients.98 Moreover, autophagy is required for muscle adap-
tations to training.103,104 The counterintuitive effect of
exercise on autophagy may therefore be more tightly linked
to its function in quality control.

A more speculative thought is that autophagy may play a
role in selective removal of damaged myonuclei. Besides
causing mitochondrial DNA (mtDNA) damage, oxidative stress
also causes nuclear DNA damage. COPD patients display ele-
vated levels of oxidative stress, which may lead to increased
DNA damage and requires increased removal of damaged
nuclei. Although exercise induces oxidative stress, which is
even accentuated in COPD patients,105 exercise also triggers
myogenesis.106 In COPD, this myogenic response to exercise
seems intact, although it is specifically impaired in cachectic
COPD.40,98 Exercise-induced satellite cell activation is medi-
ated by IGF signalling.107 In contrast, MSTN signalling inhibits
satellite cell activation.108 Because MSTN expression is
increased in COPD, pharmacological inhibition of MSTN might
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be beneficial to prevent COPD-induced muscle wasting. This
idea is supported by the finding that in mice with chronic
kidney failure, pharmacological inhibition of MSTN blocks
muscle atrophy,109 and that pharmacological inhibition of
the ActII-receptor, which mediates MSTN signalling, prevents
glucocorticoid-induced muscle atrophy.110 In vitro, glutamine
reduced the tumour necrosis factor alpha-dependent in-
crease of MSTN.111 This implicates that availability of amino
acids is important for normal satellite cell function in COPD
and that restoration of normal amino acid levels may be
required for muscle maintenance. Taken together, the dual
function and differential regulation of UPS and autophagy in
the maintenance of muscle mass and quality reflects a highly
interactive signalling network that is regulated by several up-
stream pathways. The effect of specific modulation of UPS
and autophagy mediators may therefore transcend catabolic
signalling and may affect a range of other cellular processes,
yielding it difficult to predict long-term side effects. So far, ex-
ercise seems to be the only intervention that can target UPS
and autophagy leading to improved quantity, as well as an
improved quality of the muscle in COPD patients. One pre-
requisite is that COPD patients, and specifically cachectic
COPD patients, have maintained responsiveness to exercise
stimuli, which remains to be established. Exercise capacity
in COPD may be limited by impaired pulmonary function,
leading to incapability to supply a sufficiently strong exercise
trigger to the muscles. In this case, pharmacological or nutri-
tional activators of AMPK, sirtuin 1, and peroxisome
proliferator-activated receptors such as metformin, resvera-
trol, rosglitazone, and polyunsaturated fatty acids could be
used as exercise mimetics and may help sensitize the muscle
to a following exercise bout. Furthermore, anabolic steroids
could be considered in the treatment of COPD-induced mus-
cle wasting, although a recent meta-analysis showed that
exercise capacity of COPD patients was not improved.112 It
should also be considered that an appropriate nutritional sta-
tus is necessary for the beneficial effects of exercise and that
exercise (in particular, endurance type of exercise) in a mal-
nourished state could even have detrimental effects by wors-
ening the energy imbalance. Taken together, a multi-modal
approach may be required to combat COPD-induced muscle
wasting, in which exercise training is central. However, to
establish such intervention, further research is crucial to
determine whether the response to exercise is intact or if
specific defects occur, in cachectic patients with COPD.

Putative mechanisms involved in a
disturbed energy balance in COPD

Specific loss of muscle mass in weight-stable COPD patients
has been observed, which may reflect a tissue-specific sensi-
tivity to an overall catabolic state. A net catabolic state may

also result from an imbalance in energy expenditure and
energy availability (energy balance).

Increased energy expenditure

It is well established that components of whole body energy
expenditure may be increased in patients with COPD.113 Total
daily energy expenditure (TEE) is the sum of resting energy
expenditure (REE), activity-induced energy expenditure
(AEE), and diet-induced thermogenesis (DIT). Assessment of
TEE requires sophisticated methodology including a respira-
tion chamber114 or doubly labelled water to allow assess-
ment of TEE in free living conditions.115,116 Data on TEE in
COPD are scarce and sometimes contradicting, which may
be related to the use of different methodology or patient
characteristics. Based on the available evidence, it seems that
in particular the emphysematous phenotype is prone to
increased TEE, as high values are more often observed in
patients with low carbon monoxide diffusing capacity.117–119

This is in line with a positive effect of lung volume-reduction
surgery on body weight in emphysema, although surgical
intervention might not only decrease energy requirements but
also improve dietary intake by alleviating dyspnoea.120 More
research is needed to assess putative differences in whole-
body energy metabolism and its components among COPD
phenotypes under comparable standardized circumstances.

Numerous studies have shown that REE is raised.121–123

This is more prevalent in emphysema124,125 during acute
exacerbations,126 and appears inversely correlated with
forced expiratory volume in 1 s when comparing different
studies.118,119,122,127 Highest values are found among
weight-losing patients.122 This is in contrast with non-pathol-
ogy-induced malnutrition, where subjects with low BMI have
lower REE due to hypometabolic adjustments.128 The same
results are found for non-small-cell lung cancer (NSCLC),
where REE is found to be unregulated in 74% of primary lung
cancer patients.129–131 Hypermetabolism at rest was also
found to be more pronounced in weight-losing compared
with weight-stable lung cancer patients.132 Thus, increased
REE is a consistent feature of chronic and more acute
cachexia and seems to be more pronounced in the emphyse-
matous subtype.

Activity-induced energy expenditure is the most variable
component of TEE, and it has been postulated that COPD
patients reduce physical activity to compensate for dyspnoea
severity or to anticipate to breathlessness. Indeed, lower
physical activity levels are seen in COPD.133 Physical inactivity
is associated with advanced disease stage,134–136 exacerba-
tions,137,138 and degree of emphysema.139 In addition, lung
volume-reduction surgery in patients with severe emphysema
improved exercise performance due to reduced lung hyperin-
flation, less dyspnoea severity, and less cost of breathing.140

However, it did not cause augmentation of physical activity
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level, implying other factors play a role, including motivation
or anxiety.141 There are several indications that when COPD
patients perform physical activities, they require more energy.
For example, Lahaije et al. found a higher daily activity-related
oxygen consumption assessed by a face mask measuring ven-
tilatory and metabolic demand in COPD patients compared
with healthy controls,142 while Vaes et al. found an increase
in FFM adjusted oxygen consumption in COPDpatients com-
pared with controls, although total oxygen consumption was
not altered.143 Indirect evidence for altered AEE is a rise in
plasma ammonia in COPD patients during low intensity walk-
ing, which is an indicator of muscle ATP depletion and meta-
bolic stress.144 These collective data may indicate that COPD
patients use oxygen less efficiently and exhibit an altered
energy metabolism during physical activity. This is not surpris-
ing in view of the shift in lower limb muscle fibre type compo-
sition in COPD towards less oxidative fibres, which appears to
be more pronounced in the emphysematous phenotype.18

The opposite shift in muscle fibre type of the diaphragm rela-
tive to the limb muscle47,48 indicates an adaptation to chronic
increase in work of breathing. Together with hyperinflation-
induced mechanical inefficiency, this muscle fibre type shift
could contribute to enhanced oxygen cost of breathing, illus-
trated by the effects of lung volume-reduction surgery145

and non-invasive positive-pressure ventilation therapy.146

For comparison, in lung cancer, physical activity level assessed
by accelerometry is also reduced,147,148 but no specific data
about AEE.

Diet-induced thermogenesis represents metabolic oxygen
cost for processing of ingested nutrients. Green and col-
leagues125 indeed reported enhanced DIT in emphysematous
COPD patients, but this was not confirmed by other
authors,149,150 independently of BMI.151 These differences
may be due to different test meal composition and portion
size. Although oxygen desaturation during meals was noticed
in severe COPD patients,152 it is unknown whether this is DIT
related or not. Therefore, the thermic effect of dietary intake
remains unclear. Taken together, it indicates that energy
requirements are increased in COPD, and there is certainly
no adaptive reduced energy demand.

In addition to the hypermetabolic state, early clinical trials
have shown that enhanced systemic inflammation is a
contributing factor to elevated REE, both in COPD153 and in
lung cancer,154 the source of which is yet unclear. Besides
pulmonary inflammation,155 adipose tissue has also been
suggested to contribute to a higher inflammatory gene
expression in adipose tissue, as has been reported in
malnourished patients with advanced COPD.156

Adipose tissue metabolism

In cachexia, muscle wasting is accompanied by loss of adipose
tissue.14,157 In fact, in cancer-induced cachexia, adipose tissue

is often one of the first affected organs, illustrated by
decreasing fat cell volume and upregulation of fatty acid
metabolism.158 Regarding COPD, low BMI11 and fat mass
depletion14 particularly occur in those with advanced disease
and in the emphysematous phenotype.

Schols et al. observed low leptin levels in the blood of
patients with emphysema compared with chronic bronchitis
in line with a lower BMI and fat mass.159 After adjustment for
FM and oral corticosteroid use as possible confounders, leptin
was associated with systemic inflammation, in particular in
the emphysematous patients. More recently, Brusik et al.
investigated serum levels and adipose tissue expression of
leptin and adiponectin in patients with COPD and reported
an association between decreased serum and tissue leptin
levels, and decreased serum adiponectin and increased REE
adjusted for body weight in underweight patients.160 In adipose
tissue, two cell types can be distinguished: white adipose tissue
(WAT) and brown adipose tissue (BAT). Brown adipose tissue
is differentiated from WAT by the presence of cold and diet-
induced thermogenesis. Thermogenesis is facilitated by
BAT-specific uncoupling proteins (UCP) that dissipate the proton
gradient in mitochondria in order to generate heat.161 High
amounts of mitochondria and high vascularisation are responsi-
ble for the brown colour of BAT.162 Additionally, WAT can be
converted in BAT, called WAT browning.163 BAT activation
negatively correlates with BMI, as demonstrated by decreased
BAT activation in obese subjects164 and during ageing.165

Cachexia on the other hand is characterized by fat mass
depletion. This raises the question whether there is a role of
BAT activity in the hypermetabolic state, as seen in pulmonary
cachexia.

No studies are performed to determine BAT activity in
COPD patients. With respect to lung cancer, results are con-
flicting and scarce. Despite negative results of BAT activation
reported by some authors,166,167 Shellock and colleagues
provided evidence for BAT activation as a cachexia mediator.
Autopsy reports of cachectic cancer patients revealed high
incidence of BAT in this group compared with age-matched
controls.168 Furthermore, a correlation between BAT activity
and neoplastic status has been suggested,169 although the
authors also reported high amount of BAT activation in
non-malignancy subjects.

There is indirect evidence that BAT activation might be a
potential cachexia driver in COPD as well. Hypoxia170 and
hypermetabolism122 are hallmarks of COPD. In response to
hypoxia, cells can produce vascular endothelial growth factor
(VEGF) in order to restore oxygen supply.171 This has been
established by Van Den Borst et al., who found an upregula-
tion of the VEGF gene in adipose tissue in response to chronic
hypoxia in mice. Congruently, adipose tissue showed a brown
appearance. This browning of adipose tissue was established
by increased expression of UCP1,172 which proposes a link
between hypoxia-induced VEGF activation and browning.
Indeed, Sun et al. revealed upregulation of UCP-1, the main
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characteristic of BAT, in a VEGF overexpressing mouse
model.173 In addition, recently, increased thermogenesis
and energy expenditure were found in mice with VEGF over-
expression in BAT and WAT.174

Another hypoxia alignment occurs in the form of lactate. In
peripheral muscle of COPD patients, increased glycolysis
metabolism is observed,175 which in turn causes rising lactate
levels.176,177 Lactate is indeed increasingly released by adipo-
cytes in a hypoxic environment,178 which in turn is able to
control the expression of UCP-1. The UCP-1 regulation is
independent of HIF-1α and thereby also promotes WAT
browning under normoxic circumstances.179

Another possible browning factor is beta-adrenergic stimu-
lation mediated by norepinephrine.180,181 Emphysematous
COPD patients indeed exhibit increased plasma norepineph-
rine levels,182 indicating a possible activation of the auto-
nomic nervous system. However, Schiffelers et al. showed a
blunted beta-adrenoceptor-mediated lipolytic and thermo-
genic response,183 suggesting desensitization. Additionally,
in 10 lean healthy men, BAT activity in response to a systemic
non-selective beta-agonist was not enhanced.184 In contrast,
blocking the receptors by propranolol decreases BAT
activity.185 Therefore, activation of brown fat through beta-
adrenergic stimulation remains disputable.

It can be concluded that there is some indirect evidence
pointing towards a role of BAT in pulmonary cachexia, but
this area requires more research to identify therapeutic
potential.

Compromised dietary intake

In order to compensate for increased energy requirements in
COPD, patients should be able to adapt their dietary intake.
Systematic analyses of dietary intake in COPD patients are
rare. In terms of caloric content, dietary intake was found
to be normal compared with healthy controls, but inadequate
for measured energy expenditure.118,186–188 During severe
acute exacerbations, the gap between energy intake and
energy expenditure becomes even wider, which slowly
decreases upon recovery.126,189 To our knowledge, no human
studies have systematically investigated the relation between
dietary intake and disease severity or putative differences
between emphysematous and non-emphysematous patients.
Advanced disease stages and acute exacerbations are often
characterized by chronic or acute hypoxemia.170 It is well
established that mice under chronic hypoxic circumstances
experience weight loss, which is partly due to temporarily
decreased dietary intake.172

Anorexia

It is acknowledged that apparently normal dietary intake in
COPD patients may be insufficient to meet elevated energy

requirements, but reduced food intake may also be caused
by anorexia, that is, loss of appetite.190 A few underlying
causes have been mentioned, including nicotine use,191 phys-
ical discomfort such as dyspnoea and increased breathing
effort,192 depression, and anxiety,193 seen in COPD194 as well
as in NSCLC.195,196

Besides pulmonary and psychological symptoms, COPD
patients often experience pain. In a Norwegian study, which
controlled for age and gender, 45% of the COPD patients
reported chronic pain, compared with 34% of the general
population.197 Opioids are commonly used to combat pain
in COPD.198 Side-effects of opioids occur regularly, and opioids
are able to cause gastrointestinal motility disorders,199 of which
constipation is the most common.200 People suffering from
constipation often present with anorexia,201 probably due to
early satiety. Separate from use of pain medication, early
satiety and abdominal bloating is highly prevalent in COPD.202

Chemosensory alterations

Food intake is regulated by taste and smell,203,204 and
chemosensory dysfunction could influence dietary intake.
Nordén et al. showed that 21 out of 169 stable COPD patients
reported taste changes, which contributed to a decreased
energy intake.205 In addition, Dewan et al. compared 20 COPD
subjects with long-term oxygen therapy to 20 COPD patients
without oxygen therapy and 20 healthy elderly controls. They
found reduced smell and taste test scores among COPD
patients compared with controls, independent of oxygen
supply.206 Also, Wardwell and colleagues found that healthy
elderly tended to be able to identify more different tastes
correctly than COPD patients, although not statistically signif-
icant.207 Both authors did not report medication use, and
therefore, the influence of treatment is unknown. Although
data are scarce and methodological quality of the studies is
limited, these data suggest that COPD or its treatment could
modify taste and smell detection.

Food reward system

Fullness is regulated by gastrointestinal hormones, including
leptin and ghrelin,208 and their secretion is affected by
dietary intake and nutritional status. Clinically stable emphy-
sematous COPD patients exhibit low leptin levels compared
with the chronic bronchitis subtype.159 During acute flare
ups, these plasma levels rise temporarily,189 as seen in
NSCLC.209,210 Likewise, enhanced plasma ghrelin levels are
noticed in COPD211 and NSCLC212 and are related to cachectic
status.

The peripheral hormonal satiety system closely interacts
with the central nervous system in order to regulate food
intake. Brain imaging studies have revealed reward-specific
brain regions related to food reward,213 and activation of

Cachexia in COPD 13

Journal of Cachexia, Sarcopenia and Muscle 2016; 7: 5–22
DOI: 10.1002/jcsm.12062



these regions correlate with food rewarding.214 Different
orexigenic and anorexigenic peptides and hormones can stim-
ulate neurons in these specific cerebral regions.208,215 For
instance, leptin inhibits neurons, causing reduced food intake
and increased energy expenditure.216 Ghrelin, considered to
be a leptin counterpart, can induce food intake mediated by
stimulation of neurons in this area.217

There is surprisingly no human study available that
explored the role of central dysregulation in food reward in
patients with COPD. In relation to lung cancer cachexia, only
one study was performed identifying brain activity in anorec-
tic and non-anorectic patients while receiving pleasant and
unpleasant food cues.218 In contrast to non-anorectic
patients, anorectic patients showed no brain activity differ-
ences in response to pleasant versus unpleasant pictures. This
implies an overall blunted response in the perceptual and
motivational system that could also be involved in COPD
but requires further investigation.

Therapeutic perspective

The importance of nutritional status is not only emphasized
by adverse effects on muscle function and exercise perfor-
mance but also by detrimental effects of malnutrition on lung
tissue. These effects have mostly been studied in animal
models. Following the clinical phenotyping of the pink puffer
and the blue bloater in the 1960s, Sahebjami et al. found
reinforcement of pre-existing emphysematous processes
due to caloric food deprivation in rats,219 which was more
pronounced in young rats.220 These deleterious effects could
partly be reversed by refeeding.221 In contrast, Bishai et al.
found no alveolar size changes in calorie-restricted mice,
although the lungs became stiffer and lung capacity was
decreased.222 Supplementary evidence was provided by
emphysema-like changes present in anorexia nervosa pa-
tients, which underscores the impact of chronic malnutrition
on alveoli.223 In addition to lung tissue, respiratory muscles
also contribute to breathing. Weight loss does not spare the
respiratory muscles, because weight loss is related to
diminished diaphragm weight224 and decreased function225

in experimental models and in humans.
As proof of concept, Efthimiou et al. conducted a ran-

domized controlled trial to investigate the effect of nutri-
tional support on respiratory and peripheral muscle
function in malnourished COPD patients. They reported
improvement in respiratory muscle strength and hand grip
strength, accompanied by less dyspnoea and enhanced
distance in 6-min walk test. Importantly, these effects
diminished after quitting the dietary supplementation.226

The positive effects of dietary support on body weight
was verified by Weekes et al., who found weight gain in
the intervention group, whereas the control group contin-
ued to lose weight. Addition of dietary counselling to

dietary support has been shown to maintain weight loss after
cessation of intervention.227

Initially, the focus was primarily on caloric intake to
balance energy requirements, but more recent proof of con-
cept experiments also highlighted the importance of optimiz-
ing protein intake.228,229 Low intake of other essential
nutrients is identified, including vitamin D and calcium,230

which are also relevant in the context of osteoporosis as
clustering comorbid condition.

One should keep in mind that dietary intake does not
reflect actual availability of ingested micronutrients. There
are indications that intestinal function is impaired in COPD,
illustrated by splanchnic hypoperfusion and reduced intesti-
nal permeability.231 Altered intestinal function translates into
reduced splanchnic extraction of amino acids derived from
nutritional intake,36,232 but as a result, the amino acid uptake
in the skeletal muscle of clinically stable COPD patients
appears increased.233 Thus, the significance for clinical appli-
cations remains ambiguous.

Both dietary intake and nutrient availability are controlled
by gastrointestinal hormones. By binding to the growth hor-
mone secretagogue receptor, ghrelin can induce secretion of
growth hormone.234 This leads to modulation of the growth
hormone/IGF1 axis, which is an important anabolic pathway
in human skeletal muscle.235 Furthermore, ghrelin can
induce food intake, mediated by stimulation of specific
neurons in the food reward centre.217 Due to its orexigenic
property, ghrelin analogues have been proposed for clinical
application in cachexia. One clinical trial with ghrelin
analogues have been conducted in COPD patients. They
reported improvements of ventilatory efficiency at peak
exercise, reflected by increased peak oxygen uptake.236 How-
ever, it did not translate in improved 6-min walk distance,
and no data are available about body composition or food in-
take. Clinical trials in cancer cachexia,237 including lung can-
cer,238 demonstrate an enhanced lean body mass and
quality of life. Hence, ghrelin analogues warrant further
investigation in COPD. Besides dietary and pharmacological
interventions, cognitive behavioural interventions are rela-
tively underexplored in the management of cachexia in
COPD. Although results from different functional neuroimag-
ing studies are inconsistent and sometimes conflicting,239

there might be altered reactivity in the brain reward system
in response to perceived food stimuli in people with altered
eating patterns, including anorexia nervosa and obesity.240,241

Therefore, cognitive behavioural therapy may serve as a treat-
ment for patients with an eating disorder like anorexia
nervosa.242 Recently, a randomized controlled trial was con-
ducted in obese subjects, receiving behavioural therapy for
6months in order to reduce weight. Analysis of functional
magnetic resonance imaging revealed changes in reward
system activity in the intervention group versus controls.
Further research has to identify whether it is possible to
enhance neuroplasticity in the food reward centre in order
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to increase successfulness for eating disorder treatment.243

This opens up new insights and therapeutic opportunities
for suspected nutritional therapy-resistant cachectic COPD
patients, if disturbances in the central food reward system
are indeed identified.

Conclusions

It is well established that the prevalence and related disease
burden of cachexia is high in COPD and likely to increase in
the near future given the high and increasing prevalence of
the disease in an ageing population. Nevertheless, cachexia
management is still poorly implemented in clinical practice.
In 2014, the European Respiratory Society published a state-
ment on nutritional assessment and therapy in COPD
including a nutritional risk stratification diagram based on
assessment of BMI, weight changes, and body composition,
which could be useful in patient counselling.24 In order to in-
crease overall survival and compress morbidity, a multi-modal
intervention approach is needed, which should target the
discussed factors involved in cachexia (Figure 1). Such a

multi-modal intervention approach, encompassing exercise
training and improvement of energy balance and nutrient
availability, is currently feasible as supported by recent state-
ments and meta-analyses, possibly improved in the near
future by targeted pharmacological interventions and cognitive
behavioural therapy to sensitize patients to anabolic stimuli.
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