CHAPTER

MOTION
CONTROL

In the previous chapter, trajectory planning techniques have been presented which allow gen-
erating the reference inputs to the motion control system. Generally speaking, the problem of
controlling a manipulator is to determine the time history of the generalized forces (forces or
torques) to be developed by the joint actuators so as to guarantee execution of the commanded
task while satisfying given transient and steady-state requirements. The task may regard either
the execution of specified motions for a manipulator operating in free space, or the execution
of specified motions and contact forces for a manipulator whose end effector is constrained by
the environment. In view of problem complexity, the two aspects will be treated separately; first,
motion control in free space, and then interaction control in constrained space. The problem of
motion control of a manipulator is the topic of this chapter. A number of joint space control
techniques are presented. These can be distinguished between decentralized control schemes,
i.e., when the single manipulator joint is controlled independently of the others, and centralized
control schemes, i.e., when the dynamic interaction effects between the joints are taken into ac-
count. Finally, as a premise to the interaction control problem, the basic features of operational
space control schemes are illustrated.

6.1 THE CONTROL PROBLEM

Several techniques can be employed for controlling a manipulator. The technique
followed, as well as the way it is implemented, may have a significant influence
on the manipulator performance and then on the possible range of applications. For
instance, the need for trajectory tracking control in the operational space may lead to
hardware/software implementations which differ from those allowing point-to-point
control where only reaching of the final position is of concern.

On the other hand, the manipulator mechanical design has an influence on the kind
of control scheme utilized. For instance, the control problem of a Cartesian manipulator
is substantially different from that of an anthropomorphic manipulator.

The driving system of the joints has also an effect on the type of control strategy
used. If a manipulator is actuated by electric motors with reduction gears of high ratios,
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FIGURE 6.3
Block scheme of manipulator with drives.

By observing that the diagonal elements of B(q) are formed by oo:ﬁma. n.o_.Bm and
configuration-dependent terms (functions of sine and cosine for revolute joints), one

omsmo» B(qg) = B+ AB(q) 6.4)

where B is the diagonal matrix whose constant elements represent the resulting average
inertia at each joint. Substituting (6.2)-(6.4) into (6.1) yields

7o = K'BK ' gm + Frngm + d (6.5)

where
F,=K 'F,K (6.6)

represents the matrix of viscous friction coefficients about the motor axes, and
d= K-V AB(@K  Yim + K7 Clg, 0K an + K 9() - 6D

represents the contribution depending on the configuration. . .
As illustrated by the block scheme of Fig. 6.3, the system of manipulator with

drives is actually constituted by two subsystems; one has T, as inputand na mm output,

the other has @um, dm, and gm as inputs, and d as output. The former is linear and

Jorounled. since each component of T, influences only the corresponding component
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of ¢y, The latter is nonlinear and coupled, since it accounts for all those nonlinear and
coupling terms of manipulator joint dynamics.

On the basis of the above scheme, several control algorithms can be derived with
reference to the detail of knowledge of the dynamic model. The simplest approach
that can be followed, in case of high gear reduction ratios and/or limited performance
in terms of required velocities and accelerations, is to consider the component of the
nonlinear interacting term d as a disturbance for the single joint servo.

The design of the control algorithm leads to a decentralized control structure,
since each joint is considered independently of the others. The joint controller must
guarantee good performance in terms of high disturbance rejection and enhanced
trajectory tracking capabilities. The resulting control structure is substantially based
on the error between the desired and actual output, while the input control torque at
actuator 7 depends only on the error of output ¢.

On the other hand, when large operational speeds are required to a direct-drive
manipulator (K, = I), the nonlinear coupling terms strongly influence system per-
formance. Therefore, considering the effects of the components of d as a disturbance
may generate large tracking errors. In this case, it is advisable to design control al-
gorithms that take advantage of a detailed knowledge of manipulator dynamics so as
to compensate for the nonlinear coupling terms of the model. In other words, it is
necessary to eliminate the causes rather than to reduce the effects induced by them;
that is, to generate compensating torques for the nonlinear terms in (6.7). This leads to
centralized control algorithms that are based on the (partial or complete) knowledge of
the manipulator dynamic model.

Nevertheless, it should be pointed out that these techniques still require the use
of error contributions between the desired and the actual trajectory, no matter whether
they are implemented in a feedback or in a feedforward fashion. This is a consequence
of the fact that the considered dynamic model, even though a quite complex one, is
anyhow an idealization of reality which does not include effects, such as joint Coulomb
friction, gear backlash, dimension tolerance, and the simplifying assumptions in the
model, e.g., link rigidity, and so on.

As pointed out above, the role of the drive system is relevant for the type of control
chosen. In the case of decentralized control, the actuator will be described in terms
of its own model as a velocity-controlled generator. Instead, in the case of centralized
control, the actuator will have to generate torque contributions computed on the basis
of a complete or reduced manipulator dynamic model; it will be then considered as
a torque-controlled generator which is representative of the actuator/power amplifier
system satisfying the above requirement.

6.3 INDEPENDENT JOINT CONTROL

The simplest control strategy that can be thought of is one that regards the manipulator
as formed by n independent systems (the n joints) and controls each joint axis as
a single-input/single-output system. Coupling effects between joints due to varying
configurations during motion are treated as disturbance inputs.

In the case of interest, the system to control is joint drive 7 corresponding to
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FIGURE 6.4
Block scheme of joint drive system.

the single-input/single-output system of the decoupled and linear part of the scheme
in Fig. 6.3. The interaction with the other joints is described by component z of the
vector d in (6.7).

Without loss of generality, the actuator is taken as a rotary electric dc motor.
Hence, the block scheme of joint 7 can be represented in the domain of the complex
variable s as in Fig. 6.4!. In this scheme 6 is the angular variable of the motor, I is the
average inertia reported to the motor axis (I; = b;i/k%;), R, is the armature resistance
(auto-inductance has been neglected), and k; and k, are respectively the torque and
motor constants. Further, G, denotes the voltage gain of the power amplifier, and
then the reference input is not the armature voltage V, but the input voltage V. of the
amplifier; note that the amplifier bandwidth has been assumed to be much larger than
that of the controlled system. In the scheme of Fig. 6.4, it has been assumed also that

kyk:
R,’
i.e., the mechanical viscous friction coefficient has been neglected with respect to the

electrical friction coefficient?.
The input/output transfer function of the motor can be written as

F. <

km,
M(s) = ————, 6.8
() s(14sTn) ©8)
where . 1 - R.I
™ Ky ™ kyks

are respectively the velocity-to-voltage gain and time constant of the motor.

6.3.1 Feedback Control

To guide selection of the controller structure, start by noticing that an effective rejection
of the disturbance d on the output 4 is ensured by:

! Subscript ¢ has been dropped for notation compactness. Also, Laplace transforms of time-dependent
functions are indicated by capital letters without specifying dependence on s.

2 A complete treatment of actuators is deferred to Chapter 8.
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u|=

FIGURE 6.5
Block scheme of general independent joint control.

e alarge value of the amplifier gain before the point of intervention of the distur-
bance,

o the presence of an integral action in the controller so as to cancel the effect of the
gravitational component on the output at steady state (constant ).

These requisites clearly suggest the use of a proportional-integral (PI) control action
in the forward path whose transfer function is

1+ 5T,
-

C(s)=K ; (6.9)

8§

this yields zero error at steady state for a constant disturbance, and the presence of the
real zero at s = —1/T, offers a stabilizing action. To improve dynamic performance, it
is worth choosing the controller as a cascade of elementary actions with local feedback
loops closed around the disturbance.

Besides closure of a position feedback loop, the most general solution is obtained
by closing inner loops on velocity and acceleration. This leads to the scheme in Fig. 6.5,
where Cp(s), Cv(s), and C4(s) respectively represent position, velocity, and accel-
eration controllers, where the inmost controller shall be of PI type as in (6.9) so as to
obtain zero error at steady state for a constant disturbance. Further, k7p, krv, and k7 4
are the respective transducer constants, and the amplifier gain has been embedded in
the gain of the inmost controller. In the scheme of Fig. 6.5, notice that the disturbance
torque D has been suitably transformed into a disturbance voltage by the factor R, / k.

In the following, a number of possible solutions that can be derived from the
general scheme of Fig. 6.5 are presented; at this stage, the issue arising from possible
lack of measurement of physical variables is not considered yet. Three case studies are
considered which differ in the number of active feedback loops.
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FIGURE 6.6
Block scheme of position feedback control.

_ Position Feedback. In this case, the control action is characterized by:

krv = kra =0.
: The scheme of Fig. 6.6 shows that the transfer function of the forward path is

_._ ‘NUA.& = wSMAwAHuTmm.VV,

m s2(1 + sTm)

while that of the return path is

] H(s) =krp.
A root locus analysis can be performed as a function of the gain of the position loop
kK pkrpTp/Trm. Three situations are illustrated for the poles of the closed-loop
system with reference to the relation between Tp and T,,, (Fig. 6.7). Stability of the
closed-loop feedback system imposes some constraints on the choice of the parameters
of the PI controller. If Tp < T, the system is inherently unstable (Fig. 6.7a). Then, it
must be Tp > T, (Fig. 6.7b). As T'p increases, the absolute value of the real part of
the two roots of the locus tending towards the asymptotes increases too, and the system
has faster time response. Hence, it is convenient to render Tp > T, (Fig. 6.7¢). In
any case, the real part of the dominant poles cannot be less than —1 /2T .

The closed-loop input/output transfer function is

1
O(s) _ krp
©.(s) 13 s%(1 4+ sTm)
km K pkrp(1 + sTp)

(6.10)

which can be expressed in the form

1
|Ik :. + m\.NJNuv
_— TP
W(s) = 2s  s* '
1+ N\“ JE|w. ﬁ + mﬂv
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FIGURE 6.7
Root loci for the position feedback control scheme.

where w,, and ( are respectively the natural frequency and damping ratio of the pair
of complex poles and —1/7 locates the real pole. These values are assigned to define
the joint drive dynamics as a function of the constant T'p; if Tp > Ty, then 1 [Cwn >
Tp > 7 (Fig. 6.7b); if Tp > T, (Fig. 6.7¢), for large values of the loop gain, then
(wn > 1/7 ~ 1/Tp and the zero at —1/Tp in the transfer function W (s) tends to
cancel the effect of the real pole.

The closed-loop disturbance/output transfer function is

sR,
O(s) _ k:Kpkrp(1+ sTp) 6.11)
D(s) A+ sTm) (5

1+

»ﬂ:@wﬂw\aﬂwﬁ. +sTp)

which shows that it is worth increasing Kp to reduce the effect of disturbance
on the output during the transient. The function in (6.11) has two complex poles
(—Cwn, £j+/1 — C2wy,), areal pole (—1/7), and a zero at the origin. The zero is due
to the PI controller and allows canceling the effects of gravity on the angular position
when @ is a constant.

In Eq. (6.11), it can be recognized that the term K pkrp is the reduction factor
imposed by the feedback gain on the amplitude of the output due to disturbance; hence,
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FIGURE 6.8
Block scheme of position and velocity feedback control.
the quantity
Xr=Kpkrp (6.12)

can be interpreted as the disturbance rejection factor, which in turn is determined by
the gain K p. However, it is not advisable to increase K p too much, because small
damping ratios would result leading to unacceptable oscillations of the output. An
estimate T'r of the output recovery time needed by the control system to recover the
effects of the disturbance on the angular position can be evaluated by analyzing the
modes of evolution of (6.11). Since 7 &~ T'p, such estimate is expressed by

1
Ngw = max m.muq AIE[ . A@.wwv

Position and Velocity Feedback. In this case, the control action is characterized by:

1
Cp(s) = Kp Qa\mmvHNﬂa\'.Tm.wb Q\»AQVHH

kra = 0.

To carry out a root locus analysis as a function of the velocity feedback loop gain, it
is worth reducing the velocity loop in parallel to the position loop by following the
usual rules for moving blocks. From the scheme in Fig. 6.8 the transfer function of the
forward path is

kmKpKy (1 + sTy)

P(s) = 20 +T)

while that of the return path is
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ke Ky fopy \

FIGURE 6.9
Root locus for the position and velocity feedback control scheme.

The zero of the controller at s = —1/T can be chosen so as to cancel the effects of
the real pole of the motor at s = —1/T7,. Then, by setting

NJ<. = HJS‘:

the poles of the closed-loop system move on the root locus as a function of the loop
gain k., Ky krv, as shown in Fig. 6.9. By increasing the position feedback gain mm P,
it is possible to confine the closed-loop poles into a region of the complex plane with
large absolute values of the real part. Then, the actual location can be established by a
suitable choice of Ky .

The closed-loop input/output transfer function is

1
®Ahv = \ﬂm.,ﬁ 5 . A@—N_.v
O.(s) " skrv + s
Kpkrp  knmKpkrpKy

which can be compared with the typical transfer function of a second-order system

1
k
I+ —+—
Wn w2

It can be recognized that, with a suitable choice of the gains, it is possible to obtain
any value of natural frequency w, and damping ratio ¢. Hence, if w, and ( are given
as design requirements, the following relations can be found:

20w
Kykpy = 2% (6.16)

K
2
Yn

km'

KpkrpKy (6.17)
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FIGURE 6.10

Block scheme of position, velocity, and acceleration feedback control

For given transducer constants krpand kpy,
the value of K p is obtained from 6.17).
The closed-loop disturbance/output transfer function is

once Ky has been chosen to satisfy (6.16),

sk,
O(s) k:KpkrpKy(1 + sT,,)

bAmV 1+ m\nﬂa\ + mw ’ a;mv
Kpkrp = kmKpkrpKy

which shows that the disturbance rejection factor is

Xr=KpkrpKy (6.19)

H_M:_Hmvmxoaw once N p and Ky have been chosen via (6.16) and (6.17). Concernin
o o_msoo zl:m_.Enm_ the presence of a zero at the origin introduced by the PI, of ;
poleats = —1/T,,, and of a pair of complex poles having real part —(w mm%_.__m

0 ] n ]

m..w = max MJQ P
. o | (6.20)
which reveals an improvement with respect to the previous case in (6.13), since

Tin < Tp and the real part of the domi i
Cwn < 1/2T,,. p € dominant poles is not constrained by the inequality

14Ty
P :

Cp(s) = Kp Cv(s) =Ky Ca(s) = K4
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L+ km Kakra A

FIGURE 6.11
Root locus for the position, velocity, and acceleration feedback control scheme.

After some manipulation, the block scheme of Fig. 6.5 can be reduced to that of
Fig. 6.10 where G'(s) indicates the following transfer function

km
Q\A.mv = Ty
ST | 1+ kmK akTa T

(1+ kmKakra)

(1+ kmIakra) [ 1+

The transfer function of the forward path is

_ KpKyKa(1l+sTy)
= =

P(s) GOF

while that of the return path is

skrv
Kpkrp

H(sy=krp {1+

Also in this case, a suitable pole cancellation is worthy which can be achieved either

by setting

or by making

wSN\wwH\ﬁﬂ\— > T FENA‘\;“H\V > 1.

The two solutions are equivalent as regards dynamic performance of the control system.
In both cases, the poles of the closed-loop system are constrained to move on the root
locus as a function of the loop gain k,n K p Ky K a/(1+km K akra) (Fig. 6.11). A close
analogy with the previous scheme can be recognized, in that the resulting closed-loop

system is again of second-order type.



