

4300263/ Prática de Tratamento de Dados em Física Experimental

Simulação de incertezas na calibração de instrumentos de medição de força v. FINAL

Nome: Alexandre Gonçalves

N°. Usp: 5990554

1. Introdução

A calibração de células de carga de tração/ compressão é atividade importante e criteriosa. Afim de que se consiga estimar a incerteza do resultado de uma calibração, propomos aqui a utilização da técnica de Monte Carlo para simulação baseada fundamentalmente na norma **ABNT NBR ISO 376 (2012)**, em especial no **Anexo C**, que descreve as componentes da incerteza padrão combinada u_c , inclusive com parâmetros da distribuição de algumas de suas componentes. A simulação deve servir também para validação de dados reais obtidos em laboratório certificado.

2. Objetivo

Espera-se com esse trabalho poder simular o processo de calibração de células de carga de tração/ compressão a fim de que sirva como ferramenta complementar na análise de dados em laboratórios de metrologia mecânica.

A aderência da simulação a dados reais obtidos dará subsídios para uma análise crítica do protocolo de análise empregado, baseado em normas específicas, como a citada.

3. Norma

A ABNT NBR ISO 376 (2012) Materiais Metálicos – Calibração de instrumentos de medição de força utilizados para a verificação de máquinas de ensaio uniaxiais estabelece o procedimento para calibração de células de carga.

FIGURA 1 - Calibração de célula de carga tipo "S".

A norma admite que a calibração seja realizada de duas maneiras:

- com medição reversível, onde são feitas leituras durante aplicação da carga de tração/ compressão e também durante o alívio desta carga até o zero; e
- sem medição reversível, onde são feitas leituras apenas durante aplicação de forças crescentes.

No primeiro caso uma das componentes do erro reside na histerese do instrumento, que precisa ser determinada. A histerese permite a avaliação da diferença de "caminhos" entre o zero e a força de calibração máxima (F_N) que se pretende medir, que geralmente corresponde a capacidade máxima do transdutor (F_t).

No segundo caso, a histerese não pode ser calculada, visto que se percorre apenas o caminho de ida até F_t . Esta componente da incerteza portanto será substituída por um ensaio de fluência, que indica a deriva da medida ao se atingir F_t .

Neste trabalho consideramos apenas o primeiro caso, com medição reversível, de modo que não temos aqui a contribuição da fluência no cálculo da incerteza, mas sim da histerese das medidas (vide **Seção 3.2**).

Segundo os critérios de classificação da norma, o trabalho irá considerar o caso mais geral de aplicação da célula de carga, o que corresponde ao *Caso D*: instrumentos classificados para interpolação e carregamento incremental/ decremental. Neste caso, os critérios que devem ser considerados são:

- erros relativos de reprodutibilidade, repetitividade e zero;
- erro de reversibilidade relativo (histerese);
- erro de interpolação relativo.

3.1. Metodologia

A tomada de dados usual de laboratório que será considerada, baseada na norma citada, segue a seguinte metodologia:

- i) Aplicação de 3 pré-cargas seguidas de 0 a F_t , sem medição, para acomodação do instrumento;
- ii) Início da tomada de dados com a <u>1^a</u>. <u>bateria</u>: aplicação de duas séries de cargas crescentes, com 10 pontos de medição cada, espaçados da forma mais uniforme possível dentro da faixa de calibração, de θ a F_N ;
- iii) Giro de 120° no instrumento em torno do seu próprio eixo, sem removê-lo da base da máquina;
- iv) 2^{a} . bateria de dados: aplicação de duas séries de cargas, uma crescente e outra decrescente, novamente com 10 pontos de medição cada, de **0** a F_N ;
- v) Novo giro de 120° no instrumento sob as mesmas condições;
- vi) Desmontagem e remontagem de cabos, eventuais indicadores e demais partes destacáveis de instrumentos passíveis de serem desmontadas, no intuito de avaliar o possível efeito de montagem do instrumento em campo após uma operação de transporte, por exemplo;
- vii) Aplicação de 3 pré-cargas seguidas de 0 a F_t , sem medição, para reacomodação do instrumento;
- viii) <u>3^a. bateria</u> de dados: aplicação de duas séries de cargas, uma crescente e outra decrescente, novamente com 10 pontos de medição cada, de 0 a F_N .

Para cada série de dados, correspondem os seguintes valores medidos, chamados deflexões:

- X_1, X_2 : deflexões na 1^a. bateria de dados, nas primeiras duas séries crescentes (**Série 1** e **Série 2**), respectivamente;
- X₃, X'₄: deflexões na 2^a. bateria de dados, primeiro na série crescente e segundo, na série decrescente (Série 3 e Série 4) (o índice *linha* indica série decrescente);

• X_5 , X'_6 : deflexões na 3^a. bateria de dados, novamente para série crescente seguida de série decrescente (Série 5 e Série 6).

Um esquema da medida destes valores na célula de carga é apresentado nas FIGURA 2 e FIGURA 3.

FIGURA 2 – Infográfico da metodologia de medição.

FIGURA 3 – Esquema da medição de pontos com rotação da célula.

3.2. Incertezas

O cálculo das incertezas de cada medida é baseada nos erros de repetitividade relativos b', zero relativo f_0 , reversibilidade relativo \mathbf{v} , resolução do indicador r e interpolação relativo, f_C .

Para toda força de calibração, uma incerteza padrão combinada u_c , expressa em unidades de força, é calculada a partir das leituras obtidas durante a calibração, eq.(1). Estas incertezas-padrão combinadas são plotadas em função da força e é calculado um ajuste de mínimos quadrados englobando todos os valores. Os coeficientes deste ajuste são então multiplicados pelo coeficiente de abrangência k = 2, de modo a fornecer um valor de incerteza expandida U para qualquer força dentro da faixa de calibração, (2). Este fator de abrangência, para uma distribuição t com graus de liberdade efetivos $v_{eff} = \infty$, corresponde a uma probabilidade de abrangência de aproximadamente 95%.

$$u_C = \sqrt{\sum_{i=1}^8 u_i^2} \tag{1}$$

$$U = k \times u_C \tag{2}$$

A seguir, apresentamos as fórmulas para estimativa das incertezas descritas na norma. Neste trabalho, foram consideradas por simplificação as incertezas de u_1 a u_6 , ao passo que a norma aponta influências até u_8 .

- *u*₁: incerteza-padrão associada com a força de calibração aplicada: incerteza do instrumento-padrão utilizado para calibração da célula de carga, expressa em unidades de força.
- *u*₂: desvio-padrão associado a reprodutibilidade, representada pelas deflexões incrementais médias obtidas durante a calibração, expressa em unidades de força:

$$u_2 = \left| \frac{F_N}{X_N} \right| \times \sqrt{\frac{1}{6} \times \sum_{i=1,3,5} \left(X_i - \overline{X_r} \right)^2} \text{ , onde}$$
(3)

$$\overline{X}_{r} = \frac{X_{1} + X_{3} + X_{5}}{3}$$
(4)

onde X_N é a deflexão correspondente a força de calibração máxima e $\overline{X_r}$, o valor médio das deflexões com rotação.

• *u*₃: incerteza devida a repetitividade da deflexão medida, expressa em unidades de força. A repetitividade afeta fundamentalmente as medidas onde não há rotação da célula (*without rotation*).

$$u_3 = \frac{b \times F}{100 \times \sqrt{3}} \tag{5}$$

$$b' = \left| \frac{X_2 - X_1}{\overline{X}_{wr}} \right| \times 100 \tag{6}$$

$$\overline{X}_{wr} = \frac{X_1 + X_2}{2} \tag{7}$$

*u*₄, incerteza da resolução: cada valor de deflexão é calculado a partir de duas leituras (a leitura com uma força aplicada menos a leitura na força zero), de modo que a resolução do indicador deve ser incluída duas vezes como duas distribuições retangulares, cada qual com uma incerteza-padrão de *r*/(2√3), onde *r* é a resolução, expressa em unidades de força:

$$u_{4} = \sqrt{\left(\frac{r}{2\sqrt{3}}\right)^{2} + \left(\frac{r}{2\sqrt{3}}\right)^{2}} = \frac{r}{\sqrt{6}}$$
(8)

• u_5 , incerteza devida a reversibilidade (histerese): esta incerteza é calculada através do erro de reversibilidade relativo:

$$v_1 = \left| \frac{X'_4 - X_3}{X_3} \right| \times 100 \tag{9}$$

$$\nu_2 = \left| \frac{X'_6 - X_5}{X_5} \right| \times 100 \tag{10}$$

$$v = \frac{v_1 + v_2}{2}$$
(11)

Se não for realizado o ensaio de fluência, a incerteza devido a fluência pode ser estimada dividindose o erro pelo fator 3:

$$u_5 = \frac{\nu \times F}{100 \times 3\sqrt{3}} \tag{12}$$

• *u*₆: incerteza de deriva zero (retorno a zero):

$$u_6 = \frac{f_0 \times F}{100} \tag{13}$$

Obs.: O entendimento incompleto da origem desta incerteza fez com que considerássemos valores experimentais para simulação.

Neste trabalho, como citado, não foram consideradas a incerteza-padrão associada com a temperatura do instrumento (u_7) e a incerteza de interpolação (u_8) .

A **FIGURA 4** apresenta um infográfico com a localização das incertezas na tomada de dados, isto é, a indicação dos momentos em que ocorre a influência de uma determinada incerteza na medida. Da figura, temos que u_1 e u_4 são valores intrínsecos ao processo, de modo que sua contribuição é como uma constante em todas as etapas. Estes valores são dados conhecidos do sistema de medição. A incerteza devida a reprodutibilidade u_2 deve afetar apenas após a rotação da célula de carga, contribuindo portanto a cada bateria, ao passo que a repetitividade u_3 tem sua influência a cada série, umas vez numa mesma condição. A repetitividade é calculada com base nas séries 1 e 2, conforme (4), e expandida para as demais séries de medida. A histerese ou incerteza de reversibilidade u_5 é calculada com base nas baterias onde há uma série crescente e outra decrescente, cujos erros são estimados por (10) e (11). Finalmente, a incerteza de deriva zero u_6 é devida ao fato de que a saída de zero do instrumento pode variar entre as séries. Como citado, este efeito foi considerado como dado para simulação, baseado em valores experimentais conhecidos.

FIGURA 4 – Influência das incertezas na medição.

4. Simulação

Para simulação, considerou-se primeiramente o que seria a calibração de uma única célula de carga, conforme a metodologia descrita. Para cada série, foram consideradas 10 deflexões, correspondentes a 10 valores de força nominal. A simulação foi inteiramente feita no *software* proprietário MATLAB[®]. A sintaxe para cálculo de cada deflexão $X^{(*)}_n$ é apresentada na **FIGURA 5**.

```
% gera os valo<del>ros</del> de forca de referencia
F ref = Fn0 + (u1) \cdot randn(size(u1));
% la e 2a ser
              u2 *randn(size(u1));
Erro REPROD =
Xc(:,1) = F ref + Erro REPROD + u3.*randRET(size(u3));
Xc(:,2) = F ref + Erro REPROD + u3.*randRET(size(u3));
% 3a e 4a series
Erro REPROD = u2.* andn(size(u1));
Xc(:,3) = F ref + Erro REPROD + u3.*randRET(size(u3));
Xc(:,4) = F_ref + Erro_REPROD + u3.*randRET(size(u3)) + (u5.)*randRET(size(u5));
% 5a e 6a series
Erro REPROD = u2.*randn(size(u1));
Xc(:,5) = F ref + Erro REPROD + u3.*randRET(size(u3));
Xc(:,6) = F_ref + Erro_REPROD + u3.*randRET(size(u3)) + u5.*randRET(size(u5));
for iF = 1:10
         for iB = 1:6
                 X(iF,iB) = round(Xc(iF,iB)/u4(iF))*u4(iF);
         end
```

end

FIGURA 5 – Script para cálculo das deflexões.

Na figura, as incertezas são consideradas nas diferentes etapas como apresentado na **FIGURA 4**. O destaque mostra a presença das componentes de incerteza simuladas.

As componentes de incerteza possuem basicamente dois tipo diferentes de distribuição: normal e retangular. No script, estas incertezas foram simuladas por randn e randRET, respectivamente, esta última uma função escrita exclusivamente para ajuste da função rand dada por u/sqrt(3)*(2*rand-1), de modo a termos o desvio-padrão de uma distribuição uniforme de amplitude 2u. As incertezas e suas respectivas distribuições são apresentadas na **TABELA 1**.

Grandeza	Distribuição	u_x : vetor [10×1]
incerteza-padrão	normal	u1′
reprodutibilidade	normal	u2′
repetitividade	retangular	u3′
resolução do mensurando	retangular	u4′
reversibilidade	retangular	u5 ′
retorno a zero (deriva zero)	retangular	u6′

TABELA 1 – Variáveis de incerteza.

A partir de valores nominais de forças e incertezas iniciais gerou-se uma coleção de 60 deflexões com suas respectivas incertezas. Os valores de força nominal utilizados são apresentados **TABELA 2**.

Grandeza	Valor (kN)
F_1	5
F_2	10
F_{3}	20
F_4	25
F_5	30
F_6	40
F_7	50
F_8	100
F_9	150
F_{10}	200

TABELA 2 – Valores nominais de força.

_

5. Dados obtidos

Os dados obtidos apresentados a seguir referem-se a uma rodada do programa, e são apresentados apenas para efeito de comparação com dados calculados a partir de dados experimentais, através de planilhas eletrônicas. Como um primeiro resultado, considerou-se o cálculo da incerteza-padrão combinada u_c com base na norma, eq.(1). A comparação das incertezas combinadas estimadas com valores experimentais para forças nominais de 5 kN e 200 kN é apresentada na **FIGURA 6**.

FIGURA 6 – Comparação entre incertezas experimental e simulada.

Para comparação, foram calculadas dos dados simulados as incertezas u_2 (reprodutibilidade), u_3 (repetitividade) e u_5 (reversibilidade).

A influência de cada componente da incerteza é obtida através de

$$I = \frac{|u_i| \times 100}{\sum_i |u_i|} \tag{17}$$

Na **TABELA 3** são apresentadas para comparação as influências por componente das incertezas calculadas dos dados experimentais e simulados para força de 40 kN.

Grandeza	experimental (%)	simulado (%)
incerteza-padrão, u_1	23	41
reprodutibilidade, u_2	26	9
repetitividade, u_3	34	0
resolução do mensurando, u ₄	12	20
reversibilidade (histerese), u_5	0	20
retorno a zero (deriva zero), u_6	6	10

TABELA 3 – Influência por componente.

5.1. Resultados

Um resultado final da simulação pode ser expresso pelo cálculo da incerteza expandida U. Esta incerteza corresponde a uma equação cujos coeficientes são o dobro daqueles obtidos para o melhor ajuste de um gráfico $u_c \times F$. A forma da curva ajustada (linear, polinomial, exponencial, etc.) depende dos resultados da calibração. A partir da equação para U, para qualquer força dentro da faixa de calibração, uma incerteza

expandida pode ser calculada e expressa em unidades de força. A **FIGURA 7** apresenta gráficos de $u_c \times F$ com um ajuste linear. Notamos neste gráfico uma incerteza subestimada para as forças.

FIGURA 7 – Gráficos de $u_c \times F$.

Com base nos coeficientes do ajuste foi calculada uma primeira incerteza expandida, apresentada na TABELA 4.

Força aplicada (kN)	U experimental (kN)	U simulação (kN)
0		
5	0,011	0,008
10	0,008	0,006
20	0,012	0,006
25	0,011	0,008
30	0,013	0,008
40	0,018	0,021
50	0,017	0,012
100	0,033	0,022
150	0,046	0,036
200	0,099	0,044

TABELA 4 – Cálculo da incerteza expandida U.

Para avaliação da convergência dos valores de incerteza encontrados, o procedimento foi repetido 1000 vezes, o que equivale a calibração de 100 células de carga. Os valores encontrados para média dos valores de u_{cn} são apresentados na **FIGURA 8**.

FIGURA 8 – Gráficos de $u_c \times F$ para 1000 repetições (média).

6. Conclusão

Os valores médios plotados na **FIGURA 8** repetem a mesma estrutura dos dados da **FIGURA 7**. Certamente os valores experimentais carregam em si a influência de demais termos de incerteza que afetam significativamente no cômputo da incerteza expandida, revelando por conseguinte a necessidade de aprimoramento do modelo e da reconsideração de algumas simplificações, além da inclusão de demais incertezas que tornem a comparação efetivamente adequada. De qualquer forma, a simulação permitiu uma avaliação da sua viabilidade como ferramenta no auxílio a interpretação de dados obtidos de calibração num laboratório de metrologia, tanto por sua flexibilidade quanto pelos diferentes aspectos de dados que tornam-se claros através de sua utilização. Melhorias precisam ser implementadas para robustez da lógica, e sua utilização em caráter experimental para validação efetiva do programa para futuro uso de rotina em laboratório é de fundamental importância para seu estabelecimento.

7. Agradecimentos

Este trabalho foi inicialmente proposto por Carlos A. F. Jr., do Laboratório de Metrologia Mecânica (LMM), do Centro de Tecnologia em Metrologia Mecânica, Elétrica e de Fluídos (CTMetro), do Instituto de Pesquisas Tecnológicas do Estado de SP (IPT), a quem portanto devo agradecimentos. Agradeço também a demais membros da equipe do CTMetro, em especial a Manuel Castanho pelo incentivo ao projeto e a Gregory Taccola pela ajuda na interpretação da norma e cessão de dados para comparação. Finalmente, agradeço também ao Prof. Zwinglio O. Guimarães F^o., sem o qual este trabalho não teria sido realizado.

8. Referências

[1] ABNT NBR ISO 376. Materiais metálicos – Calibração de instrumentos de medição de força utilizados para a verificação de máquinas de ensaio uniaxiais.

[2] FERNÁNDEZ, M. S.; CALDERÓN, J. M. A.; DÍEZ, P. M. B. Implementation in MATLAB of the adaptive Monte Carlo method for the evaluation of measurement uncertanties. Accred. Qual. Assur., **14**: 95-106, 2009.

[3] JCGM/WG1. Evaluation of measurement data – An introduction to the "Guide to the expression of uncertainty in measurement" and related documents. JCGM, **104**: 2009.

[4] JCGM/WG1. GUM 1995 with minor corrections. Evaluation of measurement data – Guide to the expression of uncertainty in measurement. JCGM, **100**: 2008.