4300159 – Física do Calor

Quinta Lista de Exercícios – Primeira Lei da Termodinâmica

Questões: As questões a seguir são conceituais, envolvendo eventualmente cálculos simples. É essencial que você saiba *justificar* suas respostas (pode haver mais de uma alternativa correta). Há uma tabela com calores específicos após os enunciados. Utilize, se necessário, R = 8.314 J/mol.K, $k_{\rm B} = 1.381 \times 10^{-23}$ J/K, $N_{\rm A} = 6.022 \times 10^{23}$ mol⁻¹. Lembre-se também que 1 atm equivale a 1.01325×10^{5} Pa.

- **Q1)** O volume de um gás ideal, contido em um recipiente com tampa móvel, se expande lentamente até dobrar, enquanto sua temperatura é mantida constante. Nesse processo:
- (a) A energia interna do gás aumenta.
- (b) A energia interna do gás diminui.
- (c) A energia interna do gás permanece constante.
- (d) A troca de energia entre o gás e o entorno ocorre apenas na forma de trabalho.
- (e) A troca de energia entre o gás e o entorno ocorre apenas na forma de calor.
- (f) A troca de energia entre o gás e o entorno ocorre nas formas de calor e trabalho.
- **Q2)** Uma certa quantidade de gás monoatômico está em equilíbrio no interior de um cilindro com ótimo isolamento térmico. Você comprime o gás, lentamente, até que seu volume caia à metade do valor inicial. Nesse processo:
- (a) A temperatura do gás não varia.
- (b) A temperatura do gás diminui.
- (c) A temperatura do gás aumenta.
- (d) O trabalho realizado pelo o gás é negativo.
- (e) O trabalho realizado pelo o gás é nulo.
- (f) O trabalho realizado pelo o gás é positivo.
- **Q3)** Um gás formado por N moléculas é expandido até que seu volume dobre, enquanto sua temperatura é mantida constante, T_0 . Sendo $T_{\rm amb}$ a temperatura ambiente na vizinhança do sistema, o calor transferido ao gás no processo é:
- (a) $-Nk_BT_0\ln(2)$
- (b) $Nk_{\rm B}T_0 \ln(2)$
- (c) $-NC_V(T_0 T_{amb})$
- (d) $NC_V(T_0 T_{amb})$
- **Q4)** Dois recipientes contém a mesma quantidade de gás ideal no mesmo estado de equilíbrio, (p_A, V_A, T_A) . As amostras de gás são submetidas a processos cíclicos constituídos por:
- (i) uma expansão isotérmica (A \rightarrow B), uma compressão isobárica (B \rightarrow C), e um processo isocórico (C \rightarrow A).
- (ii) uma expansão adiabática (A \rightarrow D), uma compressão isobárica (D \rightarrow C), e um processo isocórico (C \rightarrow A).

Acima, A, B, C e D denotam estados termodinâmicos de equilíbrio, de forma que A e C são estados comuns a ambos os ciclos.

As temperaturas dos estados B e D, bem como seus volumes, são tais que:

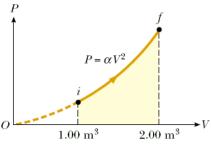
- (a) $T_{\rm B} > T_{\rm D} \, {\rm e} \, V_{\rm B} > V_{\rm D}$.
- (b) $T_{\rm B} > T_{\rm D} \, {\rm e} \, V_{\rm B} < V_{\rm D}$.
- (c) $T_{\rm B} < T_{\rm D} \, {\rm e} \, V_{\rm B} > V_{\rm D}$.
- (d) $T_{\rm B} < T_{\rm D} \, {\rm e} \, V_{\rm B} < V_{\rm D}$.

A variação de energia interna nos ciclos (i) e (ii), $\Delta U_{\rm i}$ e $\Delta U_{\rm ii}$, é tal que

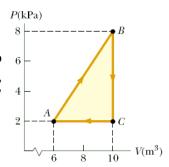
- (e) $\Delta U_i < 0$ e $\Delta U_{ii} < 0$
- (f) $\Delta U_i = 0$ e $\Delta U_{ii} = 0$
- (g) $\Delta U_i > 0$ e $\Delta U_{ii} > 0$.
- **Q5)** Dois recipientes contém a mesma quantidade de gás ideal, nos estados de equilíbrio (p_A, V_A, T_A) e (p_B, V_B, T_B) , onde $V_A = V_B$ e $p_B > p_A$. Ambas as amostras de gás são submetidas a processos cíclicos constituídos por:
- (i) uma expansão isotérmica (A \rightarrow C), uma compressão isobárica (C \rightarrow D), e um processo isocórico (D \rightarrow A).
- (ii) uma expansão adiabática (B \rightarrow C), uma compressão isobárica (C \rightarrow D), e um processo isocórico (D \rightarrow B).

Acima, A, B, C e D denotam estados termodinâmicos de equilíbrio, de forma que C e D são estados comuns a ambos os ciclos.

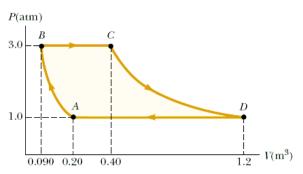
O calor transferido ao gás nos ciclos (i) e (ii), Q_i e Q_{ii} , é tal que:


- (a) $Q_i < Q_{ii}$.
- (b) $Q_{i} = Q_{ii}$.
- (c) $Q_i > Q_{ii}$.

O trabalho realizado pelo gás nos ciclos (i) e (ii), W_i e W_{ii}, é tal que:


- (d) $W_i < W_{ii}$.
- (e) $W_{i} = W_{ii}$.
- (f) $W_i > W_{ii}$.

Problemas: Ao resolver os problemas que seguem, <u>explicite seu raciocínio e as principais passagens</u> <u>dos cálculos</u>.

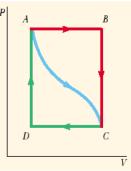

P1) Como mostrado na figura ao lado, uma amostra de gás ideal é expandida de 1.00m^3 para 2.00m^3 em um processo quase estático, para o qual vale a relação $P = \alpha V^2$, onde α é uma constante. Sendo $\alpha = 5.00\text{atm/m}^6$, calcule o trabalho realizado pelo gás nesse processo.

P2) A figura ao lado mostra um processo cíclico. (a) Calcule o calor líquido transferido ao sistema num ciclo completo. (b) Se o ciclo for invertido, seguindo o caminho *ACBA*, qual o fluxo líquido de calor num ciclo completo?

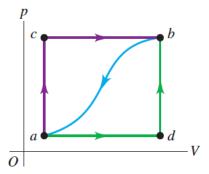
P3) Uma amostra de gás ideal é submetida ao ciclo P(atm) termodinâmico mostrado na figura ao lado. Entre os 3.0 estados A e B, o processo é adiabático; entre B e C é isobárico, com 100kJ de calor sendo transferidos para o sistema. Entre C e D o processo é isotérmico; entre D e A o processo é isobárico, com 150kJ de calor fluindo 1.0 para o entorno. Determine a diferença de energia interna entre os estados B e A, isto é, $U_B - U_A$.

C

P4) Uma amostra de gás ideal é submetida a um ciclo composto por dois processos isobáricos e dois isotérmicos, como mostrado ao lado. Mostre que o trabalho líquido realizado num ciclo é dado por:


páricos e dois isotérmicos, como mostrado ao rabalho líquido realizado num ciclo é dado por:
$$W_{\text{ciclo}} = p_1(V_2 - V_1) \ln(p_2/p_1)$$

$$P_1$$


$$V_1$$

$$V_2$$

P5) Na figura, a variação de energia interna de um gás indo do estado A para o estado C é +800J, e o trabalho ao longo do caminho ABC é +500J. (a) Qual o calor adicionado ao sistema no caminho ABC? (b) Se a pressão no ponto A é 5 vezes maior que no ponto C, qual o trabalho realizado pelo sistema entre C e D? (c) Qual o calor trocado com o ambiente no caminho CDA? (d) Se a variação de energia interna indo de D para A é +500J, qual o calor transferido no caminho CD?

P6) Quando o sistema passa do estado a ao estado b pelo caminho acb (figura ao lado), 90.0 J de calor são transferidos ao sistema, que por sua vez realiza 60.0 J de trabalho. (a) Qual o calor transferido na trajetória adb se o trabalho efetuado é de 15.0 J? (b) Quando o sistema retorna do estado b ao estado a pela trajetória curva, o módulo do trabalho realizado pelo sistema é de 35.0 J. O sistema absorve ou libera calor? Quanto? (c) Se as energias internas nos estados a e d são, respectivamente, $U_a = 0.0 \text{ J}$ e $U_d = 8.0 \text{ J}$, qual o calor absorvido nos processos ad e db?

Respostas:

- Q2) (c), (d). Q3) (b). Q4) (a), (f). Q5) (a), (d). Q1)(c), (f)
- P1) 1.18×10^6 J.
- P2) (a) $Q_{ciclo} = 12 \text{ kJ}$. (b) $Q'_{ciclo} = -12 \text{ kJ}$
- P3) $U_B U_A = 42.9 \text{ kJ}$
- P4) <u>Dica</u>: obtenha antes os seguintes resultados: $W_{AB} = p_1 V_1 \ln(p_1/p_2)$; $W_{BC} = p_1 (V_2 V_1)$; $W_{\rm CD} = p_1 V_2 \ln(p_2/p_1); W_{\rm DA} = p_1(V_1 - V_2)$
- P5) (a) $Q_{ABC} = 1300 \text{ J}.$
- (b) $Q_{ABC} = -100 \text{ J}$. (c) $Q_{CDA} = -900 \text{ J}$. (d) $Q_{CD} = -1400 \text{ J}$.
- P6) (a) $Q_{adb} = 45.0 \text{ J}$ (b) libera 65.0 J (c) $Q_{ad} = 23.0 \text{ J}$ e $Q_{db} = 22.0 \text{ J}$