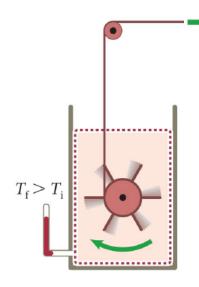


4300159 – Física do Calor

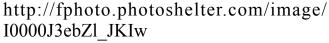
Segunda Lei da Termodinâmica (Enunciado de Kelvin-Planck)


Irreversibilidade

- Os fenômenos macroscópicos que nos cercam são *irreversíveis*, implicando a seta do tempo.
- A reversão de quais dos processos abaixo violaria a conservação da energia
 (Primeira Lei da Termodinâmica)? Por reversão, entendemos a inversão da sequência temporal dos eventos, restaurando o estado inicial.

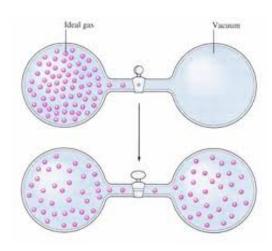
Processo: O milho esfria, transferindo calor à manteiga, que derrete.

Reversão: A manteiga solidifica, aquecendo o milho



Processo: Trabalho externo faz a pá girar, elevando a temperatura da água.

Reversão: A água esfria, fazendo a pá girar em reverso, realizando trabalho sobre a vizinhança

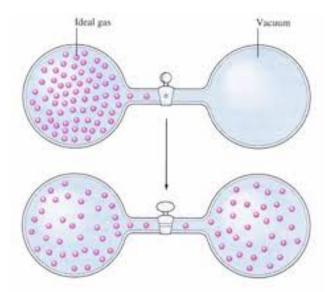

Irreversibilidade

Processo: O ovo cai, convertendo energia potencial em cinética, e quebra, produzindo calor e ondas sonoras.

Reversão: Energia é transferida do ambiente ao ovo, reconstruindo-o e fornecendo energia cinética, convertida então em potencial.

Processo: O gás se expande livremente após a abertura da válvula.

Reversão: O gás retorna ao estado inicial, ocupando apenas metade do volume.

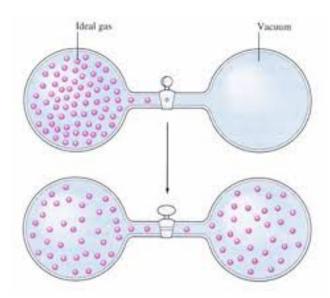

Irreversibilidade

- A reversão dos processos não violaria a Primeira Lei! Trata-se de um Princípio de Conservação.
- O Princípio físico relacionado à irreversibilidade é a Segunda Lei da Termodinâmica.
- A grandeza física associada à irreversibilidade é a *Entropia*. Na disciplina, iremos abordar a Entropia Termodinâmica, definida por Clausius.

Expansão Livre

– O gás inicialmente ocupa metade do volume, pois a válvula está fechada. A abertura da válvula permite que o gás se expanda até dobrar seu volume. O que acontece entre as situações inicial e final de equilíbrio, admitindo que o recipiente que contém o gás seja um ótimo isolante térmico?

- (a) $\Delta U < 0$
- (b) $\Delta U = 0$
- (c) $\Delta U > 0$
- (d) Q < 0
- (e) Q = 0
- (f) Q > 0
- (g) W < 0
- (h) W = 0
- (i) W > 0



Expansão Livre

O gás se expande, sem exercer qualquer força sobre a vizinhança, portanto não há realização de trabalho. Em vista do isolamento térmico, não há trânsito de calor. Nessas condições, a Primeira Lei implica não haver variação de energia interna.

Perceba que a reversão da expansão livre (gás voltar a ocupar metade do volume disponível espontaneamente), não violaria a Primeira Lei.

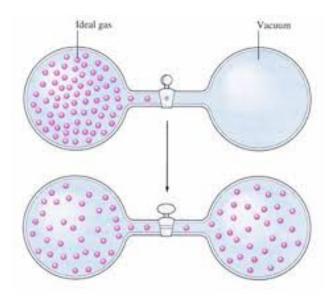
- (a) $\Delta U < 0$
- (b) $\Delta U = 0$
- (c) $\Delta U > 0$
- (d) Q < 0
- (e) Q = 0
- (f) Q > 0
- (g) W < 0
- (h) W = 0
- (i) W > 0

Segunda Lei da Termodinâmica

- O Enunciado de Kelvin da Segunda Lei, também denominado de Kelvin-Planck, afirma ser impossível um processo (cíclico) cujo único efeito seja a completa conversão do calor absorvido em trabalho.
- Por *único efeito*, deve ser entendida a restauração do estado inicial, de forma que o enunciado se refere a *processos cíclicos*.

- **Questão**: Na expansão isotérmica de um gás ideal, temos $\Delta T = \Delta U = 0$, de forma que Q = W > 0, isto é, o calor Q absorvido pela vizinhança é integralmente convertido em trabalho. Esse resultado viola a Segunda Lei da Termodinâmica (enunciado de Kelvin)?

Segunda Lei da Termodinâmica


Na expansão isotérmica, o volume final é diferente do inicial, $V_f > V_i$. Isso significa que o estado final do gás, (p_f, V_f, T) , é necessariamente diferente do estado inicial, (p_{fi}, V_i, T) , não constituindo um *processo cíclico*.

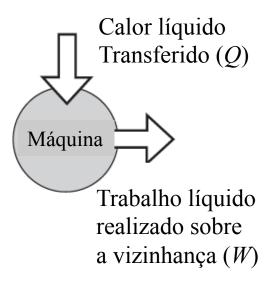
Portanto, não há violação do enunciado de Kelvin, pois este se refere a *processos cíclicos* (em outras palavras, a conversão de calor em trabalho não é o *único efeito*, do processo termodinâmico, pois a mudança de estado do gás é um efeito adicional).

- **Questão**: Na expansão livre de um gás ideal, temos $\Delta U = Q = W = 0$, com $V_f > V_i$. Suponha que esse processo seja reversível, isto é, que seja possível a contração livre desde o volume inicial 2V até o volume final V, com $\Delta U = Q = W = 0$.

Nesse cenário hipotético, podemos propor o seguinte processo: contração livre desde 2V até V, seguida de uma expansão isotérmica desde V até 2V.

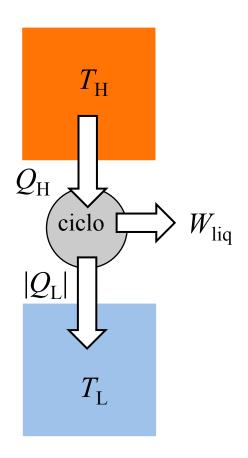
- (a) O processo descrito acima é cíclico?
- (b) O processo descrito acima viola a Segunda Lei (Enunciado de Kelvin)?
- (c) Que conclusão podemos tirar sobre a expansão livre?

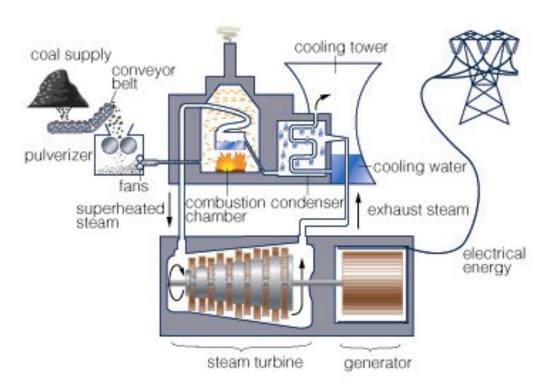
- (a) De acordo com o enunciado, o volume final é igual ao inicial, $V_i = V_f = 2V$. Como $\Delta T = 0$ tanto na contração livre quanto na expansão isotérmica, a temperatura final é igual à inicial, $T_i = T_f$. De acordo com a equação de estado do gás ideal (pV/T = const.), $p_i = p_f$, de forma que os estados inicial e final são iguais, implicando um processo cíclico.
- (b) No processo cíclico descrito no enunciado, temos Q = W = 0 na contração livre, enquanto Q' = W' > 0 na expansão isotérmica, de sorte que no ciclo completo, $Q_{\rm ciclo} = 0 + Q'$, e $W_{\rm ciclo} = 0 + W'$. Como Q' = W' (processo isotérmico), concluímos que $Q_{\rm ciclo} = W_{\rm ciclo} > 0$.


Isso viola o enunciado de Kelvin da Segunda Lei, pois o estado inicial do gás é restaurado (processo cíclico) e o calor ($Q_{\rm ciclo} > 0$) absorvido é integralmente convertido em trabalho, $Q_{\rm ciclo} = W_{\rm ciclo}$.

(c) Uma vez que a expansão isotérmica é um processo factível, a violação da Segunda Lei nos força a concluir que *a contração livre é impossível*. Em outras palavras, *a expansão livre é um processo irreversível*. Note que se trata de uma demonstração por redução ao absurdo:

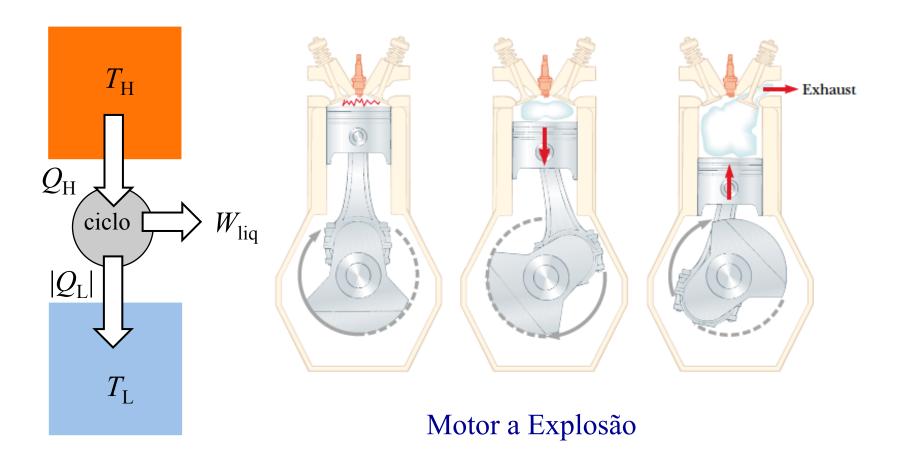
Reversão da Expansão Livre (hipótese) ⇒ Violação da Segunda Lei (absurdo)


Máquinas Térmicas


 Máquinas Térmicas utilizam ciclos termodinâmicos de substâncias de trabalho (usualmente líquidos ou gases) para converter calor em trabalho.

— O modelo teórico de Máquina Térmica recorre a reservatórios de alta e baixa temperatura. Um reservatório é um corpo ideal tão grande, em número de partículas, que sua energia interna e temperatura essencialmente não são alteradas pelo trânsito de calor.

Máquinas Térmicas



http://highered.mheducation.com/sites/0070890862/student_view0/chapter6/study_quiz_2.html

H = "high" (alta) L = "low" (baixa) liq = líquido em um ciclo

Usina Termoelétrica

Máquinas Térmicas

H = "high" (alta)

L = "low" (baixa)

liq = líquido em um ciclo