PPO Resistance for Grain and Food Crops
A USA Perspective

Mark VanGessel

Topics

- Introductions
 - Where am I
- Overview of agriculture in USA
- Herbicide-resistance in USA
- PPO herbicides (Group 14 / E)
 - MOA
 - resistance
- PPO-resistance in my region of the USA
- Trends for the future
- Resistance management

New York City
Washington, DC
Recent DE Agric. Statistics

- Milha 75,000 ha
- Soja 80,000 ha (44,000 ha FSNT)
- Trigo and cevada 35,000 ha
- Vegetal (processo) 20,000 ha
- Vegetal (fresco) 6,000 ha
- Frango (carne) 252 million produced
Zonas de Robustez

Area Planted

<table>
<thead>
<tr>
<th>Crop</th>
<th>ha</th>
<th>%</th>
<th>Crop</th>
<th>ha</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>soja</td>
<td>32.1</td>
<td>24.9</td>
<td>arroz</td>
<td>1.1</td>
<td>0.8</td>
</tr>
<tr>
<td>milha</td>
<td>32.7</td>
<td>24.8</td>
<td>girassol</td>
<td>0.8</td>
<td>0.6</td>
</tr>
<tr>
<td>trigo (all)</td>
<td>22.1</td>
<td>16.8</td>
<td>canola</td>
<td>0.7</td>
<td>0.5</td>
</tr>
<tr>
<td>inverno</td>
<td>16.0</td>
<td>12.1</td>
<td>feijões secos</td>
<td>0.7</td>
<td>0.5</td>
</tr>
<tr>
<td>primavera</td>
<td>7.7</td>
<td>5.8</td>
<td>centeio</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>choqueira do feno</td>
<td>22.0</td>
<td>16.7</td>
<td>amendons</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>alfafa</td>
<td>7.2</td>
<td>5.5</td>
<td>beterraba</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>other hay</td>
<td>14.9</td>
<td>11.3</td>
<td>ervilhas secas</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>sorgo</td>
<td>3.4</td>
<td>2.6</td>
<td>batatas</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>algodão</td>
<td>3.3</td>
<td>2.5</td>
<td>vegetal (fresco)</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>cevada</td>
<td>1.5</td>
<td>1.1</td>
<td>vegetal (processo)</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>aveia</td>
<td>1.3</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Various populations have shown resistance to:

- Microtubule inhibitors (K1)
- Triazines (C1)
- Glyphosate (G)
- ALS-inhibitors (B)
- HPPD (F2)
PPO 14 / E Herbicides

- First commercialized in 1960’s
- Includes 9 herbicide families
- Can be used in annual crops, tree fruits/nuts, turf, and ornamentals
- Controls mostly broadleaf weeds
- "burning-type herbicide"

<table>
<thead>
<tr>
<th>Family</th>
<th>Diphenyl ethers</th>
<th>Diphenyl ethers</th>
<th>Diphenyl ethers</th>
<th>Diphenyl ethers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Ingredient</td>
<td>acifluorfen</td>
<td>fomesafen</td>
<td>lactofen</td>
<td>oxyfluorfen</td>
</tr>
<tr>
<td>Crops</td>
<td>soja soja soja</td>
<td>soja soja soja</td>
<td>soja soja soja</td>
<td>soja soja soja</td>
</tr>
<tr>
<td>Use Pattern</td>
<td>POST PRE POST</td>
<td>PRE / POST POST</td>
<td>PRE / POST POST</td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td>none yes</td>
<td>yes minimal</td>
<td>yes rate</td>
<td></td>
</tr>
</tbody>
</table>

Family	Triazolinones	Triazolinones	Phenyl-phthali-	Thiadiazoles	Pyrimidine-
-----------------------------	-----------------	-----------------	nones		dienes
Active Ingredient	carfentrazone	sulfentrazone	flumioxazin	fluthiacet	saflufenacil
Crops	soja soja soja	soja soja soja	soja soja soja	soja soja soja	
Use Pattern	POST PRE PRE	PRE POST POST	POST POST POST		
Residual	none yes yes	none none none	rate rate rate		

PPO 14 / E Herbicides

- First commercialized in 1960’s
- Includes 9 herbicide families
- Can be used in annual crops, tree fruits/nuts, turf, and ornamentals
- Controls mostly broadleaf weeds
- "burning-type herbicide"
Mechanism of Action PPO

- Inhibit chlorophyll synthesis
- Site of action is protoporphyrinogen oxidase (PPG oxidase or Protox)
 - an enzyme involved in chlorophyll synthesis
- Causes cell membranes to leak
- Herbicide requires sunlight but photosynthesis is not necessary

Mechanism of Action PPO

- Inhibit protoporphyrinogen oxidase (PPO)
 - an enzyme of chlorophyll biosynthesis
 - leads to accumulation of protoporphyrin IX (PPIX)
 - the first light absorbing chlorophyll precursor
- Light absorption by PPIX leads triple state PPIX and forms singlet oxygen
 - leads to chain reaction of lipid peroxidation
 - ultimately leaking membranes that allows cells and cell organelles to dry and disintegrate
Crop Plant Response

- Acifluorfen is metabolized in soybean by reduction => de-esterification => conjugation
- P450 involved with metabolism of sulfentrazone and carfentrazone

Can Cause Leaf Burn

PPO (E) Resistant Weeds

<table>
<thead>
<tr>
<th>Country</th>
<th>Species</th>
<th>Year</th>
<th>Additional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
<td>Euphorbia heterophylla</td>
<td>2004</td>
<td>+B</td>
</tr>
<tr>
<td>Bolivia</td>
<td>Amaranthus hybridus</td>
<td>2005</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>Descurainia sophia</td>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>Acalypha australis</td>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>Israel</td>
<td>Senecio vernalis</td>
<td>2014</td>
<td>+B, C1, C2, F1</td>
</tr>
<tr>
<td>Canada</td>
<td>Avena fatua</td>
<td>2015</td>
<td>nA, B, K3, N</td>
</tr>
</tbody>
</table>
PPO (E) Resistant Weeds

<table>
<thead>
<tr>
<th>State</th>
<th>Species</th>
<th>Year</th>
<th>Additional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kansas</td>
<td>Amaranthus tuberculatus</td>
<td>2001</td>
<td>+B</td>
</tr>
<tr>
<td>Illinois</td>
<td></td>
<td>2002</td>
<td>+B, C1</td>
</tr>
<tr>
<td>Missouri</td>
<td></td>
<td>2005</td>
<td>+B, G</td>
</tr>
<tr>
<td>Illinois</td>
<td></td>
<td>2009</td>
<td>+B, C1, G</td>
</tr>
<tr>
<td>Iowa</td>
<td></td>
<td>2009</td>
<td></td>
</tr>
<tr>
<td>Indiana</td>
<td></td>
<td>2014</td>
<td></td>
</tr>
<tr>
<td>Minnesota</td>
<td></td>
<td>2014</td>
<td></td>
</tr>
<tr>
<td>Delaware</td>
<td>Ambrosia artemisiifolia</td>
<td>2005</td>
<td>+B</td>
</tr>
<tr>
<td>Ohio</td>
<td></td>
<td>2006</td>
<td>+B</td>
</tr>
<tr>
<td>Arkansas</td>
<td>Amaranthus palmeri</td>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>NC, TN, MS</td>
<td></td>
<td>2015</td>
<td></td>
</tr>
<tr>
<td>VA</td>
<td>Eleusine indica</td>
<td>2013</td>
<td></td>
</tr>
</tbody>
</table>

Resistance to Group 14 / E

- No reports of non-target sites
- Target-site resistance in *Ambrosia artemisiifolia* and *Amaranthus tuberculatus*
 - Codon of mitochondrial PPO was deleted in *A. tuberculatus*
 - Arg substitution for Leu for *A. artemisiifolia*
- Not as well understood as other MOA’s
Resistant Weeds in Delaware

- *Amaranthus hybridus* atrazine (C1)
- *Chenopodium album* atrazine (C1)
- *Amaranthus hybridus* ALS-inhibitors (B)
- *Ambrosia artemisiifolia* ALS+PPO-inhibitors
- *Coryza canadensis* glyphosate (G)
- *Coryza canadensis* paraquat (D)
- *Coryza canadensis* ALS-inhibitors +glyphosate (B+G)

Resistant Weeds of Note in the Region

- *Ambrosia artemisiifolia* glyphosate (G)
- *Lolium multiflorum* ACCase-inhibitor (A)
- *Sorghum bicolor* ALS-inhibitor (B)
Field with difficult to control *A. artemisiifolia*

*PPO-resistant *A. artemisiifolia* (Group E)

Not shown: carfentrazone, sulfentrazone acifluorfen, oxyfluorfen
A. artemisiifolia Population Response to cloransulam

fomesafen 1, 2, 4X rates

glyphosate 1, 2, 4X rates

cloransulam 1, 2, 4X rates

Glyphosate + cloransulam + fomesafen (all 2X rate)

Expansion of PPO-resistant Species

<table>
<thead>
<tr>
<th>Trait</th>
<th>Amaranthus palmeri</th>
<th>Ambrosia artemisiifolia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life-cycle</td>
<td>summer annual</td>
<td>summer annual</td>
</tr>
<tr>
<td>Flowers</td>
<td>dioecious</td>
<td>monoecious / imperfect flowers</td>
</tr>
<tr>
<td>Competitiveness</td>
<td>very high</td>
<td>high</td>
</tr>
<tr>
<td>Height</td>
<td>>1.7 m</td>
<td>1 m</td>
</tr>
<tr>
<td>Stress-tolerant</td>
<td>very high</td>
<td>fair to good</td>
</tr>
<tr>
<td>Roots</td>
<td>weak taproot</td>
<td>fibrous</td>
</tr>
<tr>
<td>Emergence pattern</td>
<td>very long</td>
<td>short (early spring)</td>
</tr>
<tr>
<td>Seed production</td>
<td>>1 ml</td>
<td>> 50,000</td>
</tr>
<tr>
<td>Seed longevity</td>
<td>3-4 yrs</td>
<td>3-4 yrs</td>
</tr>
</tbody>
</table>
Weed Management Programs

- **plant into a clean seedbed**
 - use tillage or an effective burndown herbicide for no-till;
- **use an effective soil-applied herbicide program** shortly before or at planting;
- **use multiple herbicide sites of action**
 - herbicides need to be **EFFECTIVE** not just different
 - consider herbicides sprayed previous year and what will be used in coming years;
- **never apply glyphosate by itself when species prone to resistance are present;**
Weed Management Programs

- Postemergence applications must be made to small (less than 8-cm) plants;
 - If PRE herbicide is used this is typically 3 to 4 weeks after planting
- Need to conserve some herbicide groups for vegetables and small grains;
 - Consider not using some herbicide groups where other options exist
 - Avoid use of ALS inhibiting herbicides (Group B) outside of vegetables, small grains, and soybeans
 - Avoid use of PPO (Group E) outside of soybeans and vegetables
- AND limit weed seed production of problem species

Rotations Are A Large Part of Weed Management

Following comments are assuming crop rotations

- Continuous corn or soybeans OR two-yrs back-to-back may require different approaches

Increasing Use of PPO's

Soja
- saflufenacil
- sulflentrazone
- flumioxazin
- fomesafen
- acifluorfen
- carfentrazone
- fluthiacet
- lactofen

Milha
- saflufenacil
- carfentrazone
- fluthiacet

Others
- oxyfluorfen
Heavy Rye Cover Provides 65 to 95% Control

Rye Cover Crop
No Cover Crop

Sources

Any QUESTIONS?