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Abstract

Estimation of distribution algorithms (EDAs) are stochastic optimization techniques that
explore the space of potential solutions by building and sampling explicit probabilistic models
of promising candidate solutions. This explicit use of probablistic models in optimization offers
some significant advantages over other types of metaheuristics. This paper discusses these
advantages and outlines many of the different types of EDAs. In addition, some of the most
powerful efficiency enhancement techniques applied to EDAs are discussed.
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1 Introduction

Estimation of distribution algorithmss (Baluja, 1994; Mühlenbein & Paaß, 1996a; Larrañaga &
Lozano, 2002; Pelikan, Goldberg, & Lobo, 2002) are stochastic optimization techniques that explore
the space of potential solutions by building and sampling explicit probabilistic models of promising
candidate solutions. This model-based approach to optimization has allowed EDAs to solve many
large and complex problems. EDAs were successfully applied to optimization of large spin glass
instances in two-dimensional and three-dimensional lattices (Pelikan & Hartmann, 2006), military
antenna design (Yu, Santarelli, & Goldberg, 2006), multiobjective knapsack (Shah & Reed, 2010),
groundwater remediation design (Arst, Minsker, & Goldberg, 2002; Hayes & Minsker, 2005), amino-
acid alphabet reduction for protein structure prediction (Bacardit, Stout, Hirst, Sastry, Llorà, &
Krasnogor, 2007), identification of clusters of genes with similar expression profiles (Peña, Lozano,
& Larrañaga, 2004), economic dispatch (Chen & p. Chen, 2007), forest management (Ducheyne,
De Baets, & De Wulf, 2004), portfolio management (Lipinski, 2007), cancer chemotherapy opti-
mization (Petrovski, Shakya, & Mccall, 2006), environmental monitoring network design (Kollat,
Reed, & Kasprzyk, 2008), and others. It is important to stress that in most of these applica-
tions no other technique was shown to be capable of achieving better performance than EDAs or
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solving problems of comparable size and complexity. This paper will review the basic principle
of EDAs, and point out some of the features of EDAs that distinguish these methods from other
metaheuristics and allow them to achieve these impressive results in such a broad array of problem
domains.

The paper is organized as follows. Section 2 describes the basic EDA procedure. Section 3
gives a broad overview of many example EDAs, divided into four broad categories. Section 4 covers
some of the advantages of EDAs over other metaheuristics. Section 5 discusses the most common
efficiency enhancements that may be incorporated into EDAs to speed up their operation. Lastly,
section 6 summarizes and concludes the paper.

2 Estimation of Distribution Algorithms

Suppose a researcher was presented with a large number of possible solutions to a problem and
wished to generate new and (hopefully) better solutions. One way that he or she might approach this
problem is to attempt to determine the probability distribution that would give higher probabilities
to solutions in the regions with the best solutions available. Once this was completed, one could
sample this distribution to find new candidate solutions to the problem. Ideally, the repeated
refinement of the probabilistic model based on representative samples of high quality solutions
would keep increasing the probability of generating the global optimum and, after a reasonable
number of iterations, the procedure would locate the global optimum or its accurate approximation.
In the rest of this section we discuss how EDAs do this automatically.

2.1 General EDA Procedure

Estimation of distribution algorithms (EDAs) (Baluja, 1994; Mühlenbein & Paaß, 1996a; Larrañaga
& Lozano, 2002; Pelikan, Goldberg, & Lobo, 2002) are stochastic optimization algorithms that
explore the space of candidate solutions by sampling an explicit probabilistic model constructed
from promising solutions found so far. EDAs typically work with a population of candidate solutions
to the problem, starting with the population generated according to the uniform distribution over
all admissible solutions. The population is then scored using a fitness function. This fitness function
gives a numerical ranking for each string, with the higher the number the better the string. From
this ranked population, a subset of the most promising solutions are selected by the selection
operator. An example selection operator is truncation selection with threshold τ = 50%, which
selects the 50% best solutions. The algorithm then constructs a probabilistic model which attempts
to estimate the probability distribution of the selected solutions. Once the model is constructed,
new solutions are generated by sampling the distribution encoded by this model. These new
solutions are then incorporated back into the old population (or replacing it entirely). The process
is repeated until some termination criteria is met (usually when a solution of sufficient quality
is reached or when the number of iterations reaches some threshold), with each iteration of this
procedure usually referred to as one generation of the EDA. The basic EDA procedure is outlined
in Algorithm 1.

The important step that differentiates EDAs from many other metaheuristics is the construction
of the model that attempts to capture the probability distribution of the promising solutions. This
is not a trivial task as the goal is not to perfectly represent the population of promising solutions,
but instead to represent a more general distribution that captures the features of the selected
solutions that make these solutions better than other candidate solutions. In addition, we have to
ensure that the model can be built and sampled in an efficient manner.
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Algorithm 1 EDA pseudocode
g ← 0
generate initial population P (0)
while (not done) do

select population of promising solutions S(g) from P (g)
build probabilistic model M(g) from S(g)
sample M(g) to generate new candidate solutions O(g)
incorporate O(g) into P (g)
g ← g + 1

end while

2.2 Solving Onemax with a Simple EDA

Let us illustrate the basic EDA procedure with an example of a simple EDA solving the onemax
problem. In onemax, candidate solutions are represented by vectors of n binary variables and the
fitness is computed by

onemax(X1,X2, . . . ,Xn) =

n
∑

i=1

Xi , (1)

where n is the number of variables and Xi is the ith variable in the problem (ith position in the
input binary string). This function has one global optimum in the string of all 1s.

In this example our population size is set to N = 6, with n = 5 binary variables per solution.
Truncation selection with threshold τ = 50% is used to select the subset of the most promising
solutions (the 50% best solutions are selected). To estimate the probability distribution of these
promising solutions, a probability vector is used that stores the probability of a 1 in each position
of the solution strings. The probability vector provides a fast and efficient model for solving the
onemax problem and many other optimization problems, mainly due to the fact that it is based
on the assumption that all problem variables are independent. To learn a probability vector, the
probability pi of a 1 in each position i is set to the proportion of selected solutions containing a
1 in this position. To generate a new binary string from the probability vector, for each position
i, a 1 is generated in this position with probability pi. For example, if p3 = 0.6, we generate a 1
in the third position of a new candidate solution with the probability of 60%. In each generation
(iteration of the algorithm), N = 6 candidate solutions are generated from the current model to
create a new population of size N = 6. The simulation is outlined in Figure 1.

It is clear from the first generation that the procedure is having positive effects. The offspring
population already contains significantly more 1s than the original population and also includes
several copies of the global optimum 11111. In addition, the probability of a 1 in any particular po-
sition has increased; consequently, the probability of generating the global optimum has increased.
The second generation leads to a probability vector that is even more strongly biased towards the
global optimum and if the simulation was continued for one more generation, the probability vector
would generate only the global optimum.

Even though the previous example was rather small, this procedure works on larger problems.
To show this in practice, the probability of ones in each generation from an example run of an EDA
is shown in Figure 2. In this case n = 50 and the population size is N = 100. We see that the
proportions of 1s in different positions increase over time. While the probabilities of 1s in some
positions do fluctuate in value in the initial iterations, eventually all the probability vector entries
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11011 (4)
01010 (2)

10010 (2)

10111 (4)

01011 (3)

10000 (1)

11011 (4)

Figure 1: Two generations of a simple EDA using a probability vector to solve one-max.

become 1.

Assuming that the population size is large enough to ensure reliable convergence (Harik, Cantú-
Paz, Goldberg, & Miller, 1997; Goldberg, 2002), the EDA based on the probability vector model
provides an efficient and reliable approach to solving onemax and many other optimization prob-
lems. Nonetheless, is it always the case that the probability vector is sufficient for solving the
problem?

2.3 Linkage Learning EDAs: Using an EDA to Solve Trap-5

To illustrate some of the limitations of EDAs based on the probability vector, let us consider a
more complex problem such as the concatenated trap of order 5 (trap-5) (Ackley, 1987; Deb &
Goldberg, 1991). In trap-5, the input string is first partitioned into independent groups of 5 bits
each. The contribution of each group of 5 bits (trap partition) is computed as

trap5(u) =

{

5 if u = 5
4− u otherwise

, (2)

where u is the number of 1s in the input string of 5 bits. While the trap-5 function has only one
global optimum, the string of all 1s, it also has (2n/5 − 1) other local optima, namely those strings
where all bits in at least one trap partition are 0 and all bits in each of the remaining partitions are
either 0 or 1. Trap-5 necessitates that all bits in each group be treated together, because statistics
of lower order are misleading (Thierens & Goldberg, 1993); that is why trap-5 provides an excellent
example to illustrate the limitations of the probability vector as a model.

The simple EDA shown in the previous simulation was run on trap-5. The first few generations
are shown in Figure 3. Almost immediately we see a problem: The fitness function ranks solutions
with many 0s higher than solutions with many 1s. By emphasizing solutions with many 0s, the
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Figure 2: Proportions of 1s in a probability vector of a simple EDA on the onemax problem of
n = 50 using a population of N = 100 candidate solutions.

probability vector entries get lower over the two generations. In other words, in each generation,
while our average population fitness is increasing, the strings are actually getting farther and farther
away from the global optimum.

To see if the same behavior can be observed on a larger problem, an EDA with a probability
vector was used to solve a trap-5 problem of 50 bits with a population of size N = 100. Figure 4a
shows the proportions of 1s in each position of the solution strings. This example confirms that
the proportions of 1s in different positions of solution strings decrease over time. Some entries
increase for several iterations but the bias towards 0s at any individual position is too strong to
be overcome. Indeed, by generation 27 the entire population has converged to all 0s. One may
hypothesize that the situation would change if our population was larger but, unfortunately, larger
populations would only make the continuous decrease in the proportion of 0s more stable.

To understand the reason for the failure of the EDA based on the probability vector on trap-5,
let us return to the onemax example. For onemax, the average fitness of candidate solutions with
a 1 in any position is better than the average fitness of solutions with a 0 in that position. The
selection is thus expected to give preference to 1s and the learning and sampling of the probability
vector will ensure that these increased probabilities of 1s are reflected in the new populations of
candidate solutions. However this situation is reversed for trap-5, for which the average fitness of
solutions with a 0 in any position is greater than the average fitness of solutions with a 1 in that
position (Deb & Goldberg, 1991), even though the optimum is still located in the string consisting
of all 1s. This leads to the probability vector being strongly biased towards solutions with 0s in all
positions.

All is not lost, however. What if we can change the model to respect the linkages between
the bits in the same trap partition? If it was possible for the algorithm to learn the structure of
trap-5, it could then treat all the bits in the same trap partition as a single variable. That is, the
model would store the probability of each combination of 5 bits in any particular trap partition,
and new solutions would be sampled by generating 5 bits at a time according to these probabilities.
Since from the definition of trap-5 the average fitness of candidate solutions with all bits in a trap
partition set to 1 is expected to be higher than the average fitness of solutions with one or more 0s in
that partition, we would expect the proportions of trap partitions with all 1s to increase over time.
By merging the variables in each trap partition together, the extended compact genetic algorithm
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11011 (0)
00101 (2)

10010 (2)

10111 (0)

01011 (1)

01000 (3)

Figure 3: Two generations of a simple EDA using a probability vector to solve trap-5.

(ECGA) (Harik, 1999) explained further in section 3.1.3 does just that. Probabilistic models that
combine groups of variables or bits into linkage groups and assume independence between the
different linkage groups are often referred to as marginal product models (Harik, 1999).

To show the difference that the marginal product model for trap-5 can make in practice, an EDA
that uses this model was applied to solve a 50-bit trap-5 problem. Figure 4b shows the proportions
of 11111s in different trap partitions in the population. These results show that with an appropriate
marginal product model the EDA performs similarly as it did on onemax, with the entire population
converging to the global optimum in a little over 20 generations. This example illustrates that, in
terms of probability distributions, the main reason for the failure of the probability vector based
EDA on trap-5 is the assumption that the problem variables are independent.

These examples make it clear that the class of allowable models and the methods for learning
and sampling these models are key elements in EDA design. If the model built in each generation
captures the important features of selected solutions and generates new solutions with these fea-
tures, then the EDA should be able to quickly converge to the optimum (Mühlenbein & Mahnig,
1999). However, as we will see later on, there is a tradeoff between the expressiveness of proba-
bilistic models and the complexity of learning and sampling these models. Due to the importance
of the class of models used in an EDA, the type of probability models used in an EDA is often how
one EDA is differentiated from another.

3 EDA Overview

Because of the key impact that the probabilistic models used have on EDA efficiency and appli-
cability, EDAs are usually categorized by the types of distributions they are able to encode. This
section covers four broad categories of EDAs. Note that this is not an exhaustive survey and only
a few representative algorithms are discussed for each category. For further information, please see
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(a) EDA based on the probability vector
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(b) EDA based on a marginal product model with link-
age groups corresponding to trap partitions.

Figure 4: Statistics from two runs of an EDA on trap-5 of n = 50 bits using probabilistic models
of different structure.

many of the individual papers for other examples.

In this section we assume the general structure of an EDA as outlined in Algorithm 1. Rather
than go over all the details of every algorithm, instead we will point out what distinguishes a
particular algorithm from the others. Since in most cases the primary differences between EDAs
are found in the class of probabilistic models used and the methods used for learning and sampling
these models, in the majority of this section we focus on these EDA components and omit less
important technical details.

Section 3.1 covers EDAs that can be used for problems using discrete variables. Section 3.2
discusses EDAs for solving problems where candidate solutions are represented by permutations.
Section 3.3 describes EDAs that address problems where candidate solutions are represented by
real-valued vectors. Lastly, section 3.4 covers EDAs for problems in genetic programming.

3.1 Discrete Variables

This section covers the first broad category of EDAs, those that work on fixed-length strings of a
finite cardinality (usually binary). We start by describing EDAs that ignore all interactions between
variables and end with algorithms that are able to capture a broad variety of possible interactions.

3.1.1 Univariate Models

One of the simplest approaches is to assume that the problem variables are independent. Under
this assumption, the probability distribution of any individual variable should not depend on the
values of any other variables. EDAs of this type are usually called univariate EDAs. Figure 5a
shows an illustration of this type of model.

Mathematically, a univariate model decomposes the probability of a candidate solution
(X1,X2, ...,Xn) into the product of probabilities of individual variables as

p(X1,X2, ...,Xn) = p(X1)p(X2), ..., p(Xn)
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Figure 5: Examples of graphical models produced by different EDAs.

where p(Xi) is the probability of variable Xi, and p(X1,X2, ...,Xn) is the probability of the candi-
date solution (X1,X2, ...,Xn). The univariate model for n variables thus consists of n probability
tables and each of these tables defines probabilities of different values of the corresponding variable.
Since the probabilities of different values of a variable must sum to 1, one of the probabilities may
be omitted for each variable. The probability vector discussed earlier in section 2.2 is an example
univariate model applicable to candidate solutions represented by fixed-length binary strings.

One example of a univariate EDA is the univariate marginal distribution algorithm (UMDA) (Mühlenbein
& Paaß, 1996b), which is the algorithm we used to solve the onemax problem in section 2. UMDA
works on binary strings and uses the probability vector p = (p1, p2, ..., pn) as the probabilistic model,
where pi denotes the probability of a 1 in position i of solution strings. To learn the probability
vector, each pi is set to the proportion of 1s in the population of selected solutions. To create new
solutions, each variable is generated independently based on the entries in the probability vector.
Specifically, a 1 is generated in position i with probability pi.

Another univariate EDA is the population-based incremental learning (PBIL) (Baluja, 1994)
algorithm, which works on binary strings. PBIL is an example of an incremental EDA, which fully
replaces the population with the probabilistic model. Like UMDA, PBIL uses the probabilistic
model in the form of a probability vector. The initial probability vector encodes the uniform
distribution over all binary strings by setting the probabilities of 1s in each position to 0.5. In
each generation of PBIL, the probability vector is sampled to generate a a small set of solutions
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using the same sampling procedure as in UMDA. The best solution in this set is selected and for
each variable in this solution, the corresponding entry in the probability vector is shifted towards
producing that value more often by a learning rate parameter specified by the user. To prevent
premature convergence, each probability vector entry is also slightly varied each generation based
on a mutation rate parameter.

The compact genetic algorithm (cGA) (Harik, Lobo, & Goldberg, 1997) is another incremental
univariate EDA. Much like PBIL, cGA uses a probability vector to represent the entire population
of solutions encoded by fixed-length binary strings. The main difference between cGA and PBIL is
in the way these EDAs update the probability vector in each generation. In each generation of the
cGA, two individuals are generated and then evaluated. If at any particular position the winning
solution’s bit is different from the losing solution’s bit, the probability vector entry is shifted by
1/N towards the winning bit, where N represents the theoretical population size that would be
required to solve the problem for a non-incremental EDA. Note that unlike PBIL, cGA will not
necessarily change all probability vector entries each iteration. One of the primary advantages of
PBIL, CGA and other incremental EDAs over other EDAs is they use a much smaller memory
footprint, which can be useful when trying to solve extremely large problems (Sastry, Goldberg, &
Llorà, 2007); we return to this topic in section 4.

While the original versions of UMDA, PBIL and cGA assumed that candidate solutions are
represented by binary strings of fixed length, it is straightforward to extend these algorithms to
solve problems where candidate solutions are represented by fixed-length strings over any finite
alphabet. Nonetheless, the assumption that problem variables are independent will often prevent
efficient convergence to the optimum when problem variables interact strongly. The next section
discusses one approach to alleviate this problem.

3.1.2 Tree-based models

The algorithms in the previous section assumed independence between problem variables. However,
often the variables in a problem are related in some way. This section discusses EDAs capable of
capturing some pair-wise interactions between variables by using tree-based models. In tree-based
models, the conditional probability of a variable may only depend on at most one other variable,
its parent in a tree structure.

The mutual-information-maximizing input clustering (MIMIC) (De Bonet, Isbell, & Viola, 1997)
uses a chain distribution to model interactions between variables. MIMIC works by using the
population of promising solutions to calculate the mutual information between all pairs of variables.
Then, starting with the variable with the minimum conditional entropy, a chain dependency is added
to the variable with the most mutual information. This process is repeated until all the variables
are selected. The resulting tree model consists of a single chain of dependencies, with each parent
having exactly one child. Given a permutation of the n variables in a problem, π = i1, i2 . . . in,
MIMIC decomposes the probability distribution of p(X1,X2, . . . ,Xn) as:

pπ(X) = p(Xi1 |Xi2)p(Xi2 |Xi3) . . . p(Xin−1
|Xin)p(Xin)

where p(Xij |Xij+1) denotes the conditional probability of Xij given Xij+1
. New candidate solutions

are then generated by sampling the probability distribution encoded by the model. The sampling
proceeds by generating the variables in the reverse order with respect to the permutation π, starting
with Xin and ending with Xi1 . After generating Xin , the values of the remaining variables are
generated using the conditional probabilities with the specific value of the variable in the condition.

Baluja and Davies (1997) use dependency trees to model promising solutions, improving the
expressiveness of the probabilistic models compared to the chain models of MIMIC. In dependency

9



trees, each parent can have multiple children. This incremental EDA works by using a probability
matrix that contains all pairwise probabilities. The model is the tree that maximizes the mutual
information between connected variables, which is the provably best tree model in terms of the
Kullback-Leibler divergence (Chow & Liu, 1968) with respect to the true distribution. The prob-
ability matrix is initialized so that it corresponds to the uniform distribution over all candidate
solutions. In each iteration of the algorithm, a tree model is built and sampled to generate several
new candidate solutions. The best of these solutions are then used to update the probability matrix.

The bivariate marginal distribution algorithm (BMDA) (Pelikan & Mühlenbein, 1999) uses a
model based on a set of mutually independent trees (a forest). Each generation a dependency
model is created by using Pearson’s chi-square statistics (Marascuilo & McSweeney, 1977) as the
main measure of dependence. The model built is then sampled to generate new solutions based on
the conditional probabilities learned from the population.

3.1.3 Multivariate Interactions

While the tree-based models in section 3.1.2 provide EDAs with the ability to identify and exploit
interactions between problem variables, using tree models is often not enough to solve problems
with multivariate or highly-overlapping interactions between variables (Bosman & Thierens, 1999;
Pelikan & Mühlenbein, 1999). This section describes several EDAs that are based on probabilistic
models capable of capturing multivariate interactions between problem variables.

The extended compact genetic algorithm (ECGA) (Harik, 1999) uses a model that divides
the variables into independent clusters and each of these clusters is treated as a single variable.
The model building starts by assuming that all the problem variables are independent. In each
iteration of the model building, two clusters are merged together that improve the quality of the
model the most. The quality of a model is measured by the minimum description length (MDL)
metric (Mitchell, 1997). The model building terminates when no merging of two clusters improves
the MDL score of the model. Once the learning of the structure of the model is complete, a
probability table is computed for each cluster based on the population of selected solutions and
the new solutions are generated by sampling each linkage group based on these probabilities. The
model building procedure is repeated in each generation of ECGA, so the model created in each
generation of ECGA may contain different clusters of variables. An example of an ECGA model is
shown in Figure 5b.

Many problems contain highly overlapping subproblems that cannot be accurately modeled by
dividing the problem into independent clusters. The Bayesian optimization algorithm (BOA) (Pe-
likan, Goldberg, & Cantú-Paz, 2000) uses Bayesian networks to model candidate solutions, which
allow it to solve the large class of nearly decomposable problems, many of which cannot be decom-
posed into independent subproblems of bounded order. A Bayesian network is an acyclic directed
graph with one node per variable, where an edge between nodes represents a conditional depen-
dency. A Bayesian network with n nodes encodes a joint probability distribution of n random
variables X1,X2, . . . ,Xn:

p(X1,X2, . . . ,Xn) =
n

∏

i=1

p(Xi|Πi), (3)

where Πi is the set of variables from which there exists an edge into Xi (members of Πi are called
parents of Xi), and p(Xi|Πi) is the conditional probability of Xi given Πi. Figure 5c shows an
example Bayesian network. The difference between Bayesian networks and tree models is that in
Bayesian networks, each variable may depend on more than one variable. The main difference
between the marginal product models of ECGA and Bayesian networks is that Bayesian networks

10



are capable of capturing more complex problem decompositions in which subproblems interact.

The model building in BOA starts with a network with no edges. Edges are then added to
the network one at a time, adding the edge that gives the most improvement using the Bayesian-
Dirichlet (BD) metric (Heckerman, Geiger, & Chickering, 1995). Since the BD metric has a ten-
dency to create overly complex models, usually an upper bound on the number of allowable parents
or a prior bias on the network structure is set to prefer simpler models (Heckerman, Geiger, &
Chickering, 1994). New candidate solutions are generated by sampling the probability distribution
encoded by the built network using probabilistic logic sampling (Henrion, 1988).

The estimation of Bayesian network algorithm (EBNA) (Etxeberria & Larrañaga, 1999a) and
the learning factorized distribution algorithm (LFDA) (Mühlenbein & Mahnig, 1999) also use
Bayesian networks to model the promising solutions. EBNA and LFDA use the Bayesian infor-
mation criterion (BIC) (Schwarz, 1978a) to evaluate Bayesian network structures in the greedy
network construction algorithm. One advantage of the BIC metric over the BD metric is that it
contains a strong implicit bias towards simple models and it thus does not require a limit on the
number of allowable parents or any prior bias towards simpler models. However, the BD metric
allows a more principled way to include prior information into problem solving, as discussed in
section 5.6.

Many complex problems in the real world are hierarchical in nature (Simon, 1968). A hierar-
chical problem is a problem composed of subproblems, with each subproblem being a hierarchical
problem itself until the bottom level is reached (Simon, 1968). On each level, the interactions within
each subproblem are often of much higher magnitude than the interactions between the subprob-
lems. Due to the rich interaction between subproblems and the lack of feedback for discriminating
alternative solutions to the different subproblems, these problems cannot simply be decomposed
into tractable problems on a single level. Therefore, solving these heirarchical problems presents
new challenges for EDAs. First, on each level of problem solving, the hierarchical problem solver
must be capable of decomposing the problem. Secondly, the problem solver must be capable of
representing solutions from lower levels in a compact way so these solutions can be treated as a
single variable when trying to solve the next level. Lastly, since the solution at any given level may
depend on interactions at a higher level, it is necessary that alternate solutions to each subproblem
be stored over time.

The hierarchical Bayesian Optimization Algorithm (hBOA) (Pelikan, 2005) is able to solve many
difficult hierarchically decomposable problems by extending BOA in several key areas. In order to
ensure that interactions of high order can be represented in a feasible manner, a more compact
version of Bayesian networks is required. Specifically, hBOA uses Bayesian networks with local
structures (Chickering, Heckerman, & Meek, 1997; Friedman & Goldszmidt, 1999) to allow feasible
learning and sampling of more complex networks than would be possible with convential Bayesian
networks. In addition, the preservation of alternative solutions over time is ensured by using a
niching technique called restricted tournament replacement (RTR) (Harik, 1995) which encourages
competition among similar solutions rather than dissimilar ones. Combined together these changes
allow hBOA to solve a broad class of nearly decomposable and hierarchical problems in a robust
and scalable manner (Pelikan & Goldberg, 2006).

Another type of model that is general in nature is Markov networks. The structure of Markov
networks is similar to Bayesian networks except that the connections between variables are undi-
rected. For a given decomposable function, a Markov network that ensures convergence to the
global optimum may sometimes be considerably less complex than an adequate Bayesian network,
at least with respect to the number of edges (Mühlenbein, 2008). Nonetheless, sampling Markov
networks is more more difficult than sampling Bayesian networks. In other words, some of the
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difficulty moves from learning to sampling the probabilistic model compared to EDAs based on
Bayesian networks. Shakya and Santana (2008) uses Gibbs sampling to generate new solutions
from its model in the Markovianity based Optimisation Algorithm (MOA). MOA was shown to
have comparable performance to some Bayesian network based EDAs on deceptive test problems.
An example of a Markov network model is shown in Figure 5d.

Using a more expressive class of probabilistic models allows EDAs to solve broader classes of
problems. From this perspective, one should prefer tree models to univariate ones, and multivariate
models to tree models. At the same time, using a more expressive class of models almost always
implies that the model building and model sampling will be more computationally expensive.
Nonetheless, since it is often not clear how complex a problem is before solving it and using even
the most complex models described above creates only a low-order polynomial overhead even on
problems that can be solved with simpler models, it is often preferable to use the more general
class of models rather than the more restricted one.

The algorithms in this section are able to cover a broad variety of possible interactions between
discrete variables in a problem. However, none of these algorithms is directly applicable to problems
where candidate solutions are represented by permutations, which are discussed in the next section.

3.2 Permutation EDAs

In many important real-world problems, candidate solutions are represented by permutations over
a given set of elements. Two important classes of such problems are the quadratic assignment
problem (Koopmans & Beckmann, 1957) and the traveling salesman problem. These types of
problems often contain two specific types of features or constraints that EDAs need to capture. The
first is the absolute position of a symbol in a string and the second is the relative ordering of specific
symbols. In some problems, such as the traveling-salesman problem, relative ordering constraints
matter the most. In others, such as the quadratic assignment problem, both the relative ordering
and the absolute positions matter. It certainly is possible to use non-permutation based EDAs
using specific encodings to solve permutation problems. For example, one may use the random
key encoding (Bean, 1994) to solve permutation-based problems using EDAs for optimization of
real-valued vectors (Bosman & Thierens, 2001b; Robles, de Miguel, & Larrañaga, 2002). However,
since these EDAs do not process the aforementioned types of interactions directly their performance
can often be poor (Bosman & Thierens, 2001b). The following EDAs attempt to encode both of
these types of features or contraints for permutation problems explicitly.

To solve problems where the solutions are permutations of a string, Bengoetxea, Larrañaga,
Bloch, Perchant, and Boeres (2000) starts with a Bayesian network model built using the same
approach as EBNA. However, the sampling method is changed to ensure that only valid permu-
tations are generated. This approach was shown to have promise in solving the inexact graph
matching problem. In much the same way, the dependency-tree EDA (dtEDA) of Pelikan, Tsut-
sui, and Kalapala (2007) starts with a dependency-tree model and modifies the sampling to ensure
that only valid permutations are generated. dtEDA for permutation problems was used to solve
structured quadratic assignment problems with great success (Pelikan, Tsutsui, & Kalapala, 2007).
Both Bayesian networks as well as tree models are capable of encoding both the absolute position
and the relative ordering constraints.

Bosman and Thierens (2001c) extended the real-valued EDA to the permutation domain by
storing the dependencies between different positions in a permutation in the induced chromosome
elements exchanger (ICE). ICE works by first using a real-valued EDA as discussed in section 3.3,
which encodes permutations as real-valued vectors using random keys encoding (Bean, 1994). Ran-
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dom keys are a specific type of encoding that can be used to map real-valued vectors to permuta-
tions. ICE extends the real-valued EDA by using a specialized crossover operator. By applying the
crossover directly to permutations instead of simply sampling the model, relative ordering is taken
into account. The resulting algorithm was shown to outperform many real-valued EDAs that use
the random key encoding alone (Bosman & Thierens, 2001c).

The edge histogram based sampling algorithm (EHBSA) (Tsutsui, 2002) works by creating an
edge histogram matrix (EHM). For each pair of symbols, EHM stores the probabilities that one
of these symbols will follow the other one in a permutation. To generate new solutions, EHBSA
starts with a randomly chosen symbol. The EHM is then sampled repeatedly to generate new
symbols in the solution, normalizing the probabilities based on what values have already been
generated. The EHM by itself does not take into account absolute positional importance at all. In
order to address problems in which absolute positions are important, a variation of EHBSA that
involved templates was proposed (Tsutsui, 2002). To generate new solutions, first a random string
from the population was picked as a template. New solutions were then generated by removing
random parts of the template string and generating the missing parts with sampling from the EHM.
The resulting algorithm was shown to be better than most other EDAs on the traveling salesman
problem. In another study, the node histogram sampling algorithm (NHBSA) of Tsutsui, Pelikan,
and Goldberg (2006) considers a model capable of storing node frequencies at each position and
again uses a template.

3.3 Real-Valued Vectors

EDAs discussed thus far were applicable to problems with candidate solutions represented by
fixed-length strings over a finite alphabet. However, candidate solutions for many problems are
represented using real-valued vectors. In these problems the variables cover an infinite domain so it
is no longer possible to enumerate variables’ values and their probabilities. This section discusses
EDAs that can solve problems in the real-valued domain. There are two primary approaches to
applying EDAs to the real-valued domain: (1) Map the real-valued variables into the discrete
domain and use a discrete EDA on the resulting problem, and (2) use EDAs based on probabilistic
models defined on real-valued variables.

3.3.1 Discretization

The most straightforward way to apply EDAs in the real-valued domain is to discretize the problem
and use a discrete EDA on the resulting problem. In this way it is possible to directly use the
discrete EDAs in the real-valued domain. However, a naive discretization can cause problems as
some values close to each other in the continuous domain may become more distant in the discrete
domain. In addition, the possible range of values must be known before the optimization starts.
Finally, some regions of the search space are more densely covered with high quality solutions
whereas others contain mostly solutions of low quality; this suggests that some regions require
a more dense discretization than others. To deal with these difficulties, various approaches to
adaptive discretization were developed using EDAs (Tsutsui, Pelikan, & Goldberg, 2001; Pelikan,
Goldberg, & Tsutsui, 2003; Chen, Liu, & Chen, 2006; Suganthan, Hansen, Liang, Deb, Chen,
Auger, & Tiwari, 2005). We discuss some of these next.

Tsutsui, Pelikan, and Goldberg (2001) proposed to divide the search space of each variable into
subintervals using a histogram. Two different types of histogram models were used: fixed height and
fixed width. The fixed-height histogram ensured that each discrete value would correspond to the
same number of candidate solutions in the population; this allows for a more balanced discretization
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where the areas that contain more high quality solutions also get more discrete values. The fixed-
width histogram ensured that each discrete value corresponded to the interval of the same size.
The results showed strong performance on the two-peaks and Rastrigin functions, which are often
difficult without effective crossover operators.

Three different methods of discretization were tried (fixed-height histograms, fixed-width his-
tograms and k-Means clustering) and combined with BOA to solve real-valued problems by Pelikan,
Goldberg, and Tsutsui (2003). Adaptive mutation was also used after mapping the discrete values
to the continuous domain. The resulting algorithm was shown to be successful on the two-peaks
and deceptive functions.

Another way to deal with discretization was proposed by Chen, Liu, and Chen (2006). Their
method uses the ECGA model and a split-on-demand (SoD) discretization to adjust on the fly how
the real-valued variables are coded as discrete values. Loosely said, if an interval of discretization
contains a large number of candidate solutions and these variables are biased towards one side of
the interval, then that region is split into two to increase exploration. The resulting real-coded
ECGA (rECGA) worked well on a set of benchmark test problems (Suganthan, Hansen, Liang,
Deb, Chen, Auger, & Tiwari, 2005) designed to test real-valued optimization techniques.

While the above EDAs solved problems with candidate solutions represented by real-valued
vectors, they manipulated these through discretization and variation operators based on a discrete
representation. In the next section we cover EDAs that work directly with the real-valued variables
themselves.

3.3.2 Direct Representation

The stochastic hill-climbing with learning by vectors of normal distributions (SHCLVND) (Rudlof
& Köppen, 1996) works directly with a population of real-valued vectors. The model is represented
as a vector of normal distributions, one for each variable. While the mean of each variable’s
distribution can be different, all the distributions share the same standard deviation. Over time
the means are shifted towards the best candidate solutions generated and the deviation is slowly
reduced by a multiplicative factor. Figure 6 shows an example of this type of a model.

One disadvantage of SHCLVND is that it assumes that each variable has the same standard
deviation. Also, since it uses only a single normal distribution for each variable, it is only able to
accurately capture distributions of samples that are all centered around a single point in the search
space. In addition, it assumes that all the variables are independent. The following algorithms all
attempt to alleviate one or more of these problems.

Sebag and Ducoulombier (1998) extend the idea of using a single vector of normal distributions
by storing a different standard deviation for each variable. In this way it is able to perform better
in scenarios where certain variables have higher variance than others. As in SHCLVND, however,
all variables are assumed to be independent.

The estimation of Gaussian networks algorithm (EGNA) (Larrañaga, Etxeberria, Lozano, Pea,
& na, 1999) works by creating a Gaussian network to model the interactions between variables
in the selected population of solutions in each generation. This network is similar to a Bayesian
network except that the variables are real-valued and locally each variable has its mean and variance
computed by a linear function from its parents. The network structure is learned greedily using a
continuous version of the BDe metric (Geiger & Heckerman, 1994), with a penalty term to prefer
simpler models.

In the IDEA framework, Bosman and Thierens (2000) proposed models capable of capturing
multiple basins of attraction or clusters of points by storing the joint normal and kernel distri-
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Figure 6: Example model generated by SHCLVND

butions. IDEA was able to outperform SHCLVND and other EDAs that used a single vector
of Gaussian distributions on a set of six function optimization problems commonly used to test
real-valued optimization techniques.

The mixed iterated density estimation evolutionary algorithm (mIDEA) (Bosman & Thierens,
2001a) uses mixtures of normal distributions. The model building in mIDEA starts by clustering
the variables and fitting a probability distribution over each cluster. The final distribution used is
then a weighted sum over the individual distributions. To evaluate dependencies between variables,
the Bayesian information criterion (BIC) (Schwarz, 1978b) metric is used.

In EDAs described so far, the variables were treated either as all real-valued or as all discrete
quantities. The mixed Bayesian optimization algorithm (mBOA) (Ocenasek, Kern, Hansen, &
Koumoutsakos, 2004) can deal with both types of variables. Much as in hBOA, the probability
distribution of each variable is represented as a decision tree. The internal nodes of each tree
encode tests on variables that the corresponding variable depends on. For discrete variables, the
branch taken during sampling is determined by whether or not the variable in the node is equal
to a constant. For continuous variables, the branch taken is determined by whether the variable
corresponding to that node is less than a constant. The leaves determine the values of the sampled
variables. For discrete variables, the leaves contain the conditional probabilities of particular values
of these variables. On the other hand, normal kernel distributions are is used for continuous
variables.

The real-coded Bayesian optimization algorithm (rBOA) (Ahn, Ramakrishna, & Goldberg,
2004) tries to bring the power of BOA to the real-valued domain. rBOA uses a Bayesian network
to describe the underlying structure of the problem and a mixture of Gaussians to describe the
local distributions. The resulting algorithm was shown to outperform mIDEA on several real-valued
deceptive problems.
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Figure 7: Example of two different models used in EDA-GP.

3.4 EDA-GP

After numerous successes in the design of EDAs for discrete and real-valued representations, a num-
ber of researchers have attempted to replicate these successes in the domain of genetic programming
(GP) (Koza, 1992). In GP the task is to evolve a population of computer programs represented
by labeled trees. In this domain, some additional challenges become evident. To start with, the
length of candidate programs is expected to vary. Also, small changes in parent-child relationships
can lead to large changes in the performance of the program, and often the relationship between
operators is more important than their actual physical position in candidate programs. However,
despite these additional challenges, even in this environment, EDAs have been successful. In the
remainder of this section, we outline a few attempts to design EDAs for GP.

The probabilistic incremental program evolution (PIPE) (Salustowicz & Schmidhuber, 1997)
uses a probabilistic prototype tree (PPT) to store the probability distribution of all functions and
operators at each node of program trees. Initially the probability of all the functions and operators
is set to represent the uniform distribution and used to generate the initial population. In each
generation the values of the PPT are updated from the population of promising solutions. To
generate new solutions, the distribution at each node is sampled to generate a new candidate
program tree. Subtrees that are not valid due to invalid combination of operators or functions at
the lowest level in the tree are pruned. Figure 7 shows an example PPT for PIPE. While PIPE
does force positional dependence by using specific probabilities at each node, it does not take into
account interactions between nodes. Nonetheless, due to the simplicity of the model used, the
learning and sample procedure of PIPE remains relatively fast compared to many other approaches
to EDA-based GP.

An extension of PIPE is the extended compact genetic programming (ECGP) (Sastry & Gold-
berg, 2000). Motivated by ECGA, ECGP splits nodes in the program trees into independent
clusters. The algorithm starts by assuming that all nodes are independent. Then it proceeds by
merging nodes into larger clusters based on the MDL metric similar to that used in ECGA. The
individual clusters are treated as a single variable and the tree is used to generate new candidate
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solutions. Figure 7 shows an example model generated by ECGP.

Due to the chaotic nature of program spaces, finding an accurate problem decomposition can
be difficult over the entire search space of candidate programs. The meta-optimizing semantic evo-
lutionary search (MOSES) (Looks, 2006) deals with this problem by first dynamically splitting up
the search space into separate program subspaces called demes that are maintained simultaneously.
hBOA is then applied to each individual deme to generate new programs within that deme, which
can also lead to new demes being created.

Several EDAs were developed for GP using probabilistic models based on grammar rules. One
such EDA is the stochastic grammar-based GP (SG-GP) (Ratle & Sebag, 2006), which starts by
using a fixed context-free grammar and attaching default probabilities to each rule. Based on the
promising solutions sampled during each generation, the probabilities of rules that perform well
are gradually increased. While in the base algorithm, no positional information is stored, it is also
possible to extend the algorithm to keep track of the level where each rule is used.

Further extending the idea of representing the probability distribution over candidate programs
using probabilistic grammars, the program evolution with explicit learning (PEEL) (Shan, Mckay,
Abbass, & Essam, 2003) attaches a depth and location parameter to each production rule. It starts
with a small grammar and expands it by transforming a general rule that works at all locations
into a specific grammar rule that only works at a specific depth and location. A metric based on
ant colony optimization is used to ensure that rules are not excessively refined.

All the aforementioned algorithms based on grammatical evolution used a fixed context-free
grammar. Grammar model-based program evolution (GMPE) (Shan, Mckay, & Baxter, 2004) goes
beyond context-free grammars by allowing the algorithm itself to generate completely new grammar
rules. GMPE starts by generating a random initial population of program trees. Then a minimal
grammar is generated that is only able to generate the initial set of promising solutions. Once
this is done, using the work based on theoretical natural language analysis, operators are used to
create new rules and merge old rules together. The minimum message length (MML) (Wallace &
Boulton, 1968) metric is used to compare grammars. This algorithm is very adaptable, being able
to generate a broad variety of possible grammars. However, comparing all the grammars against
each other is computationally expensive.

4 Advantages of Using EDAs

Viewing optimization as the process of updating a probabilistic model over candidate solutions
provides EDAs with several important features that distinguish these algorithms from evolution-
ary algorithms and other, more conventional metaheuristics. This section reviews some of these
important features.

Adaptive operators. One of the biggest advantages of EDAs over most other metaheuristics is
their ability to adapt their operators to the structure of the problem. Most metaheuristics use
fixed operators to explore the space of potential solutions. While problem-specific operators
may be developed and are often used in practice, EDAs are able to do the tuning of the
operator to the problem on their own. This important difference allows EDAs to solve some
problems for which other algorithms scale poorly (Pelikan & Hartmann, 2006; Shah & Reed,
2010; Goldberg, 2002).

Problem structure. Besides just providing the solution to the problem, EDAs also provide op-
timization practitioners with a roadmap of how the EDA solved the problem. This roadmap
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consists of the models that are calculated in each generation of the EDA, which represent
samples of solutions of increasing quality. Mining these probabilistic models for information
about the problem can reveal many problem-specific features, which can in turn be used to
identify promising regions of the search space, dependency relationships between problem
variables, or other important properties of the problem landscape. While gaining a better
understanding of the problem domain is useful in its own right, the obtained information
can be used to design problem-specific optimization techniques or speed up solution of new
problem instances of similar type (Hauschild & Pelikan, 2009; Hauschild, Pelikan, Sastry, &
Goldberg, 2008; Baluja, 2006; Schwarz & Ocenasek, 2000).

Prior knowledge exploitation. Practical solutions of enormously complex optimization prob-
lems often necessitates that the practitioners bias the optimization algorithm in some way
based on prior knowledge. This is possible even with standard evolutionary algorithms, for
example by injecting specific solutions into the population of candidate solutions or by biasing
the populations using a local search. However, many approaches to biasing the search for
the optimum tend to be ad-hoc and problem specific. EDAs provide the framework for more
principled techniques to incorporate prior knowledge. For example, Bayesian statistics can
be used to bias model building in EDAs towards instances that appear to more likely lead
to the global optimum or towards probabilistic models that more closely correspond to the
structure of the problem being solved. This can be done in a statistically meaningful way as
will be demonstrated in section 5.6.

Reduced memory requirements. Incremental EDAs reduce memory requirements by replacing
the population of candidate solutions by a probabilistic model. This allows practitioners to
solve extremely large problems that cannot be solved with other techniques. For example,
Sastry, Goldberg, and Llorà (2007) shows that solving a 225 (over 33 million) bit onemax
problem with a simple genetic algorithm takes about 700 gigabytes but the cGA described in
3.1.1 requires only a little over 128 megabytes.

5 Efficiency Enhancement Techniques for EDAs

While EDAs provide scalable solutions to many problems that are intractable with other techniques,
solving enormously complex problems often necessitates that additional efficiency enhancement
(EE) (Goldberg, 2002; Sastry, Pelikan, & Goldberg, 2006; Pelikan, 2005) techniques are used.
There are two main computational bottlenecks that must be addressed by efficiency enhancement
techniques for EDAs: (1) fitness evaluation and (2) model building.

Efficiency enhancements for EDAs can be roughly divided into the following categories (Pelikan,
2005):

1. Parallelization.

2. Evaluation relaxation.

3. Hybridization.

4. Time continuation.

5. Sporadic and incremental model building.

6. Incorporating problem-specific knowledge and learning from experience.
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In the remainder of this section we will briefly review each of these approaches, with an emphasis
on efficiency enhancement techniques that are specific to EDAs.

5.1 Parallelization

To enhance efficiency of any optimization technique, one may often parallelize the computation
in some way. The most common approach to parallelization in EDAs and other metaheuristics is
to parallelize fitness evaluation (Cantú-Paz, 2000). However, in the case of EDAs it is often also
advantageous to parallelize model building. One of the most impressive results in parallelization
of EDAs is the efficient parallel implementation of the compact genetic algorithm, which was
successfully applied to a noisy optimization problem with over one billion decision variables (Sastry,
Goldberg, & Llorà, 2007). Several approaches to parallelizing model building in advanced EDAs
with multivariate models have also been proposed (Ocenasek, 2002; Ocenasek, Cantú-Paz, Pelikan,
& Schwarz, 2006; Mendiburu, Miguel-Alonso, & Lozano, 2006).

5.2 Evaluation Relaxation

As previously discussed, one method to help alleviate the fitness bottleneck is parallelization.
Nonetheless, to further improve performance of algorithms with expensive fitness evaluation, it
is sometimes possible to eliminate some of the fitness evaluations by using approximate models of
the fitness function, which can be evaluated much faster than the actual fitness function. Efficiency
enhancement techniques based on this principle are called evaluation relaxation techniques (Gold-
berg, 2002; Smith, Dike, & Stegmann, 1995; Sastry, Goldberg, & Pelikan, 2001a; Pelikan & Sastry,
2004; Sastry, Pelikan, & Goldberg, 2004).

There are two basic approaches to evaluation relaxation: (1) endogenous models (Smith, Dike,
& Stegmann, 1995; Sastry, Goldberg, & Pelikan, 2001a; Pelikan & Sastry, 2004; Sastry, Pelikan, &
Goldberg, 2004) and (2) exogenous models (Sastry, 2001b; Albert, 2001). With endogenous models,
the fitness values for some of the new candidate solutions are estimated based on the fitness values
of the previously generated and evaluated solutions. With exogenous models, a faster but less
accurate surrogate model is used for some of the evaluations, especially for those early in the run.
Of course, the two approaches can be combined to maximize the benefits.

The first study (Sastry, Goldberg, & Pelikan, 2001b) that incorporated endogenous models in
EDAs used the UMDA algorithm discussed in section 3.1.1. To estimate fitness, the probability
vector was extended to also store statistics on the average fitness of all solutions with a 0 or a
1 in any string position. These data were then used to estimate fitness of new solutions. How-
ever, EDAs provide interesting opportunities for building extremely accurate yet computationally
efficient fitness surrogate models that go way beyond the simple approach based on UMDA, be-
cause they provide the practitioners with detailed information about the structure of the problem.
The endogenous-model approach when used with ECGA (Sastry, Pelikan, & Goldberg, 2004) and
BOA (Pelikan & Sastry, 2004) can accurately approximate even complex fitness functions due to the
additional information encoded about the problem structure in the EDA model, yielding speedups
of several orders of magnitude even for only moderately sized problems (Pelikan & Sastry, 2004).
This type of information is not available at all to other types of metaheuristics.

5.3 Hybridization

In many real-world applications, EDAs are combined with other optimization algorithms. Typically,
simple and fast local search techniques—which can quickly locate the closest local optimum—are
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incorporated into an EDA, reducing the problem of finding the global optimum to that of finding
only the basin of attraction of the global optimum. As an example, consider the simple deterministic
hill climber (DHC), which takes a candidate solution represented by a binary string and keeps
performing single-bit flips on the solution that lead to the greatest improvement in fitness (Hart,
1994).

While even incorporating simple local search techniques can lead to significant improvements
in time complexity of EDAs, sometimes more advanced optimization techniques are available that
are tailored to the problem being solved. As an example, consider cluster exact approximation
(CEA) (Hartmann, 1996), which can be incorporated into hBOA (Pelikan & Hartmann, 2006)
when solving the problem of finding ground states of Ising spin-glass instances arranged on finite-
dimensional lattices. Unlike DHC, CEA can flip many bits at once, often yielding solutions close
to the global optimum after only a few iterations.

Incorporating local search is relatively straightforward in most metaheuristics. However, the
use of probabilistic models of EDAs in optimization opens the door to the design of more advanced
and powerful model-directed hybrids. Specifically, by exploiting the problem structure encoded by
the probabilistic model, it is possible to design specialized local search techniques which can signif-
icantly outperform more conventional approaches to local search by using neighborhood operators
that more closely correspond to the structure of the problem. For example, if two variables are
strongly correlated and the value of one of them is modified, then it would make sense to con-
sider modifying the value of the other variable as well. This idea was the motivation behind the
building-block mutation operator used by Sastry and Goldberg (2004a) to speed up problem solv-
ing in ECGA. This operator worked by taking the best individual from the population and trying
different combinations of bits in one of the independent linkage groups discovered by the model
building phase, while leaving all the other linkage groups fixed; this was then repeated for each
linkage group. This type of structural local search is simply not available to other metaheuristics.

Local search was also used to speed up the performance of BOA and hBOA by using information
from Bayesian networks by Lima, Pelikan, Sastry, Butz, Goldberg, and Lobo (2006). In this
work, substructural neighborhoods were defined as a variable and all its parents in the Bayesian
network model discovered by BOA. Hillclimbing in the substructural space was then used on a
proportion of the population. However, this technique did not take into account the context of
possible overlapping interactions. Lima, Pelikan, Sastry, Butz, Goldberg, and Lobo (2006) also
discussed other possible neighborhood structures that could be extracted from Bayesian networks.
In a similar approach, Handa (2007) started with bit mutation in EBNA, but then resampled
any variables that depended on mutated bits depending on the conditional probability of the new
parent variable’s value. In further work, Lima, Pelikan, Lobo, and Goldberg (2009) used loopy
belief propogation (Pearl, 1988; Mendiburu, Santana, Lozano, & Bengoetxea, 2007) to find a more
accurate substructural neighborhood based on the Bayesian model information and used that for
local search.

5.4 Time continuation

In time continuation, the goal is to maximize performance of evolutionary algorithms by exploiting
the trade-off between making more runs with a small population size and making fewer runs (or
even only a single run) with a larger population size (Goldberg, 1999; Srivastava & Goldberg,
2001; Goldberg, 2002). For example, sometimes it is possible to solve a problem in one single
generation with a large enough population size, but it may also be possible to solve this problem
in many generations with a smaller population. Which is the most effective method is not always
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readily apparent: The goal in time continuation is to pick the method most efficient for a particular
problem, either to maximize solution quality given a fixed computational budget or to minimize
time to achieve a solution of a given quality.

Problem information encoded in probabilistic models of EDAs creates opportunities for using
this information to design more efficient optimization techniques by exploiting the time continuation
tradeoffs. For example, Sastry and Goldberg (2004b) showed that for ECGA on separable problems
of bounded difficulty, if the population was large enough for an accurate model of the underlying
problem structure, an ECGA hybrid was able to solve these problems in a single generation by
using a local searcher with the neighborhood structure based on the ECGA model. However, for
problems with substantial amounts of noise, running the ECGA hybrid for a number of generations
was preferable.

5.5 Sporadic and incremental model building

Model building in ECGA, hBOA and other similar EDAs usually consists of two parts: (1) learning
the structure and (2) learning the parameters of the identified structure. Typically, learning the
model structure is much more complex than learning the parameters (Ocenasek & Schwarz, 2000;
Pelikan, 2005). However, since the model structure is expected to not change much between
consequent iterations, one way to speed up model building is to use sporadic model building, in
which the structure is updated only once once in a while (Pelikan, Sastry, & Goldberg, 2008).

Since the model structure is expected to not change much over time and making incremental
changes to model structure is usually much simpler than building the structure from scratch, it may
also be advantageous to change the model structure only incrementally without rebuilding the model
from scratch in every iteration. This is the basic idea of incremental model building (Etxeberria &
Larrañaga, 1999b).

5.6 Incorporating problem-specific knowledge and learning from experience

EDAs typically do not require any information about the problem being solved except for the
representation of candidate solutions and the fitness function. Nonetheless, if problem-specific
information is available, it may be possible to use this information to improve performance of
these algorithms significantly. There are two basic approaches to speed up EDAs by incorporating
problem-specific knowledge: (1) bias the procedure for generating the initial population (Schwarz &
Ocenasek, 2000; Sastry, 2001a; Pelikan & Goldberg, 2003) and (2) bias or restrict the model building
procedure (Schwarz & Ocenasek, 2000; Mühlenbein & Mahnig, 2002; Baluja, 2006). For both
these approaches, we may either (1) hard code the modifications based on prior problem-specific
knowledge (Hauschild, Pelikan, Sastry, & Goldberg, 2008; Baluja, 2006; Schwarz & Ocenasek, 2000)
or (2) develop automated procedures to improve EDA performance by learning from previous EDA
runs on problems of similar type (learning from experience) (Hauschild & Pelikan, 2009).

One technique used to bias the initial population towards good solutions (and, consequently, to
also improve model quality) is called seeding (Schwarz & Ocenasek, 2000; Pelikan & Goldberg, 2003;
Sastry, 2001a). Seeding works by inserting high-quality solutions into the initial population. These
high-quality solutions can be either obtained from previous runs on similar problems, provided by
a specialized heuristic (Schwarz & Ocenasek, 2000; Pelikan & Goldberg, 2003), or created in some
way from high-quality solutions of smaller instances of the same problem (Sastry, 2001a).

While seeding can work with many types of algorithms, EDAs offer us a wealth of new options
for using prior information in a principled way. One of the earliest attempts to bias model building
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in EDAs based on prior problem-specific knowledge was made by Schwarz and Ocenasek (2000),
who biased BOA model building in graph bipartitioning by giving those edges contained in the
underlying graph a higher priority than other edges. Mühlenbein and Mahnig (2002) also considered
graph bipartitioning but in this case only allowed edges in the underlying graph. Baluja (2006)
also only allowed edges in the underlying graph in his work on graph coloring.

To develop a method that was more broadly applicable, Hauschild, Pelikan, Sastry, and Gold-
berg (2008) proposed two different methods to restrict or penalize the allowable edges in hBOA
model building. The first method used a distance metric defined in such a way that the greater
the distance between two variables in the problem, the less expected interaction between these
variables. Using a parameter to specify the maximum allowable distance to still consider an edge,
this method was able to cut down on the number of edges considered during model building. The
second method was based on the percentage of runs in which an edge was encountered in hBOA
models. Using hBOA to solve a small number of sample problem instances, the resulting data were
then used to speed up hBOA model building in subsequent runs on newer problem instances. This
work was later extended (Hauschild & Pelikan, 2009) to bias the BD metric itself based on the
probability that an edge was used in the previous runs.

6 Summary and Conclusions

EDAs are among the most powerful evolutionary algorithms currently available, and there are nu-
merous applications where EDAs have been shown to solve problems unsolvable with other existing
techniques. Nonetheless, EDAs are capable of not only solving many difficult problems, but they
also provide practitioners with a great deal of information about how the problem was solved. The
ability to provide practitioners with useful information about the problem landscape is a feature
that is highly desirable yet not offered by virtually any other general optimization technique. In ad-
dition, most EDAs offer additional advantages over the more conventional evolutionary algorithms
and other metaheuristics, such as the ability to represent the population more efficiently using a
probabilistic model or include prior information of various forms in a rigorous manner.

EDAs use a large variety of probabilistic models, ranging from probability vectors to Bayesian
and Markov networks. This diversity allows practitoners to solve a great variety of problems, from
the simple to the complex, from the real-valued domain to the discrete one. Given almost any
problem, it should be possible for practitioners to select an EDA that can solve it. The key is to
ensure that the class of probabilistic models used allows EDAs to effectively capture features of
high quality solutions that make these solutions better.
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