

VARIATION IN SPECIES

Dilvan Moreira (based on Prof. André Carvalho presentation)

 Introduction to Computational Genomics: A Case Studies Approach
Chapter 5

- Introduction
- Origin of Human Being
- Variation in DNA sequences
- Mitochondrial DNA
- Variation among species
- Estimation of genetic distance
- Case Study: We descended from Neanderthals?

Neander Thal, Germany, 1856 Bear? Deficient?

Homo sapiens sapeins

André de Carvalho - ICMC/USP 16/09/2015

- Skeletons and tools were found
- Time estimated by radiocarbon technical

André de Carvalho - ICMC/USP 16/09/2015

Historical Evolution

- □ 5 MYA, chimpanzee and bonobo (monkeys), Africa
- □ 2 MYA, H. erectus and H. habilis, Africa
- □ 250 KYA , H. neanderthalensis, Europe and Western Asia
- 130 KYA, H. sapiens, África
 - 60 KYA , Asia and Australia
 - 40 KYA , Europe
 - 30 KYA , Americas
 - They were not the only inhabitants of our genre at that time:
 - Up to 27 KYA , H. erectus, Indonesia
 - Up to 28 KYA , H. neanderthalensis, Europe and western Asia

Historical Evolution

Padrões de Migração

Variação

- DNA can be used to explain Origin of Humans
 - Each individual has a different genome sequence
 - Different species and the same species
 - Including children of the same parents

Variação

Variation is due to:

- Mutations
 - Errors made by the cellular machinery that are incorporated into the genome

Recombination

- Exchange of genome segments of diploid organisms (two copies of each chromosome)
- Consequence of the process of reproduction

Mutations occur for several reasons

- Usually because of an error during genome replication
 - How many mistakes can be made during the process of reentering a text with 2500 letters?
 - Human cells do this several times to sequences of 3.5 billion letters
 - Our correction mechanism is very good
 - Estimate of the rate of human mutation: an error every 200M to 1B replicated bases

Mutation rates

They can be augmented by external factors

UV ray, viruses, drinks, cigarettes, drugs

They differ for different organisms and types of genome

- In animals, the mitochondria mutation rate for DNA is an order of magnitude greater than the nuclear
- In plants the opposite occurs

Some mutations are inherited

- It allows to study history of individuals and species
- Shared mutations may indicate shared ancestry
- □ Germline mutations
 - Ocorrem em células dos testículos / ovários
 - They occur in testicles/ovaries cells
 - They can be transmitted to future generations

- Every mutation occurs initially in a single individual
- Mutation can be:
 - Neutral: No effect
 - Harmful: makes a biological function worse than it was
 - Advantageous: improve some biological function
- □ If mutation is not passed to a child, it is lost

- Difference between individuals to a given position in the genome
 - Several possibilities for a nucleotide = allele
 - Polymorphism of a single nucleotide = punctual mutation

Single Nucleotide Polymorphism – SNP ("snip")
Ex.: AAATAAA
 AAACAAA

Humans: SNP = 1/1500 bases = 0.067%

□ SNP map

- List all positions where a polymorphism was documented with a certain frequency
- Different types of nucleotide polymorphism
 - Transitions
 - Transversions

								()													
G	Т	С	С	Т	Т	С	А	Т	А	А	Т	С	А	Т	С	А	С	G	G	G	
G	А	С	С	Τ	Т	С	А	Τ	А	Α	С	С	А	Τ	С	А	С	G	G	G	
Α	А	С	С	Τ	Τ	С	А	Τ	А	Α	С	С	А	Τ	С	Т	С	С	G	G	
Х	0	_		—	—	_	—	_	—	-	Х		—	_	-	0	—	0	_		

André de Carvalho - ICMC/USP 16/09/2015

Transition is more frequent

André de Carvalho - ICMC/USP 16/09/2015

Small repeated sequences

- Second main source of variation among human genomes
- STR = Short Tandem Repeats (microsatellites)
- Ex.: CACACACACACACACACA ...
- Mutation rate for STRs is much higher than for SNPs
 - What makes them very useful for identification

Matrizes de substituição

- Not all mutations of nucleotides occur at the same frequency
 - Because:
 - Chemical nature of the bases
 - Harmful consequences of change
 - The same applies to amino acids
 - Codons for two amino groups differ by more than one nucleotide
 - Some amino acids are easier to be exchanged than others
 - They share biochemical features

Matrizes de substituição

- Matrices may represent differences in substitutions
- Differences between nucleotide substitutions
 - Separate transitions from transversions
 - Default parameters of BLAST do not make that difference

Matrizes de substituição

Differences in amino acid substitutions

- Consider all the mutation probabilities
 - Amino acid substitution matrix
- Matrices families commonly used:
 - PAM (Percent or Point Accepted Mutation)
 - BLOSUM (BLOcks Substitution Matrix)

Ideal for studying human evolution

- Compact
 - Circular chromosome with 16,569 bases and 37 genes in humans
- It has high mutation rate
- Inherited by mother only
 - Each individual will have only one version
- Each cell contains multiple copies of mtDNA
 - Easier to isolate and sequence

H. sapiens sapiens Mitochondria

mitochondrial human DNA

- Control region or D-loop region
 - Single noncoding portion in the mitochondrial genome (does not contain genes)
 - contains:
 - Origin (beginning) of replication
 - Mitochondrial promoter
 - Two hyper variable regions
 - HVR-I
 - HVR-II

- Hyper variable regions
 - Most of the D-loop (400 to 500 bp each)
 - Situated at the ends of the replication start site
 - Sequences show high variability in humans
 - Ideal for studying the relationship among individuals

Can explain:

Relationship among different species

- Closest species have on average more similar DNA
- How did the evolution occurred in millions of years
 - Relationship between genetic variation and phylogenetic tree
- It is necessary to measure the distance between sequences
 - How many nucleotide substitutions separate any two DNA sequences
 - Replacement rate

Replacement rate

Mutations arise from a single individual

- They may be lost
 - If a mutation carrier individual have no children
- They can increase in frequency and become permanent or fixed in the species
 - Every individual of this specie will have this new allele at a specific position
- Rate at which species accumulate such fixed mutations

- Replacement rate
 - Based on homologous sequences from different species
 - allows estimate
 - When there was divergence between the two species
 - Biological function of genomic sequences
 - Relationships between species

Neutral mutations

- Do not affect reproductive capacity of the individual
- Lead to a relationship between mutation rate and substitution rate:
- The replacement rate (ρ) = the number of new mutations X probability that one of them is perpetuated

- The replacement rate (ρ) = the number of new mutations X probability that one of them is perpetuated
 - Prob. of new mutation perpetuate = 1 / (2N)
 - Number of new mutations = 2Nµ

$$\rho = 2N\mu^*1/(2N) = \mu$$

- ρ = K/(2T)
- μ mutation rate
- N number of diploid individuals
- T divergence time
- K number of substitutions (genetic distance)

André de Carvalho - ICMC/USP 16/09/2015

Replacement rate is independent of population size

Equal to neutral mutation rate

- Iarger populations
 - Have more mutations, but with small chance of becoming fixed
- smaller populations
 - They have fewer mutations, but most likely to become fixed
- When the changes are not neutral, rates can be quite different

- Genetic distance between two homologous sequences
 - Number of substitutions that have accumulated between them since they diverged from a common ancestor
 - Counting of different positions generates a pessimistic estimate when there are multiple substitutions

39

GACTGATCCACCTCTGATCCTTTGGAACTGATCGT TTCTGATCCACCTCTGATCCTTTGGAACTGATCGT TTCTGATCCACCTCTGATCCATCGGAACTGATCGT GTCTGATCCACCTCTGATCCATTGGGAACTGATCGT

Observed subistitutions: 2 (= d) Real subistitutions: 4 (= K)

André de Carvalho - ICMC/USP 16/09/2015

- Substitutions extreme: saturation
 - When there is on average one substitution for each position of the sequence
 - Limit of divergence between two homologous sequences
 - Only a quarter of their positions matches
 - Easy to get for two random sequences

Problem:

- Multiple (several) replacements and return mutations may hide real genetic distance
- □ Solution:
 - Estimate distance between two sequences using probabilistic model

- There are several models to estimate replacement rate (distance)
 - Simpler: each replacement has the same probability
 - Jukes-Cantor Model
 - Kimura Model
 - Evolution can be viewed as a Markov process
 - Sequence in time (generation) t depends on the sequence in time t-1

Jukes-Cantor Model

44

Probabilistic model based on Markov processes
It assumes that all replacements are equally likely

$$K = -\frac{3}{4}\ln(1 - \frac{4}{3}d)$$

d - number of observed differences

Kimura Model

- Probabilistic model based on Markov processes
 - Uses different probabilities for transitions and transversions

$$K = -\frac{1}{2}\ln(1 - 2P - Q) - \frac{1}{4}\ln(1 - 2Q)$$

P - Number of transitionsQ - Number of transversionsd = P + Q

Other Models

- □ There are more complex models
 - Distinguishing different types of transitions and transversions
 - With different parameters for each pairwise probability of substitution
 - Limitation of existing models:
 - They assume that the substitution probabilities are symmetric
 - But they are not

- 47
- Discovery of skeletons of Neanderthals
 - Generated several questions about our relationship with this species
 - Origin of human and primate
 - Many answers can be given by Mitochondrial DNA study
 - Using:
 - Complete mitochondrial genome or
 - Regiões hipervariáveis

- To answer the questions, they were analyzed:
 - 206 mtDNA of modern humans
 - Parts of 2 mtDNA of Neanderthals
 - Including unique individual found in German cave
 - All available in GenBank
 - Corresponding regions were used
 - FSet with 208 homologous with 800 bp each

- Genetic distances between pairs of sequences were calculated
 - For all the 208 sequences
 - Corrected by Jukes-Cantor formula
- Medium distances:
 - Between any 2 H. sapiens = 0.025 (25 of each 1000 bases are different)
 - Between Neanderthal and modern human = 0.140

- Multi -dimensional scaling (MDS)
- Translates distance table in an n-dimensional map

🗆 Yoruba

Inhabitants of West Africa (21% of Nigeria)

Berber

Northern population of Africa, west of the Nile River

Mainly Morocco and Egypt

Georgian

South Caucasian

Georgia, Iran, Russia, Turkey

Conclusion

- Origin of Human Being
- Variation in DNA sequences
- Mitochondrial DNA
- Variation Among specie
- Estimation of genetic distance
- Neanderthal is not ancestor of modern man

Questions?

Historical Evolution

ž Ş X Y

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chromosomes

- Human are diploid organisms
 - 23 pairs of chromosomes
- Diploid organisms have two types of cell:
 - somatic cells
 - Body cells
 - Germ cells (gametes)
 - Eggs and sperm

Mitosis

DNA replication followed by cell division (body cell)

- Generates two genetically identical cells
 - Each one receives a copy of each chromosome
- Mutations may occur during DNA replication

The reason of Mitosis

- Growth of multi-cellular organisms by increasing the number of cells
- Cells Replacement
 - Cells die and must be replaced by new cells
 - Blood cells live only 4 months
 - New cells must be exact copies of those replaced
- Regeneration of body parts
- Vegetative reproduction generating genetically similar offspring (clones)

Meiosis

- DNA replication followed by two rounds of cell division
- Generates four haploid cells
 - Gametes
 - Each half of the original cell DNA
 - Only one copy of each chromosome
 - Mutation and recombination may lead to new combinations DNA
 - None is identical to the original

Mitosis X Meiosis

63

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Mutações Geminativas

- Can cause disease or susceptibility to them
 - Albinism
 - Dwarfism
 - Huntington's Disease
 - Alzheimer