CHAPTER 17

- 17.2-1 input source: population having hair calling units: customers wanting haircuts queue: customers waiting for a barber Service discipline: usually first in, first out. service mechanism: barbers and equipment.
- 17.2-2
 - a) $L = 0\left(\frac{1}{16}\right) + 1\left(\frac{4}{16}\right) + 2\left(\frac{6}{16}\right) + 3\left(\frac{4}{16}\right) + 4\left(\frac{1}{16}\right) = 2$ which represents the average number of customers in the shop, including those getting their hair cut.

b)

n	# in queue	probability	product
0	0		
1	0		
2	0		
3	1	0.25	0.25
4	2	0.0625	0.125

Lq = 0.375 which represents the average number of customers in the shop waiting to get a haircut.

c)
$$E(\# \text{ customers being served}) = 1 \cdot P_1 + 2 (P_2 + P_3 + P_4) = \frac{4}{16} + 2 (\frac{6}{16} + \frac{4}{16} + \frac{1}{16}) = \frac{13}{8}$$

d)

$$W = \frac{L}{\lambda} = \frac{2}{4} = 0.5 = 30$$
 minutes
 $W_q = \frac{L_q}{\lambda} = \frac{0.375}{4} = 0.094 = 5.625$ minutes

These quantities mean that customers will be in the shop an average of half an hour, including the time to get a haircut, and will have to wait an average of 5.625 minutes before their haircut will begin.

W - Wq = 0.5 - 0.094 = 0.406 hours = 24.36 minutes

17.2-3

a) A parking lot is a queueing system for providing parking with cars as the customers, and parking spaces as the servers. The service time is the amount of time a car spends in a space. The queue capacity is 0.

$$L = 0(P_0) + 1(P_1) + 2(P_2) + 3(P_3) = 0(0.2) + 1(0.3) + 2(0.3) + 3(0.2) = 1.5 \text{ cars}$$
$$L_q = 0 \text{ cars}$$
$$W = \left(\frac{L}{\lambda}\right) = \left(\frac{1.5}{2}\right) = 0.75 \text{ hours}$$
$$W_q = \left(\frac{L_q}{\lambda}\right) = \left(\frac{0}{2}\right) = 0 \text{ hours}$$

c) A car spends an average of 45 minutes in a parking space.

- a) False. The queue is where customers wait before being served.
- b) False. Queueing models conventionally assume that the queue is an infinite queue.
- c) True. The most common is first come first served.

17.2-5

a) A bank is a queueing system with people as the customers, and tellers as the servers.

$$W_q = 1$$
 minute
 $W = W_q + \frac{1}{\mu} = 1 + 2 = 3$ minutes
 $L_q = \lambda W_q = \frac{40}{60}(1) = 0.667$ customers

$$L = \lambda W = \frac{40}{60}(3) = 2 \text{ customers}$$

17.2-6

The utilization factor ρ represents the fraction of time that the server is busy. The server is busy except when there are zero people in the system. P₀ is the probability of having 0 customers in the system. Hence, $\rho = 1 - P_0$.

17.2-7
$$\lambda_2 = 2\lambda_1, \quad \mu_2 = 2\mu_1, \quad L_3 = 2L_1$$
$$\frac{\omega_2}{\omega_1} = \frac{L_2/\lambda_2}{L_1/\lambda_1} = 1$$

17.2-8
(a)
$$L = \sum_{k=1}^{n} L_{q}$$
 when no one is in the system
 $(L_{q+1} \text{ otherwise})$
So $L = P_{0}L_{q} + (1-P_{0})(L_{q+1}) = L_{q} + (1-P_{0})$
(b) $L = A W = A(W_{q} + 1/\mu) = A W_{q} + A/\mu = L_{q} + \beta$
(c) $L = L_{q} + \beta = L_{q} + (1-P_{0}) \text{ from (a) and (b). So } \beta = 1-P_{0}.$
17.2-9
 $L = \sum_{n=0}^{\infty} n P_{n} = \sum_{n=0}^{s-1} n P_{n} + \sum_{n=s}^{\infty} n P_{n} = \sum_{n=0}^{s-1} n P_{n} + \sum_{n=s}^{s-1} n P_{n} + \sum_{n=s}^{s-1} n P_{n} = \sum_{n=s}^{s-1} n P_{n} + \sum_{n=s}^{s-1} n P_{n} = \sum_{n=s}^{s-1} n P_{n} + L_{q} + s \sum_{n=s}^{\infty} P_{n} = \sum_{n=s}^{s-1} n P_{n} + L_{q} + s (1 - \sum_{n=s}^{s-1} P_{n})$

17.3-1

Part	customers	Servers
(0)	customers waiting checkout	checkers
(b)	fires	fire fighting units
(c)	cars	toll collectors
(d)	broken bicycles	bicycle repairpersons
(e)	ships to be loaded or unloaded	Longshoremen + equipment
(+)	machines needing operator	operator
(9)	materials to be handled	handling equipment
(h)	calls for plumbers	plumbers
(i)	custom orders	customized process
(j)	typing requests	typists

17.4-1

$$\lambda_n = \frac{1}{2}$$
 for $n > 0$ and $\mu_n = \begin{cases} \frac{1}{2} & \text{for } n = 1\\ 1 & \text{for } n \geq 2 \end{cases}$

- (a) P{next arrival before 1:00} = $1 e^{-1/2} = .393$ P{next arrival between 1:00 and 2:00} = $(1 - e^{-1/2}) - (1 - e^{-1/2}) = .239$ P{next arrival after 2:00} = $e^{-2\cdot 1/2} = .368$
- (b) P{next arrival between no arrivals between } = 1 e = .393 1:00 and 2:00 12:00 and 1:00 } = 1 - e = .393
- (c) $P\{no \text{ arrivals between 1:00 und 2:00}\} = \frac{(\lambda t)^{0} e^{-\lambda t}}{0!} = e^{-\frac{1}{2}} = .607$ $P\{one \text{ arrival between 1:00 and 2:00}\} = \frac{(\lambda t)^{1} e^{-\lambda t}}{1!} = \frac{1}{2} \cdot e^{-\frac{1}{2}} = .303$ $P\{two \text{ or more arrivals between 1:00 and 2:00}\} = 1 - e^{-\frac{1}{2}} - \frac{1}{2} e^{-\frac{1}{2}}$

17.4-1 (d) P{none served by 2:00} = e" = .368 P{none served by 1:10} = e^{-1(1/6)} = .846 P{none served by 1:013 = e-1(160) = . 983 17.4-2 $\lambda_n = 2$ for $n \ge 0 \Rightarrow P\{n \text{ arrivals in an hour}\} = \frac{2^n e^{-2}}{n!}$ (a) $P\{0 \text{ arrivals in an hour}\} = e^{-2} = .135$ b) $P\{2 \text{ arrivals in an hour}\} = \frac{2e^{-2}}{2!} = 2e^{-2} = .270$ c) Pf5or more arrivals in an hour}= 1-5 Pfn arrivals in an hour} $= 1 - e^{-2} - 2e^{-2} - 2e^{-2} - (4/3) \cdot e^{-2} - (2/3) e^{-2}$ = 1 - 7e = .0527 17.4-3 Pay=100.pfT<2f+80.pfT>2f=100-20.pfT>2f $P_{1}^{*} = e^{-\frac{1}{4} \cdot 2} = e^{-\frac{1}{4} \cdot 2} = e^{-\frac{1}{4} \cdot 2} = 0.607$ $P \in T_{spacial} > 2 = e^{-\frac{1}{2} \cdot 2} = e^{-1}$ Increase = Payspeial - Payold = 20 (P{ Told > 2} - P { Tepercial > 2}) $= 20(e^{-\frac{1}{2}}-e^{-1})$ 17.4-4 Given the memoryless property, the systems turns into a two-server queue after first completion occurs. T = amount of time after 1 and before next service completion $P \leq T < t = p \leq \min(T_2, T_3) < t \}$ So, T satisfies exponential distribution with mean 0.5/2 = 0.25 (property 3) 17.4-5 By momoryless property, U = min(T1, T3, T3) Ti~exp(1/20), T2~exp(1/15), T3~exp(1/10) $V \operatorname{vexp}(\frac{1}{20} + \frac{1}{15} + \frac{1}{10}) = \exp(-\frac{13}{60})$ So, expected waiting time = $\frac{60}{13} = 4\frac{8}{13}$ minutes 17.4-6 a) From aggregation property of poisson process, the arrival process is still poisson with mean rate 10 per hour. So, distribution of time between consecutive arrivals is exponential with mean of 6 minutes.

17.4-6

$$\begin{array}{rcl} 17.4-8 & \text{(a)} \quad \text{False} \quad \text{(b)} \quad \text{False} \quad \text{(c)} \quad \text{False} \quad \text{(f)} \quad \text{(a)} \quad \text{(f)} \quad \text{(f)}$$

$$\begin{array}{ccc} 17. \ 5-2 & a \\ b \\ \end{array} & \left(\begin{array}{c} 1 \\ p_{2} \end{array} \right) & \left(\begin{array}{c} 1 \\ p_{2} \end{array} \right) \\ \left(\begin{array}{c} 2p_{1} = p_{0} \\ p_{1} = 2p_{2} \end{array} \right) \\ \left(\begin{array}{c} 2p_{1} = p_{0} \\ p_{1} = 2p_{2} \end{array} \right) \\ \left(\begin{array}{c} p_{1} = 2p_{2} \\ p_{1} = p_{2} \end{array} \right) \\ \left(\begin{array}{c} p_{0} = \frac{4}{7} \\ p_{1} = \frac{2}{7} \end{array} \right) \\ \left(\begin{array}{c} p_{1} = \frac{2}{7} \\ p_{2} = \frac{1}{7} \end{array} \right) \\ \left(\begin{array}{c} p_{0} = \frac{4}{7} \\ p_{1} = \frac{2}{7} \end{array} \right) \\ \left(\begin{array}{c} p_{1} = \frac{2}{7} \\ p_{2} = \frac{1}{7} \end{array} \right) \\ \left(\begin{array}{c} p_{1} = \frac{2}{7} \\ p_{2} = \frac{1}{7} \end{array} \right) \\ \left(\begin{array}{c} p_{1} = \frac{2}{7} \\ p_{2} = \frac{1}{7} \end{array} \right) \\ \left(\begin{array}{c} p_{1} = \frac{2}{7} \\ p_{2} = \frac{1}{7} \end{array} \right) \\ \left(\begin{array}{c} p_{1} = \frac{2}{7} \\ p_{2} = \frac{1}{7} \end{array} \right) \\ \left(\begin{array}{c} p_{1} = \frac{2}{7} \\ p_{2} = \frac{1}{7} \end{array} \right) \\ \left(\begin{array}{c} p_{2} = \frac{1}{7} \\ p_{3} = \frac{1}{7} \end{array} \right) \\ \left(\begin{array}{c} p_{1} = \frac{1}{7} \\ p_{2} = \frac{1}{7} \end{array} \right) \\ \left(\begin{array}{c} p_{2} = \frac{1}{7} \\ p_{3} = \frac{1}{7} \end{array} \right) \\ \left(\begin{array}{c} p_{2} = \frac{1}{7} \\ p_{3} = \frac{1}{7} \end{array} \right) \\ \left(\begin{array}{c} p_{2} = \frac{1}{7} \\ p_{3} = \frac{1}{7} \end{array} \right) \\ \left(\begin{array}{c} p_{1} = \frac{1}{7} \\ p_{2} = \frac{1}{7} \end{array} \right) \\ \left(\begin{array}{c} p_{2} = \frac{1}{7} \\ p_{3} = \frac{1}{7} \end{array} \right) \\ \left(\begin{array}{c} p_{1} = \frac{1}{7} \\ p_{2} = \frac{1}{7} \end{array} \right) \\ \left(\begin{array}{c} p_{2} = \frac{1}{7} \\ p_{3} = \frac{1}{7} \end{array} \right) \\ \left(\begin{array}{c} p_{2} = \frac{1}{7} \\ p_{3} = \frac{1}{7} \end{array} \right) \\ \left(\begin{array}{c} p_{2} = \frac{1}{7} \\ p_{3} = \frac{1}{7} \end{array} \right) \\ \left(\begin{array}{c} p_{2} = \frac{1}{7} \\ p_{3} = \frac{1}{7} \end{array} \right) \\ \left(\begin{array}{c} p_{3} = \frac{1}{7} \\ p_{3} = \frac{1}{7} \end{array} \right) \\ \left(\begin{array}{c} p_{3} = \frac{1}{7} \\ p_{3} = \frac{1}{7} \end{array} \right) \\ \left(\begin{array}{c} p_{3} = \frac{1}{7} \\ p_{3} = \frac{1}{7} \end{array} \right) \\ \left(\begin{array}{c} p_{3} = \frac{1}{7} \\ p_{3} = \frac{1}{7} \end{array} \right) \\ \left(\begin{array}{c} p_{3} = \frac{1}{7} \\ p_{3} = \frac{1}{7} \end{array} \right) \\ \left(\begin{array}{c} p_{3} = \frac{1}{7$$

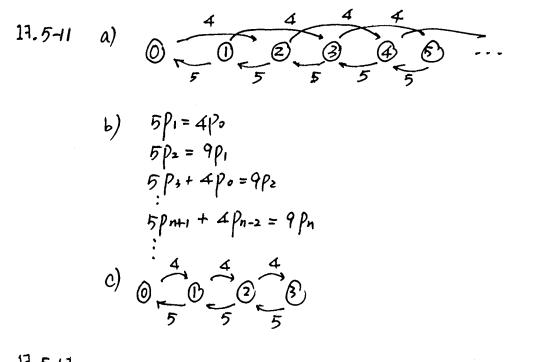
11.5.3 (CONTED)

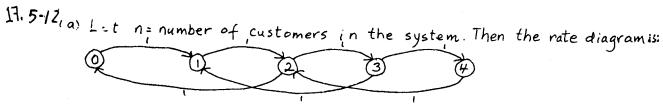
$$\int_{a} = p_{1} + 2p_{3} + 3p_{3} = \frac{2}{(1)}$$

$$\int_{a} = p_{2} + 2p_{3} = \frac{1^{2}}{(1)}$$

$$\overline{\lambda} = \lambda_{0}p_{0} + \lambda_{1}p_{1} + \lambda_{2}p_{2} + \lambda_{3}p_{3} = \frac{18}{(1)}$$

$$W = \frac{1}{\sqrt{\lambda}} = \frac{10}{q}$$


$$\int_{a} \frac{2}{\sqrt{2}} (1 - \frac{2}{\sqrt{2}})^{\frac{2}{\sqrt{2}}} (3 - \cdots - \frac{2}{\sqrt{q}})^{\frac{2}{\sqrt{q}}} (3 - \cdots$$


11.5-5
d)
$$L = P_1 + 2P_{24} + 3P_3 = \frac{27}{26} = 1.04, \quad \bar{\lambda} = \lambda \circ P_{1} + \lambda_1 P_1 + \lambda_2 P_2 = \frac{255}{26}$$

 $W = \frac{1}{\sqrt{\lambda}} = \frac{9}{85} (hour) = 0.106$
11.5-6
a) $O = \frac{1}{\sqrt{\lambda}} = O = \frac{1}{10}$
 $Sht_2 = \# of machines in breakdown states.$
b) $P_1 = \frac{8}{5}P_0$, $P_2 = \frac{8}{5} \cdot \frac{3}{10}P_0 = \frac{32}{25}P_0$,
 $P_0 + P_1 + P_2 = 1 \implies P_0 = \frac{25}{47}$, $P_1 = \frac{45}{77}$, $P_2 = \frac{32}{97}$
c) $\bar{\lambda} = P_0 \cdot \lambda_0 + P_1 \lambda_1 = \frac{1}{5} \cdot \frac{5}{47} + \frac{1}{10} \cdot \frac{40}{77} = \frac{9}{77} = 0.093$
 $L = P_1 + 2P_2 = \frac{104}{97} = 1.072$, $L_2 = \frac{9}{77} = 0.330$
 $W = \frac{1}{\sqrt{\lambda}} = \frac{104}{77} = 0.742$
e) $P_0 + \frac{1}{2}P_1 = \frac{45}{77} = 0.742$
e) $P_0 + \frac{1}{2}P_1 = \frac{45}{77} = 0.464$
11.5-7(a) λ
 $\mu = \frac{1}{4+0}P_2 = (\mu+\lambda)P_1$
(b) $\mu P_1 = \lambda P_0$
 $\lambda P_0 + (\mu+n0)P_{n+1} = (\lambda+\mu+(n-1)) \circ P_n$

Let pi = pş in steady-state i documents have been received but notyet completed f

$$1705-9 \quad (\omega \cup \tau \cdot D)$$
Then $p_0' = p_0 + p_1 = \frac{7}{10}$
 $p_n' = p_{n+1} = \frac{3}{10} \cdot (\frac{1}{2})^n$, $n \ge 1$

c) $L = \sum_{n=1}^{\infty} n p_n = \frac{3}{10} (1 + 2 \cdot \frac{1}{2} + 3 \cdot \frac{1}{2^2} + \cdots)$
 $= \frac{3}{10} \cdot 4 \cdot (\frac{1}{2^2} + \frac{2}{2^3} + \frac{3}{2^4} + \cdots)$
 $= -\frac{6}{5} \frac{d}{dp} (\frac{1}{p-1}) |_{p=2} = \frac{6}{5}$
 $W = \frac{L}{\lambda} = \frac{2}{3}$
 $L_q = \sum_{n=1}^{\infty} (n-1) p_n = L - (1 - p_0) = \frac{3}{5}$
 $W_q = \frac{L_q}{\lambda} = \frac{1}{5}$

17.5-10

17.5-12 (CONT'D) The balance equations are: $P_{0} = P_{2} + P_{3}$ $P_{1} = P_{0} + P_{4}$ $P_{1} = P_{2}$ $P_4 = P_3$ (b) The state space has to be more complex in this case because you need to Know how many customers are being worked on by the server. Let the state be (s,g) where s = number of customers being served g= number of customers in the queue Then the rate diagram is 0 50 1,2 ŧ (2,0 2,1 The balance equations are: $P_{10} = P_{10} + P_{10}$ $2P_{10} = P_{00} + P_{11} + P_{21}$ $2P_{11} = P_{10}$ ÷ $\begin{array}{c}
 P_{11} = t_{10} \\
 P_{12} = P_{11} \\
 P_{20} = P_{12} + P_{12} \\
 R_{21} = P_{20} \\
 P_{21} = P_{20} \\
 P_{21} = P_{20} \\
 P_{22} = P_{21}
\end{array}$ 17.5-13 (a) Let the state be (n., n2) where n. = number of type 1 customers in the system n2 number of type 2 customers in the system Then the rate diagram is: 12 (0,)(0,0)1,0 5 (b) The balance equations are: (c) $12P_{01} = 5P_{00}^{0}$ $15P_{00} = 12(P_{01} + P_{10})$ 22 Pio = 10 Poo + 24 P20 $24 P_{20} = 10 P_{10}$ $(P_{00} + P_{10} + P_{01} + P_{20} = 1)$ $\Rightarrow P_{00} = \frac{72}{187}, P_{10} = \frac{60}{187}, P_{01} = \frac{30}{187}, P_{20} = \frac{25}{187}$ (d) Type I customers are blocked when the system is in state (2,0) or (0,1) which means that the fraction unable to enter the system is Bo+B, = 55/187

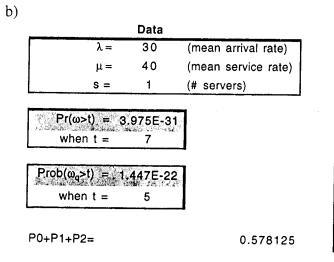
Type 2 customers are blocked when the system is in state 120+161 = 33/184. Means that the fraction unable to enter the system is Po+Pio+Pi1 = 115/187.

14	$P_0 =$	0.5
17.6-1 0)) P ₁ =	0.25
$[7.6-1 a)_{A=2}, \mu=4, s=1, \rho=\frac{1}{2}$	P ₂ =	0.125
For $M/M/1$ queue, $P_0 = 1 - A/\mu = 1/2$ and $P_m = (1-p)p^2 = (1/2)^{1/4}$	P ₃ =	0.0625
desired proportion of time = $\sum_{i=0}^{4} P_i = \frac{31}{32}$	P ₄ =	0.03125
	Total=	970/0

17.62
$$\lambda = 10$$
, $\mu = 15$, $Po = (1 - \frac{\lambda}{\mu}) = \frac{1}{3} = \text{propotion of time no one is waiting}$
17.6-3 (a) $\mathcal{M} \sim exp(\mu - \lambda)$, $\mathcal{W} = \frac{1}{\mu - \lambda}$
 $PS\mathcal{W} = \mathcal{W} = (\mu - \lambda)e^{-(\mu - \lambda)}\frac{1}{\mu - \lambda} = (\mu - \lambda)/e$
(b) $\mathcal{W}_{g} = \frac{\lambda}{\mu(\mu - \lambda)}$, $\mathcal{W}_{g}(t) = \sum_{l=1}^{l-p} t = 0$
 $\int_{l-p}^{t-p} e^{-\mu(l-p)t} t = 0$

$$\begin{array}{rcl} 17.6-4 & P_{0}=1-\rho &, & W_{g}=\frac{\lambda}{\mu(\mu-\lambda)} \\ \hline \frac{(1-P_{0})^{2}}{W_{g}}=\frac{\rho^{2}}{\frac{\lambda}{\mu(\mu-\lambda)}\cdot(1-\frac{\lambda}{\mu})}=\frac{\lambda^{2}}{\lambda/\mu^{2}}=\lambda \\ \hline \frac{1-P_{0}}{W_{g}}=\frac{\rho}{\frac{\lambda}{\mu(\mu-\lambda)}\cdot\frac{\mu-\lambda}{\mu}}=\frac{\lambda/\mu}{\lambda/\mu^{2}}=\mu \end{array}$$

17.6-5


A=3, M=4, 5=1, P=3/4

The system without the storage restriction is a M/M/1 queue. If n square feet of floor space were available for waiting, the proportion of time this would be sufficient is $\sum_{i=0}^{n+1} P_i$. Thus we want to find n_e such that $\sum_{i=0}^{n+1} P_i \ge q_e$ for l = 1, 2, 3, where $q_1 = .5, q_2 = .9, q_3 = .99$. Now $\sum_{i=0}^{n+1} P_i \ge q_e \iff \sum_{i=0}^{n+1} (1-p)p^i \ge q_e \iff (1-p) \frac{(1-p^{n+2})}{(1-p)} \ge q_e \iff$ $\iff 1 - p^{n_e+2} \ge q_e \iff p^{n_e+2} \le 1 - q_e \iff (n_e+2) \ln p \le \ln(1-q_e)$. $\iff (n_e+2) \ge \frac{\ln(1-q_e)}{\ln p} \iff n_e \ge \frac{\ln(1-q_e)}{\ln p} = 2$ [part $q_e = \frac{\ln(1-q_e)}{2} = 2$ floor space required]

part	40	$ln(1-q_e) = 2$	floor space required
(a)	.50	.409	1
(6)	.90	6.004	7
(c)	.99	14.008	15

(1.6-6. a) True
b) False.
$$L = \lambda W = \frac{\rho}{1-\rho}$$

c) False. $L = \rho \sigma \rho$, $L = \rho uhen \rho = 0.9$, but $L = 99$ when $\rho = 0.99$
17.6-7 a) False
b) True. $When \rho = 1$, $L \to \infty$
c) True.
11.6-8 a) True
b) False
c) True.
11.6-9 a)
 $L = \frac{\lambda}{\mu - \lambda} = \frac{30}{40 - 30} = 3 \text{ customers}$
 $W = \frac{1}{\mu - \lambda} = \frac{1}{40 - 30} = 0.1 \text{ hours}$
 $W_{q} = \frac{\lambda}{\mu(\mu - \lambda)} = \frac{30}{40(40 - 30)} = 0.075 \text{ hours}$
 $L_{q} = \lambda W_{q} = 30(0.075) = 2.25 \text{ customers}$
 $P_{0} = 1 - \rho = 1 - 0.75 = 0.25$
 $P_{1} = (1 - \rho)\rho^{2} = (1 - 0.75)0.75 = 0.141$

There is a 42% chance of having more than 2 customers at the checkout stand.

17-15

17.6-9

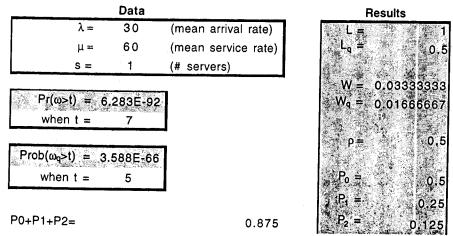
c)

$$L = \frac{\lambda}{\mu - \lambda} = \frac{30}{60 - 30} = 1 \text{ customer}$$

$$W = \frac{1}{\mu - \lambda} = \frac{1}{60 - 30} = 0.033 \text{ hours}$$

$$W_q = \frac{\lambda}{\mu(\mu - \lambda)} = \frac{30}{60(60 - 30)} = 0.017 \text{ hours}$$

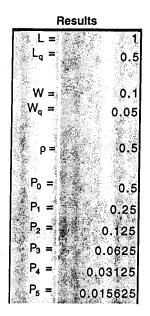
$$L_q = \lambda W_q = 30(0.075) = 0.5 \text{ customer}$$


$$P_0 = 1 - \rho = 1 - 0.5 = 0.5$$

$$P_1 = (1 - \rho)\rho = (1 - 0.5)0.5 = 0.25$$

$$P_2 = (1 - \rho)\rho^2 = (1 - 0.5)0.5^2 = 0.125$$

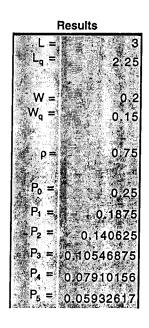
There is a 12.5% chance of having more than 2 customers at the checkout stand.

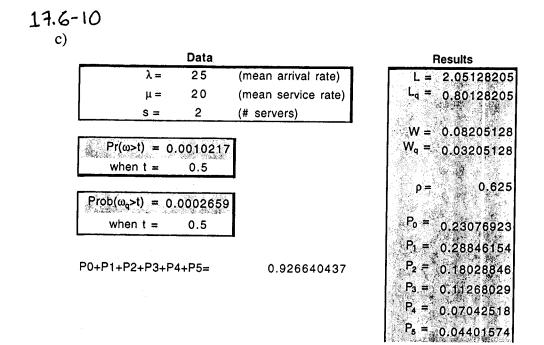


e) The manager should adopt the new approach of adding another person to bag the groceries.

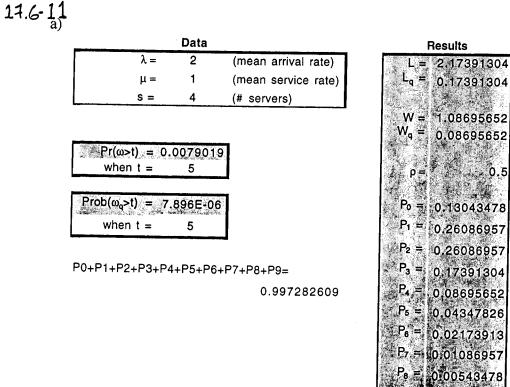
17.6-10

a)


		Data	
	λ=	10	(mean arrival rate)
	μ=	20	(mean service rate)
	s =	1	(# servers)
when	t =	0.0067379]
when	99649-092-092-094 	0.003369 0.5	
P0+P1+P2+	•P3+F	94+P5=	0.984375


All the criteria are currently being satisfied.

b)


	-	Data	· · · · · · · · · · · · · · · · · · ·
	λ=	15	(mean arrival rate)
	μ=	20	(mean service rate)
	s =	1	(# servers)
who Prob(w	en t =	0.08208: 0.5 061563 0.5	
P0+P1+F	°2+P3+P	4+P5=	0.822021484

None of the criteria are now satisfied.

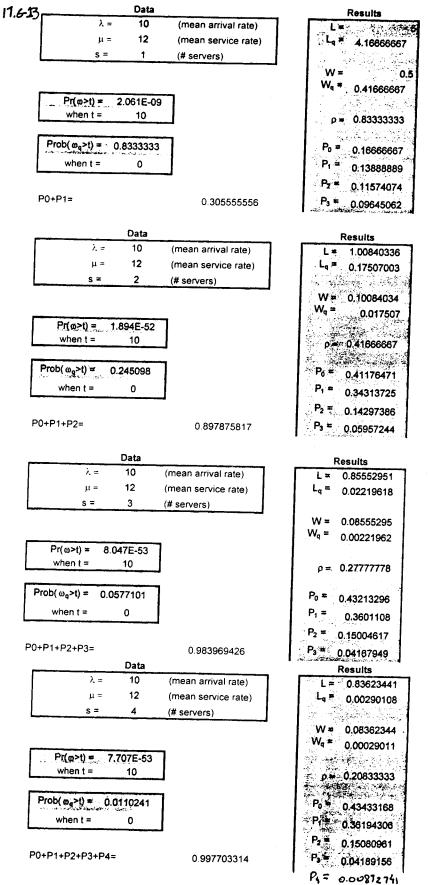
In this case, the first and third criteria are satisfied but the second is not.

All the guidelines are currently being met.

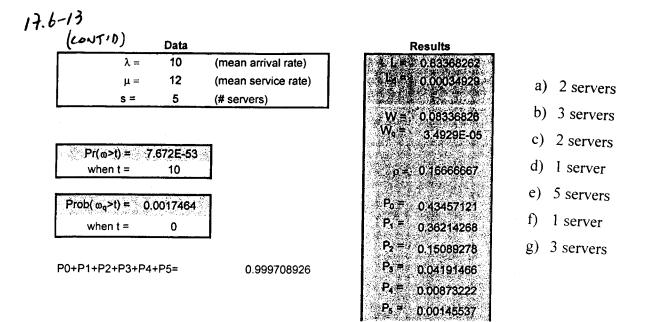
17-18

P. = 0:00271739

_		Data		Results
	λ =	3	(mean arrival rate)	L = 4.52830189
	μ =	1	(mean service rate)	La≓r 1.52830189
	s =	4	(# servers)	
				₩ = 1.50943396
فلي وي الم الم الم الم الم الم الم الم				W ₉ ₹ 0.50943396
·····································		023900 5	6	ρ≓ 0.75
Prob(ω _q >	t) = 0,	003432	5	Pot≓ 0.03773585
when) t =	5	1	Pu≓ * 0.11320755
				P≥ = 0.16981132
P0+P1+P2	+P3+P4	4+P5+P6	6+P7+P8+P9=	- ^P 3 [™] =, 0.16981132
			0.9093317	Pa= 0.12735849
				P5 = 0.09551887
				Pe ₹ 0.07163915
				P7 = ₹ 0.05372936
				- ₽ = 0.04029702


The first two guidelines will not be satisfied in one year but the third will be.

0.03022277


c) Five tellers will be needed in a year,

a)	λ	Ľ	La	W	W4	PIW > 5
	.5	- 1	.50	2	1	. 082
1	. 1	9	8.40	40	9	. 607
i	.99	99	98.01	100	99	. 451

	1/M	P	P.	L	La	W	We	PS-W>5
.5		.5	.3333 .0526 .0050	1.353	.333	2.667	.662	150
.9	1.9	.9	05.26	9.424	2.674	10 5 24	9671	114

(contis)

Differentiating both sides we have:

$$P(t) = \sum_{n=0}^{\infty} (1-p) p^{n} \left[\frac{m^{n+1}t^{n}e^{-mt}}{n!} \right] = (1-p) m e^{-mt} \sum_{n=0}^{\infty} \frac{(\lambda t)^{n}}{n!}$$

$$= (1-p) m e^{-mt} e^{\lambda t} = m(1-p)e^{-m(1-p)t}$$
Hence, by integration, $P(W > t) = (-\int_{0}^{t} p(x)dx = e^{-m(1-p)t}$

17.617 (a) Let
$$P\{M_{q} \le t\} = G(t)$$
 and let $\frac{dG(t)}{dt} = g(t)$
Then $P\{M_{q} > t\} = 1-G(t)$
So $[1-G(t)]_{n} \sum_{n=1}^{\infty} P_{n} P\{S_{n} > t\} = \sum_{n=1}^{\infty} (1-p) \rho[1-\int_{0}^{t} \frac{dn}{(n-1)!} \frac{x^{n} t^{-\mu} dn}{(n-1)!} \frac{dn}{dt} x]$
Differentiating both sides $g(ves)$
 $g(t) = \sum_{n=1}^{\infty} (1-p) \rho^{n} \left[\frac{dn^{n}}{m+1} \frac{t^{-\mu} t^{-\mu} dt}{(n-1)!}\right]$
 $= (1-p) A e^{-\mu t} e^{at}$
 $= (\frac{A}{\mu}) (\mu-a) e^{-(\mu-a)t}$
Then $W_{q} = (\frac{A}{\mu}) \int_{0}^{\infty} t(\mu-a)e^{-(\mu-a)t} dt = \frac{A}{\mu(\mu-A)}$
(b) Let $P\{M_{q} < t\} = G(t)$ and let $\frac{dG(t)}{dt} = g(t)$
Then $P\{M_{q} > t\} = (1-G(t))$
So $[1-G(t)] = \sum_{n=1}^{\infty} P_{n} P\{S_{n-s+1} > t\}$
 $= \sum_{n=1}^{\infty} P_{n} \left[1 - \int_{0}^{t} (\frac{(s\mu)^{n+s+1}}{(n-s)!} \frac{x^{n-1} e^{-(s\mu)n}}{(n-s)!} dx\right]$
Now $P_{n} = (\frac{(2/\mu)^{n}}{s!} \frac{p}{s} + f + f + f + f + \frac{s}{s} - \frac{(s\mu)^{n}}{(n-s)!} dx$
 $g(t) = \sum_{n=1}^{\infty} \left[\frac{(s\mu)^{(n+s)}}{(n-s)!} e^{-s\mu t} e^{at} = \frac{a}{n+s} \left[\frac{(s\mu)^{(n+s)}}{(n-s)!} dt\right]$
 $= \frac{P_{n}(s\mu)(A/\mu)^{s}}{s!} e^{-s\mu t} e^{at}$
 $= \frac{P_{n}(s\mu)(A/\mu)^{s}}{s!} e^{-(s\mu)(1-\rho)t} dt$
 $= \frac{P_{n}(A/\mu)^{s}}{s!} \int_{0}^{\infty} t(s\mu)(-\rho) e^{-(s\mu)(1-\rho)t} dt$
 $= \frac{P_{n}(A/\mu)^{s}}{s!(1-\rho)^{2}} \int_{0}^{\infty} t(s\mu)(1-\rho) e^{-(s\mu)(1-\rho)t} dt$
 $= \frac{P_{n}(A/\mu)^{s}}{s!(1-\rho)^{2}} A$
 $= L_{q}/A$

17.6-18

$$\lambda = 4 \quad \mathcal{M} = 3 \quad 5 = 2$$
we have: $P_0 = 0.2$; $P_1 = 0.267$; $P_2 = 0.178$
the mean rate is:
$$\frac{\mathcal{M}_0 \mathcal{R}^{+\mu_1} \mathcal{R}_1 + \mathcal{M}_2 \mathcal{R}_2}{\mathcal{R}_0 + \mathcal{R}_1 + \mathcal{R}_2} = \frac{0.\mathcal{R}_0 + 3\mathcal{R}_1 + 6\mathcal{R}_2}{\mathcal{R}_0 + \mathcal{R}_1 + \mathcal{R}_2} = 2.90$$

17.6-ZZ

(c) Truncate (cut off) the balance equations at a very large n and then Solve the resulting <u>finite</u> system of equations numerically. The resulting approximation of the stationary distribution should be essentially exact if the probability of exceeding the truncating value of n (in the exact model) is negligible.

(d)
$$L = \sum_{n=1}^{\infty} n(P_{n,1} + P_{n,2}), \quad W = \frac{L}{\lambda}$$

 $L_g = \sum_{n=1}^{\infty} (n-1)(P_{n,1} + P_{n,2}), \quad W_g = \frac{L_g}{\lambda}$

(e) Because the input is Poisson, the distribution of the state of the system is
the same just before an arrival and at on arbitrary point in time
$$P\{W \le t\} = P\{W \le t \mid arrival finds state o 3 P_0$$

 $+ \sum_{n=1}^{\infty} P\{W \le t \mid arrival finds state (n, 1) \} P_{n, 1}$
 $+ \sum_{n=1}^{\infty} P\{W \le t \mid arrival finds state (n, 2) \} P_{n, 2}$

These 3 conditional distributions of W are, respectively (1) exp(μ_1) (2) a convolution of exp(μ_1) and $\operatorname{Erlang}(n/\mu_2, n)$ and (3) $\operatorname{Erlang}((n+1)\mu_2, n+1)$ Then, $P_i W \leq t = (1 - e^{-\mu_1 t}) P_0 + \sum_{n=1}^{\infty} \left[\int_{0}^{t} \left[1 - e^{-\mu_1(t-t_1)} \right] \cdot \frac{\mu_n^n t_1^{n-1} - \mu_n^{n+1}}{(n-1)!} dt_i \left[P_{n,1} + \sum_{n=1}^{\infty} \left[\int_{0}^{t} \frac{\mu_n^{n+1} x^n e^{-\mu_n x}}{n!} dx \right] P_{n,2}$

17.6-23
(a)
$$\lambda P_0 = \mu P_1$$

 $\lambda P_0 + \mu P_2 = (\lambda + \mu) P_n \dots$ (b)
 $\lambda P_{n-1} + \mu P_{n+1} = (\lambda + \mu) P_n \dots$ (n)
The solution given in Sec. 16.6 is:
 $P_n = (1 - \rho) \rho^n$ for $n = o_{1,2} \dots$
Verifying that the above satisfy the balance equations:
equation (o): $\lambda \cdot (1 - \rho) = \mu (1 - \rho) \cdot \rho \Leftrightarrow \lambda = \mu \cdot \rho = \mu \frac{\lambda}{4} \quad o_K$
equation (n): $\lambda (1 - \rho) p^{n-1} + \mu (1 - \rho) \rho^{n+1} = (\lambda + \mu) (1 - \rho) \rho^{n}$
 $\Leftrightarrow \lambda + \mu \rho^2 = (\lambda + \mu) \cdot \rho$
 $\lambda + \frac{\lambda^2}{\mu} = \frac{\lambda^2}{\mu} + \lambda \quad O_K$

$$\begin{aligned} \frac{14.6-23}{h} \begin{pmatrix} k \\ h \end{pmatrix} \stackrel{P}{\rightarrow} P \stackrel{P}{\rightarrow} \frac{1}{2} = (\lambda + \mu)P_{1} \\ \lambda P_{1} \stackrel{P}{\rightarrow} P_{2} \\ The solution given in Sec. 16.6 is: \\ P_{n} \in \left(\frac{1-\rho}{1-\rho}\right)P^{n} \text{ for } n = o_{1}I_{2} \\ \text{Verifying:} \\ & \lambda \cdot \frac{1-\rho}{1-\rho} = \mu \cdot \frac{1-\rho}{1-\rho} \cdot \rho \Leftrightarrow \lambda = \mu \cdot \rho = \mu \cdot \frac{1-\rho}{\mu} \cdot \rho \Leftrightarrow \lambda + \mu \cdot \rho = \mu \cdot \frac{1-\rho}{\mu} \cdot \rho \Leftrightarrow \lambda + \mu \cdot \rho = \mu \cdot \rho \Leftrightarrow \lambda + \mu \cdot \rho \Rightarrow \lambda + \mu \Rightarrow \lambda \Rightarrow \lambda \cdot \frac{1-\rho}{1-\rho} \cdot \rho \Rightarrow \mu \wedge \rho \Rightarrow \lambda + \mu \wedge \rho \Rightarrow \lambda + \mu \Rightarrow \lambda \Rightarrow \lambda \cdot \frac{1-\rho}{1-\rho} \cdot \rho \Rightarrow \mu \wedge \rho \Rightarrow \lambda + \mu \wedge \rho \Rightarrow \lambda \Rightarrow \lambda \Rightarrow \mu \wedge \rho \Rightarrow \lambda \Rightarrow \lambda \Rightarrow \mu \wedge \rho \Rightarrow \lambda \Rightarrow \mu \wedge \mu \wedge \lambda \Rightarrow \lambda \Rightarrow \mu \wedge \rho \Rightarrow \lambda \Rightarrow \mu \wedge \mu \wedge \lambda \Rightarrow \lambda \Rightarrow \mu \wedge \rho \Rightarrow \lambda \Rightarrow \mu \wedge$$

λ = 6	$P_0 = 0.21053$
	$P_1 = 0.31579$
$\mu = 4$	$P_2 = 0.23684$
	$P_3 = 0.11842$
s = 3	$P_4 = 0.05921$
	$P_5 = 0.02961$
	$P_6 = 0.0148$
	$P_7 = 0.0074$
	$P_8 = 0.0037$
	$P_9 = 0.00185$
L = 1.737	$P_{10} = 0.00093$
	$P_{11} = 0.00046$
L _q = 0.237	$P_{12} = 0.00023$
-	$P_{13} = 0.00012$
W = 0.289	$P_{14} = 0.00006$
	$P_{15} = 0.00003$
$W_{q} = 0.039$	$P_{16} = 0.00001$
-	$P_{17} = 0.00001$
P(W > t) = 0.026, where $t = 1$	$P_{18} = 0$
	$P_{19} = 0$
$P(W_q > t) = 0.237$, where $t = 0$	$P_{20} = 0$

- (b) P{a phone is answered immediately} = 1 P\$ Wg > 0} = 0.763
 Or, = P\$at least one server is free} = Po+Pi+P2
 = 0.21053 + 0.31579 + 0.23684 = 0.763
- (c) $p_{n}^{2} n$ calls on hold $f = p_{n}^{2} = P_{n+3}^{2} (n \ge 1)$ $p_{0}^{2} = P_{0} + p_{1} + p_{2} = 0.88158$

17.6-24 (continued)

Finite Queue Variation of the M/M/s Model:

λ = 6	$P_0 = 0.23881$ $P_1 = 0.35821$
$\mu = 4$	$P_1 = 0.35821$ $P_2 = 0.26866$
	$P_3 = 0.13433$
s = 3	$\mathbf{P_4} = 0$
	$P_5 = 0$
K = 3	$P_6 = 0$
	P7 = 0
	$P_8 = 0$
	P9 = 0
L = 1.299	$P_{10} = 0$
	$P_{11} = 0$
$L_q = 0$	$P_{12} = 0$
	$P_{13} = 0$
W = 0.25	$P_{14} = 0$
	$P_{15} = 0$
$W_q = 0$	$P_{16} = 0$
	$P_{17} = 0$
	$P_{18} = 0$
	$P_{19} = 0$
	$P_{20} = 0$

17.6-25 This is a M/M/1/K queue with K=1,3 and 5, respectively. Also, A = 1/4 and $\mu = \frac{1}{3}$ oo that $\rho = \frac{3}{4}$. The fraction of customers lost = $P_{K} = \frac{(1-\rho)}{(1-\rho^{KH})} \cdot \rho^{K}$ (a) zero spaces : $P_{A} = \frac{(1-\frac{3}{4})}{(1-(\frac{3}{4})^{2})} \cdot (\frac{3}{4}) = \frac{3}{7} = .429$ (b) two spaces : $P_{3} = \frac{(1-\frac{3}{4})}{(1-(\frac{3}{4})^{4})} \cdot (\frac{3}{4})^{3} = \frac{a^{2}}{1+5} = .154$

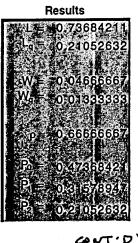
(c) four spaces:
$$P_5 = \frac{(1-3/4)}{(1-(3/4)^6)} \cdot \frac{(3/4)^5}{3367} = .072$$

17.6-26 (continued)

$$= \frac{P_{0}(A/\mu)^{s}\rho}{s!} \frac{J}{d\rho} \left[\int_{j=0}^{k=s} \rho^{j} \right] =$$

$$= \frac{P_{0}(A/\mu)^{s}\rho}{s!} \frac{J}{d\rho} \left(\frac{1-\rho^{k-s+1}}{1-\rho} \right) =$$

$$= \frac{P_{0}(A/\mu)^{s}\rho}{s!} \left[\frac{1-\rho^{k-s}-(k-s)\rho^{k-s}(1-\rho)}{(1-\rho)^{2}} \right]$$


17.6-27

W and Wy represent the waiting times of arriving customers who enter the system. The probability that such a customer finds n customers already there is:

P{n customers in system 1 system not full}= {P_n of n = K-1 And so:

(a)
$$P\{W>t\} = \frac{1}{1-P_{K}} \sum_{n=0}^{K-1} P_{n} P\{S_{n+1}>t\}$$

(b) $P\{W_{g}>t\} = \frac{t}{1-P_{K}} \sum_{n=0}^{K-1} P_{n} P\{S_{n}>t\}$

a) & b)	Data	
λ =	20	(mean arrival rate)
μ =	30	(mean service rate)
S =	1	(# servers)
K =	2	(max customers)

CONT.D)

17.6-28 a) & b) (contro)

	Data	
λ =	20	(mean arrival rate)
μ =	30	(mean service rate)
s =	1	(# servers)
K =	3	(max customers)

1	Results
	1.01538462
L _q =	0.43076923
100 - 40 100 - 40	
W =	0.05789474
$W_a =$	0.0245614
	0.66666667
P-	
P ₀ =	0.41538462
P ₁ =	0.27692308
P ₂ =	0.18461538
P3 =	0.12307692
	BARANA ASOMT

L = 1.2417061	1 6 1
	101
CONTRACTOR AND	10
$L_q = 0.6255924$	2° 14
	191
	r 🦛 I
	354 AB
and the second	8.J m 1
	9792 N
	0.000
	新聞日本
	1. All 1.
AND ALL AND AND AND AND AND A	6 A L
W = 0.0671794	L G L
A CONTRACT OF ANY	
A SEA PROVIDE A STATE OF A SEA	S
	an di Cir
W _q = 0.0338461	3 6
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DI
PARTICIPATION AND INCOMENDATION OF AN ADDRESS OF A DESCRIPTION OF A DESCRIPANTE A DESCRIPANTE A DESCRIPANTE A DESCRIPTION OF	1506
A CARLES AND A CAR	100
2 Ger and Barris Handwell and the second second	- Million (1997)
	ní mh
	m#1:1
	1911
	ne:
$\rho = 0.6666666$	7
	20. S
	1.1
A CONTRACT OF A	2026
A CALL AND A REPORT OF THE	SUDD:
	1999 E
	TKL in
Po = 0.8838862	39 A 1
	h
	1.1.1
Sector States and the sector of the sector o	
	-6795
P = 0.0550041	1.1
P1 = 0.2559241	7
	R M AL
	- 16 H (
The second s	199
P2 = 011706161	36.99
	a 1
	28 E -
	6.0°
	100
	<u>영험</u> 년
	91
* -s = 0m137440	.
	2.3.2
	10000
	Internet in the second
「読い」「小子読 へんのがとつのへの	0
P4 = 0,0758293	OI.
	刘敏 子
B WERE WARTER THE SHOW WERE AND AND AN A MARKET SHOW	

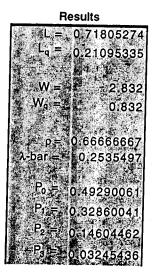
Results

	Data	
λ =	20	(mean arrival rate)
μ=	30	(mean service rate)
s =	1	(# servers)
 K =	4	(max customers)

	Data	
λ =	20	(mean arrival rate)
μ=	30	(mean service rate)
S =	1	(# servers)
K =	5	(max customers)

L)

-	spaces	rate customers are lost (P _k)	change in P _k	profit/hour (\$4)(λ)(1-P,)	change in profit/hour
	2 3 4 5	0.21 0.12 0.08 0.05	0.09 0.04 0.03	\$63.20 \$70.40 \$73.60 \$76.00	\$7.20 \$3.20 \$2.40


d) Since it cost \$200 per month per car length rented, each additional space must bring at least \$200 per month (or \$1 per hour) in additional profit. Five spaces still bring more than that so 5 should be provided.

17.6-29

a) The M/M/s model with a finite calling population fits this queueing system.

6)

	Data	
λ =	0.333333	(max arrival rate)
μ=	0.5	(mean service rate)
S =	1	(# servers)
N =	3	(size of population)

The probabilities that there are 0, 1, 2, or 3 machines not running are P_0 , P_1 , P_2 , and P_3 respectively as shown in the spreadsheet above. The mean of this distribution is L=0.718 as shown above.

c)
$$W = \frac{L}{\overline{\lambda}} = \frac{0.718}{0.253} = 2.832$$
 hours.

17.6-29

- d) The expected fraction of time that the repair technician will be busy is the system utilization, which is 0.667.
- e) M/M/s model:

	Data		
λ =	0.3333333	(mean arrival rate)	
μ =	0.5	(mean service rate)	
S =	1	(# servers)	
			10.1 Mag

	Result	S
La	3 1.33	2 3333333

Results + 1.01538462 0,43076923

0.54606742 0.36404494

0.08089888 0,00898876

47368421

Finite queue variation of the M/M/s model with K=3:

	Data	
λ =	0.3333333	(mean arrival rate)
μ =	0.5	(mean service rate)
s =	1	(# servers)
K =	3	(max customers)

/		Data		Results
	λ =	0.333333	(max arrival rate)	L = 0.55280899
	μ =	0.5	(mean service rate)	L _q = 0.00898876
	s =	2	(# servers)	
	N =	3	(size of population)	🗇 W 🚽 2.03305785
				W _q = 0.03305785
				ρ= 0.333333333 λ-bar = 0.27191011

The probabilities that there are 0, 1, 2, or 3 machines not running are P_0 , P_1 , P_2 , and P_3 respectively as shown in the spreadsheet above. The mean of this distribution is L=0.553 as shown above.

The expected fraction of time that the repair technician will be busy is the system utilization, which is 0.333.

17.6-30 (a) This is a finite Calling Population of M/M/s Model. Here $\lambda = 1$, $\mu = 2$, S = 1, N = 3

(b) Finite Calling Population of the M/M/s Model:

λ = 1	$P_0 = 0.21053$
$\mu = 2$	$P_1 = 0.31579$ $P_2 = 0.31579$
s = 1	$P_3 = 0.15789$ $P_4 = 0$
N = 3	$\begin{array}{rcl} P_5 &=& 0\\ P_6 &=& 0 \end{array}$
	$ \begin{array}{rcl} P7 &= 0\\ P8 &= 0 \end{array} $
L = 1.421	$P_9 = 0$ $P_{10} = 0$
L _q = 0.632	$P_{11} = 0$ $P_{12} = 0$
W = 0.9	$P_{13} = 0$ $P_{14} = 0$
W _Q = 0.4	$P_{15} = 0$ $P_{16} = 0$
	$P_{17} = 0$ $P_{18} = 0$ $P_{19} = 0$
	$P_{20} = 0$

17.6-31

a)

Alternative 1:

-	وي بود المتحد المتحد المتحد المتحد الم	Data		Results
	λ =	1.2	(max arrival rate)	L = 0,32064422
	μ=	4	(mean service rate)	$L_{g} = 0.05270864$
	s =	1	(# servers)	
L	<u>N =</u>	3	(size of population)	W ⊆ 0.29918033
				,≊ W _q =3 0.04918033

Three machines are the maximum that can be assigned to an operator while still achieving the required production rate. The average number not running is L=0.32. Thus, 1 - (0.32/3) = 89.7% of machines are running on the average.

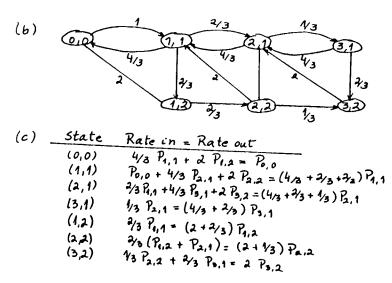
Utilization of servers
$$=$$
 $\frac{\overline{\lambda}}{s\mu} = \frac{1.072}{(1)(4)} = 0.268.$

17.6-31 b) Alternative 2:

	Data		Results
λ =	4.8	(max arrival rate)	L = 1.12461693
μ=	4	(mean service rate)	$L_q = 0.03708214$
S =	3	(# servers)	
N =	12	(size of population)	W = 0.25852352
			$W_q = 0.00852433$

Three operators are required to achieve the required production rate. The average number not running is L=1.125. Thus, 1 - (1.125/12) = 90.6% of machines are running on the average.

Utilization of servers =
$$\frac{\overline{\lambda}}{s\mu} = \frac{4.350}{(3)(4)} = 0.363.$$


c) Alternative 3:

	Data		Results
λ =	4.8	(max arrival rate)	L = 1.03519555
μ=	8	(mean service rate)	$L_{q} = 0.48698409$
s =	1	(# servers)	
N =	12	(size of population)	W = 0.23602691
			W _g = 0.11103346

Two operators are required to achieve the required production rate. The average number not running is L=1.035. Thus, 1 - (1.035/12) = 91.4% of machines are running on the average.

Utilization of servers =
$$\frac{\overline{\lambda}}{s\mu} = \frac{4.386}{(1)(8)} = 0.548$$
.

17.6-32 (a) state is (n,i) where n is the number of failed machines (n=0,1,2,3) and i is the stage of service (which operation) for the machine under repair li= Olif no machines are failed), 1,2).

17.7-1 (a) (i) exponential:
$$Vq = \frac{A}{\mu(\mu-A)}$$

(ii) constant: $Wq = \frac{1}{2} \cdot \frac{A}{\mu(\mu-A)}$
(iii) Erlang: $\sigma = \frac{1}{2} (0 + \frac{1}{\mu}) = \frac{1}{2\mu} \Rightarrow \sigma^2 = \frac{1}{4\mu^2} \Rightarrow \kappa = 4$
 $Wq = \frac{1+4}{8} \cdot \frac{A}{\mu(\mu-A)} = \frac{5}{8} \frac{A}{\mu(\mu-A)}$
So $W_q^{exp} = 2 W_q^e = (8/5) W_q^{erlang}$
(b) Let $P = \frac{1}{4} (4)$

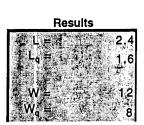
(b) Let B. 1, (1/2) and (5/8) when the distribution is exponential, constant or Erlang, respectively. Now $\lambda^{(2)} = d \lambda^{(1)}$ and $\mu^{(2)} = 2\mu^{(4)}$ $W_{q}^{(2)} = B \left[\frac{2 \lambda^{(4)}}{4\mu^{(4)}(2\mu^{(4)}-2\lambda^{(4)})} \right] = \frac{W_{q}^{(4)}}{2}$ $L_{q}^{(2)} = \lambda^{(2)} W_{q}^{(2)} = 2 \lambda^{(4)} W_{q}^{(4)} / 2 = \lambda^{(4)} W_{q}^{(4)} = L_{q}^{(4)}$

So the waiting time is cut in half while the queue lenght is unchanged.

 	Data	
λ =	0.2	(mean arrival rate)
1/μ =	4	(expected service time)
σ=	4	(standard deviation)
 s =	1	(# servers)

Results
L = 4 L _q = 3.2 W = 20 W ₁ = 16

	Data	
λ =	0.2	(mean arrival rate)
1/μ =	4	(expected service time)
σ=	3	(standard deviation)
s =	1	(# servers)


Results
3.3 2.5 16.5 Weight 12.5

17.7-2 (CONT'D)

	Data	
λ =	0.2	(mean arrival rate)
1/μ =	4	(expected service time)
σ=	2	(standard deviation)
s =	1	(# servers)

Data	
0.2	(mean arrival rate)
4	(expected service time)
1	(standard deviation)
1	(# servers)

 	Data	
λ=	0.2	(mean arrival rate)
1/μ =	4	(expected service time)
σ=	0	(standard deviation)
 s =	1	(# servers)

Results

Results

2.8

0

2.5

2.5 8.5

b) L_q is half with $\sigma = 0$ therefore it is quite important to reduce the variability of the service times.

c)

-

σ	L_q	Change	
4	3.2		
3	2.5	0.7	largest reduction
2	2	0.5	
1	1.7	0.3	
0	1.6	0.1	smallest reduction

d) μ needs to be increased 0.05 to achieve the same L_q .

17.7-3 For M/GT/1,
$$L = p + \frac{p^2 + \lambda^2 G_s^2}{2(1-p)}$$
, $L_g = \frac{p^2 + \lambda^2 G_s^2}{2(1-p)}$, $W = L/\lambda$, $W_g = \frac{L_g}{\lambda}$
(a) False when L increases, W also increases.
(b) False when μ and G^2 are small, L_g is not necessarily small.
(c) True. For exponential carrice time, $L_g = \frac{2p^2}{2(1-p)}$ since $G_s^2 = \frac{1}{\mu^2}$
For constant service time, $L_g = \frac{p^2}{2(1-p)}$, since $G_s^2 = 0$
(d) False. We can easily find distribution with $G_s^2 > \frac{1}{\mu^2}$

17.7-4

`

	Data	
λ =	30	(mean arrival rate)
1/μ =	0.0208333	(expected service time)
σ=	0.0208333	(standard deviation)
s =	1	(# servers)

b)

a)

	Data	
λ =	30	(mean arrival rate)
1/μ =	0.0208333	(expected service time)
σ=	0	(standard deviation)
S =	1	(# servers)

V V	L = 1.66666667 q = 1.04166667 V = 0.0555556 q = 0.03472222
	Results
L V W	L = 1.14583333 $q = 0.52083333$ $V = 0.03819444$ $q = 0.01736111$

Results

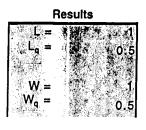
- c) L_q in part b) is half of L_q in part a).
- d) Marsha needs to reduce her service time to approximately 61 seconds.

17.7-5 (a)

$$\mu_{2}4$$

 $\mu_{2}4$
 $\mu_$

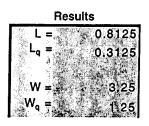
(b) Poisson input with A=1 and Erlang Service with $\mu = 4/2 = 2$ and K=2.


c)
$$L = L_q + \rho = \frac{\lambda^2 \sigma^2 + \rho^2}{2(1-\rho)} + \rho = \frac{(1)^2 (0.354)^2 + 0.5^2}{2(1-0.5)} + 0.5 = 0.875$$

d) $W = W + \frac{1}{2} - \frac{L_q}{2} + \frac{1}{2} - \frac{0.375}{2(1-0.5)} + \frac{1}{2} - 0.875$

$$d \quad W = W_q + \frac{1}{\mu} = \frac{-q}{\lambda} + \frac{1}{\mu} = \frac{-1}{1} + \frac{1}{2} = 0.875$$

e)		Data		Results
	λ=	1	(mean arrival rate)	₩_L_= +1.51 0.875
	μ=	2	(mean service rate)	ia La≔ , in 0.375
	k =	2	(shape parameter)	
	s =	1	(# servers)	₩ ₩ = 🖈 👘 10,875
				W₀ = = 0.0 10,325

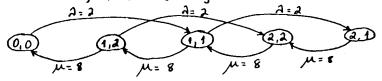

17.7-6 a & b) Current policy:

	Data	
λ =	1	(mean arrival rate)
μ =	2	(mean service rate)
s =	1	(# servers)
		$\lambda = 1$ $\mu = 2$

Proposal:

 	Data	
λ =	0.25	(mean arrival rate)
μ=	0.5	(mean service rate)
k =	4	(shape parameter)
S =	1	(# servers)

Under the current policy an airplane looses 1 day of flying time as opposed to 3.25 days under the proposed policy.

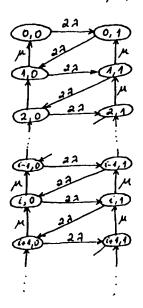

Under the current policy 1 airplane is loosing flying time per day as opposed to 0.8125 airplanes.

c) The comparison in part b) is the appropriate one for making the decision since it takes into account that airplanes will not have to come in for service as often.

17.7-8 For the current arrangement, $\lambda = 24$ and $\mu = 30 \implies \rho = .8$ For the proposal, $\lambda = 48$, $\mu = 30$ and $s = \lambda \implies \rho = .8$

	Curr			Proposal		
Model	Lat each crib	Total L	W. L/A	L	W=L/A	
Figure 17.7	4.0	1.0	0.167	4.444	0.093	
Figure 17,11	2.4	4.8	0.098	3.1	0.064	
Figure 11.13	3.2	6.4	0.133	3.7	0.078	
Figure 17.14	2.2	4.4	0.091	2.8	0.058	

17.7-9 (a) Let state (i, j) denote i calling units in the system, with the calling unit being served at the jts stage of his Service. Then the state space is: \$10,0), (1,2), (1,1), (1,2), (2,1) }. The rate diagram is:


Note this analysis is possible because an Erlang distribution with $1/\mu = 1/4$ and k = 2 is equivalent to the sum of two independent exponentials with parameter $1/\mu = 1/8$. Hence, the steady state equations are: $8 P_{i,2} = 2 P_{0,0}$ $8 P_{i,1} = 10 P_{i,2}$ $2 P_{0,0} + 8 P_{a,2} = 10 P_{a,1}$ $2 P_{0,0} + 8 P_{a,2} = 10 P_{a,1}$ $2 P_{a,1} = 8 P_{a,1} = 8 P_{a,2}$

(b) The solution to these equations is: $(P_{0,0}; P_{12}; P_{4,1}; P_{2,2}; P_{2,1}) = (\frac{64}{414}, \frac{16}{414}, \frac{20}{414}, \frac{9}{414}, \frac{5}{414})$ Hence $P_0 = \frac{64}{114} = .561$ $P_1 = \frac{46+20}{114} = .316$ $P_2 = \frac{9+5}{114} = .123$ $L = \frac{19+14}{52} = .561$ (c) If the service time is exponential, then the system is an M/M/1 queue limited to K-2 and with A=2 and $\mu=4$. So, $P_0 = \frac{1-\rho}{4-\frac{\rho}{14}} = \frac{(\frac{1}{2})}{(\frac{1}{2}+\frac{1}{2})} = \frac{4}{2} = .571$

$$P_{1} = \left(\frac{1}{2}\right) P_{0} = \frac{2}{7} = .286$$

 $P_{2} = \left(\frac{1}{3}\right)^{2} P_{0} = \frac{1}{7} = .143$ $L = \frac{2+2}{7} = \frac{4}{7} = .571$ 17.7 - 10where (-1) where

-10 state is (n, i) where n is the number of customers in the system $(n \ge 1)$ and i is the number of completed arrival stages for currently arriving customer (i = 0, 1).

17.7-11 (a) Let T be the repair time.

ELT) = E(T Iminor repair needed). (0.9) + + E(TI major repair needed). (0.1) = 1.0.9) + 5.10.1) = = .95 hours

Now let X be a binary random variable with P(X=1)=p=0.1and P(X=0)=q=0.1, Y_i be an exponential random variable with mean Y_{A_i} (i=1,2), with $\frac{1}{A_1}=\frac{1}{2}$ and $\frac{1}{A_2}=5$. Then we may express T as follows:

 $T = Y_{i} X + Y_{2}(1-X) \quad \text{where } X, Y_{i}, Y_{2} \text{ are independent}$ To calculate $\delta^{2} = Vor(T)$ we use the formula: Var(T) = E(Var(T|X)) + Var(E(T|X)) $Var(\overline{I}|X) = Var(Y_{i}) X + Var(Y_{2})(1-X) = (\frac{1}{A_{1}^{2}})X + (\frac{1}{A_{2}^{2}})(1-X)$ $\therefore E(Var(T|X)) = \frac{p}{A_{1}^{2}} + \frac{q}{A_{1}^{2}}$

17.7-11 (CONT'D)

$$\mathcal{E}(T|X) = \mathcal{E}(Y_{1}) \cdot X + \mathcal{E}(Y_{2}) \cdot (1-X) = \frac{1}{\lambda_{1}} \cdot X + \frac{1}{\lambda_{2}} \cdot (1-X)_{2}$$
$$= \frac{1}{\lambda_{2}} \cdot \left(\frac{1}{\lambda_{1}} - \frac{1}{\lambda_{2}}\right) X$$
$$\therefore \operatorname{Var}\left(\mathcal{E}(T|X)\right) = \left(\frac{1}{\lambda_{1}} - \frac{1}{\lambda_{2}}\right)^{2} \cdot \operatorname{Var} X = \left(\frac{1}{\lambda_{1}} - \frac{1}{\lambda_{2}}\right)^{2} \rho_{g}^{2}$$

Therefore,

$$Var(T) = \frac{12}{\lambda_1^2} + \frac{2}{\lambda_2^2} + \left(\frac{1}{\lambda_1} - \frac{1}{\lambda_2}\right)^2 pq = 4.5475$$

Now we can see that T has a variance much bigger than that of an exponential random variable with same mean, which would be $(.95)^2$. 9025

(b)
$$\mu = \frac{1}{.95} \begin{cases} \Rightarrow \rho = .95 \\ A = 1 \end{cases}$$

Since this is an M/G/1 queue we can apply the
following formulas:
 $P_0 = 1 - \rho = 1. - .95 = .05$
 $L_q = \frac{\lambda^2 G^2 + \rho^2}{2(1 - \rho)} = \frac{(4.5475)^2 + (.95)^2}{2 \times .05} = 215.82$
 $L = \rho + L_q = 216.77$
 $W_q = \frac{L_q}{A} = 215.82$
 $W = W_q + \frac{1}{\mu} = 216.77$

- (c) W | major repair needed= Wg + 5 = 220.82 W | minor repair needed= Wg + .5 = 216.32 Lmajor repoir machines = (2)(0.1) (220.82) = 22.082 Lminor repair machines = (2)(0.1) (216.32) = 194.69
- (d) state is (n,i) where n is the number of failed machines and i is the type of repair being done on machine under repair (is I denotes minor repair and i=2 denotes major repair).

a) This system is an example of a nonpreemptive priority queueing system. b)

0,225

n =	2	(# of priority classes)
μ=	20	(mean service rate)
S =	1	(# servers)

17.8-1 (GONT'D)

	λι	n site state state of a WM state of the Wq
Priority Class 1	2	0.1666667 0.0666667 0.08333333 0.0333333
Priority Class 2	10	1.3333333 0.8333333 0.1333333 0.0833333
λ= ρ=	12 0.6	
$\frac{W_{q1}}{W_{q1}} = \frac{0.033}{0.002} = 0.4$	4	

- $W_{q2} = 0.083^{-1}$
- d) $\rho(12) = 0.6 = 7.2$ hours

c)

	Wai	Lgi	W1	4	Wez	Lqz	W.	La
S=1, H=10	. 133	. 533	.233	.933	.667	2.667	.767	3067
3=2, M= 5	.119	.474	.319	1.274	. 593	2.370	.793	3.170

It W, is the primary concern, one should choose the first alternative (one fast server). On the Other hand, if Wq1 is the primary concern, one should choose the second alternative (two slow servers).

a)

V	В				W	b	а	u
	1	0	3.33	u		1		
0.6	0.7	1	0.30	r	067	0.6	0.16	2.5
1,1	0.4	2	4.44	А	1.69	0.3		3.33
5.9	0.1	3			9.87	0.1	0.29	

(a) First come, first served :
$$W = \frac{1}{\mu - \lambda} = \frac{1}{2}$$
 days
(b) Nonpreemptive

$$A = \mu^2 = \frac{25}{25}$$

$$B_{1} = \frac{1}{1 - (A_{1}/\mu)} = \frac{4}{5}$$

$$B_{2} = \frac{1}{1 - (A_{1} + A_{2})}/\mu = \frac{2}{5}$$

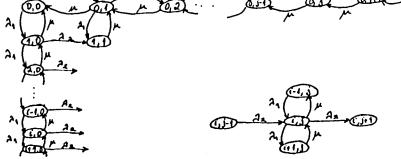
$$B_{3} = \frac{1}{1 - A}/\mu = \frac{1}{5}$$

$$W_{1} = \frac{1}{AB_{1}} + \frac{1}{\mu} = \frac{1}{5} = .20 \text{ days}$$

$$W_{2} = \frac{1}{AB_{1}B_{2}} + \frac{1}{\mu} = \frac{2}{20} = .35 \text{ days}$$

$$W_{3} = \frac{1}{AB_{2}B_{3}} + \frac{1}{\mu} = \frac{11}{10} = 1.1 \text{ days}$$

(c) Preemptive: $W_1 = \frac{1/\mu}{B_1} = \frac{1}{8} = 125 \text{ days}$ $W_2 = \frac{1/\mu}{B_1B_2} = \frac{5}{16} = .3125 \text{ days}$ $W_3 = \frac{1/\mu}{B_2B_3} = \frac{5}{4} = 1.25 \text{ days}$


17.8-5	300 403	
17.8-5 $\lambda_1 = 0.1, \lambda_2 = 0.4, \lambda_3 = 1.5,$	$\lambda = \sum_{i=1}^{n} \lambda_i = 2, \mu = 0$	

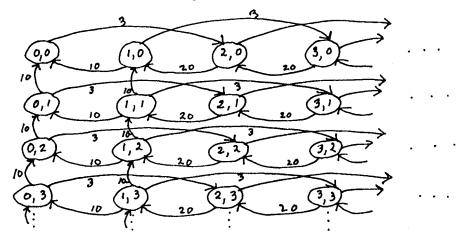
	Frior	ities .	Nonpree	mptive ities
	5=1	5=2	3=1	5-2
A	• • •		4.5	36
<u>B1</u>	. 967		.967	.983
Ba	. 833		.833	.917
B	. 3 3 3		.333	.667
W1- 7	.011	.00001	.230	.028
W2- t	.080	.00289	.276	.031
W3 - 1	.867	.05493	.800	.045

17.8-6

- a) The expected number of customers wouldn't change since austomers of both types have exactly same arrival pattern and service times. The change of the provity wouldn't affect the total service rate from the server's view and thus the total queue size stays the same
- b) Run OR courseware, for Nonpreemptive Provity-Asciptie Quencing Model, we have

 $\lambda_1 = 5$ $\lambda_2 = 5$ $\mu = 6$ $L_1 = 1.37446$ $L_2 = 4.08009$ s = 2N = 2 $L_{p} = L_{1} + L_{2} = 5.45455$ $W_1 = 0.27489$ $(W_q)_1 = 0.10823$ $W_2 = 0.81602$ $(W_q)_2 = 0.64935$ for M/M/2 quereing system, $\lambda = 10$ L = 5.455Thus, Lp=L. $\mu = 6$ $L_{q} = 3.788$ s = 2 W = 0.54517.8-7 Let state (i,j) denote i jobs of high priority and j jobs of low priority. n 0,2 ··· artic 0.0

17.8-7 (CONT'D) <u>state</u> <u>Pate in = Rate out</u> (0,0) $\mu(P_{10} + P_{01}) = (A_1 + A_2) P_{00}$ (i)0) for i>1 $\mu(P_{141,0} + A_1 P_{c-1,0} = (\mu + A_4 + A_2) P_{i,0})$ (0,j) for j>1 $\mu(P_{14j} + P_{0,j+1}) + A_2 P_{0,j-1} = (\mu + A_4 + A_2) P_{0,j}$ ((,j) for i,j>1 $\mu(P_{14j,j} + A_1 P_{j-1,j} + A_2 P_{0,j-1} = (\mu + A_4 + A_2) P_{i,j})$


17.9-1. (a) Let the state be n= number of type 1 customers in the system Then the rate diagram for type 1 customers is:

(b) Let the state be n= number of customers in the system. Then the rate diagram for the total number of customers is:

(c) Let the state be (n_1, n_2) where $n_1 = number$ of type 1 customers in the system $n_2 = number$ of type 2 customers in the system Then the rate diagram is:

17.9-2

- (a) $P_{n_1} = (\frac{1}{2})(\frac{1}{2})^{n_1}$ $P_{n_2} = (\frac{1}{3})(\frac{2}{3})^{n_2}$ $P\{(N_1, N_2) = (n_1, n_2)\} = P_{n_1}P_{n_2} = (\frac{1}{6})(\frac{1}{2})^{n_1}(\frac{2}{3})^{n_2}$
- (b) $P\{(N_1, N_2) = (0, 0)\} = \frac{1}{6}$
- (c) $L = L_1 + L_2 = 1 + 2 = 3$ $W = W_1 + W_2 = \frac{1}{10} + \frac{3}{10} = .3$ hour = 18 minutes

17.10-1 a) 1 server is optimal.

	i bei ver ib optimu		
	В	С	D
3		Data	
4	λ =	8	(mean arrival rate)
5	μ=	10	(mean service rate)
6	s =	1	(# servers)
7			
8	Pr(W > t) =	0.90483742	
9	when t =	0.05	
[10			
11	Prob(W _q > t) =	0.72386993	
12	when t =	0.05	
13			
14	Economic Analysis	3:	
15	Cs =	\$100.00	(cost / server / unit time)
16	Cw =	\$10.00	(waiting cost / unit time)
17			
18	Cost of Service	\$100.00	
19	Cost of Waiting	\$40.00	
20	Total Cost	\$140.00	

b) <u>2 servers are optimal.</u>

	B	С	D
3		Data	
4	λ =	8 -	(mean arrival rate)
_ 5	μ=	10	(mean service rate)
6	s =	2	(# servers)
7			
8	Pr(W > t) =	0.67249526	
9	when t =	0.05	
10			
11	$Prob(W_q > t) =$	0.12544266	
12	when t =	0.05	
13			
14	Economic Analysis	8:	
15	Cs =	\$100.00	(cost / server / unit time)
16	Cw =	\$100.00	(waiting cost / unit time)
17			
18	Cost of Service	\$200.00	
19	Cost of Waiting	\$95.24	
20	Total Cost	\$295.24	

c) 3 servers are optimal.

	B	С	D
	D		
3		Data	
4	λ =	8	(mean arrival rate)
5	μ=	10	(mean service rate)
6	s =	3	(# servers)
7			
8	Pr(W > t) =	0.61839666	
9	when t =	0.05	
10			
11	$Prob(W_q > t) =$	0.01732012	
12	when t =	0.05	
13			
14	Economic Analysis	3:	
15	Cs =	\$10.00	(cost / server / unit time)
16	Cw =	\$100.00	(waiting cost / unit time)
17			
18	Cost of Service	\$30.00	
19	Cost of Waiting	\$81.89	
20	Total Cost	\$111.89	

17-10.2 Jim should operate 4 cash registers during the lunch hour.

Γ	B	C	D	Е	F	G
3		Data				Results
4	λ =	66	(mean arrival rate)		L =	2.477198599
5	μ=	30	(mean service rate)		$L_q =$	0.277198599
6	s =	4	(# servers)			
7					W =	0.037533312
8	Pr(W > t) =	0.26733457			W _q =	0.004199979
9	when t =	0.05				
10					ρ=	0.55
11	$Prob(W_q > t) =$	0.01524213				
12	when t =	0.05			n	Pn
13	î				0	0.104562001
14	Economic Analysis	5:			1	0.230036403
15	Cs =	\$9.00	(cost / server / unit time)		2	0.253040043
16	Cw =	\$18.00	(waiting cost / unit time)		3	0.185562698
17					4	0.102059484
18	Cost of Service	\$36.00			5	0.056132716
19	Cost of Waiting	\$44.59			6	0.030872994
20	Total Cost	\$80.59			7	0.016980147

	В	С	D	E	F	G
3		Data				Results
4	λ =	30	(mean arrival rate)		L =	2.533889152
5	μ=	12	(mean service rate)		L _q =	0.033889152
6	s =	6	(# servers)			
7					W =	0.084462972
8	Pr(W > t) =	0.55690297			W _q =	0.001129638
9	when t =	0.05				
10					ρ=	0.416666667
11	$Prob(W_q > t) =$	0.00580992				
12	when t =	0.05			n	Pn
13					0	0.081620259
14	Economic Analysis	:			1	0.204050648
15	Cs =	\$1.50	(cost / server / unit time)		2	0.25506331
16	Cw =	\$25.00	(waiting cost / unit time)		3	0.212552759
17					4	0.132845474
18	Cost of Service	\$9.00			5	0.066422737
19	Cost of Waiting	\$63.35			6	0.02767614
20	Total Cost	\$72.35			7	0.011531725

17.10-3 Garrett-Tompkins should have 6 copiers.

17.1 a) Status quo at the presses -7.52 sheets of in-process inventory.

	A	В	С	D	E	G	Н	
1	1 Template for the M/M/s Queueing Model							
2								
3			Data				Results	
4		$\lambda =$	7	(mean arrival rate)		L =	7.517372837	
5		μ =	1	(mean service rate)		$L_q =$	0.517372837	
6		S =	10	(# servers)				

Status quo at the inspection station -3.94 wing sections of in-process inventory.

	Α	В	С	D	E	F	G
1	1 Template for M/D/1 Queueing Model						
2							
3			Data				Results
4		$\lambda =$	7	(mean arrival rate)		L =	3.9375
5		μ =	8	(mean service rate)		$L_q =$	3.0625
6		S =	1	(# servers)			

Inventory cost = (7.52 + 3.94)(\$8/hour) = \$91.68 / hourMachine cost = (10)(\$7/hour) = \$70 / hourInspector cost = \$17 / hour

Total cost = 178.68 / hour

b) Proposal 1 will increase the in-process inventory at the presses to 11.05 sheets since the mean service rate has decreased.

	A	В	С	D	E	G	Н
1	Те	mplate for the					
2							
3			Data				Results
4		$\lambda =$	7	(mean arrival rate)		L =	11.04740664
5		μ=	0.83333333	(mean service rate)		$L_q =$	2.647406638
6		S =	10	(# servers)			

The in-process inventory at the inspection station will not change.

Inventory cost = (11.05 + 3.94)(\$8/hour) = \$119.92 / hourMachine cost = (10)(\$6.50) = \$65 / hourInspector cost = \$17 / hour

Total cost = 201.92 / hour

This total cost is higher than for the status quo so should not be adopted. The main reason for the higher cost is that slowing down the machines won't change in-process inventory for the inspection station.

c) Proposal 2 will increase the in-process inventory at the inspection station to 4.15 wing sections since the variability of the service rate has increased.

	В	С	D E		F	G
3		Data				Results
4	$\lambda =$	7	(mean arrival rate)		L =	4.1475
5	μ=	8.33333333	(mean service rate)		L _q =	3.3075
6	k =	2	(shape parameter)			
7	s =	1	(# servers)		W =	0.5925
8					$W_q =$	0.4725

The in-process inventory at the presses will not change.

Inventory cost = (7.52 + 4.15)(\$8/hour) = \$93.36 / hourMachine cost = (10)(\$7/hour) = \$70 / hourInspector cost = \$17 / hour

Total cost = \$180.36 / hour

This total cost is higher than for the status quo so should not be adopted. The main reason for the higher cost is the increase in the service rate variability (Erlang rather than constant) and the resulting increase in the in-process inventory.

d) They should consider *increasing* power to the presses (increasing there cost to \$7.50 per hour but reducing their average time to form a wing section to 0.8 hours). This would decrease the in-process inventory at the presses to 5.69.

	Α	В	С	D	Е	G	Н
1	1 Template for the M/M/s Queueing Model						
2							
3			Data				Results
4		$\lambda =$	7	(mean arrival rate)		L =	5.688419945
5		μ=	1.25	(mean service rate)		L _q =	0.088419945
6		S =	10	(# servers)			

Inventory cost = (5.69 + 3.94)(\$8/hour) = \$77.04 / hourMachine cost = (10)(\$7.50/hour) = \$75 / hourInspector cost = \$17 / hour

Total cost = \$169.04 / hour

This total cost is lower than the status quo and both proposals.

Case

- 17.2 The operations of the records and benefits call center can be modeled as an M/M/s queueing system. We, therefore, use the template for the M/M/s queueing model throughout this case. The mean arrival rate equals 70 per hour, and the mean service rate of every representative equals 6 per hour. Mark needs at least s = 12 representatives answering phone calls to ensure that the queue does not grow indefinitely.
 - a) In order to solve this problem we have to determine the number of servers by "trial and error" until we find a number s such that the probability of waiting more than 4 minutes in the queue is above 35%.

For 13 servers we obtain the following results:

Data		Results
$ \begin{array}{cccc} 1 = & 70 & (mean arrival rate) \\ m = & 6 & (mean service rate) \\ s = & 13 & (\# servers) \end{array} $	L = L _q =	17.07963527 5.4129686
	W =	0.24399479
Pr(w>t) = 0.825608 when t = 0.066667	W _e =	0.077328123
	r =	0.897435897
$Prob(w_0>t) = 0.362914$ when t = 0.066667	P _o =	5.32592E-06
BECCUL DI MODERNI VOIVO -	P. =	6.21358E-05
	$P_{2} =$	0.000362459
	$P_3 =$	0.001409561
	P ₄ =	0.004111221
	P ₅ =	0.009592849
	$P_{6} =$	0.018652761
	P ₇ =	0.031087935
	$P_8 =$	0.045336573
	$P_9 =$	0.058769631
	$P_{10} = 1$	0.06856457
	$P_{11} =$	0.072719998
	$P_{12} =$	0.070699998
	$P_{13} =$	0.063448716
	$P_{14} =$	0.056941156
	$P_{15} =$	0.051101037
	$P_{16} =$	0.041156325
	P ₁₇ =	0.036935163
	$P_{18} =$	0.033146942
	$P_{19} =$ $P_{20} =$	0.029747255*
	$P_{20} = P_{21} =$	0.0266962555
	$P_{22} =$	0.023958157
	$P_{23} =$	0.021500928
	$P_{24} =$	0.019295705
	$P_{25}^{24} =$	0.017316658

Template for M/M/s Queueing Model

For 13 servers, the probability that a customer has to wait more than 4 minutes equals 36.3%.

If there are 12 servers, this probability would be 78%:

l =	Data 70	(mean arrival rate)
m = s =	6 12	(mean service rate) (# servers)
Pr(w>t) = when t =	0.944173 0.066667	
$\frac{\text{Prob}(w_q > t) =}{\text{when } t =}$	0.779968 0.066667	

Template for M/M/s Queueing Model

If there are 14 servers, this probability would be less than 16.4%:

Data		
Pr(w>t) = when t =	0.75683 0.066667	
$\frac{\text{Prob}(w_q > t) =}{\text{when } t =}$	0.163704 0.066667	

Template for M/M/s Queueing Model

It appears that Mark currently employs 13 servers.

b) Using the same procedure as in part (a) we find that for s = 18 servers the probability of waiting more than 1 minute drops below 5%:

Template for M/M/s	Queueing Model
--------------------	----------------

$\begin{array}{c ccccc} 1 = & 70 & (\text{mean arrival rate}) \\ m = & 6 & (\text{mean service rate}) \\ s = & 18 & (\# \text{servers}) \\ \hline Pr(w>t) = & 0.909075 \\ when t = & 0.016667 \\ \hline Prob(w_{q}>t) = & 0.032078 \\ when t = & 0.016667 \\ \hline Prob(w_{q}>t) = & 0.032078 \\ when t = & 0.016667 \\ \hline Prob(w_{q}>t) = & 0.032078 \\ mean t = & 0.016667 \\ \hline Prob(w_{q}>t) = & 0.032078 \\ mean t = & 0.016667 \\ \hline Prob(w_{q}>t) = & 0.032078 \\ mean t = & 0.016667 \\ \hline Prob(w_{q}>t) = & 0.032078 \\ mean t = & 0.016667 \\ \hline Prob(w_{q}>t) = & 0.032078 \\ mean t = & 0.016667 \\ \hline Prob(w_{q}>t) = & 0.032078 \\ mean t = & 0.016667 \\ \hline Prob(w_{q}>t) = & 0.032078 \\ mean t = & 0.016667 \\ \hline Prob(w_{q}>t) = & 0.0016667 \\ \hline Prob(w_{q}>t) = & 0.00277812 \\ \hline Prob(w_{q}>t) = & 0.0016667 \\ \hline Prob(w_{q}>t) = & 0.00277812 \\ \hline Prob(w_{q}>t) = & 0.00177641 \\ \hline Prob(w_{q}>t) = & 0.001776411 \\ \hline Prob(w_{q}>t) = & 0.001777781 \\ \hline Prob(w_{q}>t) = & 0.001777781 \\ \hline Prob(w_{q}>t)$	Data		Results
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	m = 6 (mean service rate)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		W =	0.168256972
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		$W_q =$	0.001590305
$ \begin{array}{l lllllllllllllllllllllllllllllllllll$		r =	0.648148148
$\begin{array}{llllllllllllllllllllllllllllllllllll$		P ₀ =	8.49029E-06
$\begin{array}{llllllllllllllllllllllllllllllllllll$		$P_1 =$	9.90534E-05
$\begin{array}{llllllllllllllllllllllllllllllllllll$			
$\begin{array}{llllllllllllllllllllllllllllllllllll$			14-12 · · · · · · · · · · · · · · · · · · ·
$\begin{array}{llllllllllllllllllllllllllllllllllll$		· · ·	and the second
$\begin{array}{llllllllllllllllllllllllllllllllllll$		•	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		· · ·	C. C. Martin C. C. E. C. Ster State
$\begin{array}{llllllllllllllllllllllllllllllllllll$			the second s
$P_{13}^{12} = 0.101146446$ $P_{14} = 0.084288705$ $P_{15} = 0.065557882$ $P_{16} = 0.047802622$ $P_{17} = 0.032805721$ $P_{18} = 0.021262967$ $P_{19} = 0.013781553$ $P_{20} = 0.008932488$ $P_{21} = 0.005789576$ $P_{22} = 0.003752503$ $P_{23} = 0.002432178$ $P_{24} = 0.001576411$			
$\begin{array}{rcl} P_{14}^{13} = & 0.084288705 \\ P_{15} = & 0.065557882 \\ P_{16} = & 0.047802622 \\ P_{17} = & 0.032805721 \\ P_{18} = & 0.021262967 \\ P_{19} = & 0.013781553 \\ P_{20} = & 0.008932488 \\ P_{21} = & 0.005789576 \\ P_{22} = & 0.003752503 \\ P_{23} = & 0.002432178 \\ P_{24} = & 0.001576411 \end{array}$			A Company and the second se
$\begin{array}{llllllllllllllllllllllllllllllllllll$			
$\begin{array}{llllllllllllllllllllllllllllllllllll$			and the second
$\begin{array}{llllllllllllllllllllllllllllllllllll$			
$\begin{array}{llllllllllllllllllllllllllllllllllll$			
$\begin{array}{llllllllllllllllllllllllllllllllllll$			0.021262967
$\begin{array}{rcl} P_{20} = & 0.008932488 \\ P_{21} = & 0.005789576 \\ P_{22} = & 0.003752503 \\ P_{23} = & 0.002432178 \\ P_{24} = & 0.001576411 \end{array}$			0.013781553
$P_{22} = 0.003752503$ $P_{23} = 0.002432178$ $P_{24} = -0.001576411$			0.008932488
$\begin{array}{rcl} P_{22} = & 0.003752503 \\ P_{23} = & 0.002432178 \\ P_{24} = & 0.001576411 \end{array}$,	0.005789576
$P_{24}^{23} = 0.001576411^{\circ}$			State State State State
			the second of the second se
			A Part of the State of the second second
$P_{25} = 0.001021746$		P ₂₅ =	0.001021748

c) Using the same "trial and error" method as before, we find the minimal number of servers necessary to ensure that 80% of customers wait one minute or less to be s = 15

	Data	
l = m =	70 6	(mean arrival rate) (mean service rate)
s =	15	(mean service rate) (# servers)
	0.00/210	
Pr(w>t) = when t =	0.926712 0.016667	
when t =	0.016667	
$\frac{\text{Prob}(w_o > t)}{\text{when } t =}$	0.194213	
when $t =$	0.016667	

Template for M/M/s Queueing Model

The minimal number of servers to ensure that 95% of customers wait 90 seconds or less is s = 17.

Template for M/M/s Queueing Model

	Data	
1=	- 70	(mean arrival rate)
m = s =	17	(mean service rate) (# servers)
5 -		(# SCIVCIS)
Pr(w>t) =	0.870524	
when $t =$	0.025	
$Prob(w_a > t) = when t =$	0.046459	
when t =	0.025	

When an employee of Cutting Edge calls the benefits center from work and has to wait on the phone, the company loses valuable work time for this customer. Mark should try to estimate the amount of work time employees lose when they have to wait on the phone. Then he could determine the cost of this waiting time and try to choose the number of representatives in such a fashion that he reaches a reasonable trade-off between the cost of employees waiting on the phone and the cost of adding new representatives.

Clearly, Mark's criteria would be different if he were dealing with external customers. While the internal customers might become disgruntled when they have to wait on the phone, they cannot call somewhere else. Effectively, the benefits center holds monopolistic power. On the contrary, if Mark were running a call center dealing with external customers, these customers could decide to do business with a competitor if they become angry from waiting on the phone.

d) If the representatives can only handle 6 calls per hour, then Mark needs to employ 18 representatives (see part b). If a representative can handle 8 calls per hour, then the minimal number of representatives equals 14:

	Data	
1=		(mean arrival rate)
m = s =	o 14	(mean service rate) (# servers)
Pr(w>t) =	0,881748	
when t =	0.016667	
Prob(w > t) =	0.036649	
$Prob(w_q > t) =$ when t =	0.016667	
when t =	0.016667	

Template for M/M/s Queueing Model

The cost of training 14 employees equals 14*\$2500 = \$35000 and saves Mark 4*\$30000 = \$120000 in annual salary. In the first year alone Mark would save \$85000 if he chose to train all his employees so that they can handle 8 instead of 6 phone calls per hour.

e) Mark needs to carefully check the number of calls arriving at the call center per hour. In this case we have made the simplifying assumption that the arrival rate is constant. That assumption is unrealistic; clearly we would expect more calls during certain times of the day, during certain days of the week, and during certain weeks of the year. We might want to collect data on the number of calls received depending on the time. This data could then be used to forecast the number of calls the center will receive in the near future, which in turn would help to forecast the number of representatives needed.

Also, Mark should carefully check the number of phone calls a representative can answer per hour. Clearly, the length of a call will depend on the issue the caller wants to discuss. We might want to consider training representatives for special issues. These representatives could then always answer those particular calls. Using specialized representatives might increase the number of phone calls the entire center can handle.

Finally, using an M/M/s model is clearly a great simplification. We need to evaluate whether the assumptions for an M/M/s model are at least approximately satisfied. If this is not the case, we should consider more general models such as M/G/s or G/G/s.