17.2-1 input source: population having hair calling units: customers wanting haircuts queue: customers waiting for a barber Service discipline: usually first in, first out. service mechanism: barbers and equipment.
17.2-2
a) $L=0\left(\frac{1}{16}\right)+1\left(\frac{4}{16}\right)+2\left(\frac{6}{16}\right)+3\left(\frac{4}{16}\right)+4\left(\frac{1}{16}\right)=2$ which represents the average number of customers in the shop, including those getting their hair cut.
b)

n	\# in queue	probability	product
0	0		
1	0		
2	0		
3	1	0.25	0.25
4	2	0.0625	0.125

$\mathrm{Lq}=0.375$ which represents the average number of customers in the shop waiting to get a haircut.
c) E (\# customers being served $)=1 \cdot p_{1}+2\left(p_{2}+p_{3}+p_{4}\right)=$ $=\frac{4}{16}+2\left(\frac{6}{16}+\frac{4}{16}+\frac{1}{16}\right)=\frac{13}{8}$
d)
$W=\frac{L}{\lambda}=\frac{2}{4}=0.5=30$ minutes
$W_{q}=\frac{L_{q}}{\lambda}=\frac{0.375}{4}=0.094=5.625$ minutes
These quantities mean that customers will be in the shop an average of half an hour, including the time to get a haircut, and will have to wait an average of
e) 5.625 minutes before their haircut will begin.
$\mathrm{W}-\mathrm{Wq}=0.5-0.094=0.406$ hours $=24.36$ minutes

17.2-3

a) A parking lot is a queueing system for providing parking with cars as the customers, and parking spaces as the servers. The service time is the amount of time a car spends in a space. The queue capacity is 0 .
b)
$L=0\left(P_{0}\right)+1\left(P_{1}\right)+2\left(P_{2}\right)+3\left(P_{3}\right)=0(0.2)+1(0.3)+2(0.3)+3(0.2)=1.5$ cars
$L_{q}=0 \mathrm{cars}$
$W=\left(\frac{L}{\lambda}\right)=\left(\frac{1.5}{2}\right)=0.75$ hours
$W_{q}=\left(\frac{L_{q}}{\lambda}\right)=\left(\frac{0}{2}\right)=0$ hours
c) A car spends an average of 45 minutes in a parking space.

17.2-4

a) False. The queue is where customers wait before being served.
b) False. Queueing models conventionally assume that the queue is an infinite queue.
c) True. The most common is first come first served.

17.2-5

a) A bank is a queueing system with people as the customers, and tellers as the servers.
b)

$$
\begin{aligned}
& W_{q}=1 \text { minute } \\
& W=W_{q}+\frac{1}{\mu}=1+2=3 \text { minutes } \\
& L_{q}=\lambda W_{q}=\frac{40}{60}(1)=0.667 \text { customers } \\
& L=\lambda W=\frac{40}{60}(3)=2 \text { customers }
\end{aligned}
$$

17.2-6

The utilization factor ρ represents the fraction of time that the server is busy. The server is busy except when there are zero people in the system. P_{0} is the probability of having 0 customers in the system. Hence, $\rho=1-P_{0}$.
17.2-7

$$
\begin{aligned}
& \lambda_{2}=2 \lambda_{1}, \quad \mu_{2}=2 \mu_{1}, L_{2}=2 L_{1} \\
& \frac{\omega_{2}}{\omega_{1}}=\frac{L_{2} / \lambda_{2}}{L_{1} / \lambda_{1}}=1
\end{aligned}
$$

$17.2 \cdot 8$
(a) $L=\left\{\begin{array}{l}L_{q} \text { when no one is in the system } \\ L_{q}+1 \text { otherwise }\end{array}\right.$

So $L=P_{0} L_{q}+\left(1-P_{0}\right)\left(L_{q}+1\right)=L_{q}+\left(1-P_{0}\right)$
(b) $L=\lambda w=\lambda\left(w_{q}+1 / \mu\right)=\lambda w_{q}+\lambda / \mu=L_{q}+\rho$
(c) $L=L_{q}+p=L_{q}+\left(1-P_{0}\right)$ from (a) and (b). So $p=1-P_{0}$.
17.2-9

$$
\begin{aligned}
L & =\sum_{n=0}^{\infty} n P_{n}=\sum_{n=0}^{S-1} n P_{n}+\sum_{n=5}^{\infty} n P_{n}=\sum_{n=0}^{S-1} n P_{n}+\sum_{n=5}^{\infty}(n-s) P_{n}+\sum_{n=5}^{\infty} s P_{n}= \\
& =\sum_{n=0}^{S-1} n P_{n}+L_{q}+S \sum_{n=s}^{\infty} P_{n}= \\
& =\sum_{n=0}^{S-1} n P_{n}+L_{q}+s\left(1-\sum_{n=0}^{S-1} P_{n}\right)
\end{aligned}
$$

17.3-1

Part	Customers	Servers
(a)	customers waiting checkout	checkers
(b)	fires	fire fighting units
(c)	cars	toll collectors
(d)	broken bicycles	bicycle repairpersons
(e)	shipstibeloaded or unloaded	Longshorementequipment
(f)	machines needing operator	operator
(g)	materials to be handled	handling equipment
(h)	calls for plumbers	plumbers
(i)	custom orders	customized process
(j)	typing requests	typists

17.4-1
$\lambda_{n}=1 / 2$ for $n>0$ and $\mu_{n}= \begin{cases}1 / 2 & \text { for } n=1 \\ 1 & \text { for } n \geq 2\end{cases}$
(a) $P\{$ next arrival before $1: 00\}=1-e^{-1 / 2}=.393$
$P\{$ next arrival between $1: 00$ and $2: 00\}=\left(1-e^{-x_{2} \cdot 2}\right)-\left(1-e^{-1 / 2}\right)=.239$
$P\{$ next arrival after $2: 00\}=e^{-21 / 2}=.368$
(b) $P\left\{\begin{array}{l}\text { next arrival between/no } \\ 1: 00 \text { arrivals between } \\ \text { 2:00 } \\ 12: 00 \text { and } 1: 00\end{array}\right\}=1-e^{-1 / 2}=.393$
(c) $P\{$ no arrivals between 1:00 and $2: 00\}=\frac{(\lambda t)^{0} e^{-\lambda t}}{0!}=e^{-1 / 2}=.607$
$P\{o n e$ arrival between $1: 00$ and $2: 00\}=\frac{(\lambda t)^{\prime} e^{-\lambda t}}{1!}=1 / 2 \cdot e^{-1 / 2}=.303$
$P\{$ two or more arrivals between $1: 00$ and $2: 00\}=1-e^{-1 / 2}-\frac{1}{2} e^{-1 / 2}$
17.4-1
(d) $P\{$ none served by $2: 00\}=e^{-1}=.368$
$P\{$ none served by $1: 10\}=e^{-1(1 / 6)}=.846$
$P\{$ none served by $1: 01\}=e^{-1(1 / 60)}=.983$
17.4-2
$\lambda_{n}=2$ for $n \geq 0 \Rightarrow P\{n$ arrivals in an hour $\}=\frac{2^{n} e^{-2}}{n!}$
(a) $P\{0$ arrivals in an hour $\}=e^{-2}=.135$
b) $P\{2$ arrivals in an hour $\}=\frac{2^{2} e^{-2}}{2!}=2 e^{-2}=.270$
c) $P\{5$ or more arrivals in an hour $\}=1-\sum_{n=0}^{4} P\{n$ arrivals in an hour $\}$
17.4-3

$$
\begin{aligned}
&= 1-e^{-2}-2 e^{-2}-2 e^{-2}-(4 / 3) \cdot e^{-2}-(2 / 3) e^{-2} \\
&=1-7 e^{-2}=.0527 \\
&-3=100 \cdot P\{T<2\}+80 \cdot P\{T>2\}=100-20 \cdot P\{T>2\} \\
& \text { Pay }\{T \text { old }>2\}=e^{-\frac{1}{4} \cdot 2}=e^{-\frac{1}{2}}=0.607
\end{aligned}
$$

$$
P\left\{T_{\text {spacial }}>2\right\}=e^{-\frac{1}{2} \cdot 2}=e^{-1}
$$

$$
\begin{aligned}
\text { Increase } & =P_{\text {pay speial }}-P_{\text {aloud }}=20\left(P\left\{T_{\text {add }}>2\right\}-P\left\{T_{\text {special }}>2\right\}\right) \\
& =20\left(e^{-\frac{1}{2}}-e^{-1}\right)
\end{aligned}
$$

17.4-4

Given the memoryless property, the system tums into a two-sener queue after first completion occurs.
$T=$ amount of time after 1 and before next service completion

$$
P\{T<t\}=P\left\{\min \left(T_{2}, T_{3}\right)<t\right\}
$$

So, T satisfies exponential distribution with mean $0.5 / 2=0.25$ (property 3)
17.4.5 By mamoryless property, $U=\min \left(T_{1}, T_{2}, T_{3}\right)$
$T_{1} \sim \exp (1 / 20), T_{2} \sim \exp (1 / 15), \quad T_{3} \sim \exp (1 / 10)$
$U \sim \exp \left(\frac{1}{20}+\frac{1}{15}+\frac{1}{10}\right)=\exp \left(\frac{13}{60}\right)$
So, expected waiting time $=\frac{60}{13}=4 \frac{8}{13}$ minutes
17.4-6 a) From aggregation property of poisson process, the arrival process is still poisson with mean rate 10 per hour. So, distribution of time between consecutive arrivals is exponential with mean of 6 minutes.
17.4.6
b) The probability distribution is the minimum of two exponential random variables. By property 3, it is exponential with mean of 5 minutes. 17.4-9) Exponential with moan of 5 minutes.
b) $\omega=\omega_{q}+T_{s}, \omega_{f}$ and T_{s} are independent
$E \omega=E W_{g}+E T_{S}=5+10=15$ minutes $=\frac{1}{4}$ hour
$\operatorname{VarW}=\operatorname{var} \operatorname{lig}_{g}+\operatorname{var} T_{s}=\left(\frac{1}{12}\right)^{2}+\left(\frac{1}{6}\right)^{2}=\frac{5}{144}=0.0347$
d) $\bar{w}=5+w_{s}$
\bar{W} has mean of 20 minutes, but holds the same variance as W_{s}
17.4-8
a) False
b) falsce) False
11.4-9 cet $U=\min \left\{T_{1}, \ldots, T_{n}\right\}$. So $P\left(T_{j}=U\right)=\int_{0}^{\infty} p\left\{T_{i}>T_{j}\right.$ for $\left.a l l i \neq j \mid T_{j}=f \alpha \alpha_{j} e^{-\alpha_{j} t} d t\right\}=$
19.5-1
a)

b)

$$
\begin{aligned}
& p_{1}=\frac{\lambda_{0}}{\mu_{1}} p_{0}=\frac{3}{2} p_{0}, \quad p_{2}=C_{2} p_{0}=\frac{\lambda_{0} \lambda_{1}}{\mu_{1} \mu_{2}} \cdot p_{0}=\frac{3}{2} p_{0} \\
& p_{3}=\frac{\lambda_{0} \lambda_{1} \lambda_{2}}{\mu_{1} \mu_{2} \mu_{3}} p_{0}=\frac{3}{4} p_{0}, \quad p_{4}=p_{5}=\cdot=0 \\
& p_{0}+p_{1}+p_{2}+p_{3}=\left(1+\frac{3}{2}+\frac{3}{2}+\frac{3}{4}\right) p_{0}=1, \quad p_{0}=\frac{4}{19} \\
& p_{1}=\frac{12}{38}, \quad P_{2}=\frac{12}{38}, \quad p_{3}=\frac{6}{38}
\end{aligned}
$$

c)

$$
\begin{aligned}
& L=\sum_{n=0}^{\infty} n p_{n}=p_{1}+2 p_{2}+3 p_{3}=\frac{12}{38}+\frac{24}{38}+\frac{9}{19}=\frac{27}{19}=1.421 \\
& L_{q}=p_{2}+2 p_{3}=\frac{12}{19}=0.632 \\
& \bar{\lambda}=\sum_{n=0}^{\infty} \lambda_{n} p_{n}=3 p_{0}+2 p_{1}+p_{2}=\frac{30}{19}=1.579 \\
& \omega=L / \bar{\lambda}=\frac{27}{19} \times \frac{19}{30}=\frac{9}{10}=0.9 \\
& \omega_{q}=L_{8} / \bar{\lambda}=\frac{12}{19} \cdot \frac{19}{30}=\frac{2}{5}=0.4
\end{aligned}
$$

17. 5-2 a) (0) $\stackrel{1}{\stackrel{1}{2}}$ (2)
b) $\begin{cases}2 p_{1}=p_{0} & p_{0}+2 p_{2}=3 p_{1} \\ p_{1}=2 p_{2} & p_{0}+p_{1}+p_{2}=1\end{cases}$
c) $p_{0}=\frac{4}{7} \quad p_{1}=\frac{2}{7} \quad p_{2}=\frac{1}{7}$
$17.5-\mathrm{C}_{d}$
d)

$$
\begin{aligned}
& p_{1}=\frac{\lambda_{0}}{H_{1}} p_{0}=\frac{1}{2} p_{0} \quad p_{2}=\frac{\lambda_{0} \lambda_{1}}{\mu_{1} \mu_{2}} p_{0}=\frac{1}{4} p_{0} \\
& \left(1+\frac{1}{2}+\frac{1}{4}\right) p_{0}=p_{1}+p_{2}+p_{0}=1, \quad \text { we have } \quad p_{0}=\frac{4}{7}, \quad p_{1}=\frac{2}{7}, p_{2}=\frac{1}{7} \\
& L=p_{1}+2 p_{2}=\frac{4}{7} \quad L_{q}=p_{2}=\frac{1}{7} \quad \bar{\lambda}=\lambda_{0} p_{0}+\lambda_{1} p_{1}=\frac{6}{7} \\
& W=L / \bar{\lambda}=\frac{2}{3} \quad \omega_{g}=L_{4} / \lambda=\frac{1}{6}
\end{aligned}
$$

b)

$$
\left\{\begin{array}{l}
2 p_{0}=3 p_{1} \\
2 p_{0}+4 p_{2}=6 p_{1} \\
3 p_{1}+p_{3}=6 p_{2} \\
2 p_{2}+2 p_{4}=2 p_{3} \\
p_{3}=2 p_{4} \\
p_{1}+p_{2}+p_{3}+p_{4}=1
\end{array}\right.
$$

c)

$$
\begin{aligned}
& \text { (1) } \Rightarrow p_{1}=\frac{2}{3} p_{0} \\
& \text { (2) } \Rightarrow p_{2}=\left(6 \cdot \frac{2}{3} p_{0}-2 p_{0}\right) / 4=\frac{1}{2} p_{0} \\
& \text { (1) } \Rightarrow p_{3}=\frac{1}{2} \cdot 6 p_{0}-3 \cdot \frac{2}{3} p_{0}=p_{0} \\
& \text { (4) } \Rightarrow p_{4}=\left(2 p_{0}-2 \cdot \frac{1}{2} p_{0}\right) / 2=\frac{1}{2} p_{0}
\end{aligned}
$$

(5) $p_{0}+\frac{2}{3} p_{0}+\frac{1}{2} p_{0}+p_{0}+\frac{1}{2} p_{0}=1$

$$
\Rightarrow \quad p_{0}=\frac{3}{11} \quad p_{1}=\frac{2}{11} \quad p_{2}=\frac{3}{22} \quad p_{3}=\frac{3}{11} \quad p_{4}=\frac{3}{22}
$$

d)

$$
\begin{aligned}
& p_{1}=\frac{\lambda_{0}}{\mu_{1}} \cdot p_{0}=\frac{2}{3} p_{0}, \\
& p_{2}=\frac{\lambda_{0} \lambda_{1}}{\mu_{1} \mu_{2}} \cdot p_{0}=\frac{1}{2} p_{0} \\
& p_{3}=\frac{\lambda_{0} \lambda_{1} \lambda_{2}}{\mu_{1} \mu_{2} \mu_{3}} \cdot p_{0}=p_{0} \\
& p_{4}=\frac{\lambda_{0} \lambda_{1} \lambda_{2} \lambda_{3}}{\mu_{1} \mu_{2} \mu_{4} \mu_{2}} \cdot p_{0}=\frac{1}{2} p_{0}
\end{aligned}
$$

From $p_{0}+p_{1}+p_{2}+p_{3}+p_{4}=1 \Rightarrow p_{0}=\frac{3}{11}$.
17.5.3 (Cont'D)

$$
\begin{aligned}
& L=p_{1}+2 p_{2}+3 p_{3}=\frac{20}{11} \\
& L q=p_{2}+2 p_{3}=\frac{12}{11} \\
& \bar{\lambda}=\lambda_{0} p_{0}+\lambda_{1} p_{1}+\lambda_{2} p_{2}+\lambda_{3} p_{3}=\frac{18}{11} \\
& \omega=L / \bar{\lambda}=\frac{10}{9} \quad \omega_{q}=L_{q} / \lambda=\frac{2}{3}
\end{aligned}
$$

17. 5-4 a)

$$
\text { (0) } \stackrel{2}{2}_{2}^{2}(1) \stackrel{2}{4}(2) \stackrel{2}{\underset{4}{4}}(3) \cdots A_{4}^{\stackrel{2}{2}}
$$

b)

$$
\begin{aligned}
P_{1} & =\frac{2}{2} p_{0} \\
P_{2} & =\frac{1}{2} p_{0} \cdots p_{n}=\left(\frac{1}{2}\right)^{n-1} P_{0} \\
\sum_{n=0}^{\infty} P_{n} & =\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n} P_{0}+p_{0}=3 p_{0}=1 \quad, \quad P_{0}=\frac{1}{3} \\
P_{n} & =\left(\frac{1}{2}\right)^{n-1} \cdot \frac{1}{3}
\end{aligned}
$$

c) arrival rate 1,
service vate 2 .
17. 5-5 a)
b)

$$
\left\{\begin{array}{l}
15 p_{0}=15 p_{1} \tag{0}\\
15 p_{0}+15 p_{2}=25 p_{1} \text { (2) } \\
10 p_{0}+15 p_{3}=20 p_{2}(3) \\
5 p_{2}=15 p_{3}
\end{array}\right.
$$

c)

$$
\begin{aligned}
& p_{0}=p_{1}, p_{2}=\frac{5 p_{1}-3 p_{0}}{3}=\frac{2}{3} p_{0}, p_{3}=\frac{1}{3} p_{2}=\frac{2}{9} p_{0} \\
& p_{0}+p_{1}+p_{2}+p_{3}=1=\frac{26}{9} p_{0} \Rightarrow p_{0}=\frac{9}{26} \\
& p_{1}=\frac{9}{26} \quad p_{2}=\frac{3}{13} \quad p_{3}=\frac{1}{13}
\end{aligned}
$$

Or

$$
\begin{aligned}
& p_{1}=\frac{\lambda_{0}}{\mu_{1}} p_{0}=p_{0} \\
& p_{2}=\frac{\lambda_{0} \lambda_{1}}{\mu_{1} \mu_{2}} p_{0}=\frac{2}{3} p_{0} \\
& p_{3}=\frac{\lambda_{0} \lambda_{1} \lambda_{2}}{\mu_{1} \mu_{2} \mu_{3}} p_{0}=\frac{2}{9} p_{0} \\
& \quad 17-8
\end{aligned}
$$

17.5-5
d)

$$
\begin{aligned}
L=p_{1}+2 p_{2}+3 p_{3}=\frac{27}{26}=1.04, \bar{\lambda}=\lambda_{0} p_{1}+\lambda_{1} p_{1}+\lambda_{2} p_{2} & =\frac{255}{26} \\
& =9.81
\end{aligned}
$$

17.5-6 a)

stite $=$ \# of machines in breakdown state.
b)

$$
\begin{aligned}
& p_{1}=\frac{8}{5} p_{0}, \quad p_{2}=\frac{8}{5} \cdot \frac{8}{10} p_{0}=\frac{32}{25} p_{0}, \\
& p_{0}+p_{1}+p_{2}=1 \Rightarrow p_{0}=\frac{25}{97}, \quad p_{1}=\frac{40}{97}, \quad p_{2}=\frac{32}{97}
\end{aligned}
$$

c)

$$
\begin{aligned}
& \bar{\lambda}=p_{0} \cdot \lambda_{0}+p_{1} \lambda_{1}=\frac{1}{5} \cdot \frac{25}{97}+\frac{1}{10} \cdot \frac{40}{47}=\frac{9}{97}=0.093 \\
& L=p_{1}+2 p_{2}=\frac{104}{97}=1.072, \quad L q=\frac{32}{97}=0.330 \\
& W=L / \bar{\lambda}=\frac{104}{9}, \quad \omega_{q}=\frac{32}{9}=3.556
\end{aligned}
$$

d) $p_{1}+p_{2}=\frac{72}{97}=0.742$
e) $P_{0}+\frac{1}{2} P_{1}=\frac{45}{9 T}=0.464$
17.5-7.a)

(b) $\mu P_{1}=\lambda P_{0}$

$$
\begin{aligned}
& \lambda P_{0}+(\mu+\theta) P_{2}=(\mu+\lambda) P_{1} \\
& \vdots P_{n-1}+(\mu+n \theta) P_{n+1}=(\lambda+\mu+(n-1) \theta) P_{n} \\
& \vdots
\end{aligned}
$$

17.5-8
a)

(b)

$$
\begin{aligned}
P_{0} & =\left[1+\sum_{n=1}^{\infty} \frac{\lambda^{n}}{\mu_{1} \mu_{2}^{n+1}}\right]^{-1}=\left[1+\frac{\lambda}{\mu_{1}} \sum_{n=1}^{\infty}\left(\frac{\lambda}{\mu_{2}}\right)^{n-1}\right]^{-1}=\left[1+\frac{\lambda}{\mu_{1}}\left(\frac{1}{1-\frac{\lambda}{\mu_{2}}}\right)\right]^{-1} \\
& =\left[1+\frac{3}{4}\left(\frac{1}{1-y_{2}}\right)\right]^{-1}=2 / 5=.4 \\
P_{n} & =P_{0} \frac{\lambda^{n}}{\mu_{1} \mu_{2}^{n+1}}=\left(\frac{3}{5}\right)\left(\frac{1}{2}\right)^{n} \quad \text { for } n \geq 1
\end{aligned}
$$

c) $L=\sum_{n=0}^{\infty} n P_{n}=\frac{3}{5} \sum_{n=1}^{\infty} n\left(\frac{1}{2}\right)^{n}=\frac{3}{5} \cdot \frac{1}{2} \sum_{n=1}^{\infty} n\left(\frac{1}{2}\right)^{n-1}=\frac{3}{5} \cdot \frac{1}{2} \cdot \frac{1}{(1-1 / 2)^{2}}=\frac{6}{5}$

$$
L_{g}=L-\left(1-P_{0}\right)=6 / 5-(1-2 / 5)=3 / 5
$$

$$
W=L / \lambda=1 / 25
$$

$$
W_{q}=L_{g} / \lambda=1 / 50
$$

17. 5-9 a)

b)

$$
\begin{aligned}
& p_{1}=\frac{3}{4} p_{0}, p_{2}=\frac{3}{4} \cdot \frac{1}{2} p_{0}, \cdots, p_{n}=\frac{3}{4} \cdot\left(\frac{1}{2}\right)^{n-1} p_{0} \\
& \sum_{n=0}^{\infty} p_{n}=p_{0}+\frac{3}{4} p_{0}+\frac{3}{4} \cdot \frac{1}{2} p_{0}+\cdots \\
&=\frac{5}{2} p_{0}=1
\end{aligned}
$$

So, $P_{0}=\frac{2}{5}, \quad P_{1}=\frac{3}{10}, \quad P_{n}=\left(\frac{3}{4}\right)\left(\frac{1}{2}\right)^{n-1}\left(\frac{2}{5}\right)=\frac{3}{10} \cdot\left(\frac{1}{2}\right)^{n-1}$
Let $p_{i}^{\prime}=P\{$ in strady-state i documents Rave been received but not yet completed $\}$

1705-9 (cont:D)
Then $p_{0}^{\prime}=p_{0}+p_{1}=\frac{7}{10}$

$$
P_{n}^{\prime}=P_{n+1}=\frac{3}{10} \cdot\left(\frac{1}{2}\right)^{n} \quad, n \geqslant 1
$$

c)

$$
\left.\begin{array}{rl}
L=\sum_{n=1}^{\infty} n p_{n} & =\frac{3}{10}\left(1+2 \cdot \frac{1}{2}+3 \cdot \frac{1}{2^{2}}+\cdots\right) \\
& =\frac{3}{10} \cdot 4 \cdot\left(\frac{1}{2^{2}}+\frac{2}{2^{3}}+\frac{3}{24}+\cdots\right) \\
& =-\left.\frac{6}{5} \frac{d}{d \rho}\left(\frac{1}{\rho-1}\right)\right|_{p=2}=\frac{6}{5} \\
W & =L / \lambda=\frac{2}{3} \\
L q & =\sum_{n=1}^{\infty}(n-1) p_{n}=L-\left(1-p_{0}\right)=\frac{3}{5} \\
W_{q} & =L q / \lambda
\end{array}\right)=\frac{1}{5} .4
$$

17.5-10

Then,

$$
\begin{aligned}
& p_{1}=\frac{\lambda_{0}}{\mu_{1}} p_{1}=2 p_{0}, \\
& p_{2}=2 \cdot 1 \cdot p_{0} \\
& \vdots \\
& p_{n}=\frac{2^{n}}{n!} \cdot p_{0}
\end{aligned}
$$

$$
\sum_{n=0}^{\infty} p_{n}=e^{2} \cdot p_{0}=1 \text {, So } p_{0}=e^{-2}, \quad p_{1}=2 e^{-2}
$$

17.5-11 a)

b)

$$
\begin{aligned}
& 5 p_{1}=4 p_{0} \\
& 5 p_{2}=9 p_{1} \\
& 5 p_{3}+4 p_{0}=9 p_{2} \\
& 5 p_{n+1}+4 p_{n-2}=9 p_{n}
\end{aligned}
$$

17. $5 \% 12_{\text {, a) }}$ Lit $n=$ number of, customers in the system. Then the rate diagram is:

17.5-12 (CONT'D)

The balance equations are:

$$
\begin{aligned}
P_{0} & =P_{2} \\
P_{1} & =P_{0}+P_{3} \\
2 P_{2} & =P_{1}+P_{4} \\
2 P_{3} & =P_{2} \\
P_{4} & =P_{3}
\end{aligned}
$$

(b) The state space has to be more complex in this case because you need to know how many customers are being worked on by the server. Let the state be (s, g) where

$$
s \text { = number of customers being served }
$$ $q=$ number of customers in the queue

Then the rate diagram is

The balance equations are

$$
\begin{aligned}
P_{00} & =P_{10}+P_{20} \\
2 P_{10} & =P_{00}+P_{11}+P_{21} \\
2 P_{11} & =P_{10} \\
P_{12} & =P_{11} \\
2 P_{220} & =P_{12}+P_{22} \\
2 P_{21} & =P_{20} \\
P_{22} & =P_{21}
\end{aligned}
$$

17.5-13
(a) Let the state be $\left(n_{1}, n_{2}\right)$ where
$n_{1}=$ number of type 1 customers in the system
$n_{2}=$ number of type 2 customers in the system
Then the rate diagram is:

(b) The balance equations are:
(c)

$$
\begin{aligned}
& 12 P_{01}=5 P_{00}^{0} \\
& 15 P_{00}=12\left(P_{01}+P_{10}\right) \\
& 22 P_{10}=10 P_{00}+24 P_{20} \\
& 24 P_{20}=10 P_{10} \\
&\left(P_{00}+P_{10}+P_{01}+P_{20}=1\right) \\
& \Rightarrow P_{\infty 0}=\frac{72}{187}, P_{10}=\frac{60}{187}, P_{01}=\frac{30}{187}, P_{20}=\frac{25}{187}
\end{aligned}
$$

(d) Type 1 customers are blocked when the system is in state $(2,0)$ or $(0,1)$ which means that the fraction unable to enter the system is $P_{20}+P_{01}=55 / 187$ Type 2 customers are blocked when the system is in state $(2,0),(1,0)$ or $(0,1)$ which means that the fraction unable to enter the system is $P_{20}+P_{10}+P_{01}=115 / 187$.
17.6-1 a) $A=2, \mu=4, s=1, \rho=1 / 2$
b)

For $\mu / M / 1$ queue, $P_{0}=1-A / \mu=1 / 2$ and $P_{n}=(1-p) p^{n}=(1 / 2)^{n+1}$ desired proportion of time $=\sum_{i=0}^{4} P_{i}=31 / 32$

$P_{0}=$	0.5
$P_{1}=$	0.25
$P_{2}=$	0.125
$P_{3}=$	0.0625
$P_{4}=$	0.03125

Total $=97^{\circ} 10$
17.6-2 $\quad \lambda=10, \mu=15, \quad P_{0}=\left(1-\frac{\lambda}{\mu}\right)=\frac{1}{3}=$ propotion of time no one is waiting
$17.6-3(a)$

$$
\begin{aligned}
& W \sim \exp (\mu-\lambda), W=\frac{1}{\mu-\lambda} \\
& P\{W>W\}=(\mu-\lambda) e^{-(\mu-\lambda)} \frac{1}{\mu-\lambda}=(\mu-\lambda) / e
\end{aligned}
$$

(b)

$$
W_{q}=\frac{\lambda}{\mu(\mu-\lambda)}, W_{q}(t)= \begin{cases}1-p & t=0 \\ 1-p e^{-\mu(1-p) t} & t>0\end{cases}
$$

So, $p\left\{W_{q}>W_{q}\right\}=1-W_{f}\left(W_{q}\right)=\rho e^{-\mu(1-\rho) \frac{\lambda}{\mu(\mu-\lambda)}}$

$$
=\frac{\lambda}{\mu} \cdot e^{-\frac{\lambda}{\mu}}
$$

17.6.4 $\quad P_{0}=1-\rho, \quad \omega_{q}=\frac{\lambda}{\mu(\mu-\lambda)}$

$$
\begin{aligned}
& \frac{\left(1-p_{0}\right)^{2}}{\omega_{q} \rho_{0}}=\frac{\rho^{2}}{\frac{\lambda}{\mu(\mu-\lambda)} \cdot\left(1-\frac{\lambda}{\mu}\right)}=\frac{\lambda^{2} / \mu}{\lambda / \mu^{2}}=\lambda \\
& \frac{1-P_{0}}{\omega_{q} p_{0}}=\frac{\rho}{\frac{\lambda}{\mu(\mu-\lambda)} \cdot \frac{\mu-\lambda}{\mu}}=\frac{\lambda / \mu}{\lambda / \mu^{2}}=\mu
\end{aligned}
$$

17.6-5

$$
\lambda=3, \mu=4, s=1, \rho=3 / 4
$$

The system without the storage restriction is a $M / M / 1$ queue. If n square feet of floor space were available for waiting, the proportion of time this would be sufficient is $\sum_{i=0}^{n+1} P_{i}$. Thus we want to find n_{e} such that $\sum_{i=0}^{x_{8}+1} p_{i} \geqslant q_{e}$ for $l=1,2,3$, where $q_{1}=-5, q_{2}=.9, q_{3}=.99$.
Now $\sum_{i=0}^{n+1} P_{i} \geqslant q_{e} \Leftrightarrow \sum_{i=0}^{x_{t}^{+1}}(1-p) p^{i} \geqslant q_{e} \Leftrightarrow(1-p) \frac{\left(1-p^{n_{e}+2}\right)}{(1-p)} \geqslant q_{e} \Leftrightarrow$

$$
\begin{aligned}
& \Leftrightarrow 1-p^{n_{l}+2} \geqslant q_{l} \Leftrightarrow \rho^{n_{l}+2} \leqslant 1-q_{l} \Leftrightarrow\left(n_{l}+2\right) \ln \rho \leqslant \ln \left(1-q_{l}\right) \\
& \Leftrightarrow\left(n_{l}+2\right) \geqslant \frac{\ln \left(1-q_{l}\right)}{\ln p} \Leftrightarrow n_{l} \geqslant \frac{\ln \left(1-q_{l}\right)}{\ln p}-2
\end{aligned}
$$

part	$q \ell$	$\frac{\ell x(1-4 c)}{\ln p} 2$	floor space required
(a)	.50	.409	1
(b)	.90	6.004	7
(c)	.99	14.008	15

(7.6-6. a) True
b) False. $L=\lambda w=\frac{\rho}{1-\rho}$
c) False. $L=\rho(1-\rho), L=9$ when $\rho=0.9$, but $L=99$ wan $\rho=0.99$

17.6-7 a) False

b) True. when $\rho>1, L \rightarrow \infty$
c) TRue
$17.6-8$ a) True
b) False
c) True
17.6-9
a)
$L=\frac{\lambda}{\mu-\lambda}=\frac{30}{40-30}=3$ customers
$W=\frac{1}{\mu-\lambda}=\frac{1}{40-30}=0.1$ hours
$W_{q}=\frac{\lambda}{\mu(\mu-\lambda)}=\frac{30}{40(40-30)}=0.075$ hours
$L_{q}=\lambda W_{q}=30(0.075)=2.25$ customers
$P_{0}=1-\rho=1-0.75=0.25$
$P_{1}=(1-\rho) \rho=(1-0.75) 0.75=0.188$
$P_{2}=(1-\rho) \rho^{2}=(1-0.75) 0.75^{2}=0.141$
There is a 42% chance of having more than 2 customers at the checkout stand.
b)

$17.6-9 \quad$ c)

$$
\begin{aligned}
& L=\frac{\lambda}{\mu-\lambda}=\frac{30}{60-30}=1 \text { customer } \\
& W=\frac{1}{\mu-\lambda}=\frac{1}{60-30}=0.033 \text { hours } \\
& W_{q}=\frac{\lambda}{\mu(\mu-\lambda)}=\frac{30}{60(60-30)}=0.017 \text { hours } \\
& L_{q}=\lambda W_{q}=30(0.075)=0.5 \text { customer } \\
& P_{0}=1-\rho=1-0.5=0.5 \\
& P_{1}=(1-\rho) \rho=(1-0.5) 0.5=0.25 \\
& P_{2}=(1-\rho) \rho^{2}=(1-0.5) 0.5^{2}=0.125
\end{aligned}
$$

There is a 12.5% chance of having more than 2 customers at the checkout stand.
d)

$$
\begin{aligned}
& \operatorname{Pr}(\omega>t)=6.283 E-92 \\
& \text { when } t=7
\end{aligned}
$$

$\operatorname{Prob}\left(\omega_{q}>t\right)$	$=3.588 \mathrm{E}-66$
when $t=$	5

$\mathrm{P} 0+\mathrm{P} 1+\mathrm{P} 2=$
0.875

e) The manager should adopt the new approach of adding another person to bag the groceries.
17.6-10
a)

Data		
$\mu=$	10	(mean arrival rate)
$s=$	20	(mean service rate)

$\operatorname{Pr}(\omega>t)$	$=0.0067379$
when t	$=0.5$

Prob $\left(\omega_{q}>t\right)$	$=0.003369$
when t	$=0.5$

$P 0+P 1+P 2+P 3+P 4+P 5=$
0.984375

All the criteria are currently being satisfied.
b)

$\lambda=$	15	(mean arrival rate)
$\mu=$	20	(mean service rate)
$s=$	1	(\# servers)

$\mathrm{P} 0+\mathrm{P} 1+\mathrm{P} 2+\mathrm{P} 3+\mathrm{P} 4+\mathrm{P} 5=$
0.822021484

None of the criteria are now satisfied.

17.6-10

c)

$\mathrm{P} 0+\mathrm{P} 1+\mathrm{P} 2+\mathrm{P} 3+\mathrm{P} 4+\mathrm{P} 5=$
0.926640437

In this case, the first and third criteria are satisfied but the second is not.
17.6-11

	Data	
$\mu=$	2	(mean arrival rate)
$\mu=$	1	(mean service rate)
$s=$	4	(\# servers)

$\operatorname{Pr}(\omega>t)$	$=0.0079019$
when t	$=5$
$\operatorname{Prob}\left(\omega_{q}>t\right)$	$=7.896 \mathrm{E}-06$
when t	$=5$

$\mathrm{P} 0+\mathrm{P} 1+\mathrm{P} 2+\mathrm{P} 3+\mathrm{P} 4+\mathrm{P} 5+\mathrm{P} 6+\mathrm{P} 7+\mathrm{P} 8+\mathrm{P} 9=$
0.997282609

All the guidelines are currently being met.
17. 6-11

Data		
$\mu=$	3	(mean arrival rate)
$\mu=$	1	(mean service rate)
$s=$	4	(\# servers)

$\operatorname{Pr}(\omega>t)$	$=0.0239006$	
when t	$=$	5

$$
\begin{aligned}
\operatorname{Prob}\left(\omega_{q}>t\right) & =0.0034325 \\
\text { when } t & =5
\end{aligned}
$$

P0+P1+P2+P3+P4+P5+P6+P7+P8+P9=
P0+P1+P2+P3+P4+P5+P6+P7+P8+P9=
0.9093317

The first two guidelines will not be satisfied in one year but the third will be.
c) Five tellers will be needed in a year,
17.6-12
(a)

λ	L	L_{4}	W	W_{4}	$\left.P\left\{W^{2}\right\rangle 5\right\}$
5	1	.50	2	1	.082
.9	9	810	10	9	.607
99	99	98.01	100	99	.951

(b)

λ	2/u	p	Po	L	Le	W	W^{6}	,
. 5	1	5	. 3333	1,333	. 333	2.667	. 667	150
$4{ }^{-1}$	1.8	. 9	. 0526	9.474	7.674	10.526	8.526	641
. 14	1.98	99	.0050	99.49	97.517	0.526	9\%1503	. 956

$P 0+P 1+P 2=$
0.897875817

$P 0+P 1+P 2+P 3+P 4=$
0.997703314

17.6-13

(CONT,D)	Data	
$\lambda=$	10	(mean arrival rate)
$\mu=$	12	(mean service rate)
$s=$	5	(\# servers)

$\operatorname{Pr}(\omega>t)=7.672 E-53$
when $t=\quad 10$
$\operatorname{Prob}\left(\omega_{9}>t\right)=0.0017464$
when $t=$
0
$\mathrm{P} 0+\mathrm{P} 1+\mathrm{P} 2+\mathrm{P} 3+\mathrm{P} 4+\mathrm{P} 5=$
0.999708926

a) 2 servers
b) 3 servers
c) 2 servers
d) 1 server
e) 5 servers
f) 1 server
g) 3 servers
17.6-14 $\lambda=15, \mu=20$, thin is a $\mu / \mathrm{m} / 1$ Quene
P \{cuctomer does not have to wairt $\}=P_{0}=1-\frac{\lambda}{\mu}=\frac{1}{3}$
price $/$ per gallon $=1.2 \times \frac{1}{3}+1 \times \frac{2}{3}=1.067$
17.6-15 Expected cost $=\sum_{n=1}^{\infty} n \cdot p_{n}=\sum_{n=1}^{\infty} n \cdot \rho^{n}(1-\rho)=\frac{\rho}{1-\rho}=\frac{\lambda}{\mu-\lambda}$ 17.6-16

Let $P\{p<t\}=G(t)$ and let $\frac{d G(t)}{d t}=g(t), ~$
Then $P\{p p>t\}=1-P(t)$
Then $P\{P \gg t\}=1-P(t)$
So $[1-G(t)]=\sum_{n=0}^{\infty} P_{n} P\left\{S_{n+1}>t\right\}=$

$$
\begin{aligned}
& =\sum_{x=0}^{\infty}(1-\rho) \rho^{x}\left[\int_{t}^{\infty} \frac{\mu^{n+1} x^{n} e^{-\mu x}}{n!} d x\right]= \\
& =\sum_{n=0}^{\infty}(1-\rho) \rho^{x}\left[1-\int_{0}^{t} \frac{\mu^{n+1} x^{n} e^{-\mu x}}{x!} d x\right]
\end{aligned}
$$

Differentiating both sides we have:

$$
\begin{aligned}
& \text { Differentiating beoth sides we have: } \\
& \rho^{(t)}=\sum_{n=0}^{\infty}(1-\rho) \rho^{n}\left[\frac{\mu^{n+1} t^{n} e^{-\mu t}}{n!}\right]=(1-p) \mu e^{-\mu t} \sum_{n=0}^{\infty} \frac{(\lambda t)^{n}}{n!}
\end{aligned}
$$

$$
\begin{aligned}
&=(1-p) \mu e^{-\mu t} e^{\lambda t}=\mu(1-\rho) e^{-\mu(1-p) t} \\
& \text { uce, by intepration, } p(W>t)=1-\int_{0}^{t} \rho(x) d x=e^{-\mu(1-p) t}
\end{aligned}
$$

Hence, by intepration, $P(w>t)=1-\int_{0}^{t} \rho(x) d x=e^{-\mu(1-p) t}$

$$
17-21
$$

17.6-17 (a) Let $P\left\{w_{q} \leq t\right\}=G(t)$ and let $\frac{d G(t)}{d t}=g(t)$

Then $P\left\{w_{q}>t\right\}=1-G(t)$
So $[1-G(t)]=\sum_{n=1}^{\infty} P_{n} P\left\{S_{n}>t\right\}=\sum_{n=1}^{\infty}(1-p) P^{n}\left[1-\int_{0}^{t} \frac{\mu^{n} x^{n}+1-\mu x}{(n-1)!} d x\right]$
Differentiating both sides ${ }^{n}$ ives:

$$
\begin{aligned}
g(t) & =\sum_{n=1}^{\infty}(1-\rho) \rho^{n}\left[\frac{\mu^{n} t^{n} \cdot e^{-\mu t}}{(n-1) \mid}\right] \\
& =(1-\rho) \lambda e^{-\mu t} \sum_{n=1}^{\infty} \frac{(\lambda t)^{n-1}}{(n-1)!} \\
& =(1-\rho) \lambda e^{-\mu t} e^{\lambda t} \\
& =\left(\frac{\lambda}{\mu}\right)(\mu-\lambda) e^{-(\mu-\lambda) t}
\end{aligned}
$$

Then $W_{q}=\left(\frac{\lambda}{\mu}\right) \int_{0}^{\infty} t(\mu-\lambda) e^{-(\mu-\lambda) t} d t=\frac{\lambda}{\mu(\mu-\lambda)}$
(b) Let $P\left\{A_{q}<t\right\}=G(t)$ and let $\frac{d G(t)}{d t}=g(t)$

Then $\left.P_{i} P_{q}>t\right\}=1-G(t)$
So $[1-G(t)]=\sum_{n=5}^{\infty} P_{n} P\left\{S_{n-s+1}>t\right\}$

$$
=\sum_{n=s}^{\infty} P_{n}\left[1-\int_{0}^{t} \frac{(s, \mu)^{n-s+1} x^{n-1} e^{-(s, \mu) x}}{(n-s)!} d x\right]
$$

Now $P_{n}=\frac{(2 / \mu)^{x}}{s!s^{n-3}} P_{0}$ for $n \geqslant s$
So differentiating both sides gives

$$
\begin{aligned}
g(t) & =\sum_{n=s}^{\infty}\left[\frac{(\lambda / \mu)^{n} P_{0}}{s!s^{n-s}}\right]\left[\frac{(s \mu)^{n-s+1} t^{n-s} e^{-(s \mu) t}}{(n-s)!}\right] \\
& =\frac{P_{0}(s \mu)(\lambda / \mu)^{s}}{s!} e^{-s \mu t} \sum_{n=s}^{\infty} \frac{(\lambda t)^{n-s}}{(n-s)!} \\
& =\frac{P_{0}(s \mu)(\lambda / \mu)^{s}}{s!} e^{-s \mu t} e^{\lambda t} \\
& =\frac{P_{0}(s \mu)(\lambda / \mu)^{s}}{s!} e^{-(s \mu)(1-p) t}
\end{aligned}
$$

So $W_{q}=\frac{P_{0}(\lambda / \mu)^{s}}{s!} \int_{0}^{\infty} t(s \mu) e^{-(s \mu)(1-\rho) t} d t$

$$
\begin{aligned}
& =\frac{P_{0}(\lambda / \mu)^{s}}{s!(1-\rho)} \int_{0}^{\infty} t(s \mu)(1-\rho) e^{-(s \mu)(1-\rho) t} d t \\
& =\frac{P_{0}(\lambda / \mu)^{s}}{s!(1-\rho)^{2}(s \mu)} \\
& =\frac{P_{0}(\lambda / \mu)^{s} \rho}{s!(1-\rho)^{2} \lambda} \\
& =\operatorname{L}_{q} / \lambda
\end{aligned}
$$

17.6-18

$$
\lambda=4 \quad \mu=3 \quad s=2
$$

we have: $\quad P_{0}=0.2 ; P_{1}=0.267 ; P_{2}=0.178$ the mean rate is:

$$
\frac{\mu_{0} p_{0}+\mu_{1} P_{1}+\mu_{2} p_{2}}{P_{0}+p_{1}+p_{2}}=\frac{0 \cdot P_{0}+3 p_{1}+6 P_{2}}{P_{0}+p_{1}+p_{2}}=2.90
$$

$$
\begin{aligned}
\lambda & =4 \\
\mu & =6 \\
s & =2
\end{aligned}
$$

$$
P_{0}=0.5
$$

$$
\mathrm{L}=0.75
$$

$$
\mathrm{L}_{\mathrm{q}}=0.083
$$

$$
w=0.188
$$

$$
w_{\mathrm{q}}=0.021
$$

$$
P(W>t)=1 \quad \text {, where } t=0
$$

$$
P\left(W_{q}>t\right)=0.003, \text { where } t=0.5
$$

$P_{0}=0.5$
$P_{1}=0.33333$
$P_{2}=0.11111$
$P_{3}=0.03704$
$P_{4}=0.01235$
$P_{5}=0.00412$
$P_{6}=0.00137$
$P_{7}=0.00046$
$P_{8}=0.00015$
$P_{9}=0.00005$
$P_{10}=0.00002$
$P_{11}=0.00001$
$P_{12}=0$
$P_{13}=0$
$P_{14}=0$
$P_{15}=0$
$P_{16}=0$
$P_{17}=0$
$P_{18}=0$
$P_{19}=0$
$P_{20}=0$

$$
P\left\{\omega_{q}>0.5 \mid \# \text { antomers } \geqslant 2\right\}=\frac{P\left\{\omega_{q}>0.5, \# \text { antomers } \geqslant 2\right\}}{P\{\# \text { astoners } \geqslant 2\}}
$$

$$
=\frac{p\left\{\omega_{q}>0.5\right\}}{1-p_{0}-p_{1}}=\frac{0.003}{1-(0.5+0.333)}=0.018
$$

$17.6-20$ (a) $\quad \omega=\frac{1}{\mu-\lambda}$

$$
\omega_{\text {clava }}=\frac{1}{20-16}=\frac{1}{4} \text { hour }=15 \text { mimutes }
$$

$$
W_{\text {clarence }}=\frac{1}{20-14}=\frac{1}{6} \text { hour }=10 \text { minutes }
$$

$$
W_{\text {tral }}=P\{\text { clana }\} \cdot W_{\text {elara }}+P\{\text { clarence }\} \cdot W_{\text {clavence }}
$$

$$
=\frac{16}{30} \cdot 15+\frac{14}{30} \cdot 10=12.67 \text { minutes }=0.211 \text { hour }
$$

(b) Ir is $\mathrm{m} / \mathrm{m} / 2$ quene, $\lambda=16+14=30, \quad \mu=20, S=2$ Rum OR coursewore, $W=0.114$ hour
(c) $\mu=60 / 3.5, \quad \omega=0.249$

$$
\mu=60 / 3.4, \omega=0.204
$$

$$
\mu=60 / 3.45, \quad \omega=0.225
$$

17.6-21.a) when $\lambda=10, \mu=7.5, \delta=2$, (current system)

$$
L=2.4, L_{q}=1.067, W=0.24, \omega_{\xi}=0.107
$$

When $\lambda=5, \mu=7.5, s=1, \quad$ (next year)

$$
L=2, \quad L q=1.333, W=0.4, \quad \omega_{f}=0.267
$$

So, next year yields smaller L but larger L_{q}, W and ω_{q}
b) $w=\frac{1}{\mu-\lambda} \Rightarrow \mu=\frac{1}{w}+\lambda=\frac{1}{0.24}+s=9.17$
c) $W_{q}=\frac{\mu-\lambda}{\mu(\mu-\lambda)} \Rightarrow \mu=\frac{\lambda W_{q}+\sqrt{x^{2} W_{q}^{2}+\lambda W_{1}}}{2 W_{q}} \Rightarrow \mu=9.78$
17.6-22
(a) The future evolution of the queueing system is affected by what her the parameter of the service time distribution for the customer currently in service is μ_{1} or μ_{2}. So the current state of the system needs to in clude this information from the history of the process.

The states are (n, s) where
$n=$ number of customers in the system $(n=1,2, \cdots)$
$s=\left\{\begin{array}{l}1 \\ 2\end{array}\right.$ it the current paramator is μ_{1}
if the current parameter is μ_{2}
except that $n=0$ does not need s. Then we have:

(b)

$$
\begin{aligned}
& \lambda p_{0}=\mu_{1} p_{1,1}+\mu_{2} \cdot p_{1,2} \\
& \left(\lambda+\mu_{1}\right) p_{1,1}=\lambda p_{0} \\
& : \\
& \left(\lambda+\mu_{1}\right) p_{n, 1}=\lambda p_{n-1,1} \\
& : \\
& \left(\lambda+\mu_{2}\right) p_{1,2}=\mu_{1} \cdot p_{2,1}+\mu_{2} p_{2,2} \\
& : \\
& \left(\lambda+\mu_{2}\right) p_{n, 2}=\lambda p_{n-1,2}+\mu_{1} p_{n+1,2}+\mu_{2} p_{n+1,2} \quad(n \geqslant 2) \\
& :
\end{aligned}
$$

17.6-22
(C) Truncate (cut off) the balance equations at a very large n and then Solve the resulting finite system of equations numerically. The resulting approx inaction of the stationary distribution should be essentially exact it the probability of exceeding the truncating value of n (in the exact model) is negligible.
(d)

$$
\begin{aligned}
& L=\sum_{n=1}^{\infty} n\left(P_{n, 1}+P_{n, 2}\right), \quad W=\frac{L}{\lambda} \\
& L_{q}=\sum_{n=1}^{\infty}(n-1)\left(P_{n, 1}+P_{n, 2}\right), \quad \omega_{q}=\frac{L_{\theta}}{\lambda}
\end{aligned}
$$

(e) Because the input is Poisson, the distribution of the state of the system is the same just before an arrival and at an arbitrary point in time

$$
\begin{aligned}
P\{w \leqslant t\} & =P\{W \leqslant t \mid \text { arrival finds state } 0\} P_{0} \\
& +\sum_{n=1}^{\infty} P\{w \leq t \mid \text { arrival finds state }(n, 1)\} P_{n, 1} \\
& +\sum_{n=1}^{\infty} P\{W \leq t \mid \text { arrival finds state }(n, 2)\} P_{n, 2}
\end{aligned}
$$

These 3 conditional distributions of W are, vaspectively $(1) \exp \left(\mu_{1}\right)$
(2) a convolution of $\exp \left(\mu_{1}\right)$ and Erlang $\left(n / \mu_{2}, n\right)$ and (31 Erlang $\left((n+1) \mu_{2}, n+1\right)$

Then,

$$
\begin{gathered}
p\{\omega \leq t\}=\left(1-e^{-\mu_{1} t}\right) p_{0}+\sum_{n=1}^{\infty}\left[\int_{0}^{t}\left[1-e^{-\mu_{1}\left(t-t_{1}\right)}\right] \cdot \frac{\mu_{2}^{n} t_{1}^{n-1} e^{-\mu_{2} t}}{(n-1)!}\right. \\
\left.d t_{1}\right] p_{n, 1}+\sum_{n=1}^{\infty}\left[\int_{0}^{t} \frac{\mu_{2}^{n+1} x^{n} e^{-\mu_{2} x}}{n!} d x\right] p_{n, 2}
\end{gathered}
$$

17.6-23
(a)

$$
\begin{aligned}
& \lambda P_{0}=\mu P_{1} \\
& \lambda P_{0}+\mu P_{2}=(\lambda+\mu) P_{n} \cdots(0) \\
& \vdots \vdots \\
& \lambda P_{n-1}+\mu P_{n+1}=(\lambda+\mu) P_{n} \cdots(n)
\end{aligned}
$$

The solution given in Sec, 16.6 13:

$$
P_{n}=(1-p) p^{n} \text { for } n=0,1,2 \ldots
$$

Verifying that the above satisfy the balance equations: equation (o): $\lambda \cdot(1-p)=\mu(1-p) \cdot \rho \Leftrightarrow \lambda=\mu \cdot p=\mu \frac{\lambda}{\mu} \quad$ ok equation $(n): \lambda(1-p) p^{n-1}+\mu(1-p) \rho^{n+1}=(\lambda+\mu)(1-p) p^{n^{\mu}}$

$$
\Leftrightarrow \begin{array}{ll}
\Leftrightarrow+\frac{{ }^{\prime \prime}}{\mu} & \mu \rho^{2} \\
\lambda & (\lambda+\mu) \cdot p \\
\lambda^{2}
\end{array} \quad \frac{\lambda^{2}}{\mu}+\lambda \quad \text { oK }
$$

$17.6-23$
(b)

$$
\begin{aligned}
& \lambda P_{f}=\mu P_{1} \\
& \lambda P_{0}+\mu P_{2}=(\lambda+\mu) P_{1} \\
& \lambda P_{1}=\mu P_{2}
\end{aligned}
$$

The solution given in Sec. 16.6 is:

$$
P_{n}=\left(\frac{1-p}{1-p^{1}}\right) p^{n} \text { for } n=0,1,2
$$

Verifying:

$$
\begin{aligned}
& \cdot \lambda \cdot \frac{1-p}{1-\rho^{3}}=\mu \cdot \frac{1-\rho}{1-\rho^{3}} \cdot p \Leftrightarrow \lambda=\mu \cdot p=\mu \cdot \frac{\lambda}{\mu} \cdot \cdots o_{k} \\
& \cdot \lambda \cdot \frac{1-\rho}{1-\rho^{2}}+\mu \frac{1-p}{1-\rho^{3}} \cdot \rho^{2}=(\lambda+\mu) \frac{1-\rho}{1-\rho^{3}} \rho \Leftrightarrow \lambda+\mu \cdot \rho^{2}=(\lambda+\mu) \cdot \rho \\
& \begin{array}{c}
\lambda+\frac{\lambda^{2}}{\mu} \\
\lambda^{2 \prime} \\
\lambda^{2}
\end{array}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& 2 \lambda P_{0}=\mu P_{1} \\
& 2 \lambda P_{0}+\mu P_{2}=(\lambda+\mu) P_{1} \\
& 2 P_{r}=\mu P_{2}
\end{aligned}
$$

The solution given in Sec. 16.6 is:

$$
\begin{aligned}
& P_{0}=\left[\sum_{n=0}^{2} \frac{2!}{(2-n)!}\left(\frac{\lambda}{\mu}\right)^{n}\right]^{-1}=\left[1+2\left(\frac{\lambda}{\mu}\right)+2\left(\frac{\lambda}{\mu}\right)^{2}\right]^{-1} \\
& P_{n}=\frac{2!}{(2-n)!}\left(\frac{\lambda}{\mu}\right)^{n} P_{0} \text { for } n=1,2
\end{aligned}
$$

Verifying:

$$
\begin{aligned}
& \cdot 2 \lambda /\left(1+2\left(\frac{\lambda}{\mu}\right)+2\left(\frac{\lambda}{\mu}\right)^{2}\right)=\mu \cdot 2\left(\frac{\lambda}{\mu}\right) /\left(1+2\left(\frac{\lambda}{\mu}\right)+2\left(\frac{\lambda}{\mu}\right)^{2}\right) \\
& \Leftrightarrow 2 \lambda=\mu \cdot 2 \cdot \frac{\lambda}{\mu} \cdots \text { OK }
\end{aligned}
$$

$$
\begin{aligned}
& \text { • } 2 \lambda /\left(1+2\left(\frac{\lambda}{\mu}\right)+2\left(\frac{\lambda}{\mu}\right)^{2}\right)+\mu \cdot 2\left(\frac{\lambda}{\mu}\right)^{2} /\left(1+2\left(\frac{\lambda}{\mu}\right)+2\left(\frac{\lambda}{\mu}\right)^{2}\right)= \\
& =(\lambda+\mu) 2(\lambda / \mu) /\left(1+2(\lambda / \mu)+2(\lambda / \mu)^{2}\right) \Leftrightarrow 2 \lambda+2 \mu\left(\frac{\lambda}{\mu}\right)^{2}=2(\lambda+\mu)\left(\frac{\lambda}{\mu}\right) \\
& 2\left(\lambda+\lambda^{2}\right)=2\left(\frac{\lambda^{21}}{\mu}+\lambda\right) \cdots \\
& \text { (} 1 \cdot 2\left(\frac{\lambda}{\mu}\right) /\left(1+2(\lambda / \mu)+2(\lambda / \mu)^{2}\right)=\mu \cdot 2 \cdot(\lambda / \mu)^{2} /\left(1+2(\lambda / \mu)+2(\lambda / \mu)^{2}\right) \\
& \Leftrightarrow 2 \frac{\lambda^{2}}{\mu}=2 \frac{\lambda^{2}}{\mu} \cdots \text { or }
\end{aligned}
$$

$$
\begin{aligned}
& \lambda=6 \\
& \mu=4 \\
& s=3 \\
& L=1.737 \\
& L_{q}=0.237 \\
& W=0.289 \\
& W_{q}=0.039 \\
& P(W>t)=0.026, \text { where } t=1 \\
& P\left(W_{q}>t\right)=0.237, \text { where } t=0
\end{aligned}
$$

(b) $P\{$ a phone is answered immediately $\}=1-P\left\{\omega_{q}>0\right\}=0.763$ or, $\Rightarrow P\{$ at least one server is free $\}=P_{0}+P_{1}+P_{2}$

$$
=0.21053+0.31579+0.23684=0.763
$$

(c)

$$
\begin{aligned}
& P\{n \text { calls on hold }\}=p_{n}^{1}=P_{n+3} \quad(n \geqslant 1) \\
& P_{0}^{1}=p_{0}+p_{1}+p_{2}+p_{3}=0.88158
\end{aligned}
$$

(d) The printed meauses are in the next page.
$P\{$ arriving call is lost $\}$
$=P\{$ all three servers are bus 1$\}$

$$
=P_{3}=0.13433
$$

17.6-24 (continued)

Finite queue Variation of the $\mathrm{M} / \mathrm{M} / \mathrm{s}$ Model:

$$
\begin{array}{ll}
\boldsymbol{\lambda}=6 & \mathrm{P}_{0}=0.23881 \\
\mathrm{P}_{1}=0.35821 \\
\mu=4 & \mathrm{P}_{2}=0.26866 \\
\mathrm{P}_{3}=0.13433 \\
\mathrm{~s}=3 & \mathrm{P}_{4}=0 \\
\mathrm{~K}=3 & \mathrm{P}_{5}=0 \\
& \mathrm{P}_{6}=0 \\
& \mathrm{P}_{7}=0 \\
& \mathrm{P}_{8}=0 \\
\mathrm{~L}=1.299 & \mathrm{P}_{9}=0 \\
\mathrm{P}_{10}=0 \\
\mathrm{~L}_{\mathbf{q}}=0 & \mathrm{P}_{11}=0 \\
\mathrm{~W}=0.25 & \mathrm{P}_{12}=0 \\
& \mathrm{P}_{13}=0 \\
W_{\mathbf{q}}=0 & \mathrm{P}_{14}=0 \\
& \mathrm{P}_{15}=0 \\
& \mathrm{P}_{16}=0 \\
& \mathrm{P}_{17}=0 \\
& \mathrm{P}_{18}=0 \\
& \mathrm{P}_{19}=0 \\
& \mathrm{P}_{20}=0
\end{array}
$$

17.6-25 This is a $M / M / 1 / K$ queue with $K=1,3$ and 5 , respectively. Also, $\lambda=1 / 4$ and $\mu=1 / 3$ oo that $\rho=3 / 4$. The fraction of customers lost $=P_{k}=\frac{(1-p)}{\left(1-p^{k+1}\right)} \cdot \rho^{k}$
(a) zero spaces: $P_{1}=\frac{(1-3 / 4)}{\left(1-(3 / 4)^{2}\right)} \cdot(3 / 4)=\frac{3}{7}=.429$
(b) two spaces: $P_{3}=\frac{(1-3 / 4)}{\left(1-(3 / 4)^{4}\right)} \cdot(3 / 4)^{3}=\frac{27}{175}=\cdot 154$
(c) four spaces: $P_{5}=\frac{(1-3 / 4)}{\left(1-(3 / 4)^{6}\right)} \cdot(3 / 4)^{5}=\frac{243}{3367}=.072$
$17.6-26 \mathrm{~m} / \mathrm{m} / \mathrm{s} / \mathrm{K}$ model

$$
\begin{aligned}
L_{q} & =\sum_{n=s}^{\infty}(n-s) P_{n}= \\
& =\sum_{n=s}^{k}(n-s) \frac{(\lambda / \mu)^{n}}{s!s^{n-s}} P_{0} \\
& =\frac{P_{0}(\lambda / \mu)^{s+1}}{s!s} \sum_{n=s}^{k}(n-s)\left(\frac{\lambda}{s \mu}\right)^{n-s-1}= \\
& =\frac{P_{0}(\lambda / \mu)^{s} p}{s!} \sum_{j=0}^{k-s} j p^{j-1}= \\
& =\frac{P_{0}(\eta / \mu)^{3} p}{s!} \sum_{j=0}^{k-s} \frac{d\left(\rho^{j}\right)}{d p}=
\end{aligned}
$$

$$
17-28
$$

$17.6-26$ (continued)

$$
\begin{aligned}
& =\frac{P_{0}(\lambda / \mu)^{s} \rho}{s!} \frac{d}{d \rho}\left[\sum_{j=0}^{k-s} \rho^{j}\right]= \\
& =\frac{P_{0}(\lambda / \mu)^{s} \rho}{s!} \frac{d}{d \rho}\left(\frac{1-\rho^{k-s+1}}{1-\rho}\right)= \\
& =\frac{P_{0}(\lambda / \mu)^{s} \rho}{s!}\left[\frac{1-\rho^{k-s}-(k-s) \rho^{k-s}(1-\rho)}{(1-\rho)^{2}}\right]
\end{aligned}
$$

$17.6-27$
W and W represent the waiting times of arriving customers who enter the system. The probability that such a customer finds n customers already there is:
$P\{n$ customers in systemlsystem not full $\}=\left\{\begin{array}{cc}\frac{p_{p}}{1-p_{k}} & 0 \leq n \in K-1 \\ 0 & n=K\end{array}\right.$
And so:
(a) $P\{\nu \nu>t\}=\frac{1}{1-P_{k}} \sum_{n=0}^{k-r} P_{n} P\left\{S_{n+1}>t\right\}$
(b) $P\left\{W_{q}>t\right\}=\frac{1}{1-P_{k}} \sum_{n=0}^{K=1} P_{n} P\left\{S_{n}>t\right\}$
$17.6-28$
a) \& b)

$\lambda=$	20		(mean arrival rate)
$\mu=$	30	(mean service rate)	
$s=$	1	(\# servers)	
$K=$	2	(max customers)	

Results

CONT .D)
$17.6-28$
a) \& b) (CONT'D)

Data		
$\lambda=$	20	(mean arrival rate)
$\mu=$	30	(mean service rate)
$s=$	1	(\# servers)
$K=$	3	(max customers)

Results

L	$=1.01538462$
L_{q}	$=0.43076923$
W	$=0.05789474$
W_{Q}	$=0.0245614$
P	$=0.66666667$
P_{0}	$=0.41538462$
P_{1}	$=0.27692308$
$P_{P}=0.18461538$	
P_{3}	$=0.12307692$

Data			
$\mu=$	20	(mean arrival rate)	
$\mu=$	30	(mean service rate)	
$s=$	1	(\# servers)	
$K=$	4	(max customers)	

Data		
$\lambda=$	20	(mean arrival rate)
$\mu=$	30	(mean service rate)
$s=$	1	(\# servers)
$K=$	5	(max customers)

c)

spaces	rate customers are lost $\left(\mathrm{P}_{\mathrm{k}}\right)$	change in P_{k}	profit/hour $(\$ 4)(\lambda)\left(1-\mathrm{P}_{\mathrm{k}}\right)$	change in profit/hour
2	0.21	0.09	$\$ 63.20$	
3	0.12	0.04	$\$ 70.40$	$\$ 7.20$
4	0.08	$\$ 73.60$	$\$ 3.20$	
5	0.05	0.03	$\$ 76.00$	$\$ 2.40$

d) Since it cost $\$ 200$ per month per car length rented, each additional space must bring at least $\$ 200$ per month (or $\$ 1$ per hour) in additional profit. Five spaces still bring more than that so 5 should be provided.
$11.6-29$
a) The $\mathrm{M} / \mathrm{M} / \mathrm{s}$ model with a finite calling population fits this queueing
system.
b)

$\lambda=$	Data	
$\mu=$	0.333333	(max arrival rate)
	(mean service rate)	
$s=$	1	(\# servers)
$N=$	3	(size of population)

The probabilities that there are $0,1,2$, or 3 machines not running are P_{0}, P_{1}, P_{2}, and P_{3} respectively as shown in the spreadsheet above. The mean of this distribution is $\mathrm{L}=0.718$ as shown above.
c) $W=\frac{L}{\bar{\lambda}}=\frac{0.718}{0.253}=2.832$ hours.

$$
\mid 7-3!
$$

d) The expected fraction of time that the repair technician will be busy is the system utilization, which is 0.667 .
e) $\mathrm{M} / \mathrm{M} / \mathrm{s}$ model:

$\lambda=$	Data	
$\mu=$	0.3333333	(mean arrival rate)
$s=$	1	(mean service rate)

Finite queue variation of the $\mathrm{M} / \mathrm{M} / \mathrm{s}$ model with $\mathrm{K}=3$:

$\lambda=0.3333333$	(mean arrival rate)	
$\mu=$	0.5	(mean service rate)
$s=$	1	(\# servers)
$K=$	3	(max customers)

Results

F)

$\lambda=$	0.333333	(max arrival rate)
$\mu=$	0.5	(mean service rate)
$s=$	2	(\# servers)
$N=$	3	(size of population)

Results

The probabilities that there are $0,1,2$, or 3 machines not running are P_{0}, P_{1}, P_{2}, and P_{3} respectively as shown in the spreadsheet above. The mean of this distribution is $\mathrm{L}=0.553$ as shown above.

The expected fraction of time that the repair technician will be busy is the system utilization, which is 0.333 .

$$
17-32
$$

17.6-30 (a) This is a finite calling Population of $\mathrm{m} / \mathrm{m} / \mathrm{s}$ model. Here $\lambda=1, \mu=2, S=1, N=3$
(b) Finite Calling Population of the $\mathrm{M} / \mathrm{M} / \mathrm{s}$ Model:

17.6 .31
a) Alternative 1:

Results

Three machines are the maximum that can be assigned to an operator while still achieving the required production rate. The average number not running is $\mathrm{L}=0.32$. Thus, $1-(0.32 / 3)=89.7 \%$ of machines are running on the average. Utilization of servers $=\frac{\bar{\lambda}}{s \mu}=\frac{1.072}{(1)(4)}=0.268$.

17.6-31

b) Alternative 2:

$\lambda=$	4.8		(max arrival rate)
$\mu=$	4		(mean service rate)
$s=$	3		(\# servers)
$N=$	12		(size of population)

Results
$L=1.12461693$
$L_{q}=0.03708214$
$W=0.25852352$
$W_{q}=0.00852433$

Three operators are required to achieve the required production rate. The average number not running is $\mathrm{L}=1.125$. Thus, $\mathrm{I}-(1.125 / 12)=90.6 \%$ of machines are running on the average.
Utilization of servers $=\frac{\bar{\lambda}}{s \mu}=\frac{4.350}{(3)(4)}=0.363$.
c) Alternative 3:

Data		
$\mu=$	4.8	(max arrival rate)
$\mu=$	8	(mean service rate)
$s=$	1	(\# servers)
$N=$	12	
		(size of population)

Results
$L=1.03519555$
$L_{q}=0.48698409$
$W=0.23602691$
$W_{q}=0.11103346$

Two operators are required to achieve the required production rate. The average number not running is $\mathrm{L}=1.035$. Thus, $1-(1.035 / 12)=91.4 \%$ of machines are running on the average.
Utilization of servers $=\frac{\bar{\lambda}}{s \mu}=\frac{4.386}{(1)(8)}=0.548$.
17.6-32 (a) state is (n, i) where n is the number of failed machines ($n=0,1,2,3$) and i is the stage of service (which operation) for the machine under repair $l i=O$ lif no machines are failed), 1,2).
(6)

(c) $\frac{\text { State } \text { Rate } i n=\text { Rate out }}{(0,0)} 4$

$(2,1) \quad 2 / 3 P_{1,1}+4 / 3 P_{5,1}+2 P_{3,2}=(4 / 3+2 / 3+1 / 3) P_{2,1}$
$(3,1) \quad 1 / 3 P_{2,1}=(4 / 3+2 / 3) P_{3,1}$
$(1,2) \quad 2 / 3 P_{1,1}=(2+2 / 3) P_{1,2}$
$\begin{array}{ll}(2,2) & 2 / 3\left(P_{1,2}+P_{2,1}\right)=(2+1 / 3) P_{a, 2}\end{array}$
$(3,2) \quad r_{3} P_{2,2}+2 / 3 P_{1,1}=2 P_{3,2}$
17-34
17.7-1 (a) (i) exponential: $\left\lvert\, V_{q}=\frac{\lambda}{\mu(\mu-\lambda)}\right.$
(ii) constant: $W_{q}=\frac{1}{2} \cdot \frac{\lambda}{\mu(\mu-\lambda)}$

$$
\begin{gathered}
\text { (iii) Erlang: } \sigma=\frac{1}{2}\left(0+\frac{1}{\mu}\right)=\frac{1}{2 \mu} \Rightarrow \sigma^{2}=\frac{1}{4 \mu^{2}} \Rightarrow k=4 \\
W_{q}=\frac{1+4}{8} \cdot \frac{\lambda}{\mu(\mu-\lambda)}=\frac{5}{8} \frac{\lambda}{\mu(\mu-\lambda)}
\end{gathered}
$$

So $W_{q}^{\text {exp }}=2 W_{q}^{c}=(8 / 5) W_{q}^{\text {Erlang }}$
(6) Let $B .1,(1 / 2)$ and (5/8) when the distribution is exponential, constant or Erlang, respectively.
Now $\lambda^{(2)}=2 \lambda^{(1)}$ and $\mu^{(2)}=2 \mu^{(1)}$
$W_{q}^{(2)}=B\left[\frac{2 \lambda^{(1)}}{2 \mu^{(1)}\left(2 \mu^{(1)}-2 A^{(1)}\right)}\right]=\frac{W_{q}^{(1)}}{2}$
$L_{q}^{(2)}=\lambda^{(2)} W_{q}^{(2)}=2 \lambda^{(1)} W_{q}^{(1)} / 2=\lambda^{(1)} W_{q}^{(1)}=L_{q}^{(1)}$
So the waiting time is cut in half while the queue lenght is unchanged.
$17.7-2$

$$
17-35
$$

17.7-2 (CONT'D)

Data		
$\lambda=$	0.2	(mean arrival rate)
$1 / \mu=$	4	(expected service time)
$\sigma=$	2	(standard deviation)
$s=$	1	(\# servers)

b) L_{q} is half with $\sigma=0$ therefore it is quite important to reduce the variability of the service times.
c)

σ	L_{q}	Change	
4	3.2		
3	2.5	0.7	largest reduction
2	2	0.5	
1	1.7	0.3	
0	1.6	0.1	smallest reduction

d) μ needs to be increased 0.05 to achieve the same L_{q}.
$17.7-3$
For $M / G / 1, L=\rho+\frac{\rho^{2}+\lambda^{2} \sigma_{s}^{2}}{2(1-\rho)}, L q=\frac{\rho^{2}+\lambda^{2} \sigma_{s}^{2}}{2(1-\rho)} \quad \omega=L / \lambda, \omega_{q}=\frac{L q}{\lambda}$
(a) False. when L increases, w ako increases.
(b) False. When μ and 6^{2} are small, $L q$ is not necessarily small.
(c) True. For exponential service time, $L_{q}=\frac{2 p^{2}}{2(1-p)}$ since $\sigma_{s}^{2}=1 / \mu^{2}$

For constant service time, $L_{q}=\frac{p_{2}}{2(1-p)}$, since $G_{s}^{2}=0$
(d) False. We car easily find distribution with $\sigma_{s}^{2}>\frac{1}{\mu^{2}}$
a)

$\lambda=$	30
$1 / \mu=0.0208333$	(mean arrival rate)
$\sigma=0.0208333$	(standard deviation)
$s=$	1

b)

Data		
$\lambda=$	30	(mean arrival rate)
$1 / \mu=$	0.0208333	(expected service time)
$\sigma=$	0	(standard deviation)
$\mathrm{s}=$	1	(\# servers)

Results

c) L_{q} in part b) is half of L_{q} in part a.
d) Marsha needs to reduce her service time to approximately 61 seconds.

17.7-5

(a)

$\mu P_{1}=\lambda P_{0}$
$\mu P_{2}=(\lambda+\mu) P_{1}$
$\lambda P_{0}+\mu P_{3}=(\lambda+\mu) P_{2}$
$\lambda P_{n-2}^{i}+\mu P_{n+1}=(\lambda+\mu) P_{n}$
(b) Poisson input with $\lambda=1$ and Erlang Service with $\mu=4 / 2=2$ and $k=2$.
c) $L=L_{q}+\rho=\frac{\lambda^{2} \sigma^{2}+\rho^{2}}{2(1-\rho)}+\rho=\frac{(1)^{2}(0.354)^{2}+0.5^{2}}{2(1-0.5)}+0.5=0.875$
d) $W=W_{q}+\frac{1}{\mu}=\frac{L_{q}}{\lambda}+\frac{1}{\mu}=\frac{0.375}{1}+\frac{1}{2}=0.875$
e)

Data		
$\mu=$	1	(mean arrival rate)
$\mu=$	2	(mean service rate)
$k=$	2	(shape parameter)
$s=$	1	(\# servers)

Results

17.7-6 a \& b) Current policy:

$\lambda=$	1	(mean arrival rate)
$\mu=$	2	(mean service rate)
$s=$	1	(\# servers)

Proposal:

	Data	
$\mu=$	0.25	(mean arrival rate)
$\mu=$	0.5	(mean service rate)
$k=$	4	(shape parameter)
$s=$	1	(\# servers)

Under the current policy an airplane looses 1 day of flying time as opposed to 3.25 days under the proposed policy.

Under the current policy 1 airplane is loosing flying time per day as opposed to 0.8125 airplanes.
c) The comparison in part b) is the appropriate one for making the decision since it takes into account that airplanes will not have to come in for service as often.
$17.7-7$
a) Let the state be (n, s) where:

$$
\begin{aligned}
& n=\# \text { of airplanes at the base } \\
& s=s t a g e \text { of senvice of the airplane being overhaukd }
\end{aligned}
$$

b) The rate $\operatorname{di\Delta g}(\partial \mathrm{m}$ is:

$$
17-38
$$

17.7-8 For the current arrangement, $\lambda=24$ and $\mu=30 \Rightarrow \rho=.8$ For the proposal, $\lambda=48, \mu=30$ and $s=2 \Rightarrow \rho=8$

17.7-9 (a) Let state (i, j) denote i calling units in the system, with the calling unit being served at the $j^{\text {th }}$ stage of his service. Then the state space is: $\{(0,0),(1,2),(1,1)$, $(1,2),(2,1)\}$. The rate diagram is:

Note this analysis is possible because an Erlang distribution with $1 / \mu=1 / 4$ and $k=2$ is equivalent to the sum of two independent exponential with parameter $1 / \mu=1 / 8$.
Hence, the steady state equations are:

$$
8 P_{1,2}=2 P_{0,0}
$$

$8 P_{1,1}=10 P_{1,2}$
$2 P_{0,0}+8 P_{2,2}=10 P_{1,1}$
$2 P_{1,2}+8 P_{a, 1}=8 P_{2,2}$
$2 P_{1,1}=8 P_{2,1}$
(b) The solution to these equations is:
$\left(D_{0,0} ; P_{12} ; P_{1,1} ; P_{2,2} ; P_{2,1}\right)=(64 / 14,16 / 114,20 / 114,9 / 114,5 / 114)$
Hence $P_{0}=\frac{64}{114}=.561$

$$
P_{1}=\frac{16+20}{114}=.316
$$

$$
P_{2}=\frac{4+5}{114}=.123
$$

$$
L=\frac{18+14}{52}=.561
$$

(c) If the service time is exponential, then the system is an $M / M / 1$ queue limited to $K-2$ and

$$
\begin{aligned}
& P_{0}=\frac{1-p}{1-p^{k+1}}=\frac{(1 / 2)}{(1-1 / 8)}=\frac{4}{7}=.571 \\
& P_{1}=\left(\frac{1}{2}\right) P_{0}=\frac{2}{7}=.286
\end{aligned}
$$

$17.7-9$ (cont D)

$$
\begin{aligned}
& P_{2}=\left(\frac{1}{2}\right)^{2} P_{0}=\frac{1}{7}=.143 \\
& L=\frac{2+2}{7}=\frac{4}{7}=.571
\end{aligned}
$$

17.7-10
state is (n, i) where n is the number of customers in the system $(n \geqslant 1)$ and i is the number of completed arrival stages for currently arriving customer ($i=0,1$).

17.7-11 (a) Let T be the repair time.

$$
\begin{aligned}
E(T) & =E(T \text { i minor repair needed }) \cdot(0.9)+ \\
& \left.+E(T \mid \text { major repair needed }) \cdot(0.1)=\frac{1}{2} \cdot 6.9\right)+5(0.1)= \\
& =.95 \text { hours }
\end{aligned}
$$

Now let X be a binary random variable with $P(X=1)=p=0.9$ and $P(X=0)=q=0.1, Y_{i}$ be an exponential randomvaria ale with mean $V_{\lambda_{i}}(i=1,2)$, with $\frac{1}{\lambda_{1}}=\frac{1}{2}$ and $\frac{1}{\lambda_{2}}=5$. Then we may express T as follows:
$T=Y_{1} \cdot X+Y_{2}(1-x)$ where X, Y_{1}, Y_{2} are independent
To calculate $\sigma^{2}=\operatorname{Vor}(T)$ we use the formula:

$$
\begin{aligned}
& \operatorname{Var}(T)=E(\operatorname{Var}(T \mid X))+\operatorname{Var}(E(T \mid X)) \\
& \operatorname{Var}(T \mid X)=\operatorname{Var}\left(Y_{1}\right) \cdot X+\operatorname{Var}\left(Y_{2}\right)(1-X)=\left(1 / \lambda_{1}^{2}\right) X+\left(1 / \lambda_{2}\right)(1-X) \\
& \therefore E(\operatorname{Var}(T \mid X))=P / \lambda_{1}^{2}+q / \lambda_{2}^{2} \\
& 17-40
\end{aligned}
$$

17.7-11 (Con trio)

$$
\begin{aligned}
& E(T \mid X)=E\left(Y_{1}\right) \cdot X+E\left(Y_{2}\right) \cdot(1-x)=\frac{1}{\lambda_{1}} \cdot x+\frac{1}{\lambda_{2}} \cdot(1-x)= \\
& =\frac{1}{\lambda_{2}}+\left(\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}}\right) X \\
& \therefore \operatorname{Var}(E(T \mid X))=\left(\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}}\right)^{2} \cdot \operatorname{Var} X=\left(\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}}\right)^{2} p q
\end{aligned}
$$

Therefore,

$$
\operatorname{Var}(T)=\frac{p}{\lambda^{2}}+\frac{q}{\lambda_{2}^{2}}+\left(\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}}\right)^{2} p q=4.5475
$$

Now we can see that T has a variance much bigger than that of an exponential random variable with same mean, which would be $(.95)^{2}=.9025$
(b) $\left.\begin{array}{rl}\mu & =\frac{1}{.95} \\ \lambda & =1\end{array}\right\} \Rightarrow \rho=.95$

Since this is an $M / G / 1$ queue we can apply the
following formulas:
$P_{0}=1-p=1 .-.95=.05$
$L_{q}=\frac{\lambda^{2} \sigma^{2}+p^{2}}{\partial(1-p)}=\frac{(4.5475)^{2}+(.95)^{2}}{2 \times .05}=215.82$
$L=p+L_{q}=216.77$
$W_{q}=\frac{L_{q}}{\lambda}=215.82$
$W=W_{q}+\frac{1}{\mu}=216.77$
(c) $W /$ major repair needed $=W_{q}+5=220.82$
W minor repair needed $=W_{q}+.5=216.32$
$L_{\text {major repair machines }}=(1)(0.1)(220.82)=22.082$
$L_{\text {minor repair machines }}$ (A) $(0.9)(216.30)=194.69$
(d) state is (n, i) where n is the number of failed machines and i is the type of repair being done on machine under repair $(i=1$ denotes minor repair and $i=2$ denotes major repair).

$$
17-41
$$

17.7-11 (CONT.D)
(e)

17.7-12 $\left\{x_{n}\right\}$ is an mimedded markov chain with states.

And $x_{n+1}=\left\{\begin{array}{ll}x_{n-1}+A_{n+1} & x_{n} \geq 1 \\ A_{n+1} & x_{n}>0\end{array} \quad\right.$ and $x_{n+1} \leqslant 3$
Anti is the number of arrivals in the 10 minutes.

$$
\operatorname{Pr}(A=n)=\frac{e^{-\lambda t}(\lambda t)^{n}}{n!}=a_{n} \text {, and } \lambda t=\frac{60}{50} \cdot \frac{10}{60}=0.2
$$

So, the transition matrix is

$$
\begin{aligned}
P & =\left[\begin{array}{cccc}
a_{0} & a_{1} & a_{2} & 1-a_{0}-a_{1}-a_{2} \\
a_{0} & a_{1} & a_{2} & 1-a_{0}-a_{1}-a_{2} \\
0 & a_{0} & a_{1} & 1-a_{0}-a_{1} \\
0 & 0 & a_{0} & 1-a_{0}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
0.819 & 0.164 & 0.016 & 0.001 \\
0.819 & 0.164 & 0.016 & a .001 \\
0 & 0.819 & 0.164 & 0.017 \\
0 & 0 & 0.819 & 0.181
\end{array}\right]
\end{aligned}
$$

b) Ran OR coursenare, we get

$$
p_{0}=0.801, \quad p_{1}=0.177, \quad p_{2}=0.02, \quad p_{3}=0.002
$$

C)

$$
L=p_{1}+2 p_{2}+3 p_{3}=0.223
$$

In M/P/1 modal, $\quad L^{\infty}=\rho+\frac{\rho^{2}}{2(1-\rho)}=0.2+\frac{0.04}{2(1-0.2)}=0.225$
So, $L^{\infty}>L$
17.8-1
a) This system is an example of a nonpreemptive priority queueing system.
b)

$n=$	2	(\# of priority classes)
$\mu=$	20	(mean service rate)
$s=$	1	(\# servers)

17.8-1 (GONT'D)

c) $\frac{W_{q 1}}{W_{q 2}}=\frac{0.033}{0.083}=0.4$
d) $\rho(12)=0.6=7.2$ hours
$17.8-2$

Il W_{1} is the primary concern, one should choose the first alternative (one fast server). On the other hand, if $W_{q,}$ is the primary concern, one should choose the second alternative (two slow servers)
17.8-3
a)

	u	a	b	W
0			1	
1	2.5	0.16	0.6	0.67
2	3.33	0.25	0.3	1.69
3	5	0.29	0.1	9.87

b)

			B	W
u	3.33		1	
r	0.30	1	0.7	0.62
A	4.44	2	0.4	1.10
3	0.1	5.93		

$17.8-4$

$\lambda=8, \lambda_{1}=2, \lambda_{2}=4, \lambda_{3}=2, \mu=10$
(a) First come, first served : $W=\frac{1}{\mu-\lambda}=\frac{1}{2}$ days
(b) Nonpreemptive:

$$
\begin{aligned}
A & =\mu^{2}=\frac{2}{2} 5 \\
B_{1} & =1-\left(\lambda_{1} / \mu\right)=4 / 5 \\
B_{2} & =1-\left(\lambda_{1}+\lambda_{2}\right) / \mu=2 / 5 \\
B_{3} & =1-\lambda / \mu=1 / 5 \\
\text { so } \quad W_{1} & =\frac{1}{A B_{1}}+\frac{1}{\mu}=\frac{1}{5}=20 \text { days } \\
W_{2} & =\frac{1}{A B_{1} B_{2}}+\frac{1}{\mu}=\frac{7}{20}=.35 \text { days } \\
W_{3} & =\frac{1}{A B_{2} B_{3}}+\frac{1}{\mu}=\frac{11}{10}=1.1 \text { days }
\end{aligned}
$$

(c) Preemptive:

$$
\begin{aligned}
& W_{1}=\frac{1 / \mu}{B_{1}}=\frac{1}{8}=125 \text { days } \\
& W_{2}=\frac{1 / \mu}{B_{1} B_{2}}=\frac{5}{16}=.3125 \text { days } \\
& W_{3}=\frac{1 / \mu}{B_{2} B_{3}}=\frac{5}{4}=1.25 \text { days }
\end{aligned}
$$

17.8-5

$$
\lambda_{1}=0.1, \lambda_{2}=0.4, \lambda_{3}=1.5, \lambda=\sum_{i=1}^{3} \lambda_{i}=2, \mu=3
$$

17.8-6
a) The expected number of customers woubln't change since oustomers of both types have exactly same arrival pattern and service times. The change of the prority wouldn't affect the total service rate from the server's view and thus the total queue size stays the same
b) Run $O R$ coursewave, for Nonpreomptive Prority-Discipbice Queueing model, we have
$\mu=6$

$$
\begin{aligned}
& \lambda_{1}=5 \\
& \lambda_{2}=5
\end{aligned}
$$

$s=2$
$N=2$
$W_{1}=0.27489 \quad\left(W_{\mathrm{q}}\right)_{1}=0.10823$
$W_{2}=0.81602 \quad\left(W_{q}\right)_{2}=0.64935$
for $M / M / 2$ queueing system,

$$
\begin{aligned}
\lambda & =10 \\
\mu & =6 \\
s & =2 \\
17.8-7 &
\end{aligned}
$$

$L_{\mathrm{q}}=3.788$
$W=0.545$

Let state $u_{i, j}$) denote i jobs of high priority and j jobs of low priority.

$17-44$
17.8.7 (CON T-0)

$$
\begin{array}{l|l}
\text { state } & \text { Rate in }=\text { Rate out } \\
\hline(0,0) & \mu\left(P_{4,}+P_{0, i}\right)=\left(\lambda_{1}+\lambda_{2}\right) P_{q 0} \\
(i, 0) \text { for } i \geqslant 1 & \mu P_{i+1,0}+\lambda_{1} P_{1,1,0}=\left(\mu+\lambda_{1}+\lambda_{2}\right) P_{i, 0} \\
(0, j) \text { for } j \geqslant 1 & \mu\left(P_{1, j}+P_{0, j, 1}\right)+\lambda_{2} P_{0, j-1}=\left(\mu+\lambda_{1}+\lambda_{2}\right) P_{0, j} \\
(1, j) \text { for } i, j 1 & \mu P_{i n, j}+\lambda_{1} P_{1-1, j}+\lambda_{2} P_{1, j-1}=\left(\mu+\lambda_{1}+\lambda_{2}\right) P_{i, j}
\end{array}
$$

17.9-1. (a) Let the state be $n_{1}=$ number of type 1 customers in the system Then the rate diagram for type 1 customers is:

(b) Let the state be $n=$ number of customers in the system Then the rate diagram for the total number of customers is:

(C) Let the state be $\left(n_{1}, n_{2}\right)$ where
$n_{1}=$ number of type 1 customers in the system Then the rate diagram is:

17.9-2
(a) $P_{n_{1}}=\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)^{n_{1}}$
$P_{n_{2}}^{\prime}=\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^{n_{2}}$
$P\left\{\left(N_{1}, N_{2}\right)=\left(n_{1} n_{2}\right)\right\}=P_{n_{1}} P_{n_{2}}=\left(\frac{1}{6}\right)\left(\frac{1}{2}\right)^{n_{1}}\left(\frac{2}{3}\right)^{n_{2}}$
(b) $P\left\{\left(N_{1}, N_{2}\right)=(0,0)\right\}=\frac{1}{6}$
(c) $L=L_{1}+L_{2}=1+2=3$
$w=w_{1}+w_{2}=\frac{1}{10}+\frac{2}{10}=.3$ hour $=18$ minutes
17.10-1 a) 1 server is optimal.

	B	C	D
3		Data	
4	$\lambda=$	8	(mean arrival rate)
5	$\mu=$	10	(mean service rate)
6	$\mathrm{s}=$	1	(\# servers)
7			
8	$\operatorname{Pr}(\mathrm{W}>\mathrm{t})=$	0.90483742	
9	when $\mathrm{t}=$	0.05	
10			
11	$\operatorname{Prob}\left(W_{\mathrm{a}}>t\right)=$	072386993	
12	when $\mathrm{t}=$	0.05	
13			
14	Economic Analysis		
15	$\mathrm{Cs}=$	\$100.00	(cost / server / unit time)
16	$\mathrm{Cw}=$	\$10.00	(waiting cost / unit time)
17			
18	Cost of Service	\$100.00	
19	Cost of Waiting	\$40.00	
20	Total Cost	\$140.00	

b) 2 servers are optimal.

	B	C	D
3		Data	
4	$\lambda=$	8	(mean arrival rate)
5	$\mu=$	10	(mean service rate)
6	$\mathrm{s}=$	2	(\# servers)
7			
8	$\operatorname{Pr}(\mathrm{W}>\mathrm{t})=$	0.67249526	
9	when $t=$	0.05	
10			
11	$\operatorname{Prob}\left(W_{q}>t\right)=$	0.12544266	
12	when $\mathrm{t}=$	0.05	
13			
14	Economic Analysis		
15	Cs $=$	\$100.00	(cost / server / unit time)
16	$\mathrm{Cw}=$	\$100.00	(waiting cost / unit time)
17			
18	Cost of Service	\$200.00	
19	Cost of Waiting	\$95.24	
20	Total Cost	\$295.24	

c) 3 servers are optimal.

	B	C	D
3		Data	
4	$\lambda=$	8	(mean arrival rate)
5	$\mu=$	10	(mean service rate)
6	$\mathrm{s}=$	3	(\# servers)
7			
8	$\operatorname{Pr}(\mathrm{W}>\mathrm{t})=$	0.61839666	
9	when $t=$	0.05	
10			
11	$\operatorname{Prob}\left(W_{q}>t\right)=$	0.01732012	
12	when $t=$	0.05	
13			
14	Economic Analysis		
15	Cs $=$	\$10.00	(cost / server / unit time)
16	$\mathrm{Cw}=$	\$100.00	(waiting cost / unit time)
17			
18	Cost of Service	\$30.00	
19	Cost of Waiting	\$81.89	
20	Total Cost	- \$111.89	

17-10.2 Jim should operate 4 cash registers during the lunch hour.

	B	C	D	E	F	G
3		Data				Results
4	$\lambda=$	66	(mean arrival rate)		$\mathrm{L}=$	2.477198599
5	$\mu=$	- 30	(mean service rate)		$L_{q}=$	0.277198599
6	$s=$	- 4	(\# servers)			
7					W =	0.037533312
8	$\operatorname{Pr}(\mathrm{W}>\mathrm{t})=$	0.26733457			$\mathrm{W}_{\mathrm{q}}=$	0.004199979
9	when $\mathrm{t}=$	0.05				\%
10					$\rho=$	1.055
11	$\operatorname{Prob}\left(W_{9}>t\right)=$	0.01524213 3				
12	when $\mathrm{t}=$	0.05			n	P_{n}
13					0	0.104562001
14	Economic Analysis				1	0.230036403
15	Cs =	\$9.00.	(cost / server / unit time)		2	0.253040043
16	$\mathrm{Cw}=$	\$18.00	(waiting cost / unit time)		3	0.185562698
17					4	0.102059484
18	Cost of Service	\$36.00			5	0.056132716
19	Cost of Waiting	\$44.59			6	0.030872994
20	Total Cost	\$8059			7	0.016980147

17.10-3 Garrett-Tompkins should have 6 copiers.

	B	C	D	E	F	G
3		Data				Results
4	$\lambda=3$	- 30	(mean arrival rate)		$L=$	2.533889152
5	$\mu=$	-12 ${ }^{\text {a }}$	(mean service rate)		$L_{q}=$	0.033889152
6	$\mathrm{s}=$	- 6	(\# servers)			
7					W =	0.084462972
8	$\operatorname{Pr}(\mathrm{W}>t)=$	0.55690297			$\mathrm{W}_{\mathrm{q}}=$	0.001129638
9	when $t=$	2. 0.05				
10					$\rho=$	0.416666667
11	$\operatorname{Prob}\left(W_{9}>t\right)=$	0,00580992				
12	when $t=5$	- 0.05			n	P_{n}
13					0	0.081620259
14	Economic Analysis:				1	0.204050648
15	Cs $=$	\$1.50	(cost / server / unit time)		2	- 025506331
16	$\mathrm{Cw}=$	\$25.00	(waiting cost / unit time)		3	(. 0.212552759
17					4	\$0.132845474
18	Cost of Service	\$9.00			5	0.066422737
19	Cost of Waiting	\$63.35			6	${ }^{+} .0 .02767614$
20	Total Cost	\$ $\$ 72.35$			7	0.011531725

17.1 a) Status quo at the presses -7.52 sheets of in-process inventory.

	A	B	C	D	E	G	H
1	Template for the M/M/s Queueing Model						
2							
3			Data				Results
4		$\lambda=$	7	(mean arrival rate)		L =	7.517372837
5		$\mu=$	1	(mean service rate)		$\mathrm{L}_{\mathrm{q}}=$	0.517372837
6		$\mathrm{s}=$	10	(\# servers)			

Status quo at the inspection station -3.94 wing sections of in-process inventory.

	A	B	C	D	E	F	G
1	Template for M/D/1 Queueing Model						
2							
3			Data				Results
4		$\lambda=$	7	(mean arrival rate)		$\mathrm{L}=$	3.9375
5		$\mu=$	8	(mean service rate)		$\mathrm{L}_{\mathrm{q}}=$	3.0625
6		$\mathrm{~s}=$	1	(\# servers)			

Inventory cost $=(7.52+3.94)(\$ 8 /$ hour $)=\$ 91.68 /$ hour
Machine cost $=(10)(\$ 7 /$ hour $)=\$ 70 /$ hour
Inspector cost = \$17/hour
Total cost $=\$ 178.68 /$ hour
b) Proposal 1 will increase the in-process inventory at the presses to 11.05 sheets since the mean service rate has decreased.

	A	B		C	D	E	G	H
1	Template for the M/M/s Queueing Model							
2								
3				Data				Results
4			$\lambda=$	7	(mean arrival rate)		L =	11.04740664
5			$\mu=$	0.83333333	(mean service rate)		$\mathrm{L}_{q}=$	2.647406638
6			$\mathrm{s}=$	10	(\# servers)			

The in-process inventory at the inspection station will not change.
Inventory cost $=(11.05+3.94)(\$ 8 /$ hour $)=\$ 119.92 /$ hour
Machine cost $=(10)(\$ 6.50)=\$ 65 /$ hour
Inspector cost $=\$ 17 /$ hour
Total cost $=\$ 201.92 /$ hour
This total cost is higher than for the status quo so should not be adopted. The main reason for the higher cost is that slowing down the machines won't change in-process inventory for the inspection station.
c) Proposal 2 will increase the in-process inventory at the inspection station to 4.15 wing sections since the variability of the service rate has increased.

	B	C	D	E	F	G
3		Data				Results
4	$\lambda=$	7	(mean arrival rate)		$\mathrm{L}=$	4.1475
5	$\mu=$	8.33333333	(mean service rate)		$\mathrm{L}_{\mathrm{q}}=$	3.3075
6	$\mathrm{k}=$	2	(shape parameter)			
7	$\mathrm{~s}=$	1	(\# servers)		$\mathrm{W}=$	0.5925
8					$\mathrm{~W}_{\mathrm{q}}=$	0.4725

The in-process inventory at the presses will not change.
Inventory cost $=(7.52+4.15)(\$ 8 /$ hour $)=\$ 93.36 /$ hour
Machine cost = (10)(\$7/hour) = \$70 / hour
Inspector cost = \$17 / hour
Total cost $=\$ 180.36$ / hour
This total cost is higher than for the status quo so should not be adopted. The main reason for the higher cost is the increase in the service rate variability (Erlang rather than constant) and the resulting increase in the in-process inventory.
d) They should consider increasing power to the presses (increasing there cost to \$7.50 per hour but reducing their average time to form a wing section to 0.8 hours). This would decrease the in-process inventory at the presses to 5.69.

	A	B	C	D	E	G	H
1	Template for the M/M/s Queueing Model						
2							
3			Data				Results
4		$\lambda=$	7	(mean arrival rate)		L =	5.688419945
5		$\mu=$	1.25	(mean service rate)		$\mathrm{L}_{q}=$	0.088419945
6		$\mathrm{s}=$	10	(\# servers)			

Inventory cost $=(5.69+3.94)(\$ 8 /$ hour $)=\$ 77.04 /$ hour
Machine cost $=(10)(\$ 7.50 /$ hour $)=\$ 75 /$ hour
Inspector cost $=\$ 17 /$ hour
Total cost = \$169.04 / hour
This total cost is lower than the status quo and both proposals.
17.2 The operations of the records and benefits call center can be modeled as an $\mathrm{M} / \mathrm{M} / \mathrm{s}$ queueing system. We, therefore, use the template for the $\mathrm{M} / \mathrm{M} / \mathrm{s}$ queueing model throughout this case. The mean arrival rate equals 70 per hour, and the mean service rate of every representative equals 6 per hour. Mark needs at least $s=12$ representatives answering phone calls to ensure that the queue does not grow indefinitely.
a) In order to solve this problem we have to determine the number of servers by "trial and error" until we find a number s such that the probability of waiting more than 4 minutes in the queue is above 35%.

For 13 servers we obtain the following results:
Template for $\mathrm{M} / \mathrm{M} / \mathrm{s}$ Queueing Model

For 13 servers, the probability that a customer has to wait more than 4 minutes equals 36.3\%.

If there are 12 servers, this probability would be 78% :
Template for M/M/s Queueing Model

If there are 14 servers, this probability would be less than 16.4% :
Template for M/M/s Queueing Model

	Data	
$\begin{array}{r} \mathrm{l}= \\ \mathrm{m}= \\ \mathrm{s}= \end{array}$		(mean arrival rate) (mean service rate) (\# servers)

$\begin{gathered} \operatorname{Pr}(w>t)= \\ \text { when } t= \end{gathered}$	$\because=$0.75683 0.066667,
$\operatorname{Prob}\left(w_{q}>t\right)=$ when $\mathrm{t}=$	0.163704% 0.066667

It appears that Mark currently employs 13 servers.

$$
17-51
$$

b) Using the same procedure as in part (a) we find that for $s=18$ servers the probability of waiting more than 1 minute drops below 5% :

Template for M/M/s Queueing Model

Data		Results	
$1=\quad 70$	(mean arrival rate)	L =	11.77798802
$\begin{gathered} \mathrm{m}= \\ \mathrm{s}= \end{gathered} \quad \begin{aligned} & 6 \\ & 18 \end{aligned}$	(mean service rate) (\# servers)	$\mathrm{L}_{\mathrm{q}}=$	0.111321353
		$\mathrm{W}=$	0.168256972
$\operatorname{Pr}(\mathrm{w}>\mathrm{t})=0.909075$		$\mathrm{W}_{\mathrm{q}}=$	0.001590305
when $\mathrm{t}=0.016667$			
		$\mathrm{r}=$	0.648148148
$\operatorname{Prob}\left(w_{\mathrm{o}}>t\right)=0.032078$			
when $\mathrm{t}=$ \% 0.016667		$\mathrm{P}_{0}=$	- $8.49029 \mathrm{E}-06$
		$\mathrm{P}_{1}=$	- $9.90534 \mathrm{E}-05$
		$\mathrm{P}_{2}=$	0.000577812
		$\mathrm{P}_{3}=$	0.002247045
		$\mathrm{P}_{4}=$	0.006553882
		$\mathrm{P}_{5}=$	- 0.015292391
		$\mathrm{P}_{6}=$	- 0.029735204
		$\mathrm{P}_{7}=$	=0,049558673
		$\mathrm{P}_{8}=$	\% 0.072273065
		$\mathrm{P}_{9}=$	\% 0.093687307
		$\mathrm{P}_{10}=$	- 0.109301858
		$\mathrm{P}_{11}=$, 0.115926213
		$\mathrm{P}_{12}=$	\& 0.11270604
		$\mathrm{P}_{13}=$	- 0.101146446
		$\mathrm{P}_{14}=$	- 0.084288705
		$\mathrm{P}_{15}=$	\% 0.065557882
		$\mathrm{P}_{16}=$	+ 0.047802622
		$\mathrm{P}_{17}=$	- 0.032805721 .
		$\mathrm{P}_{18}=$	\% 0.021262967.
		$\mathrm{P}_{19}=$	\% 0.013781553 .
		$\mathrm{P}_{20}=$	\% 0.008932488
		$\mathrm{P}_{21}=$	10.0.005789576.
		$\mathrm{P}_{22}=$	20.003752503
		$\mathrm{P}_{23}=$	\% 0.002432178
		$\mathrm{P}_{24}=$	物 0.001576411
		$\mathrm{P}_{25}=$	0.001021748\%

c) Using the same "trial and error" method as before, we find the minimal number of servers necessary to ensure that 80% of customers wait one minute or less to be $s=1.5$

Template for $\mathrm{M} / \mathrm{M} / \mathrm{s}$ Queueing Model

$\operatorname{Pr}(w>t)=$	0.926712
when $t=$	0.016667

$\operatorname{Prob}\left(\mathrm{w}_{\mathrm{o}}>\mathrm{t}\right)=$	0,194213
when $\mathrm{t}=$	0.016667.

The minimal number of servers to ensure that 95% of customers wait 90 seconds or less is $s=17$.

Template for $\mathrm{M} / \mathrm{M} / \mathrm{s}$ Queueing Model

When an employee of Cutting Edge calls the benefits center from work and has to wait on the phone, the company loses valuable work time for this customer. Mark should try to estimate the amount of work time employees lose when they have to wait on the phone. Then he could determine the cost of this waiting time and try to choose the number of representatives in such a fashion that he reaches a reasonable trade-off between the cost of employees waiting on the phone and the cost of adding new representatives.

Clearly, Mark's criteria would be different if he were dealing with external customers. While the internal customers might become disgruntled when they have to wait on the phone, they cannot call somewhere else. Effectively, the benefits center holds monopolistic power. On the contrary, if Mark were running a call center dealing with external customers, these customers could decide to do business with a competitor if they become angry from waiting on the phone.
d) If the representatives can only handle 6 calls per hour, then Mark needs to employ 18 representatives (see part b). If a representative can handle 8 calls per hour, then the minimal number of representatives equals 14:

Template for $\mathrm{M} / \mathrm{M} / \mathrm{s}$ Queueing Model
Data

$\mathrm{l}=$	70 8 $\mathrm{~m}=$ $\mathrm{s}=$	(mean arrival rate) 14
	(mean service rate)	
(\# servers)		

$$
\begin{gathered}
\hline \operatorname{Prob}\left(w_{q}>t\right)= \\
\text { when } t=
\end{gathered} \begin{aligned}
& 0.036649 \\
& 0.016667 \\
& \hline
\end{aligned}
$$

The cost of training 14 employees equals $14 * \$ 2500=\$ 35000$ and saves Mark $4 * \$ 30000$ $=\$ 120000$ in annual salary. In the first year alone Mark would save $\$ 85000$ if he chose to train all his employees so that they can handle 8 instead of 6 phone calls per hour.

$$
17-54
$$

e) Mark needs to carefully check the number of calls arriving at the call center per hour. In this case we have made the simplifying assumption that the arrival rate is constant. That assumption is unrealistic; clearly we would expect more calls during certain times of the day, during certain days of the week, and during certain weeks of the year. We might want to collect data on the number of calls received depending on the time. This data could then be used to forecast the number of calls the center will receive in the near future, which in turn would help to forecast the number of representatives needed.

Also, Mark should carefully check the number of phone calls a representative can answer per hour. Clearly, the length of a call will depend on the issue the caller wants to discuss. We might want to consider training representatives for special issues. These representatives could then always answer those particular calls. Using specialized representatives might increase the number of phone calls the entire center can handle.

Finally, using an $\mathrm{M} / \mathrm{M} / \mathrm{s}$ model is clearly a great simplification. We need to evaluate whether the assumptions for an $\mathrm{M} / \mathrm{M} / \mathrm{s}$ model are at least approximately satisfied. If this is not the case, we should consider more general models such as $\mathrm{M} / \mathrm{G} / \mathrm{s}$ or $\mathrm{G} / \mathrm{G} / \mathrm{s}$.

