Worked Examples for Chapter 9

Example for Section 9.3

Sarah has just graduated from high school. As a graduation present, her parents have given her a car fund of $21,000 to help purchase and maintain a certain three-year-old used car for college. Since operating and maintenance costs go up rapidly as the car ages, Sarah's parents tell her that she will be welcome to trade in her car on another three-year-old car one or more times during the next three summers if she determines that this would minimize her total net cost. They also inform her that they will give her a new car in four years as a college graduation present, so she should definitely plan to trade in her car then. (These are pretty nice parents!)


The table  gives the relevant data for each time Sarah purchases a three-year-old car. For example, if she trades in her car after two years, the next car will be in ownership year 1 during her junior year, etc.

Sarah's Data Each Time She Purchases a Three-Year Old Car

	Purchase
	Operating and Maintenance Costs 

for Ownership Year
	Trade-in Value at End 

of Ownership Year

	 Price
	
1
2
3
4
	
1
2
3
4

	$12,000
	
$2,000
$3,000
$4,500
$6,500
	
$8,500
$6,500
$4,500
$3,000



When should Sarah trade in her car (if at all) during the next three summers to minimize her total net cost of purchasing, operating, and maintaining the cars over her four years of college?

(a) Formulate this problem as a shortest-path problem.


The following figure shows the network formulation of this problem as a shortest path problem. Nodes 1, 2, 3, and 4 are the end of Sarah's year 1, 2, 3, and 4 of college, respectively. Node 0 is now, before starting college. Each arc from one node to a second node corresponds to the activity of purchasing a car at the time indicated by the first of these two nodes and then trading it in at the time indicated by the second node. Sarah begins by purchasing a car now, and she ends by trading in a car at the end of year 4, so node 0 is the origin and node 4 is the destination.
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The number of arcs on the path chosen from the origin to the destination indicates how many times Sarah will purchase and trade in a car. For example, consider the path

[image: image5.wmf] 
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This corresponds to purchasing a car now, then trading it in at the end of year 1 to purchase a second car, then trading in the second car at the end of year 3 to purchase a third car, and then trading in this third car at the end of year 4.


Since Sarah wants to minimize her total net cost from now (node 0) to the end of year 4 (node 4), each arc length needs to measure the net cost of that arc's cycle of purchasing, maintaining, and trading in a car. Therefore,


     Arc length
=  purchase price




+  operating and maintenance costs




-  trade-in value.

For example, consider the arc from node 1 to node 3. This arc corresponds to purchasing a car at the end of year 1, operating and maintaining it during ownership years 1 and 2, and then trading it in at the end of ownership year 2. Consequently,


  Length of arc from  [image: image1.wmf] 
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=  12,000 +  2,000 + 3,000 -  6,500







=  10,500
(in dollars).


The arc lengths calculated in this way are shown next to the arcs in the figure. Adding up the lengths of the arcs on any path from node 0 to node 4 then gives the total net cost for that particular plan for trading in cars over the next four years. Therefore, finding the shortest path from the origin to the destination identifies the plan that will minimize Sarah's total net cost.

(b) Use the algorithm described in Sec. 9.3 to solve this shortest-path problem.

	n
	Solved nodes connected to unsolved nodes
	Its closest connected unsolved node
	Total cost involved
	nth nearest node
	Its minimum cost
	Its last connection

	1
	0
	1
	5,500
	1
	5,500
	0 

	2


	0

1
	2

2
	10,500

5,500+5,500

= 11,000
	2
	10,500
	0  2

	3


	0

1

2
	3

3

3
	17,000

5,500+10,500

= 16,000

10,500+5,500

= 16,000
	3

3
	16,000

16,000
	1  3

2  3

	4
	0

1

2

3
	4

4

4

4
	25,000

5,500+17,000

= 22,500

10,500+10,500

= 21,000

17,000+5,500

= 22,500
	4


	21,000
	2  4


Thus, the shortest path turns out to be
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Trade in the first car at the end of Year 2.



Trade in the second car at the end of Year 4.

The length of this path is 10,500 + 10,500 = 21,000, so Sarah's total net cost is $21,000. Recall that this is exactly the amount in Sarah's car fund provided by her parents. (These are really nice parents!)

(c) Formulate and solve a spreadsheet model for this problem.


The following figure shows a spreadsheet model for this problem. The bottom of the figure shows the equations entered in the target cell TotalCost (D23) and the other output cells Cost (E12:E21) and NetFlow (H12:H16). After applying the Solver, the values of 1 in the changing cells OnRoute (D12:D21) identify the shortest (least expensive) path for scheduling trade-ins. 
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Example for Section 9.5

For the network shown below, use the augmenting path algorithm described in Sec. 9.5 to find the flow pattern giving the maximum flow from the source to the sink, given that the arc capacity from node i to node j is the number nearest node i along the arc between these nodes.
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Iteration 0: The initial residual network is
[image: image8.wmf] 
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Iteration 1: One of the several augmenting paths is 1( 3 ( 8 ( 9, which has a residual capacity of min{9, 6, 7} = 6. Any of the augmenting paths could be chosen, but suppose we select this one. By assigning a flow of 6 to this path, the resulting residual network is
[image: image9.wmf] 
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Iteration 2: Assign a flow of 4 to the augmenting path 1( 2 ( 4 ( 7 ( 9. The resulting residual network is
[image: image10.wmf] 
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Iteration 3: Assign a flow of 3 to the augmenting path 1( 3 ( 5 ( 7 ( 9. The resulting residual network is
[image: image11.wmf] 
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Iteration 4: Assign a flow of 2 to the augmenting path 1( 2 ( 5 ( 9. The resulting residual network is
[image: image12.wmf] 
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Iteration 5: Assign a flow of 3 to the augmenting path 1( 5 ( 9. The resulting residual network is
[image: image13.wmf]6
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Iteration 6: Assign a flow of 2 to the augmenting path 1( 2 ( 7 ( 5 ( 9. (Although flow between nodes 5 and 7 can only go in the direction from node 5 to node 7, this assignment of a flow of 2 to 7 is, in reality, simply reducing the previously assigned flow from node 5 to node 7 by 2 units.) The resulting residual network is
[image: image14.wmf] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Origin)

(Destination)

4

3

2

1

17,000

10,500

10,500

5,500

5,500

5,500

5,500

25,000

17,000

10,500

0


There are no more augmenting paths, so the current flow (given by the number at the end of the respective arcs) in the following network is optimal. The maximum flow is 20.
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Example for Sections 9.6 and 9.7

Consider the transportation problem having the following parameter table:

	
	Destination
	

	
	1
	2
	3
	Supply

	Source 
1
	6
	7
	4
	40

	
2
	5
	8
	6
	60

	          Demand
	30
	40
	30
	


Formulate the network representation of this problem as a minimum cost flow problem. Use the northwest corner rule to obtain an initial BF solution. Then use the network simplex method to solve the problem.
The network formulation of this problem is shown in the following figure,  where the number next to each node is the net flow generated there and the number next to each arc is the cost per unit flow through that arc.
[image: image16.wmf] 
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Using the northwest corner rule, we obtain the following initial BF solution, where the number in parentheses next to each arc is the flow through that arc.
[image: image17.wmf]
Now we apply the network simplex method to the initial BF solution shown above.

Iteration 1: 
Increase xS1-D3 : if (xS1-D3  = 1,  the cycle created is S1  D3  S2  D2  S1 and the incremental cost around this cycle is (Z = 4 - 6 + 8 - 7 = -1.

Increase xS2-D1 : if (xS2-D1  = 1,  the cycle created is S2  D1  S1  D2  S2 and the incremental cost around this cycle is (Z = 5 - 6 + 7 - 8 = -2.
Hence, we choose to increase xS2-D1  since it decreases the total cost Z at the fastest rate. Since xS1-D1 and xS2-D2 reach their lower bound simultaneously when we increase xS2-D1, we can choose either of them as the leaving basic variable. Suppose we choose  xS1-D1 as the leaving basic variable.
The resulting BF spanning tree is
[image: image18.wmf] 
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Iteration 2: 
Increase xS1-D3 : if (xS1-D3  = 1,  the cycle created is S1  D3  S2  D2  S1 and the incremental cost around this cycle is (Z = 4 - 6 + 8 - 7 = -1.
Increase xS1-D1 : if (xS1-D1  = 1,  the cycle created is S1  D1  S2  D2  S1  and the incremental cost around this cycle is (Z = 6 - 5 + 8 - 7 =  2.
Hence, we choose to increase xS1-D3  since it is the only option that decreases the total cost Z. Since xS2-D3 reaches its lower bound first, we choose xS2-D3 as the leaving basic variable. 
The resulting BF spanning tree is
[image: image19.wmf] 
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Optimality Test:

Increase xS1-D1: If xS1-D1 = 1, the cycle created is S1  D1  S2  D2  S1 and the incremental cost around this cycle is Z = 6 - 5 + 8 - 7 = 2.

Increase xS2-D3: If xS2-D3 = 1, the cycle created is S2  D3  S1  D2  S2 and the incremental cost around this cycle is Z = 6 - 4 + 7 - 8 = 1.

total   >          by introducing flow through either of the nonbasic arcs. Therefore, the BF solution shown above is optimal.
Example for Section 9.8 

 Sharon Lowe, Vice President for Marketing for the Electronic Toys Company, is about to begin a project to design an advertising campaign for a new line of toys. She wants the project completed within 47 days in time to launch the advertising campaign at the beginning of the Christmas season.


Sharon has identified the six activities (labeled A, B, ...​, F) needed to execute this project. Considering the order in which these activities need to occur, she also has constructed the following project network.
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To meet the deadline of 47 days, Sharon has decided to crash the project, using the CPM method of time-cost trade-offs to determine how to do this in the most economical way. She has gathered the data needed to apply this method, as given below.
	Activity
	Time (days)
	Cost
	Maximum Reduction in Time
	Crash Cost per day saved

	
	Normal
	Crash
	Normal
	Crash
	
	

	A
	12
	9
	$210,000
	$270,000
	3
	$20,000

	B
	23
	18
	$410,000
	$460,000
	5
	$10,000

	C
	15
	12
	$290,000
	$320,000
	3
	$10,000

	D
	27
	21
	$440,000
	$500,000
	6
	$10,000

	E
	18
	14
	$350,000
	$410,000
	4
	$15,000

	F
	6
	4
	$160,000
	$210,000
	2
	$25,000


(a) Consider the lower path through the project network. Use marginal cost analysis to determine the most economical way of reducing the length of this path to 47 days.

The lower path is B-D with a path length of 50 days. 

From the time-cost trade-off data, both activities B and D have a crash cost per day saved of $10,000, and both can be reduced by more than 3 days. Therefore, using marginal cost analysis, we find that the most economical way of reducing the length of this path to 47 days is to shorten either activity (it doesn’t matter which one) by 3 days with an additional total cost of $30,000. 

	Activity to crash
	Crash Cost
	Length of Path

B-D

	
	
	50

	B or D
	$10,000
	49

	B or D
	$10,000
	48

	B or D
	$10,000
	47


(b) Repeat part (a) for the upper path through the project network. What is the total crashing cost for the optimal way of decreasing the estimated project duration to 47 days?

The upper path is A-C-E-F with a path length of 51 days. 

Marginal cost analysis is performed in the table below. Of the activities on the path, activity C has the smallest crash cost per day saved ($10,000) and activity E is next ($15,000). Activity C can only be reduced by 3 days, so activity E also will need to be crashed somewhat. Therefore, we find that the most economical way of reducing the length of this path to 47 days is to shorten activity C by 3 days and activity E by 1 day with an additional total cost of $45,000. 

	Activity to crash
	Crash Cost
	Length of Path

A-C-E-F

	
	
	51

	C
	$10,000
	50

	C
	$10,000
	49

	C
	$10,000
	48

	E
	$15,000
	47



Combining this result with the result from part (a), the total crashing cost for the optimal way of meeting the deadline of 47 days is $30,000 + $45,000 = $75,000.

(c) Formulate a linear programming model for the problem of determining the most economical way of meeting the deadline of 47 days.

The natural decision variables are


    xj = 
reduction in the duration of activity j due to crashing this activity, 



for j = A, B, ... , F.

Each of these variables has both a nonnegativity constraint and a maximum reduction constraint, where the upper bound for this latter constraint is given by the corresponding number in the next-to-last column (labeled Maximum Reduction in Time) of the table of data given at the end of the problem statement. Using the last column (labeled Crash Cost per Day Saved) of this same table, the objective function to be minimized is


Z = 20,000xA + 10,000xB + 10,000xC + 10,000xD + 15,000xE + 25,000xF.


Some additional variables also are needed in the formulation. In particular, let


yFINISH = project duration,


yj = start time of activity j (for j = C, D, E, F), given the values of xA, xB, ... , xF.

(No such variable is needed for activities A and B, since these activities that simultaneously start the project are automatically assigned a start time of 0.) These variables need to satisfy the constraints,


yFINISH ≤ 47,


y j ≥ yi + ti - xi,

where activity i is the immediate predecessor of activity j and ti is the normal time of activity i (as given by the second column of the table of data).


Therefore, the complete linear programming model is


Minimize Z = 20,000XA + 10,000xB + 10,000xC + 10,000xD + 15,000xE + 25,000xF,

subject to the following constraints:

1. Maximum reduction constraints:


xA ≤ 3,
     xB ≤ 5,       xC ≤ 3,
    xD ≤ 6,        xE≤ 4,
   xF ≤ 2.

2. Nonnegativity constraints:


xA ≥ 0,
     xB ≥ 0,       xC ≥ 0,
    xD ≥ 0,        xE ≥ 0,
   xF ≥ 0,


yC ≥ 0,
     yD ≥ 0,       yE ≥ 0,
    yF ≥ 0,        yFINISH ≥ 0.

3. Start time constraints:


yC ≥ 0 + 12 - xA,
yD ≥ 0 + 23 - xB,


yE ≥ yC + 15 - xC,
yF ≥ yE + 18 - xE.

4. Project duration constraint:


yFINISH ≤ 47.

(d) Use Excel to solve the problem.

The following spreadsheet shows how Excel finds an optimal solution: shorten activity B by 3 days, shorten activity C by 3 days, and shorten activity E by 1 day. The total cost (sum of the normal cost and the crash cost) is $1,935,000.
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Sarah's Car Purchasing Problem

Operating &

Trade-in Value

Purchase

Maint. Cost

at End of Year

Price

Year 1

$2,000

$8,500

$12,000

Year 2

$3,000

$6,500

Year 3

$4,500

$4,500

Year 4

$6,500

$3,000

From

To

On Route

Cost

Nodes

Net Flow

Supply/Demand

Year 0

Year 1

0

$5,500

Year 0

1

=

1

Year 0

Year 2

1

$10,500

Year 1

0

=

0

Year 0

Year 3

0

$17,000

Year 2

0

=

0

Year 0

Year 4

0

$25,000

Year 3

0

=

0

Year 1

Year 2

0

$5,500

Year 4

-1

=

-1

Year 1

Year 3

0

$10,500

Year 1

Year 4

0

$17,000

Year 2

Year 3

0

$5,500

Year 2

Year 4

1

$10,500

Year 3

Year 4

0

$5,500

Total Cost

$21,000

23

24

C

D

E

Total Cost

=SUMPRODUCT(OnRoute,Cost)

11

12

13

14

15

16

17

18

19

20

21

E

F

Cost

=PurchasePrice+OpMaint1-TradeIn1

=PurchasePrice+OpMaint1+OpMaint2-TradeIn2

=PurchasePrice+OpMaint1+OpMaint2+OpMaint3-TradeIn3

=PurchasePrice+OpMaint1+OpMaint2+OpMaint3+OpMaint4-TradeIn4

=PurchasePrice+OpMaint1-TradeIn1

=PurchasePrice+OpMaint1+OpMaint2-TradeIn2

=PurchasePrice+OpMaint1+OpMaint2+OpMaint3-TradeIn3

=PurchasePrice+OpMaint1-TradeIn1

=PurchasePrice+OpMaint1+OpMaint2-TradeIn2

=PurchasePrice+OpMaint1-TradeIn1

11

12

13

14

15

16

H

I

Net Flow

=SUMIF(From,G12,OnRoute)-SUMIF(To,G12,OnRoute)

=

=SUMIF(From,G13,OnRoute)-SUMIF(To,G13,OnRoute)

=

=SUMIF(From,G14,OnRoute)-SUMIF(To,G14,OnRoute)

=

=SUMIF(From,G15,OnRoute)-SUMIF(To,G15,OnRoute)

=

=SUMIF(From,G16,OnRoute)-SUMIF(To,G16,OnRoute)

=

Range Name

Cells

Cost

E12:E21

From

B12:B21

NetFlow

H12:H16

Nodes

G12:G16

OnRoute

D12:D21

OpMaint1

C5

OpMaint2

C6

OpMaint3

C7

OpMaint4

C8

PurchasePrice

E5

SupplyDemand

J12:J16

To

C12:C21

TotalCost

D23

TradeIn1

D5

TradeIn2

D6

TradeIn3

D7

TradeIn4

D8















































































































































