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CHAPTER

Adaptive Filters

Vítor H. Nascimento and Magno T. M. Silva
Department of Electronic Systems Engineering, University of São Paulo, São Paulo, SP, Brazil

1.12.1 Introduction
Adaptive filters are employed in situations in which the environment is constantly changing, so that a
fixed system would not have adequate performance. As they are usually applied in real-time applications,
they must be based on algorithms that require a small number of computations per input sample.

These algorithms can be understood in two complementary ways. The most straightforward way
follows directly from their name: an adaptive filter uses information from the environment and from
the very signal it is processing to change itself, so as to optimally perform its task. The information
from the environment may be sensed in real time (in the form of a so-called desired signal), or may be
provided a priori, in the form of previous knowledge of the statistical properties of the input signal (as
in blind equalization).

On the other hand, we can think of an adaptive filter also as an algorithm to separate a mixture of two
signals. The filter must have some information about the signals to be able to separate them; usually this
is given in the form of a reference signal, related to only one of the two terms in the mixture. The filter
has then two outputs, corresponding to each signal in the mixture (see Figure 12.1). As a byproduct of
separating the signals, the reference signal is processed in useful ways. This way of viewing an adaptive
filter is very useful, particularly when one is learning the subject.

In the following sections we give an introduction to adaptive filters, covering from basic principles
to the most important recent developments. Since the adaptive literature is vast, and the topic is still
an active area of research, we were not able to treat all interesting topics. Along the text, we reference
important textbooks, classic papers, and the most promising recent literature. Among the many very
good textbooks on the subject, four of the most popular are [1–4].

We start with an application example, in the next section. In it, we show how an adaptive filter
is applied to cancel acoustic echo in hands-free telephony. Along the text we return frequently to
this example, to illustrate new concepts and methods. The example is completed by an overview of
how adaptive filters work, in which we use only deterministic arguments and concepts from basic linear
systems theory, in Section 1.12.1.2. This overview shows many of the compromises that arise in adaptive
filter design, without the more complicated math. Section 1.12.1.3 gives a small glimpse of the wide
variety of applications of adaptive filters, describing a few other examples. Of course, in order to fully
understand the behavior of adaptive filters, one must use estimation theory and stochastic processes,
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FIGURE 12.1

Inputs and outputs of an adaptive filter. Left: detailed diagram showing inputs, outputs and internal variable.
Right: simplified diagram.

which is the subject of Sections 1.12.2 and 1.12.3. The remaining sections are devoted to extensions to
the basic algorithms and recent results.

Adaptive filter theory brings together results from several fields: signal processing, matrix analysis,
control and systems theory, stochastic processes, and optimization. We tried to provide short reviews
for most of the necessary material in separate links (“boxes”), that the reader may follow if needed.

1.12.1.1 Motivation—acoustic echo cancellation
Suppose that you are talking with a person who uses a hands-free telephone inside a car. Let us assume
that the telephone does not have any acoustic echo canceler. In this case, the sound of your voice will
reach the loudspeaker, propagate inside the car, and suffer reflections every time it encounters the walls
of the car. Part of the sound can be absorbed by the walls, but part of it is reflected, resulting in an
echo signal. This signal is fed back to the microphone and you will hear your own voice with delay and
attenuation, as shown in Figure 12.2.
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FIGURE 12.2

Echo in hands-free telephony. Click speech.wav to listen to a speech signal and echo.wav to listen to the
corresponding echo signal.
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FIGURE 12.3

Acoustic echo cancellation using an adaptive filter.
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FIGURE 12.4

General echo canceler configuration.

The echo signal depends on the acoustic characteristics of each car and also on the location of the
loudspeaker and microphone. Furthermore, the acoustic characteristics can change during a phone call,
since the driver may open or close a window, for example. In order to follow the variations of the
environment, the acoustic echo must be canceled by an adaptive filter, which performs on-line updating
of its parameters through an algorithm. Figure 12.3 shows the insertion of an adaptive filter in the system
of Figure 12.2 to cancel the echo signal. In this configuration, the adaptive filter must identify the echo
path and provide at its output an estimate of the echo signal. Thus, a synthesized version of the echo is
subtracted from the signal picked up by the car microphone. In an ideal scenario, the resulting signal
will be free of echo and will contain only the signal of interest. The general set-up of an echo canceler
is shown in Figure 12.4. The near-end signal (near with respect to the echo canceler) may be simply
noise when the person inside the car is in silence, as considered in Figures 12.2 and 12.3, or it can be a
signal of interest, that is, the voice of the user in the car.

You most likely have already heard the output of an adaptive echo canceler. However, you probably
did not pay attention to the initial period, when you can hear the adaptive filter learning the echo
impulse response, if you listen carefully. We illustrate this through a simulation, using a measured
impulse response of 256 samples (sampled at 8 kHz), and an echo signal produced from a recorded
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FIGURE 12.5

Measured impulse response (256 samples).

voice signal. The measured impulse response is shown in Figure 12.5. In the first example, the near-
end signal is low-power noise (more specifically, white Gaussian noise with zero mean and variance
σ 2 = 10−4). Listen to e_nlms.wav, and pay attention to the beginning. You will notice that the voice
(the echo) is fading away, while the adaptive filter is learning the echo impulse response. This file is the
output of an echo canceler adapted using the normalized least-mean squares algorithm (NLMS), which
is described in Section 1.12.3.2.

Listen now to e_lsl.wav in this case the filter was adapted using the modified error-feedback
least-squares lattice algorithm (EF-LSL) [5], which is a low-cost and stable version of the recursive
least-squares algorithm (RLS) described in Section 1.12.3.3. Now you will notice that the echo fades
away much faster. This fast convergence is characteristic of the EF-LSL algorithm, and is of course
a very desirable property. On the other hand, the NLMS algorithm is simpler to implement and more
robust against imperfections in the implementation. An adaptive filtering algorithm must satisfy several
requirements, such as convergence rate, tracking capability, noise rejection, computational complexity,
and robustness. These requirements are conflicting, so that there is no best algorithm that will outperform
all the others in every situation. The many algorithms available in the literature are different compromises
between these requirements [1–3].

Figure 12.6 shows 4 s of the echo signal, prior to cancellation (bottom) and a measure of the quality
of echo cancellation, the so-called echo return loss enhancement (ERLE) (top). The ERLE is defined
as the ratio

ERLE = Power of original echo

Power of residual echo
.

The higher the ERLE, the better the performance of the canceler. The ERLE drops when the original
echo is small (there is nothing to cancel!), and increases again when the echo is strong. The figure shows
that EF-LSL performs better than NLMS (but at a higher computational cost).

http://booksite.elsevier.com/9780124166165/chapter.php
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FIGURE 12.6

Echo return loss enhancement for NLMS (μ̃ = 0.5, δ = 10−5, M = 256) and EF-LSL (λ = 0.999,
δ = 10−5) algorithms. Bottom trace: echo signal prior to cancellation. The meaning of the several parameters
is explained in Sections 1.12.3.1, 1.12.3.2, and 1.12.3.3.

Assuming now that the near-end signal is another recorded voice signal (Click DT_echo.wav to listen
to this signal), we applied again the EF-LSL algorithm to cancel the echo. This case simulates a person
talking inside the car. Since the speech of this person is not correlated to the far-end signal, the output of
the adaptive filter converges again to an estimate of the echo signal. Thus, a synthesized version of the
echo is subtracted from the signal picked up by the car microphone and the resulting signal converges to
the speech of the person inside the car. This result can be verified by listening to the filee_lslDT.wav.

This is a typical example of use of an adaptive filter. The environment (the echo impulse response)
changes constantly, requiring a constant re-tuning of the canceling filter. Although the echo itself is not
known, we have access to a reference signal (the clean speech of the far-end user). This is the signal that is
processed to obtain an estimate of the echo. Finally, the signal captured by the near-end microphone (the
so-called desired signal) is a mixture of two signals: the echo, plus the near-end speech (or ambient noise,
when the near-end user is silent). The task of the adaptive filter can be seen as to separate these two signals.

We should mention that the name desired signal is somewhat misleading, although widespread in
the literature. Usually we are interested in separating the “desired” signal into two parts, one of which
is of no interest at all!

We proceed now to show how an algorithm can perform this task, modeling all signals as periodic
to simplify the arguments.

1.12.1.2 A quick tour of adaptive filtering
Before embarking in a detailed explanation of adaptive filtering and its theory, it is a good idea to present
the main ideas in a simple setting, to help the reader create intuition. In this section, we introduce the
least-mean squares (LMS) algorithm and some of its properties using only deterministic arguments and
basic tools from linear systems theory.

http://booksite.elsevier.com/9780124166165/chapter.php
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FIGURE 12.7

A model for the echo.

1.12.1.2.1 Posing the problem
Consider again the echo-cancellation problem, seen in the previous section (see Figure 12.7). Let y(n)
represent the echo, v(n) represent the voice of the near-end user, and x(n) the voice of the far-end user
(the reference). d(n) represents the signal that would be received by the far-end user without an echo
canceler (the mixture, or desired signal).

The echo path represents the changes that the far-end signal suffers when it goes through the digital-
to-analog (D/A) converter, the loudspeaker, the air path between the loudspeaker and the microphone
(including all reflections), the microphone itself and its amplifier, and the analog-to-digital (A/D) con-
verter. The microphone signal d(n) will always be a mixture of the echo y(n) and an unrelated signal
v(n), which is composed of the near-end speech plus noise. Our goal is to remove y(n) from d(n). The
challenge is that we have no means to measure y(n) directly, and the echo path is constantly changing.

1.12.1.2.2 Measuring how far we are from the solution
How is the problem solved, then? Since we cannot measure y(n), the solution is to estimate it from the
measurable signals x(n) and d(n). This is done as follows: imagine for now that all signals are periodic,
so they can be decomposed as Fourier series

x(n) =
K0∑

k=1

Ak cos (kω0n + ϕk), v(n) =
K1∑
�=1

B� cos (�ω1n + θ�), (12.1)

for certain amplitudes Ak and B�, phases ϕk and θ�, and frequencies ω0 and ω1. The highest frequencies
appearing in x(n) and v(n) must satisfy K0ω0 < π , K1ω1 < π , since we are dealing with sampled
signals (Nyquist criterion). We assume for now that the echo path is fixed (not changing), and can
be modeled by an unknown linear transfer function H(z). In this case, y(n) would also be a periodic
sequence with fundamental frequency ω0,

y(n) =
K0∑

k=1

Ck cos (kω0n + ψk),

with Cke jψk = H(e jkω0)Ake jϕk . The signal picked by the microphone is then

d(n) = y(n)+ v(n) =
K0∑

k=1

Ck cos (kω0n + ψk)+
K1∑
�=1

B� cos (�ω1n + θ�).
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Echo canceler.

Since we know x(n), if we had a good approximation Ĥ(z) to H(z), we could easily obtain an approx-
imation ŷ(n) to y(n) and subtract it from d(n), as in Figure 12.8.

How could we find Ĥ(z) in real time? Recall that only d(n), x(n), ŷ(n), and e(n) can be observed.
For example, how could we know that we have the exact filter, that is, that Ĥ(z) = H(z), by looking
only at these signals? To answer this question, take a closer look at e(n). Let the output of Ĥ(z) be

ŷ(n) =
k0∑

k=1

Ĉk cos (kω0n + ψ̂k), and thus

e(n) = d(n)− ŷ(n) = y(n)− ŷ(n)+ v(n)

=
K0∑

k=1

[Ck cos (kω0n + ψk)− Ĉk cos (kω0n + ψ̂k)]

+
K1∑
�=1

B� cos (�ω1n + θ�)

=
K0∑

k=1

C̃k cos (kω0n + ψ̃k)+
K1∑
�=1

B� cos (�ω1n + θ�), (12.2)

where C̃ke jψ̃k = Cke jψk − Ĉke jψ̂k , k = 1, . . . , K0.
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Assuming that the cosines in x(n) and v(n) have no frequencies in common, the simplest approach
is to measure the average power of e(n). Indeed, if all frequencies kω0 and �ω1 appearing in e(n) are
different from one another, then the average power of e(n) is

P =
K0∑

k=1

C̃2
k

2
+

K1∑
�=1

B2
�

2
. (12.3)

If ŷ(n) = y(n), then P is at its minimum,

Po = min
Ĥ(z)

P =
K1∑
�=1

B2
�

2
,

which is the average power of v(n). In this case, e(n) is at its optimum: e(n) = eo(n) = v(n), and the
echo is completely canceled.

It is important to see that this works because the two signals we want to separate, y(n) and v(n), are
uncorrelated, that is, they are such that

lim
N→∞

1

N + 1

N/2∑
−N/2

y(n)v(n) = lim
N→∞

1

N + 1

N/2∑
−N/2

y(n)eo(n) = 0. (12.4)

This property is known as the orthogonality condition. A form of orthogonality condition will appear
in general whenever one tries to minimize a quadratic function, as is the case here. This is discussed in
more detail in Section 1.12.2.

The average power P could then be used as a measure of how good is our approximation ŷ(n). The
important point is that it is very easy to find a good approximation to P . It suffices to low-pass filter
e2(n), for example,

P̂(n) = 1

N

N−1∑
k=0

e2(n − k) (12.5)

is a good approximation if the window length N is large enough.
The adaptive filtering problem then becomes an optimization problem, with the particularity that the

cost function that is being minimized is not known exactly, but only through an approximation, as in
(12.5). In the following sections, we discuss in detail the consequences of this fact.

It is also important to remark that the average error power is not the only possible choice for cost
function. Although it is the most popular choice for a number of reasons, in some applications other
choices are more adequate. Even posing the adaptive filtering problem as an optimization problem is
not the only alternative, as shown by recent methods based on projections on convex sets [6].

1.12.1.2.3 Choosing a structure for the filter
Our approximation ŷ(n) will be built by minimizing the estimated average error power (12.5) as a
function of the echo path model Ĥ(z), that is, our estimated echo path will be the solution of

Ĥo(z) = arg min
Ĥ(z)

P̂(n). (12.6)
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Keep in mind that we are looking for a real-time way of solving (12.6), since P̂(n) can only be
obtained by measuring e(n) for a certain amount of time. We must then be able to implement the
current approximation Ĥ(z), so that ŷ(n) and e(n) may be computed.

This will impose practical restrictions on the kind of function that Ĥ(z) may be: since memory and
processing power are limited, we must choose beforehand a structure for Ĥ(z). Memory and processing
power will impose a constraint on the maximum order the filter may have. In addition, in order to write
the code for the filter, we must decide if it will depend on past outputs (IIR filters) or only on past inputs
(FIR filters). These choices must be made based on some knowledge of the kind of echo path that our
system is likely to encounter.

To explain how these choices can be made, let us simplify the problem a little more and restrict the
far-end signal x(n) to a simple sinusoid (i.e., assume that K0 = 1). In this case,

y(n) = C1 cos (ω0n + ϕ1),

with C1e jψ1 = H(e jω0)A1e jϕ1 . Therefore, Ĥ(z) must satisfy[
Ĥ(e jω) = H(e jω)

]
ω=ω0

(12.7)

only for ω = ω0—the value of Ĥ(e jω) for other frequencies is irrelevant, since the input x(n) has only
one frequency. Expanding (12.7), we obtain

Re{Ĥ(e jω0)} = Re{H(e jω0)}, Im{Ĥ(e jω0)} = Im{H(e jω0)}. (12.8)

The optimum Ĥ(z) is defined through two conditions. Therefore an FIR filter with just two coefficients
would be able to satisfy both conditions for any value of H(e jω0), so we could define

Ĥ(z) = w0 + w1z−1,

and the values of w0 and w1 would be chosen to solve (12.6). Note that the argument generalizes for
K0 > 1: in general, if x(n) has K0 harmonics, we could choose Ĥ(z) as an FIR filter with length 2K0,
two coefficients per input harmonic.

This choice is usually not so simple: in practice, we would not know K0, and in the presence of
noise (as we shall see later), a filter with fewer coefficients might give better performance, even though
it would not completely cancel the echo. The structure of the filter also affects the dynamic behavior of
the adaptive filter, so simply looking at equations such as (12.7) does not tell the whole story. Choosing
the structure for Ĥ(z) is one of the most difficult steps in adaptive filter design. In general, the designer
must test different options, initially perhaps using recorded signals, but ultimately building a prototype
and performing some tests.

1.12.1.2.4 Searching for the solution
Returning to our problem, assume then that we have decided that an FIR filter with length M is adequate
to model the echo path, that is,

Ĥ(z) =
M−1∑
k=0

wk z−k .
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Our minimization problem (12.6) now reduces to finding the coefficients w0, . . . , wM−1 that solve

min
w0,...,wM−1

P̂(n). (12.9)

Since P̂(n)must be computed from measurements, we must use an iterative method to solve (12.9).
Many algorithms could be used, as long as they depend only on measurable quantities (x(n), d(n), ŷ(n),
and e(n)). We will use the steepest descent algorithm (also known as gradient algorithm) as an example
now. Later we show other methods that also could be used. If you are not familiar with the gradient
algorithm, see Box 1 for an introduction.

The cost function in (12.9) is

P̂(n) = 1

N

N−1∑
k=0

e2(n − k) = 1

N

N−1∑
k=0

[d(n − k)− ŷ(n − k)]2.

We need to rewrite this equation so that the steepest descent algorithm can be applied. Recall also that
now the filter coefficients will change, so define the vectors

w(n) = [w0(n) w1(n) · · · wM−1(n)]T ,
and

x(n) = [x(n) x(n − 1) · · · x(n − M + 1)]T ,
where (·)T denotes transposition. At each instant, we have ŷ(n) = wT (n)x(n), and our cost function
becomes

P̂(n) = 1

N

N−1∑
k=0

[
d(n − k)− wT (n − k)x(n − k)

]2
, (12.10)

which depends on w(n), . . . ,w(n − N + 1). In order to apply the steepest descent algorithm, let us
keep the coefficient vector w(n) constant during the evaluation of P̂ , as follows. Starting from an initial
condition w(0), compute for n = 0, N , 2N , . . . (The notation is explained in Boxes 2 and 6.)

w(n + N ) = w(n)− α ∂ P̂(n + N − 1)

∂wT

∣∣∣∣
w=w(n)

, (12.11)

where α is a positive constant, and w(n + N − 1) = w(n + N − 2) = · · · = w(n). Our cost function
now depends on only one w(n) (compare with (12.10)):

P̂(n + N − 1) = 1

N

N−1∑
k=0

[
d(n + N − 1− k)− wT (n)x(n + N − 1− k)

]2

= 1

N

N−1∑
k=0

[
d(n + k)− wT (n)x(n + k)

]2
, n = 0, N , 2N , . . . (12.12)

We now need to evaluate the gradient of P̂ . Expanding the expression above, we obtain

P̂(n + N − 1) = 1

N

N−1∑
k=0

[
d(n + k)−

M−1∑
�=0

w�(n)x(n + k − �)
]2

,
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so

∂ P̂(n − N + 1)

∂wm(n)
= − 2

N

N−1∑
k=0

[
d(n + k)− wT (n)x(n + k)

]
x(n + k − m)

= − 2

N

N−1∑
k=0

e(n + k)x(n + k − m),

and
∂ P̂(n − N + 1)

∂wT
= − 2

N

N−1∑
k=0

e(n + k)x(n + k), n = 0, N , 2N , . . . (12.13)

As we needed, this gradient depends only on measurable quantities, e(n + k) and x(n + k), for
k = 0, . . . , N − 1. Our algorithm for updating the filter coefficients then becomes

w(n + N ) = w(n)+ μ 1

N

N−1∑
k=0

e(n + k)x(n + k), n = 0, N , 2N , . . . , (12.14)

where we introduced the overall step-size μ = 2α.
We still must choose μ and N . The choice of μ is more complicated and will be treated in Sec-

tion 1.12.1.2.5. The value usually employed for N may be a surprise: in almost all cases, one uses
N = 1, resulting in the so-called least-mean squares (LMS) algorithm

w(n + 1) = w(n)+ μe(n)x(n), (12.15)

proposed initially by Widrow and Hoff in 1960 [7] (Widrow [8] describes the history of the creation
of the LMS algorithm). The question is, how can this work, if no average is being used for estimating
the error power? An intuitive answer is not complicated: assume that μ is a very small number so that
μ = μ0/N for a large N . In this case, we can approximate e(n + k) from (12.15) as follows.

w(n + 1) = w(n)+ μ0

N
e(n)x(n) ≈ w(n), if N is large.

Since w(n+1) ≈ w(n), we have e(n+1) = d(n+1)−wT (n+1)x(n+1) ≈ d(n+1)−wT (n)x(n+1).
Therefore, we could approximate

e(n + k) ≈ d(n + k)− wT (n)x(n + k), k = 0, . . . , N − 1,

so N steps of the LMS recursion (12.15) would result

w(n + N ) ≈ w(n)+ μ0

N

N−1∑
k=0

[
d(n + k)− wT (n)x(n + k)

]
x(n + k),

just what would be obtained from (12.14). The conclusion is that, although there is no explicit average
being taken in the LMS algorithm (12.15), the algorithm in fact computes an implicit, approximate
average if the step-size is small. This is exactly what happens, as can be seen in the animations in
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(a) µ = (b) µ = 0.50.1

(c) µ = 1.1 (d) µ = 1.9

FIGURE 12.9

LMS algorithm for echo cancelation with sinusoidal input. Click LMS video files to see animations on your
browser.
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Figure 12.9. These simulations were prepared with

x(n) = cos (0.4πn + ϕ1), v(n) = 0.2 cos (0.2πn + θ1),

where ϕ1 and θ1 were chosen randomly in the interval [0, 2π). Several step-sizes were used. The
estimates computed with the LMS algorithm are marked by the crosses (red in the web version). The
initial condition is at the left, and the theoretical optimum is at the right end of each figure. In the
simulations, the true echo path was modeled by the fixed filter

H(z) = 1.5+ 0.5z−1.

For comparison, we also plotted the estimates that would be obtained by the gradient algorithm using
the exact value of the error power at each instant. These estimates are marked with small dots (blue in
the web version).

Note that when a small step-size is used, such as μ = 0.1 in Figure 12.9a, the LMS filter stays close
to the dots obtained assuming exact knowledge of the error power. However, as the step-size increases,
the LMS estimates move farther away from the dots. Although convergence is faster, the LMS estimates
do not reach the optimum and stay there: instead, they hover around the optimum. For larger step-sizes,
the LMS estimates can go quite far from the optimum (Figure 12.9b and c). Finally, if the step-size is
too large, the algorithm will diverge, that is, the filter coefficients grow without bounds (Figure 12.9d).

1.12.1.2.5 Tradeoff between speed and precision
The animations in Figure 12.9 illustrate an important problem in adaptive filters: even if you could
magically chose as initial conditions the exact optimum solutions, the adaptive filter coefficients would
not stay there! This happens because the filter does not know the exact value of the cost function it
is trying to minimize (in this case, the error power): since P̂(n) is an approximation, noise (and the
near-end signal in our echo cancellation example) would make the estimated gradient non-zero, and
the filter would wander away from the optimum solution. This effect keeps the minimum error power
obtainable using the adaptive filter always a little higher than the optimum value. The difference between
the (theoretical, unattainable without perfect information) optimum and the actual error power is known
as excess mean-square error (EMSE), and the ratio between the EMSE and the optimum error is known
as misadjustment (see Eqs. (12.171) and (12.174)).

For small step-sizes the misadjustment is small, since the LMS estimates stay close to the estimates
that would be obtained with exact knowledge of the error power. However, a small step-size also means
slow convergence. This trade-off exists in all adaptive filter algorithms, and has been an intense topic
of research: many algorithms have been proposed to allow faster convergence without increasing the
misadjustment. We will see some of them in the next sections.

The misadjustment is central to evaluate the performance of an adaptive filter. In fact, if we want to
eliminate the echo from the near-end signal, we would like that after convergence, e(n) ≈ v(n). This
is indeed what happens when the step-size is small (see Figure 12.10a). However, when the step-size
is increased, although the algorithm converges more quickly, the performance after convergence is not
very good, because of the wandering of the filter weights around the optimum (Figure 12.10b–d—in
the last case, for μ = 1.9, the algorithm is diverging.).
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FIGURE 12.10

Compromise between convergence rate and misadjustment in LMS. Plots of e(n)xn for several values of μ.

We will stop this example here for the moment, and move forward to a description of adaptive filters
using probability theory and stochastic processes. We will return to it during discussions of stability
and model order selection.

The important message from this section is that an adaptive filter is able to separate two signals in a
mixture by minimizing a well-chosen cost function. The minimization must be made iteratively, since
the true value of the cost function is not known: only an approximation to it may be computed at each
step. When the cost function is quadratic, as in the example shown in this section, the components of
the mixture are separated such that they are in some sense orthogonal to each other.
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Box 1: Steepest descent algorithm

Given a cost function
J (w) = J (w0, . . . , wM−1),

with w = [w0, . . . , wM−1]T ((·)T denotes transposition), we want to find the minimum of J , that is,
we want to find wo such that

wo = arg min
w

J (w).

The solution can be found using the gradient of J (w), which is defined by

∇w J (w) = ∂ J

∂wT
=

⎡⎢⎢⎢⎢⎣
∂ J
∂w0
∂ J
∂w1
...
∂ J

∂wM−1

⎤⎥⎥⎥⎥⎦ .
See Box 2 for a brief explanation about gradients and Hessians, that is, derivatives of functions of several
variables.
The notation ∂ J/∂wT is most convenient when we deal with complex variables, as in Box 6. We use it
for real variables for consistency.

Since the gradient always points to the direction in which J (w) increases most quickly, the steepest
descent algorithm searches iteratively for the minimum of J (w) taking at each iteration a small step in
the opposite direction, i.e., towards −∇w J (w):

w(n + 1) = w(n)− μ
2

∇w J (w(n)), (12.16)

where μ is a step-size, i.e., a constant controlling the speed of the algorithm. As we shall see, this
constant should not be too small (or the algorithm will converge too slowly) neither too large (or the
recursion will diverge).

As an example, consider the quadratic cost function with M = 2

J (w) = 1− 2wT r + wT Rw, (12.17)

with

r =
[

1
0

]
, R =

[
4
3 − 2

3

− 2
3

4
3

]
. (12.18)

The gradient of J (w) is

∇w J (w) = ∂ J

∂wT
= −2r + 2Rw. (12.19)

Of course, for this example we can find the optimum wo by equating the gradient to zero:

∇w J (wo) = 0 =⇒ Rwo = r =⇒ wo = R−1r =
[

0.9877
0.4902

]
. (12.20)
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Note that in this case the Hessian of J (w) (the matrix of second derivatives, see Box 2) is simply
∇2

w J = 2R. As R is symmetric with positive eigenvalues (λ1 = 2 and λ2 = 2
3 ), it is positive-definite,

and we can conclude that wo is indeed a minimum of J (w) (See Boxes 2 and 3. Box 3 lists several
useful properties of matrices.)

Even though in this case we could compute the optimum solution through (12.20), we will apply the
gradient algorithm with the intention of understanding how it works and which are its main limitations.
From (12.16) and (12.17), we obtain the recursion

w(n + 1) = w(n)+ μ(r − Rw(n)). (12.21)

The user must choose an initial condition w(0).
In Figure 12.11 we plot the evolution of the approximations computed through (12.21) against the

level sets (i.e., curves of constant value) of the cost function (12.17). Different choices of step-sizeμ are
shown. In Figure 12.11a, a small step-size is used. The algorithm converges to the correct solution, but
slowly. In Figure 12.11b, we used a larger step-size—convergence is now faster, but the algorithm still
needs several iterations to reach the solution. If we try to increase the step-size even further, convergence
at first becomes slower again, with the algorithm oscillating towards the solution (Figure 12.11c). For
even larger step-sizes, such as that in Figure 12.11d, the algorithm diverges: the filter coefficients get
farther and farther away from the solution.

It is important to find the maximum step-size for which the algorithm (12.21) remains stable. For
this, we need concepts from linear systems and linear algebra, in particular eigenvalues, their relation to
stability of linear systems, and the fact that symmetric matrices always have real eigenvalues (see Box 3).

The range of allowed step-sizes is found as follows. Rewrite (12.21) as

w(n + 1) = [
I − μR

]
w(n)+ μr,

which is a linear recursion in state-space form (I is the identity matrix).
Linear systems theory [9] tells us that this recursion converges as long as the largest eigenvalue of

A = I − μR has absolute value less than one. The eigenvalues of A are the roots of

det (β I − (I − μR)) = det ((β − 1)I + μR) = − det ((1− β)I − μR) = 0.

Let 1−β = ν. Then β is an eigenvalue of A if and only if ν = 1−β is an eigenvalue of μR. Therefore,
if we denote by λi the eigenvalues of R, the stability condition is

−1 < 1− μλi < 1 ∀i ⇔ 0 < μ <
2

λi
∀i ⇔ 0 < μ <

2

max{λi } .
The stability condition for our example is thus 0 < μ < 1, in agreement with what we saw in
Figure 12.11.

The gradient algorithm leads to relatively simple adaptive filtering algorithms; however, it has an
important drawback. As you can see in Figure 12.11a, the gradient does not point directly to the direction
of the optimum. This effect is heightened when the level sets of the cost function are very elongated,
as in Figure 12.12. This case corresponds to a quadratic function in which R has one eigenvalue much
smaller than the other. In this example, we replaced the matrix R in (12.18) by

R′ = 1

9

[
25 20
20 25

]
.

This matrix has eigenvalues λ′1 = 5 and λ′2 = 5
9 .
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FIGURE 12.11

Performance of the steepest descent algorithm for different step-sizes. The crosses (x) represent the suc-
cessive approximations w(n), plotted against the level curves of (12.17). The initial condition is the point in
the lower left.

Let us see why this is so. Recall from Box 3 that for every symmetric matrix there exists an orthogonal
matrix U (that is, U−1 = U T ) such that

U T RU =
[
λ1 0
0 λ2

]
�=�, (12.22)

where we defined the diagonal eigenvalue matrix �.
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Let us apply a change of coordinates to (12.19). The optimum solution to (12.17) is

wo = R−1r.

Our first change of coordinates is to replace w(n) by w̃(n) = wo − w(n) in (12.19). Subtract (12.19)
from wo and replace r in (12.19) by r = Rwo to obtain

w̃(n + 1) = w̃(n)− μRw̃(n) = [
I − μR

]
w̃(n). (12.23)

Next, multiply this recursion from both sides by UT = U−1

U T w̃(n + 1) = UT [
I − μR

]
UUT︸ ︷︷ ︸
=I

w̃(n) = [
I − μ�

]
UT w̃(n).

Defining w̄(n) = UT w̃(n), we have rewritten the gradient equation in a new set of coordinates, such
that now the equations are uncoupled. Given that � is diagonal, the recursion is simply[

w̄1(n + 1)
w̄2(n + 1)

]
=
[
(1− μλ1)w̄1(n)
(1− μλ2)w̄2(n)

]
. (12.24)

Note that, as long as |1 − μλi | < 1 for i = 1, 2, both entries of w̄(n) will converge to zero, and
consequently w(n) will converge to wo.

The stability condition for this recursion is

|1− μλi | < 1, i = 1, 2⇒ μ <
2

max{λ1, λ2} .
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FIGURE 12.12

Performance of the steepest descent algorithm for a problem with large ratio of eigenvalues. The crosses
(x) represent the successive approximations w(n), plotted against the level curves of (12.17). The initial
condition is the point in the lower left. Step-size μ = 0.1.
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When one of the eigenvalues is much larger than the other, say, when λ1 	 λ2, the rate of convergence
for the direction relative to the smaller eigenvalue becomes

1 > 1− μλ2 > 1− 2
λmin

λmax
≈ 1,

and even if one of the coordinates in w̄(n) converges quickly to zero, the other will converge very slowly.
This is what we saw in Figure 12.12. The ratio λmax/λmin is known as the eigenvalue spread of a matrix.

In general, the gradient algorithm converges slowly when the eigenvalue spread of the Hessian is
large. One way of solving this problem is to use a different optimization algorithm, such as the Newton
or quasi-Newton algorithms, which use the inverse of the Hessian matrix, or an approximation to it, to
improve the search direction used by the gradient algorithm.

Although these algorithms converge very quickly, they require more computational power, compared
to the gradient algorithm. We will see more about them when we describe the RLS (recursive least-
squares) algorithm in Section 1.12.3.3.

For example, for the quadratic cost-function (12.17), the Hessian is equal to 2R. If we had a good
approximation R̂ to R, we could use the recursion

w(n + 1) = w(n)+ μR̂
−1[r − Rw(n)]. (12.25)

This class of algorithms is known as quasi-Newton (if R̂
−1

is an approximation) or Newton (if R̂
−1

is
exact). In the Newton case, we would have

w(n + 1) = (1− μ)w(n)+ wo,

that is, the algorithm moves at each step precisely in the direction of the optimum solution. Of course,
this is not a very interesting algorithm for a quadratic cost function as in this example (the optimum
solution is used in the recursion!) However, this method is very useful when the cost function is not
quadratic and in adaptive filtering, when the cost function is not known exactly.

Box 2: Gradients

Consider a function of several variables J (w), where

w =

⎡⎢⎢⎢⎣
w0
w1
...

wM−1

⎤⎥⎥⎥⎦ .
Its gradient is defined by

∇w J (w) = ∂ J

∂wT
=

⎡⎢⎢⎢⎢⎣
∂ J
∂w0
∂ J
∂w1
...
∂ J

∂wM−1

⎤⎥⎥⎥⎥⎦ .
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The real value of the notation ∂ J/∂wT will only become apparent when working with functions of
complex variables, as shown in Box 6. We also define, for consistency,

∂ J

∂w
=
[
∂ J
∂w0

∂ J
∂w1

. . . ∂ J
∂wM−1

]
.

As an example, consider the quadratic cost function

J (w) = b − 2wT r + wT Rw. (12.26)

The gradient of J (w) is (verify!)

∇w J (w) = ∂ J

∂wT
= −2r + 2Rw. (12.27)

If we use the gradient to find the minimum of J (w), it would be necessary also to check the second-
order derivative, to make sure the solution is not a maximum or a saddle point. The second order
derivative of a function of several variables is a matrix, the Hessian. It is defined by

∇2
w J = ∂2 J

∂w ∂wT
=

⎡⎢⎢⎢⎣
∂
∂w

{
∂ J
∂w0

}
...

∂
∂w

{
∂ J

∂wM−1

}
⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
∂2 J
∂w2

0
. . . ∂2 J

∂w0 ∂wM−1

...
. . .

...
∂2 J

∂wM−1 ∂w0
. . . ∂2 J

∂w2
M−1

⎤⎥⎥⎥⎦ . (12.28)

Note that for the quadratic cost-function (12.26), the Hessian is equal to R + RT . It is equal to 2R if
R is symmetric, that is, if RT = R. This will usually be the case here. Note that R + RT is always
symmetric: in fact, since for well-behaved functions J it holds that

∂2 J

∂wi ∂w j
= ∂2 J

∂w j ∂wi
,

the Hessian is usually symmetric.
Assume that we want to find the minimum of J (w). The first-order conditions are then

∂ J

∂w

∣∣∣∣
wo

= 0.

The solution wo is a minimum of J (w) if the Hessian at wo is a positive semi-definite matrix, that is, if

xT ∇2
w J (wo)x ≥ 0

for all directions x.
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Box 3: Useful results from Matrix Analysis

Here we list without proof a few useful results from matrix analysis. Detailed explanations can be found,
for example, in [10–13].

Fact 1 (Traces). The trace of a matrix A ∈ CM×M is the sum of its diagonal elements:

Tr(A) =
M∑

i=1

aii , (12.29)

in which the aii are the entries of A. For any two matrices B ∈ CM×N and C ∈ CN×M , it holds that

Tr(BC) = Tr(C B). (12.30)

In addition, if λi , i = 1, . . . ,M are the eigenvalues of a square matrix A ∈ CM×M , then

Tr(A) =
M∑

i=1

λi . (12.31)

Fact 2 (Singular matrices). A matrix A ∈ CM×M is singular if and only if there exists a nonzero
vector u such that Au = 0.

The null space, or kernel N (A) of a matrix A ∈ CM×N is the set of vectors u ∈ CN such that Au = 0.
A square matrix A ∈ CM×M is nonsingular if, and only if, N (A) = {0}, that is, if its null space contains
only the null vector.

Note that, if A = ∑K
k=1 ukv

H
k , with uk, vk ∈ CM , then A cannot be invertible if K < M . This is

because when K < M , there always exists a nonzero vector x ∈ CM such that vH
k x = 0 for 1 ≤ k ≤ K ,

and thus Ax = 0 with x = 0.

Fact 3 (Inverses of block matrices). Assume the square matrix A is partitioned such that

A =
[

A11 A12
A21 A22

]
,

with A11 and A22 square. If A and A11 are invertible (nonsingular), then

A−1 =
[

I −A−1
11 A12

0 I

] [
A−1

11 0
0 �−1

] [
I 0

−A21 A−1
11 I

]
,

where � = A22 − A21 A−1
11 A12 is the Schur complement of A11 in A. If A22 and A are invertible, then

A−1 =
[

I 0
−A−1

22 A21 I

] [
�
′−1 0
0 A−1

22

] [
I −A12 A−1

22
0 I

]
,

where �′ = A11 − A12 A−1
22 A21.
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Fact 4 (Matrix inversion Lemma). Let A and B be two nonsingular M × M matrices, D ∈ CK×K

be also nonsingular, and C, E ∈ CM×K be such that

A = B + C DE H . (12.32)

The inverse of A is then given by

A−1 = B−1 − B−1C(D−1 + E H B−1C)−1 E H B−1. (12.33)

The lemma is most useful when K � M . In particular when K = 1, D + E H B−1C is a scalar, and
we have

A−1 = B−1 − B−1C E H B−1

D−1 + E H B−1C
.

Fact 5 (Symmetric matrices). Let A ∈ CM×M be Hermitian Symmetric (or simply Hermitian), that

is, AH = (
AT )∗ = A. Then, it holds that

1. All eigenvalues λi , i = 1, . . . ,M of A are real.
2. A has a complete set of orthonormal eigenvectors ui , i = 1, . . . ,M . Since the eigenvectors are

orthonormal, uH
i u j = δi j , where δi j = 1 if i = j and 0 otherwise.

3. Arranging the eigenvectors in a matrix U = [
u1 . . . uM

]
, we find that U is unitary, that is, U H U =

UU H = I . In addition,

U H AU = � =

⎡⎢⎢⎢⎣
λ1 0 . . . 0
0 λ2 . . . 0
...
...
. . .

...

0 0 . . . λM

⎤⎥⎥⎥⎦ .
4. If A = AT ∈ RM×M , it is called simply symmetric. In this case, not only the eigenvalues, but also

the eigenvectors are real.
5. If A is symmetric and invertible, then A−1 is also symmetric.

Fact 6 (Positive-definite matrices). If A ∈ CM×M is Hermitian symmetric and moreover for all
u ∈ CM it holds that

uH Au ≥ 0, (12.34)

then A is positive semi-definite. Positive semi-definite matrices have non-negative eigenvalues: λi ≥ 0,
i = 1, . . . ,M . They may be singular, if one or more eigenvalue is zero.

If the inequality (12.34) is strict, that is, if

uH Au > 0 (12.35)

for all u = 0, then A is positive-definite. All eigenvalues λi of positive-definite matrices satisfy λi > 0.
Positive-definite matrices are always nonsingular.

Finally, all positive-definite matrices admit a Cholesky factorization, i.e., if A is positive-definite,
there is a lower-triangular matrix L such that A = LL H [14].
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Fact 7 (Norms and spectral radius). The spectral radius ρ(A) of a matrix A ∈ CM×M is

ρ(A) = max
1≤i≤M

|λi |, (12.36)

in which λi are the eigenvalues of A. The spectral radius is important, because a linear system

x(n + 1) = Ax(n)

is stable if and only if ρ(A) ≤ 1, as is well known. A useful inequality is that, for any matrix norm ‖ · ‖
such that for any A, B ∈ CM×M

‖AB‖ ≤ ‖A‖‖B‖,
it holds that

ρ(A) ≤ ‖A‖. (12.37)

This property is most useful when used with norms that are easy to evaluate, such as the 1-norm,

‖A‖1 = max
1≤i≤M

M∑
j=1

|ai j |,

where ai j are the entries of A. We could also use the infinity norm,

‖A‖∞ = max
1≤ j≤M

M∑
i=1

|ai j |.

1.12.1.3 Applications
Due to the ability to adjust themselves to different environments, adaptive filters can be used in different
signal processing and control applications. Thus, they have been used as a powerful device in several
fields, such as communications, radar, sonar, biomedical engineering, active noise control, modeling,
etc. It is common to divide these applications into four groups:

1. interference cancellation;
2. system identification;
3. prediction; and
4. inverse system identification.

In the first three cases, the goal of the adaptive filter is to find an approximation ŷ(n) for the signal
y(n), which is contained in the signal d(n) = y(n) + v(n). Thus, as ŷ(n) approaches y(n), the signal
e(n) = d(n) − ŷ(n) approaches v(n). The difference between these applications is in what we are
interested. In interference cancellation, we are interested in the signal v(n), as is the case of acoustic
echo cancellation, where v(n) is the speech of the person using the hands-free telephone (go back
to Figures 12.4 and 12.7). In system identification, we are interested in the filter parameters, and in
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FIGURE 12.13

Scheme for interference cancellation and system identification. x(n) and y (n) are correlated to each other.

prediction, we may be interested in the signal v(n) and/or in the filter parameters. Note that in all
these applications (interference cancellation, system identification and prediction), the signal e(n) is
an approximation for v(n) and should not converge to zero, except when v(n) ≡ 0. In inverse system
identification, differently from the other applications, the signal at the output of the adaptive filter must
be as close as possible to the signal d(n) and thus, ideally, the signal e(n) should be zeroed. In the
sequel, we give an overview of these four groups in order to arrive at a common formulation that will
simplify our analysis of adaptive filtering algorithms in further sections.

1.12.1.3.1 Interference cancellation
In a general interference cancellation problem, we have access to a signal d(n), which is a mixture of
two other signals, v(n) and y(n). We are interested in one of these signals, and want to separate it from
the other (the interference) (see Figure 12.13). Even though we do not know v(n) or y(n), we have some
information about y(n), usually in the form of a reference signal x(n) that is related to y(n) through a
filtering operation H. We may know the general form of this operation, for example, we may know that
the relation is linear and well approximated by an FIR filter with 200 coefficients. However, we do not
know the parameters (the filter coefficients) necessary to reproduce it. The goal of the adaptive filter is
to find an approximation ŷ(n) to y(n), given only x(n) and d(n). In the process of finding this ŷ, the
adaptive filter will construct an approximation for the relation H. A typical example of an interference
cancellation problem is the echo cancellation example we gave in Section 1.12.1.1. In that example,
x(n) is the far-end voice signal, v(n) is the near-end voice signal, and y(n) is the echo. The relation H
is usually well approximated by a linear FIR filter with a few hundred taps.

The approximation for H is a by-product, that does not need to be very accurate as long as it leads to
a ŷ(n) close to y(n). This configuration is shown in Figure 12.13 and is called interference cancellation,
since the interference y(n) should be canceled. Note that we do not want to make e(n) ≡ 0, otherwise
we would not only be killing the interference y(n), but also the signal of interest v(n).

There are many applications of interference cancellation. In addition to acoustic and line echo can-
cellation, we can mention, for example, adaptive notch filters for cancellation of sinusoidal interference
(a common application is removal of 50 or 60 Hz interference from the mains line), cancellation of
the maternal electrocardiography in fetal electrocardiography, cancellation of echoes in long distance
telephone circuits, active noise control (as in noise-canceling headphones), and active vibration control.
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FIGURE 12.14

Scheme for plant identification in a control system.

1.12.1.3.2 System identification
In interference cancellation, the coefficients of the adaptive filter converge to an approximation for the
true relation H, but as mentioned before, this approximation is a by-product that does not need to be
very accurate. However, there are some applications in which the goal is to construct an approximation
as accurate as possible for the unknown relation H between x(n) and y(n), thus obtaining a model
for the unknown system. This is called system identification or modeling (the diagram in Figure 12.13
applies also for this case). The signal d(n) is now composed of the output y(n) of an unknown system
H, plus noise v(n). The reference signal x(n) is the input to the system which, when possible, is chosen
to be white noise. In general, this problem is harder than interference cancellation, as we shall see in
Section 1.12.2.1.5, due to some conditions that the reference signal x(n) must satisfy. However, one
point does not change: in the ideal case, the signal e(n) will be equal to the noise v(n). Again, we do
not want to make e(n) ≡ 0, otherwise we would be trying to model the noise (however, the smaller the
noise the easier the task, as one would expect).

In many control systems, an unknown dynamic system (also called as plant in control system termi-
nology) is identified online and the result is used in a self-tuning controller, as depicted in Figure 12.14.
Both the plant and the adaptive filter have the same input x(n). In practical situations, the plant to be
modeled is noisy, which is represented by the signal v(n) added to the plant output. The noise v(n) is
generally uncorrelated with the plant input. The task of the adaptive filter is to minimize the error model
e(n) and track the time variations in the dynamics of the plant. The model parameters are continually
fed back to the controller to obtain the controller parameters used in the self-tuning regulator loop [15].

There are many applications that require the identification of an unknown system. In addition to
control systems, we can mention, for example, the identification of the room impulse response, used
to study the sound quality in concert rooms, and the estimation of the communication channel impulse
response, required by maximum likelihood detectors and blind equalization techniques based on second-
order statistics.
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1.12.1.3.3 Prediction
In prediction, the goal is to find a relation between the current sample d(n) and previous samples
d(n − L), . . . , d(n − L − M + 1), as shown in Figure 12.15. Therefore, we want to model d(n) as a
part y(n) that depends only on d(n − L), . . . , d(n − L − M + 1), and a part v(n) that represents new
information. For example, for a linear model, we would have

d(n) =
M−1∑
k=0

hkd(n − L − k)︸ ︷︷ ︸
y(n)

+v(n),

Thus, we in fact have again the same problem as in Figure 12.13. The difference is that now the
reference signal is a delayed version of d(n) : x(n) = d(n − L), and the adaptive filter will try to
find an approximation ŷ(n) for y(n), thereby separating the “predictable” part y(n) of d(n) from the
“new information” v(n), to which the signal e(n) = d(n) − ŷ(n) should converge. The system H in
Figure 12.13 now represents the relation between d(n − L) and the predictable part of d(n).

Prediction finds application in many fields. We can mention, for example, linear predictive coding
(LPC) and adaptive differential pulse code modulation (ADPCM) used in speech coding, adaptive line
enhancement, autoregressive spectral analysis, etc.

For example, adaptive line enhancement (ALE) seeks the solution for a classical detection problem,
whose objective is to separate a narrowband signal y(n) from a wideband signal v(n). This is the case,
for example, of finding a low-level sine wave (predictable narrowband signal) in noise (non-predictable
wideband signal). The signal d(n) is constituted by the sum of these two signals. Using d(n) as the
reference signal and a delayed replica of it, i.e., d(n−L), as input of the adaptive filter as in Figure 12.15,
the output ŷ(n) provides an estimate of the (predictable) narrowband signal y(n), while the error signal
e(n) provides an estimate of the wideband signal v(n). The delay L is also known as decorrelation
parameter of the ALE, since its main function is to remove the correlation between the wideband signal
v(n) present in the reference d(n) and in the delayed predictor input d(n − L).

adaptive
filter

d(n)

z − L

e(n)

x(n)

ŷ(n)

FIGURE 12.15

Scheme for prediction. x(n) = d(n − L) is a delayed version of d(n).
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Simplified communications system with an adaptive equalizer in the training mode.
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Adaptive equalizer in the decision-directed mode.

1.12.1.3.4 Inverse system identification
Inverse system identification, also known as deconvolution, has been widely used in different fields as
communications, acoustics, optics, image processing, control, among others. In communications, it is
also known as channel equalization and the adaptive filter is commonly called as equalizer. Adaptive
equalizers play an important role in digital communications systems, since they are used to mitigate the
inter-symbol interference (ISI) introduced by dispersive channels. Due to its importance, we focus on
the equalization application, which is explained in the sequel.

A simplified baseband communications system is depicted in Figure 12.16. The signal s(n) is trans-
mitted through an unknown channel, whose model is constituted by an FIR filter with transfer function
H(z) = h0 + h1z−1 + · · · + hK−1zK−1 and additive noise η(n). Due to the channel memory, the
signal at the receiver contains contributions not only from s(n), but also from the previous symbols
s(n − 1), s(n − 2), . . . , s(n − K + 1), i.e.,

x(n) =
L−1∑
k=0

hks(n − k)︸ ︷︷ ︸
pre-ISI

+hLs(n − L)+
K−1∑

k=L+1

hks(n − k)︸ ︷︷ ︸
post-ISI

+η(n). (12.38)
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FIGURE 12.18

Inputs and output of an adaptive filter.

Assuming that the overall channel-equalizer system imposes a delay of L samples, the adaptive filter
will try to find an approximation ŷ(n) for d(n) = s(n − L) and for this purpose, the two summations
in (12.38), which constitute the inter-symbol interference, must be mitigated. Of course, when you are
transmitting information the receiver will not have access to d(n − L). The filter will adapt during a
training phase, in which the transmitter sends a pre-agreed signal. You can see that in this case, the role
of x(n) and d(n) is the reverse of that in system identification. In this case, you would indeed like to
have e(n) ≡ 0. The problem is that this is not possible, given the presence of noise in x(n). The role of
the adaptive filter is to approximately invert the effect of the channel, at the same time trying to suppress
the noise (or at least, not to amplify it too much). In one sense, we are back to the problem of separating
two signals, but now the mixture is in the reference signal x(n), so what can and what cannot be done
is considerably different from the other cases.

The scheme of Figure 12.16 is also called training mode, since the delayed version of the transmitted
sequence d(n) = s(n − L) (training sequence) is known at the receiver. After the convergence of the
filter, the signal d(n) is changed to the estimate ŝ(n− L) obtained at the output of a decision device, as
shown in Figure 12.17. In this case, the equalizer works in the so-called decision-directed mode. The
decision device depends on the signal constellation—for example, if s(n) = ±1, the decision device
returns +1 for ŷ(n) ≥ 0, and −1 for ŷ(n) < 0.

1.12.1.3.5 A common formulation
In all the four groups of applications, the inputs of the adaptive filter are given by the signals x(n) and
d(n) and the output by ŷ(n). Note that the input d(n) appears effectively in the signal e(n) = d(n)− ŷ(n),
which is computed and fed back at each time instant n, as shown in Figure 12.18. In the literature, the
signal d(n) is referred to as desired signal, x(n) as reference signal and e(n) as error signal. These
names unfortunately are somewhat misleading, since they give the impression that our goal is to recover
exactly d(n) by filtering (possibly in a nonlinear way) the reference x(n). In almost all applications,
this is far from the truth, as previously discussed. In fact, except in the case of channel equalization,
exactly zeroing the error would result in very poor performance.

The only application in which d(n) is indeed a “desired signal” is channel equalization, in which
d(n) = s(n− L). Despite this particularity in channel equalization, the common feature in all adaptive
filtering applications is that the filter must learn a relation between the reference x(n) and the desired
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signal d(n) (we will use this name to be consistent with the literature.) In the process of building this
relation, the adaptive filter is able to perform useful tasks, such as separating two mixed signals; or
recovering a distorted signal. Section 1.12.2 explains this idea in more detail.

1.12.2 Optimum filtering
We now need to extend the ideas of Section 1.12.1.2, that applied only to periodic (deterministic) signals,
to more general classes of signals. For this, we will use tools from the theory of stochastic processes.
The main ideas are very similar: as before, we need to choose a structure for our filter and a means
of measuring how far or how near we are to the solution. This is done by choosing a convenient cost
function, whose minimum we must search iteratively, based only on measurable signals.

In the case of periodic signals, we saw that minimizing the error power (12.3), repeated below,

P =
K0∑

k=1

C̃2
k

2
+

K1∑
�=1

B2
�

2
,

would be equivalent to zeroing the echo. However, we were not able to compute the error power
exactly—we used an approximation through a time-average, as in (12.5), repeated here:

P̂(n) = 1

N

N−1∑
k=0

e2(n − k),

where N is a convenient window length (in Section 1.12.1.2, we saw that choosing a large window length
is approximately equivalent to choosing N = 1 and a small step-size). Since we used an approximated
estimate of the cost, our solution was also an approximation: the estimated coefficients did not converge
exactly to their optimum values, but instead hovered around the optimum (Figures 12.9 and 12.10).

The minimization of the time-average P̂(n) also works in the more general case in which the echo is
modeled as a random signal—but what is the corresponding exact cost function? The answer is given
by the property of ergodicity that some random signals possess. If a random signal s(n) is such that its
mean E{s(n)} does not depend on n and its autocorrelation E{s(n)s(k)} depends only on n − k, it is
called wide-sense stationary (WSS) [16]. If s(n) is also (mean-square) ergodic, then

Average power of s(n) = lim
N→∞

1

N + 1

N∑
n=0

s2(n) = E{s2(n)}. (12.39)

Note that E{s2(n)} is an ensemble average, that is, the expected value is computed over all possible
realizations of the random signal. Relation (12.39) means that for an ergodic signal, the time average
of a single realization of the process is equal to the ensemble-average of all possible realizations of the
process. This ensemble average is the exact cost function that we would like to minimize.

In the case of adaptive filters, (12.39) holds approximately for e(n) for a finite value of N if the
environment does not change too fast, and if the filter adapts slowly. Therefore, for random variables we
will still use the average error power as a measure of how well the adaptive filter is doing. The difference



Author’s personal copy
648 CHAPTER 12 Adaptive Filters

is that in the case of periodic signals, we could understand the effect of minimizing the average error
power in terms of the amplitudes of each harmonic in the signal, but now the interpretation will be in
terms of ensemble averages (variances).

Although the error power is not the only possible choice for cost function, it is useful to study this
choice in detail. Quadratic cost functions such as the error power have a number of properties that
make them popular. For example, they are differentiable, and so it is relatively easy to find a closed-
form solution for the optimum, and in the important case where all signals are Gaussian, the optimum
filters are linear. Of course, quadratic cost functions are not the best option in all situations: the use
of other cost functions, or even of adaptive filters not based on the minimization of a cost function, is
becoming more common. We will talk about some of the most important alternatives in Sections 1.12.5.2
and 1.12.5.4.

Given the importance of quadratic cost functions, in this section we study them in detail. Our focus
is on what could and what could not be done if the filter were able to measure perfectly E{e2(n)} at each
instant. This discussion has two main goals: the first is to learn what is feasible, so we do not expect more
from a filter than it can deliver. The second is to enable us to make more knowledgeable choices when
designing a filter—for example, which filter order should be used, and for system identification, which
input signal would result in better performance. In Section 1.12.4.4.3 we will study the performance of
adaptive filters taking into consideration their imperfect knowledge of the environment.

1.12.2.1 Linear least-mean squares estimation
In the examples we gave in previous sections, a generic adaptive filtering problem resumed to this: we
are given two sequences, {x(n)} and {d(n)}, as depicted in Figure 12.18. It is known, from physical
arguments, that d(n) has two parts, one that is in some sense related to x(n), x(n− 1), . . ., and another
that is not, and that both parts are combined additively, that is,

d(n) = H(x(n), x(n − 1), . . . )︸ ︷︷ ︸
y(n)

+v(n), (12.40)

where H(·) is an unknown relation, and v(n) is the part “unrelated” to {x(n)}. In our examples so far,
H(·)was linear, but we do not need to restrict ourselves to this case. Our objective is to extract y(n) and
v(n) from d(n), based only on observations of {x(n)} and {d(n)}. We saw in Section 1.12.1.2 that the
average power of the difference e(n) between d(n) and our current approximation ŷ(n) could be used
as a measure of how close we are to the solution. In general, H(·) is time-variant, i.e., depends directly
on n. We will not write this dependence explicitly to simplify the notation.

In this section we ask in some sense the inverse problem, that is: given two sequences {x(n)} and
{d(n)}, what sort of relation will be found between them if we use E{e2(n)} as a standard? The difference
is that we now do not assume a model such as (12.40); instead, we want to know what kind of model
results from the exact minimization of E{e2(n)}, where e(n) is defined as the difference between d(n)
and a function of x(n), x(n − 1), . . .

We can answer this question in an entirely general way, without specifying beforehand the form of
H. This is done in Box 4. However, if we have information about the physics of a problem and know that
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the relation H(x(n), x(n − 1), . . . ) is of a certain kind, we can restrict the search for the solution Ĥ to
this class. This usually reduces the complexity of the filter and increases its convergence rate (because
less data is necessary to estimate a model with less unknowns, as we will see in Section 1.12.3). In this
section we focus on this second option.

The first task is to describe the class F of allowed functions Ĥ. This may be done by choosing
a relation that depends on a few parameters, such as (recall that the adaptive filter output is ŷ(n) =
Ĥ(x(n), x(n − 1), . . . ))

FFIR (FIR filter): ŷ(n) = w0x(n)+ · · · + wM−1x(n − M + 1), (12.41)

FIIR (IIR filter): ŷ(n) = −a1 ŷ(n − 1)+ b0x(n), (12.42)

FV (Volterra filter): ŷ(n) = w0x(n)+ w1x(n − 1)+ w0,0x2(n)

+w0,1x(n)x(n − 1)+ w1,1x(n − 1)2, (12.43)

FS (Saturation): ŷ(n) = arctan(ax(n)). (12.44)

In each of these cases, the relation between the input sequence {x(n)} and d(n) is constrained to a
certain class, for example, linear length-M FIR filters in (12.41), first-order IIR filters in (12.42), and
second-order Volterra filters in (12.43). Each class is described by a certain number of parameters: the
filter coefficients w0, . . . , wM−1 in the case of FIR filters, a1 and b0 in the case of IIR filters, and so on.
The task of the adaptive filter will then be to choose the values of the parameters that best fit the data.

For several practical reasons, it is convenient if we make the filter output depend linearly on the
parameters, as happens in (12.41) and in (12.43). It is important to distinguish linear in the parameters
from input-output linear: (12.43) is linear in the parameters, but the relation between the input sequence
{x(n)} and the output ŷ(n) is nonlinear. What may come as a surprise is that the IIR filter of Eq. (12.42)
is not linear in the parameters: in fact, ŷ(n) = −a1 ŷ(n− 1)+ b0x(n) = a2

1 ŷ(n− 2)− a1b0x(n− 1)+
b0x(n) = · · ·— you can see that ŷ(n) depends nonlinearly on a1 and b0.

Linearly parametrized classes F , such as FFIR (12.41) and FV (12.43) are popular because in general
it is easier to find the optimum parameters, both theoretically and in real time. In fact, when the filter
output depends linearly on the parameters and the cost function is a convex function of the error, it can
be shown that the optimal solution is unique (see Box 5). This is a very desirable property, since it
simplifies the search for the optimal solution.

In the remainder of this section we will concentrate on classes of relations that are linear in the
parameters. AsFV shows, this does not imply that we are restricting ourselves to linear models. There are,
however, adaptive filtering algorithms that use classes of relations that are not linear in the parameters,
such as IIR adaptive filters. On the other hand, blind equalization algorithms are based on non-convex
cost functions.

Assume then that we have chosen a convenient class of relations F that depends linearly on its
parameters. That is, we want to solve the problem

min
Ĥ∈F

E

{[
d(n)− Ĥ(x(n), x(n − 1), . . . )

]2
}
. (12.45)
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We want to know which properties the solution to this problem will have when F depends linearly
on a finite number of parameters. In this case, F is a linear combinations of certain functions φi of
x(n), x(n − 1), . . .

ŷ(n) = w0φ0 + w1φ1 + · · · + wM−1φM−1
�=wT φ, (12.46)

where in general φi = φi (x(n), x(n− 1), . . . ), 0 ≤ i ≤ M − 1. The vector φ is known as regressor. In
the case of length-M FIR filters, we would have

φ0 = x(n), φ1 = x(n − 1), . . . , φM−1 = x(n − M + 1),

whereas in the case of second-order Volterra filters with memory 1, we would have

φ0 = x(n), φ1 = x(n − 1), φ2 = x2(n), φ3 = x(n)x(n − 1), φ4 = x2(n − 1).

Our problem can then be written in general terms as: find wo such that

wo = arg min
w

E{(d − wT φ)2}. (12.47)

We omitted the dependence of the variables on n to lighten the notation. Note that, in general, wo will
also depend on n.

To solve this problem, we use the facts that wT φ = φT w to expand the expected value

J (w)
�=E

{(
d − wT φ

)2
}
= E{d2} − 2wT E{dφ} + wT E{φφT }w.

Recall that the weight vector w is not random, so we can take it out of the expectations.
Define the autocorrelation of d , and also the cross-correlation vector and autocorrelation matrix

rd = E{d2}, rdφ = E{dφ}, Rφ = E{φφT }. (12.48)

The cost function then becomes

J (w) = rd − 2wT rdφ + wT Rφw. (12.49)

Differentiating J (w) with respect to w, we obtain

∂ J

∂wT
= −2rdφ + 2Rφw,

and equating the result to zero, we see that the optimal solution must satisfy

Rφwo = rdφ . (12.50)

These are known as the normal, or Wiener-Hopf, equations. The solution, wo, is known as the Wiener
solution. A note of caution: the Wiener solution is not the same thing as the Wiener filter. The Wiener
filter is the linear filter that minimizes the mean-square error, without restriction of filter order [17]. The
difference is that the Wiener solution has the filter order pre-specified (and is not restricted to linear
filters, as we saw).
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When the autocorrelation matrix is non-singular (which is usually the case), the Wiener solution is

wo = R−1
φ rdφ . (12.51)

Given wo, the optimum error will be

vo = d − wT
o φ. (12.52)

Note that the expected value of vo is not necessarily zero:

E{vo} = E{d} − wT
o E{φ}. (12.53)

If, for example, E{φ} = 0 and E{d} = 0, then E{vo} = E{d} = 0. In practice, it is good to keep
E{vo} = 0, because we usually know that vo should approximate a zero-mean signal, such as speech or
noise. We will show shortly, in Section 1.12.2.1.4, how to guarantee that vo has zero mean.

1.12.2.1.1 Orthogonality condition
A key property of the Wiener solution is that the optimum error is orthogonal to the regressor φ, that is,

E{voφ} = E{φ(d − wT
o φ︸︷︷︸

=φT wo

)} = E{dφ} − E{φφT }wo = rdφ − Rφwo = 0. (12.54)

We saw a similar condition in Section 1.12.1.2. It is very useful to remember this result, known as
the orthogonality condition: from it, we will find when to apply the cost function (12.47) to design an
adaptive filter. Note that when vo has zero mean, (12.54) also implies that vo and φ are uncorrelated.

Remark 1. You should not confuse orthogonal with uncorrelated. Two random variables x and y are
orthogonal if E{xy} = 0, whereas they are uncorrelated if E{xy} = E{x}E{y}. The two concepts
coincide only if either x or y have zero mean.

Remark 2. The orthogonality condition is an intuitive result, if we remember that we can think of
the space of random variables with finite variance as a vector space. In fact, define the cross-correlation
rxy = E{xy} between two random variables x and y as the inner product. Then the autocorrelation
of a random variable x , E{x2}, would be interpreted as the square of the “length” of x . In this case,
our problem (12.47) is equivalent to finding the vector in the subspace spanned by φ0, . . . , φM−1 that
is closest to d . As we know, the solution is such that the error is orthogonal to the subspace. So, the
orthogonality condition results from the vector space structure of our problem and the quadratic nature
of our cost function. See Figure 12.19.

Remark 3. The difference between (12.54) and the corresponding result obtained in Box 4, Eq. (12.105),
is that here the optimum error is orthogonal only to the functions φi of x(n), x(n − 1), . . . that were
included in the regressor (and their linear combinations), not to any function, as in (12.105). This is not
surprising: in this section the optimization was made only over the functions in class F , and in Box 4 we
allow any function. Both solutions, (12.106) and (12.51), will be equal if the general solution according
to Box 4 is indeed in F .
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Remark 4. The optimal mean-square error is (recall that E{voφ} = 0)

Jmin = rv,o = E{v2
o} = E{vo(d − wT

oφ)} = E{vod}
= E{(d − wT

o φ)d} = E{d2} − wT
o rdφ = rd − rT

dφ R−1
φ rdφ . (12.55)

Now that we have the general solution to (12.47), we turn to the question: for which class of problems
is the quadratic cost function adequate?

1.12.2.1.2 Implicit vs. physical models
From (12.54), we see that the fact that we are minimizing the mean-square error between d and a linear
combination of the regressor φ induces a model

d = wT
o φ + vo, (12.56)

in which vo is orthogonal to φ. This is not an assumption, as we sometimes see in the literature, but a
consequence of the quadratic cost function we chose. In other words, there is always a relation such as
(12.56) between any pair (d,φ), as long as both have finite second-order moments. This relation may
make sense from a physical analysis of the problem (as we saw in the echo cancellation example), or
be simply a consequence of solving (12.47) (see Section 1.12.2.1.3 for examples).

On the other hand, the orthogonality condition allows us to find out when the solution of (12.47) will
be able to successfully solve a problem: assume now that we know beforehand, by physical arguments

d

φ 0

φ1

ŷ

FIGURE 12.19

Orthogonality in vector spaces with inner products.
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about the problem, that d and φ must be related through

d = wT∗ φ + v, (12.57)

where w∗ is a certain coefficient vector and v is orthogonal to φ. Will the solution to (12.47) be such
that wo = w∗ and vo = v?

To check if this is the case, we only need to evaluate the cross-correlation vector rdφ assuming the
model (12.57):

rdφ = E{dφ} = E{φ( wT∗ φ︸︷︷︸
=φT w∗

+v)} = E{φφT }w∗ + E{φv}︸ ︷︷ ︸
=0

= Rφw∗. (12.58)

Therefore, w∗ also obeys the normal equations, and we can conclude that wo = w∗, vo = v, as long as
Rφ is nonsingular.

Even if Rφ is singular, the optimal error vo will always be equal to v (in a certain sense). In fact, if Rφ

is singular, then there exists a vector a such that Rφa = 0 (see Fact 2 in Box 3), and thus any solution
wo of the normal equations (we know from (12.58) that there is at least one, w∗) will have the form

wo = w∗ + a, a ∈ N (Rφ), (12.59)

where N (Rφ) is the null-space of Rφ . In addition,

0 = aT Rφa = aT E{φφT }a = E{aT φφT a} = E
{
(aT φ)2

}
.

Therefore, aT φ = 0 with probability one. Then,

vo = d − wT
o φ = d − (w∗ + a)T φ = d − wT∗ φ,

with probability one. Therefore, although we cannot say that v = vo always, we can say that they are
equal with probability one. In other words, when Rφ is singular we may not be able to identify w∗,
but (with probability one) we are still able to separate d into its two components. More about this in
Section 1.12.2.1.5.

1.12.2.1.3 Undermodeling
We just saw that the solution to the quadratic cost function (12.47) is indeed able to separate the two
components of d when the regressor that appears in physical model (12.57) is the same φ that we used
to describe our class F , that is, when our choice of F includes the general solution from Box 4. Let us
check now what happens when this is not the case.

Assume there is a relation
d = wT∗ φe + v, (12.60)

in which v is orthogonal to φe, but our class F is defined through a regressor φ that is a subset of the
“correct” one, φe. This situation is called undermodeling: our class is not rich enough to describe the
true relation between {x(n)} and {d(n)}.
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Assume then that

φe =
[

φ

θ

]
, (12.61)

where φ ∈ RM , θ ∈ RK−M , with K > M . The autocorrelation of φe is

Rφe
= E{φeφ

T
e } =

[
Rφ Rφθ

RT
φθ Rθ

]
,

where Rφθ = E{φθT }. From our hypothesis that φe is orthogonal to v, that is,

0 = E{vφe} =
[

E{vφ}
E{vθ}

]
,

we conclude that φ is also orthogonal to v, so

rdφ = E
{
φ(φT

e w∗ + v)
}
= E{φφT

e }w∗ + E{φv}︸ ︷︷ ︸
=0

= [
Rφ Rφθ

]
w∗.

Assuming that Rφ is nonsingular, solving the normal Eq. (12.50) we obtain

wo = R−1
φ

[
Rφ Rφθ

]
w∗ =

[
I R−1

φ Rφθ

]
w∗. (12.62)

Now we have two interesting special cases: first, if φ and θ are orthogonal, i.e., if Rφθ = 0, then wo
contains the first M elements of w∗. Let us consider a specific example: assume that

φ =

⎡⎢⎢⎢⎣
x(n)

x(n − 1)
...

x(n − M + 1)

⎤⎥⎥⎥⎦ , but φe =

⎡⎢⎢⎢⎣
x(n)

x(n − 1)
...

x(n − K + 1)

⎤⎥⎥⎥⎦ , (12.63)

with M < K . Then θ = [
x(n − M) . . . x(n − K + 1)

]T . This situation is very common in practice.
In this case, Rφθ = 0 when {x(n)} is zero-mean white noise. This is one reason why white noise is

the preferred input to be used in system identification: even in the (very likely in practice) case in which
M < K , at least the first elements of w∗ are identified without bias.

On the other hand, if Rφθ = 0, then wo is a mixture of the elements of w∗. This happens in (12.63)
when the input sequence {x(n)} is not white. In this case, the optimum filter wo takes advantage of the
correlation between the entries of φ and θ to estimate θ given φ, and uses these estimated values to
obtain a better approximation for d . Sure enough, if you write down the problem of approximating θ

linearly from φ, namely,

Wo = arg min
W

E

{∥∥∥θ −W T φ

∥∥∥2
}
,

you will see that the solution is exactly Wo = R−1
φ Rφθ .
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What is important to notice is that in both cases the optimum error vo is not equal to v:

vo = d − wT
o φ = wT∗ φe + v − wT

o φ.

Partitioning w∗ =
[
wT∗,1 wT∗,2

]T
, with w∗,1 ∈ RM ,w∗,2 ∈ RK−M , we have

vo =
(
w∗,1 − wo

)T
φ + wT∗,2θ + v = wT∗,2 RT

φθ R−1
φ φ + wT∗,2θ + v

= wT∗,2
(
θ − RT

φθ R−1
φ φ

)
+ v.

Although vo = v, you may check that indeed E{voφ} = 0.
As another example, assume that we have two variables such that d = ax + bx3 + v, in which v

has zero mean and is independent of x , and a and b are constants. Assume that we choose as regressor
simply φ = x , so we try to solve

wo = arg min
w

E
{
(d − wx)2

}
.

In this case we have
Rφ = E{x2}, rdφ = E{xd} = E{ax2 + bx4},

since E{xkv} = E{xk}E{v} = 0. The optimum solution is thus

wo = aE{x2} + bE{x4}
E{x2} ,

and the optimum error is

vo = d − wox = ax + bx3 + v − aE{x2} + bE{x4}
E{x2} x = v + b

(
x2 − E{x4}

E{x2}
)

x = v.

However, vo is again orthogonal to x (but not to x3, which we did not include in the regressor).
What happens in the opposite situation, when we include more entries in φ than necessary? As one

would expect, in this case the parameters related to these unnecessary entries will be zeroed in the
optimum solution wo. This does not mean, however, that we should hasten to increase φ to make F as
large as possible, and leave to the filter the task of zeroing whatever was not necessary. This is because
increasing the number of parameters to be estimated has a cost. The first and more obvious cost is in
terms of memory and number of computations. However, we saw in Section 1.12.1.2 that an actual
adaptive filter usually does not converge to the exact optimum solution, but rather hovers around it.
Because of this, increasing the number of parameters may in fact decrease the quality of the solution.
We explain this in more detail in Section 1.12.4.

1.12.2.1.4 Zero and non-zero mean variables
Up to now we did not assume anything about the means of d and φ. If both d and φ have zero mean,
we can interpret all autocorrelations as variances or covariance matrices, according to the case. To see
this, assume that

E{d} = 0, E{φ} = 0. (12.64)
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Then E{ŷ} = E{wT
o φ} = 0, and thus

E{vo} = E{d} − wT
o E{φ} = 0+ wT

o 0 = 0,

so the optimum error has zero mean. In this case, rd = E{d2} = σ 2
d is the variance of d, and E{v2

o} = σ 2
v,o

is the variance of vo, so (12.55) becomes

Jmin = σ 2
v,o = E{v2

o} = σ 2
d − rT

dφ R−1
φ rdφ . (12.65)

Since Rφ is positive-definite, we conclude that the uncertainty in vo (its variance) is never larger than
the uncertainty in d (Box 3).

However, vo may have a nonzero mean if either d or φ has nonzero mean. This is verified as follows.
Define

d̄ = E{d}, φ̄ = E{φ}, (12.66)

then

E{vo} = E{d − rT
dφ R−1

φ φ} = d̄ − rT
dφ R−1

φ φ̄ = 0

in general (for example, if φ̄ = 0, but d̄ = 0).
In many applications, vo should approximate some signal that is constrained to have zero mean, such

as speech or noise, or because vo will be passed through a system with a high DC gain (such as an
integrator), so it may be useful to guarantee that vo has zero mean. How can this be done if the means of
d and φ are not zero? This problem is quite common, particularly when φ includes nonlinear functions
of x(n). Fortunately, there are two easy solutions: First, if one knew the means of d and φ, one could
define zero-mean variables

dc = d − E{d}, φc = φ − E{φ}, (12.67)

and use them instead of the original variables in (12.47). This is the simplest solution, but we often do
not know the means d̄ and φ̄.

The second solution is used when the means are not known: simply add an extra term to φ, defining
an extended regressor (not to be confused with the extended regressor from Section 1.12.2.1.3)

φe =
[

1
φ

]
, (12.68)

and an extended weight vector we ∈ RM+1. The first coefficient of we will take care of the means, as
we show next. The extended cross-correlation vector and autocorrelation matrix are

rdφe
=
[

d̄
rdφ

]
, Rφe

=
[

1 φ̄
T

φ̄ Rφ

]
.
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Assuming that Rφe
and Rφ are nonsingular, we can compute wo,e if we evaluate the inverse of Rφe

using Schur complements (See Fact 3 in Box 3), as follows

wo,e = R−1
φe

rdφe

=
[

1 0T

−R−1
φ φ̄ I

][
(1− φ̄

T
R−1

φ φ̄)−1 0T

0 R−1
φ

][
1 −φ̄

T
R−1

φ

0 I

][
d̄

rdφ

]

=
[

1 0T

−R−1
φ φ̄ I

][
(1− φ̄

T
R−1

φ φ̄)−1 0T

0 R−1
φ

][
d̄ − φ̄

T
R−1

φ rdφ

rdφ

]

=
[

1 0T

−R−1
φ φ̄ I

]⎡⎢⎣ d̄−φ̄
T

R−1
φ rdφ

1−φ̄
T

R−1
φ φ̄

R−1
φ rdφ

⎤⎥⎦ =
⎡⎢⎢⎣

d̄−φ̄
T

R−1
φ rdφ

1−φ̄
T

R−1
φ φ̄

R−1
φ rdφ − d̄−φ̄

T
R−1

φ rdφ

1−φ̄
T

R−1
φ φ̄

R−1
φ φ̄

⎤⎥⎥⎦ .
Using this result, we can evaluate now E{vo,e} = E{d} − wT

o,eE{φe} as follows (we used the fact that
the inverse of a symmetric matrix is also symmetric from Box 3):

E{vo,e} = d̄ − d̄ − φ̄
T

R−1
φ rdφ

1− φ̄
T

R−1
φ φ̄

− rT
dφ R−1

φ φ̄ + d̄ − φ̄
T

R−1
φ rdφ

1− φ̄
T

R−1
φ φ̄

φ̄
T

R−1
φ φ̄

= d̄ − rT
dφ R−1

φ φ̄ − d̄ − φ̄
T

R−1
φ rdφ

1− φ̄
T

R−1
φ φ̄

(
1− φ̄

T
R−1

φ φ̄
)
= 0.

1.12.2.1.5 Sufficiently rich signals
We saw in Section 1.12.2.1.2 that even when Rφ is singular, we can recover the optimum vo (with
probability one), but not the optimum w∗. Let us study this problem in more detail, since it is important
for system identification. So, what does it mean in practice to have a singular autocorrelation function
Rφ? The answer to this question can be quite complicated when the input signals are nonstationary
(i.e., when Rφ is not constant), so in this case we refer the interested reader to texts in adaptive control
(such as [18]), which treat this problem in detail (although usually from a deterministic point of view).
We consider here only the case in which the signals {d(n), x(n)} are jointly wide-sense stationary.

In this case, Rφ may be singular because some entries of φ are linear combinations of the others.
For example, if we choose φ0 = x(n) and φ1 = 2x(n), then

Rφ = E{x2(n)}
[

1 2
2 4

]
,

which is singular.
However, there are more subtle ways in which Rφ may become singular. Assume for example that

our input sequence is given by
x(n) = cos (ω0n + ϕ), (12.69)
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where 0 < ω0 ≤ π is the frequency, and ϕ is a random phase, uniformly distributed in the interval
[0, 2π). This kind of model (sinusoidal signals with random phases), by the way, is the bridge between
the periodic signals from Section 1.12.1.2 and the stochastic models discussed in this section. In this
case, consider a vector φ formed from a delay line with x(n) as input,

φ = [ x(n) x(n − 1) . . . x(n − M + 1) ]T .
If M = 2, we have

Rφ =
[

E{x2(n)} E{x(n)x(n − 1)}
E{x(n)x(n − 1)} E{x2(n − 1)}

]
= 1

2

[
1 cos (ω0)

cos (ω0) 1

]
.

The determinant of Rφ is 1− cos2 (ω0) = sin2 (ω0) = 0 if ω0 = 0 and ω0 = π .
However, for any M ≥ 3, the resulting Rφ will be singular: we can write

φ = 1

2
e j(ω0n+ϕ)

⎡⎢⎢⎢⎣
1

e− jω0

...

e− j(M−1)ω0

⎤⎥⎥⎥⎦+ 1

2
e− j(ω0n+ϕ)

⎡⎢⎢⎢⎣
1

e jω0

...

e j(M−1)ω0

⎤⎥⎥⎥⎦ ,
and since E{(e jω0n+ jϕ)2} = E{e j2(ω0n+ϕ)} = 0,E{e j(ω0n+ϕ)e− j(ω0n+ϕ)} = 1, we have

Rφ = 1

4

⎡⎢⎢⎢⎣
1

e− jω0

...

e− j(M−1)ω0

⎤⎥⎥⎥⎦[
1 e jω0 . . . e j(M−1)ω0

]

+1

4

⎡⎢⎢⎢⎣
1

e jω0

...

e j(M−1)ω0

⎤⎥⎥⎥⎦[
1 e− jω0 . . . e− j(M−1)ω0

]
.

Since Rφ is the sum of two rank-one matrices, its rank is at most two. It will be two when 0 < ω0 < π ,
since in this case the vectors are linearly independent. We conclude that when the input signal is a sinusoid
as in (12.69), the optimum solution to (12.47) will never be able to identify more than two coefficients.
This argument can be generalized: if x(n) is composed of K sinusoids of different frequencies, then
Rφ will be nonsingular if and only if M ≤ 2K .

The general conclusion is that Rφ will be singular or not, depending on which functions are chosen
as inputs, and on the input signal. We say that the input is sufficiently rich for a given problem if it is
such that Rφ is nonsingular. We show a few examples next.

1.12.2.1.6 Examples
The concepts we saw in Sections 1.12.2.1.2–1.12.2.1.5 can be understood intuitively if we return to our
example in Section 1.12.1.2. In that example, the true echo was obtained by filtering the input x(n) by
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an unknown H(z), so we had

d(n) =
K∑

k=0

hk x(n − k)+ v(n),

where K is the true order of the echo path, v(n) = B cos (ω1n + θ) and x(n) = A cos (ω0n + ϕ). We
considered only one harmonic for simplicity.

We are trying to cancel the echo, by constructing an approximated transfer function Ĥ(z), which is
modeled as an FIR filter with M coefficients. As we saw in Section 1.12.1.2, if x(n) is a simple sinusoid,
the echo will be completely canceled if we satisfy (12.8), reproduced below

Re{Ĥ(e jω0)} = Re{H(e jω0)}, Im{Ĥ(e jω0)} = Im{H(e jω0)}.
If K = M = 1, so H(z) = h0 + h1z−1 and Ĥ(z) = w0 + w1z−1, this condition becomes

w0 + w1 cos (−ω0) = h0 + h1 cos (−ω0),

w1 sin (−ω0) = h1 sin (−ω0),

with a single solution w0 = h0, w1 = h1.
On the other hand, if the input were as before (a single sinusoid), but K = 2, so H(z) = h0 +

h1z−1 + h2z−2, the equations would be

w0 + w1 cos (−ω0) = h0 + h1 cos (−ω0)+ h2 cos (−2ω0),

w1 sin (−ω0) = h1 sin (−ω0)+ h2 sin (−2ω0),

and the solution would be unique (since Rφ is nonsingular), but would not approximate h0 and h1 in
general.

This is an example of an undermodeled system, as we saw in Section 1.12.2.1.3. Figure 12.20
shows the LMS algorithm derived in Section 1.12.1.2 applied to this problem. Note that, even though
w0(n), w1(n) do not converge to h0, h1, in this example the error e(n) does approximate well v(n). This
happens because in this case x(n) is periodic, and the term x(n− 2) can be obtained exactly as a linear
combination of x(n) and x(n− 1) (Check that using the expressions for v0 from Section 1.12.2.1.3, we
obtain v0 = v in this case.)

If we tried to identify H(z) by adding an extra coefficient to Ĥ(z), the equations would be

w0 + w1 cos (−ω0)+ w2 cos (−2ω0) = h0 + h1 cos (−ω0)+ h2 cos (−2ω0),

w1 sin (−ω0)+ w2 sin (−2ω0) = h1 sin (−ω0)+ h2 sin (−2ω0). (12.70)

Now w0 = h0, w1 = h1, and w2 = h2 is a solution, but not the only one. Depending on the initial
condition, the filter would converge to a different solution, as can be seen in Figure 12.21 (the level
sets are not shown, because they are not closed curves in this case). The input is not rich enough (in
harmonics) to excite the unknown system H(z) so that the adaptive filter might identify it, as we saw
in Section 1.12.2.1.5. However, for all solutions the error converges to v(n).

If the input had a second harmonic (K0 = 2), we would add two more equations to (12.70), cor-
responding to Ĥ(e2 jω0) = H(e2 jω0), and the filter would be able to identify systems with up to four
coefficients.
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FIGURE 12.20

LMS in undermodeled case.
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FIGURE 12.21

LMS under non-sufficiently rich input.

The important message is that the adaptive filter only “sees” the error d(n) − ŷ(n). If a mismatch
between the true echo path H(z) and the estimated one Ĥ(z) is not observable through looking only at
the error signal, the filter will not converge to H(z). Whether a mismatch is observable or not through
the error depends on both H(z) and the input signal being used: the input must excite a large enough
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number of frequencies so that H(z) can be estimated correctly. For this reason, in system identification
a good input would be white noise.

1.12.2.2 Complex variables and multi-channel filtering
Adaptive filters used in important applications such as communications and radar have complex variables
as input signals. In this section, we extend the results of Section 1.12.2.1 to consider complex signals.
We start with the general solution, then restrict the result to the more usual case of circular signals.

We first show that the general solution for complex signals is equivalent to an adaptive filter with two
inputs and two outputs: Indeed, if all input variables are complex, then the error e(n) = d(n) − ŷ(n)
will also be complex, that is, e(n) = er(n)+ jei(n), where er(n), ei(n) ∈ R are the real and imaginary
parts of e(n). We must then minimize E{|e(n)|2} = E{e2

r (n)}+E{e2
i (n)}, the total power of the complex

signal e(n). The quadratic cost function (12.45) must be changed to

J (w) = E{|e(n)|2} = E{e(n)e∗(n)} = E{e2
r (n)} + E{e2

i (n)},
where e∗(n) is the complex conjugate of e(n). Now, we need to be careful about what exactly is
the coefficient vector w in this case: If the regressor is φ = φr + jφ i and d = dr + jdi, in principle
ŷ = ŷr+ j ŷi should be such that both its real and imaginary parts depend on both the real and imaginary
parts of φ, that is,

ŷr = wT
rrφr + wT

ri φi,

ŷi = wT
ir φr + wT

ii φi. (12.71)

Note that there is no a priori reason for us to imagine that there should be a special relation between
the pairs (wrr,wri) and (wir,wii). That is, we are dealing with two different coefficient vectors and one
extended regressor:

wr =
[

wrr
wri

]
, wi =

[
wir
wii

]
, θ =

[
φr
φi

]
. (12.72)

Let us proceed for the time being separating the real and imaginary channels of our filter. Later, in
Section 1.12.2.2.1, we return to complex algebra. With these definitions, we can write

ŷr = wT
r θ , ŷi = wT

i θ . (12.73)

The cost function then becomes

J (wr,wi) = E{(dr − wT
r θ)2} + E{(di − wT

i θ)2}
= E{d2

r − 2wT
r θdr + wT

r θθT wr} + E{d2
i − 2wT

i θdi + wT
i θθT wi}

= rdr − 2wT
r rdrθ + wT

r Rθwr + rdi − 2wT
i rdiθ + wT

i Rθwi, (12.74)

where the autocorrelation matrix and cross-correlation vectors are given by

Rθ =
[

Rr Rri
Rir Ri

]
, rdrθ =

[
r rr
r ri

]
, rdiθ =

[
r ir
r ii

]
, (12.75)
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where we simplified the notation, writing Rr instead of Rφr
, Rri instead of Rφrφi

, r rr instead of rdrφr
,

and so on.
Differentiating (12.74) to find the minimum, we obtain

∂ J

∂wT
r
= −2rdrθ + 2Rθwr,

∂ J

∂wT
i

= −2rdiθ + 2Rθwi. (12.76)

Therefore, the optimum filters satisfy[
Rr Rri
Rir Ri

] [
wrr,o
wri,o

]
=
[

r rr
r ri

]
,

[
Rr Rri
Rir Ri

] [
wir,o
wii,o

]
=
[

r ir
r ii

]
. (12.77)

The optimum error is then

vr ,o = dr −
[
wT

rr,o wT
ri,o

]
θ , vi,o = di −

[
wT

ir,o wT
ii,o

]
θ . (12.78)

There is also an orthogonality condition for this case: using (12.77), we obtain

E{vr ,oθ} = E{drθ} − E{θθT }
[

wrr,o
wri,o

]
= 0, (12.79a)

E{vi,oθ} = E{diθ} − E{θθT }
[

wir,o
wii,o

]
= 0. (12.79b)

The value of the cost function at the minimum can be obtained using this result. As in the case of real
variables,

E{v2
r ,o} = E

{
vr ,o

(
dr −

[
wT

rr,o wT
ri,o

]
θ
)}

= E{vr ,odr } = E
{

d2
r

}
− [

wT
rr,o wT

ri,o

]
E{drθ},

where we used (12.79a) in the second equality. Doing similarly for vi,o, we obtain

rvr,o = E{v2
r ,o} = rdr −

[
wT

rr,o wT
ri,o

]
rdrθ , (12.80a)

rvi,o = E{v2
i,o} = rdi −

[
wT

ir,o wT
ii,o

]
rdi θ , (12.80b)

Jmin = rvr,o + rvi,o . (12.80c)

What we have just described is a two-input/two-output optimal filter. In the next section, we re-derive
it using complex algebra. Note that multi-channel filters have applications that are unrelated to complex
variables, particularly in control [18], stereo echo cancellation [19,20], and active noise control [21–24].

1.12.2.2.1 Widely-linear complex least-mean squares
This general solution can be obtained in a more straightforward way if we use the complex gradients
described in Box 6. Keeping the regressor θ as in (12.72) and defining the extended complex weight
vector as ω = wr + jwi, we can write the cost function as

J (ω) = E
{
(d − ωH θ)(d − ωH θ)∗

}
= rd − ωH rdθ − r H

dθω + ωH Rθω,
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where we defined rd = E{|d|2} and rdθ = E{d∗θ}. Note that (·)H represents the Hermitian transpose,
that is, transpose followed by conjugation. Differentiating J (ω) with respect to ωH , as described in
Box 6, we obtain

∂ J

∂ωH
= −rdθ + Rθω. (12.81)

The normal equations then become
Rθωo = rdθ . (12.82)

Expanding the real and imaginary parts of (12.82), we recover (12.77). Similarly, the optimum error
and the minimum value of the cost are

νo = d − ωH
o θ , Jmin = E{|νo|2} = E{|d|2} − ωH

o rdθ . (12.83)

Comparing with (12.80), we see that νo = vr,o + jvi,o, and the value of Jmin is the same as before.
However, as you noticed, using a complex weight vector ω and the complex derivatives of Box 6, all
expressions are much simpler to derive.

The filter using a complex weight vector ω and the real regressor θ constitutes a version of what
is known as widely-linear complex filter. This version was recently proposed in [25] as a reduced-
complexity alternative to the widely-linear complex filter originally proposed in [26,27], which uses as
regressor the extended vector

φe =
[

φ

φ∗
]
, (12.84)

composed of the original regressor φ and its complex conjugate φ∗ (computational complexity is reduced
because the number of operations required to compute ωH θ is about half of what is necessary to evaluate
ωH φe). Widely-linear estimation has been receiving much attention lately, due to new applications that
have appeared [28–31].

But why the name widely linear? The reason for this name is that the complex regressor φ does not
appear linearly in the expressions, but only by separating its real and imaginary parts (as in θ ) or by
including its complex conjugate (as in φe). Both these expressions, from the point of view of a complex
variable, are nonlinear.

What would be a linear complex filter, then? This is the subject of the next section.

1.12.2.2.2 Linear complex least-mean squares
There are many applications in which the data and regressor are such that their real and imaginary parts
are similarly distributed, so that

Rr = Ri, rdr = rdi , Rri = −Rir, r rr = r ii, r ri = −r ir. (12.85)

Under these conditions, we say that the pair (d,φ) is complex circular, or simply circular.
In this case, we can rewrite (12.77) as[

Rr Rri
−Rri Rr

] [
wrr
wri

]
=
[

r rr
r ri

]
,

[
Rr Rri
−Rri Rr

] [
wir
wii

]
=
[−r ri

r rr

]
.
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Expand these equations as follows (notice the change in order in (12.86b))

Rrwrr + Rriwri = r rr, −Rriwrr + Rrwri = r ri, (12.86a)

Rrwii − Rriwir = r rr, Rriwii + Rrwir = −r ri. (12.86b)

Now we can see that, if (wrr,wri) is a solution to (12.86a), then

(wii = wrr,wir = −wri) (12.87)

is a solution to (12.86b). Therefore, when the input signals are circular, the number of degrees of freedom
in the problem is actually smaller. In this case, there is a very nice way of recovering the solutions,
working only with complex algebra. Indeed, defining w = wrr + jwri, we have

wH φ = (wrr − jwri)
T (φr + jφi)

=
(
wT

rrφr + wT
ri φi

)
+ j

(
wT

rrφi − wT
ri φr

)
, (12.88)

which is equivalent to (12.71) with the identities (12.87). Using this definition, it is possible to obtain
the optimum solution (12.86a), (12.86b), and (12.87) using only complex algebra, following exactly
the same steps as our derivation for the real case in the previous section.

This path is very useful, we can derive almost all results for real or complex circular adaptive filters
using the same arguments. Let us see how it goes. First, define ŷ = wH φ, so our problem becomes

min
w∈CM

E

{∣∣∣d − wH φ

∣∣∣2} . (12.89)

Expanding the cost, recalling that now
∣∣d − wH φ

∣∣2 = (d −wH φ)(d −wH φ)∗ = (d −wH φ)(d∗ −
φH w), we obtain

J (w) = E
{
|d|2 − wH φd∗ − dφH w + wH φφH w

}
= rd − wH rdφ − r H

dφw + wH Rφw, (12.90)

where we defined rd = E{|d|2}, rdφ = E{d∗φ}, Rφ = E{φφH }.
We need to find the minimum of this cost.One easy solution is to use the rules for differentiation of

real functions of complex variables, as described in Box 6. These rules are very useful, and surprisingly
easy to use: basically, we can treat w and its conjugate wH as if they were independent variables, that is

∂ J

∂wH
= −rdφ + Rφw. (12.91)

Equating the gradient to zero, the solution is (assuming that Rφ is nonsingular)

wo = R−1
φ rdφ, (12.92)

which is exactly equal to (12.51). This is the advantage of this approach: the expressions for complex
and real problems are almost equal. The important differences are the conjugates that appear in the
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definitions of Rφ and rdφ , and the absence of a factor of 2 in the gradient (12.91). This follows from
the definition of complex derivative we used (see Box 6). Here this difference is canceled out in the
solution (12.92), but further on we will find situations in which there will be a different factor for the
case of real and for the case of complex variables.

Let us check that (12.92) is really equivalent to (12.86a). Expanding Rφ and rdφ and using the
circularity conditions (12.85), we obtain

Rφ = E{φφH } = E{(φr + jφi)(φr − jφi)
T } = Rr + Ri + j

(
Rir − Rri

)
, (12.93a)

= 2Rr − 2 j Rri, (12.93b)

and

rdφ = E{d∗φ} = E{(dr − jdi)(φr + jφi)} = r rr + r ii + j
(
r ri − r ir

)
= 2r rr + 2 j r ri, (12.94)

so, equating the gradient (12.91) to zero, wo = wr,o + jwi,o must satisfy

2
(

Rr − j Rri
) (

wr,o + jwi,o
) = 2

(
r rr + j r ri

)
,

Rrwr,o + Rriwi,o + j
(

Rrwi,o − Rriwr,o
) = r rr + j r ri. (12.95)

Comparing the real and imaginary parts of (12.95) with (12.86a), we see that they indeed correspond
to the same set of equations.

A few important remarks:

Remark 5. The orthogonality condition still holds in the complex circular case, but with a small
difference: defining the optimum error as before,

vo = d − wH
o φ,

we obtain, noting that (wH
o φ)∗ = φH wo,

E{v∗oφ} = E{d∗φ − φφH wo} = rdφ − Rφwo = 0. (12.96)

Remark 6. The complex gradient (12.91) seems strange because it does not include the factors of 2
that would appear in the real case. This difference will appear in many expressions in the following
sections, whenever we need to differentiate between the real and complex cases. However, the difference
is illusory: if you go back to (12.93b) and (12.94), you will see that the factor of two is actually there,
just hidden by the definition of autocorrelation and cross-correlation under the circularity conditions.

Remark 7. The optimum error power can be obtained as in the real case, and is equal to

E{|vo|2} = rd − wH
o rdφ = rd − r H

dφ R−1
φ rdφ . (12.97)
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Box 4: Least mean-squares estimation

Here we consider the general problem of finding the optimum relation Ĥo between d(n) and x(n),
such that

Ĥo = arg min
Ĥ

E
{

d(n)− Ĥ(x(n), x(n − 1), . . . )
}
, (12.98)

without restricting H to a particular class.
In order to understand well this problem, let us consider first the simpler case where the relation

between x(n) and d(n) is memoryless, that is, our function depends only on the current value of x(n).
Dropping the time index to simplify the notation, our problem then becomes how to find a function
Ĥ that, applied to a certain random variable x , approximates a certain random variable d so that the
mean-square error is minimized, that is, we want to solve

min
Ĥ

E{[d − Ĥ(x)]2}. (12.99)

Assume that the joint probability density function pdx (d, x) of d and x is known (we are assuming
that d and x are continuous random variables, but the final result in (12.100) also holds if they are
discrete). Then,

E{[d − Ĥ(x)]2} =
∫ ∫
[d − Ĥ(x)]2 pdx (d, x)d d dx

=
∫ {∫

[d − Ĥ(x)]2 pd|x (d|x)d d

}
︸ ︷︷ ︸

Ed {[d−Ĥ(x)]2|x}

px (x)dx

= Ex

{
Ed

{
[d − Ĥ(x)]2|x

}}
, (12.100)

where we use the subscripts Ed and Ex to highlight that the expectations are taken with respect to d or
x only.

Note that the inner integrand Ed{[d−Ĥ(x)]2|x} in (12.100) is nonnegative. Therefore, if we minimize
it for each value of x , we will obtain the minimum of the full expression. That is, the optimum Ĥo is
the function defined by

Ĥo(x) = arg min
Ĥ(x)

Ed

{
[d − Ĥ(x)]2|x

}
. (12.101)

It is important to remember that, fixed x, Ĥ(x) is simply a number. This can be seen more easily
expanding the expectations in (12.101)

Ed

{
[d − Ĥ(x)]2|x

}
=

∫ (
d2 − 2dĤ(x)+ Ĥ2(x)

)
pd|x (d|x)dd

=
∫

d2 pd|x (d|x)dd − 2Ĥ(x)
∫

dpd|x (d|x)dd + Ĥ2(x)
∫

pd|x (d|x)dd

= Ed{d2|x} − 2E{d|x}Ĥ(x)+ Ĥ2(x).
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Differentiating with respect to Ĥ(x) and equating to zero, we obtain the solution

Ĥo(x) = Ed{d|x} �= ŷ(n), (12.102)

which is indeed a function of x , as desired.
Let us study the properties of this solution. First, define

vo = d − Ĥo(x).

Note that vo and Ĥo are not necessarily equal to v and H from (12.40). Evaluating the average of Ĥo(x),
we obtain

Ex {Ĥo(x)} = Ex {Ed{d|x}} = E{d},
by an argument similar to that used to obtain (12.100). We conclude that vo has zero mean. In addition,
for any function f (x) of x for which the expected values exist, we have

E{vo f (x)} = Ex {Ed{d f (x)}} − E {Ed{d|x} f (x)} = 0 = E{vo}E{ f (x)}, (12.103)

since Ed{d f (x)|x} = f (x)Ed{d|x}. This result means that the error vo is uncorrelated to any function
of the reference data x , which is a very strong condition. It basically means that we have extracted all
second-order information available in x about d.

We remark that (12.103) does not imply that x and vo are independent. A simple counter-example is
the following: consider two discrete-valued random variables r and s with joint probabilities given by
Table 12.1. Then E{s f (r)} = 1/4 · (−1) · f (+ 1)+ 1/4 · (+ 1) · f (+ 1)+ 1/2 · 0 · f (−1) = 0,∀ f (·),
but r and s are not independent.

In the more general case in which Ĥ is allowed to depend on previous samples of x(n), the arguments
and the final conclusion are similar:

arg min
Ĥ

E

{[
d − Ĥ(x(n), x(n − 1), . . . )

]2
}
= E {d| x(n), x(n − 1), . . .} , (12.104)

and defining

vo(n) = d(n)− E {d | x(n), x(n − 1), . . .} ,

Table 12.1 Counter-Example: (12.103) does not Imply Independence

r \ s −1 0 1

−1 0 1/2 0
1 1/4 0 1/4
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it holds that vo(n) has zero mean and is uncorrelated with any function of x(n), x(n − 1), . . .:

E{vo(n)} = 0, E {vo(n) f (x(n), x(n − 1), . . .} = 0. (12.105)

Note that, in general, the optimal solution of (12.104) depends on n, so we should write

Ĥo,n(x(n), x(n − 1), . . . ) = E {d| x(n), x(n − 1), . . .} , (12.106)

to make the time dependence explicit.
We can now return to the question at the start of this section: From our results thus far, we see that

minimizing E{e2(n)} leads to a model which relates d(n) and the sequence {x(n)} such that

d(n) = Ĥo,n(x(n), x(n − 1), . . . )+ vo(n),

in which vo(n) is uncorrelated with any function f (·) of x(n), x(n−1), . . . In other words, the solution
of (12.104) imposes such a model on our data, even if this model makes no physical sense at all. This is
an important point: such a model will always result from the minimization of the mean-square error, at
least as long as the statistics of d(n) and {x(n)} are such that the expected values in (12.104) are finite.

Now, what if we knew beforehand, by physical arguments about the data, that a model such as (12.40)
holds between d(n) and {x(n)}, such that v(n) has zero mean and is uncorrelated to any function of
x(n), x(n − 1), . . .? Will it result that the solution of (12.104) will be such that

Ĥo(x(n), x(n − 1), . . . ) = H(x(n), x(n − 1), . . . ), vo(n) = v(n)?

To answer this question, let us go back to (12.99), and use (12.40) to find the solution. We thus have
(we omit the arguments of d(n), v(n) and H(·) for simplicity)

min
Ĥ

E{[d − Ĥ(x)]2} = min
Ĥ

E
{
[Hn + v − Ĥ]2

}
.

Since v is orthogonal to any function of x(n), x(n − 1), . . . by assumption, it will be orthogonal to Hn

and Ĥ in particular. Therefore, we can simplify the cost as

min
Ĥ

E{[d − Ĥ(x)]2} = min
Ĥ

[
E
{
(H− Ĥ)2

}
+ E{v2}

]
. (12.107)

Both terms in (12.107) are positive, and only the first depends on Ĥ. Therefore, the solution is indeed
Ĥ = H and vo = v, as one would wish (to be precise, H and Ĥ could differ on a set of probability
zero).

We conclude that we can use (12.102) as a criterion for separating the two parts y(n) and v(n) of
our model for d(n) if and only if v(n) satisfies (12.105). This holds, for example, if v(n) has zero mean
and is independent of x(n − k) for all k ≥ 0.
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s1

s2

λs1+ (1−λs2)

(a) Convex set

s1

s2

λs1+ (1−λs2)

(b) Non-convex set

FIGURE 12.22

Convexity.

Note that since ŷ(n) = Ĥo,n(x(n), x(n− 1), . . . ) is itself a function of x(n), x(n− 1), . . ., (12.105)
implies that

E{vo(n)ŷ(n)} = 0,

and we have

E{v2
o(n)} = E{vo[d(n)− ŷ(n)]} = E{vod(n)}

= E{[d(n)− ŷ(n)]d(n)}
= E{d2(n)} − E{d(n)ŷ(n)}
= E{d2(n)} − E{[ŷ(n)+ vo(n)]ŷ(n)}
= E{d2(n)} − E{ŷ2(n)}.

Recalling that E{ŷ(n)} = E{d(n)}, if we add and subtract E2{d(n)} to the last result, we conclude that

E{v2
o(n)} = σ 2

d − σ 2
ŷ ≤ σ 2

d , (12.108)

where σ 2
d and σ 2

ŷ are the variances of d(n) and of ŷ(n).

The solution we just found is very general (it assumes little about H), and there are ways of com-
puting it adaptively from the data, using for example algorithms known as particle filters [32]. The
solution requires, however, that one builds approximations for the joint probability distribution of d(n)
and x(n), x(n − 1), . . ., which in general requires a large amount of data, resulting in relatively high
complexity and relatively slow convergence. If you know more about the relation between {x(n)} and
d(n), this information might be used to constrain the search to a smaller class of problems, potentially
leading to simpler algorithms with faster convergence. That is the goal of adaptive filters, and the reason
why we restricted ourselves to this case in the main text.
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x1 x2
x

y

(a) Convex function

x1 x2
x

y

(b) Non-convex function

FIGURE 12.23

Convex functions.

Box 5: Convex functions

Convex sets are such that lines between any two points in the set always stay entirely in the set (see
Figure 12.22). More formally, a set S ∈ Rn is convex if

s1, s2 ∈ S ⇒ λs1 + (1− λ)s2 ∈ S, for all λ ∈ [0, 1].
Convex functions, on the other hand, are functions f (x) : Rn → R such that for all x1, x2 ∈ Rn

and 0 < λ < 1,
f (λx1 + (1− λ)x2) ≤ λ f (x1)+ (1− λ) f (x2).

The function is called strictly convex if the inequality is strict (< instead of≤). For example, f (x) = x2

is strictly convex. Figure 12.23 shows examples of convex and non-convex functions. An important
property of strictly convex functions is that they always have a unique minimum, that is, they never
have sub-optimal local minima.

Box 6: Wirtinger derivatives and minima of functions of a complex variable

Suppose you want to minimize a function

f : C → R,
w ∈ C �→ f (w) ∈ R, (12.109)
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that is, a function that takes a complex argument to a real value. The minimization problem is well
defined, since the image of f is real. However, we cannot use standard arguments about derivatives and
stationary points to find the minimum, because a function like this is never analytic, that is, the standard
derivative used in complex analysis does not exist.

To see why, we need to think about f as a function of two variables, x and y, the real and imaginary
parts of w. Take f (w) = |w|2 = ww∗ for example. We can write it as a function of x and y as

f̂ (x, y) = f (x + j y) = x2 + y2. (12.110)

Since it is a function of two variables, the derivatives in principle depend on the direction we are moving
along. Consider the derivative at a point w along the x axis, that is, keeping y constant:

lim
ε→0

(x + ε)2 + y2 − (x2 + y2)

ε
= 2x .

On the other hand, along the y axis, we have

lim
ε→0

x2 + (y + ε)2 − (x2 + y2)

ε
= 2y,

that is, the derivative at pointw is different according to the direction we are moving. This is essentially
what is meant by saying that the function is not analytic at w.

For contrast, consider now the analytic function g = w2. Its derivative is the same, no matter which
direction we take:

lim
ε→0

(x + ε + j y)2 − (x + j y)2

ε

= lim
ε→0

(x + ε)2 − y2 + 2 j(xy + εy)− (x2 − y2 + 2 j xy)

ε
= 2w.

Similarly, differentiating along the y axis we obtain again the same result

lim
ε→0

(
x + j(y + ε))2 − (x + j y)2

ε
= 2w.

When the derivative at a certain pointw0 is the same along every direction, we can define derivatives
of complex functions writing simply

dg(w0)

dw
= lim
�w→0

g(w0 +�w)− g(w0)

�w
, (12.111)

since we know the limit does not depend on the direction along which �w goes to zero.
It can be shown that a function is analytic at a given point only if the Cauchy-Riemann conditions

hold at that point. Separating a generic complex function g into its real and imaginary parts g(w) =
u(x, y)+ jv(x, y), the Cauchy-Riemann conditions are [33]

∂u

∂x
= ∂v

∂ y
,
∂u

∂ y
= −∂v

∂x
.
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In the case of a real function of a complex variable, such as f defined as in (12.109), v ≡ 0, and of
course the conditions could hold only for points in which the real part has zero partial derivatives.

This means that we cannot search for the stationary points of a function such as (12.109) using the
derivative defined as in (12.111). We could of course always go back and interpret the function as a
function of two variables, as we did in (12.110). In order to find the minimum of f (w), we would need
to find the stationary points of f̂ (x, y)

∂ f̂

∂x
= 0,

∂ f̂

∂ y
= 0.

This works just fine, of course, but there is a nice trick, which allows us to keep working with complex
variables in a simple way. The idea is to define derivatives differently, such that optimization problems
become easy to solve, using what is known as Wirtinger calculus.

Real functions of complex variables are usually defined in terms of variables and its conjugates, since
w + w∗ and ww∗ are both real. The idea is to define derivatives such that w and w∗ can be treated as
if they were independent variables, as follows. Despite the motivation, the new derivatives are defined
for general functions g : C → C.

Define partial derivatives of a function g : C → C with respect to w and w∗ as

∂g

∂w
= 1

2

{
∂g

∂x
− j

∂g

∂ y

}
,

∂g

∂w∗
= 1

2

{
∂g

∂x
+ j

∂g

∂ y

}
. (12.112)

You can check that if g is analytic at a given point (so g satisfies the Cauchy-Riemann conditions at that
point), then ∂g/∂w∗ = 0 at that point.

Consider, for example, g(w) = wm(w∗)n = (x + j y)m(x − j y)n . Then,

∂g

∂w
= 1

2

{
m(x + j y)m−1(x − j y)n + n(x + j y)m(x − j y)n−1

− j( jm(x + j y)m−1(x − j y)n − jn(x + j y)m(x − j y)n−1)
}

= 1

2

{
mwm−1(w∗)n + nwm(w∗)n−1 + mwm−1(w∗)n − nwm(w∗)n−1

}
= mwm−1(w∗)n .

As advertised, the final result is what we would obtain if we had treated w and w∗ as two independent
variables. Similarly, you can check that

∂g

∂w∗
= nwm(w∗)n−1.

An important special case is the quadratic function f (w) = d −w∗r − r∗w +w∗wR, which assumes
only real values if d and R are real. Using the previous result, we see that

∂ f

∂w
= −r∗ + w∗R,

∂ f

∂w∗
= −r + wR.
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Note that there is no factor of 2 in this case. This difference between Wirtinger derivatives and standard
real derivatives will propagate to many expressions in this text.

Now, the definitions (12.112) are useful for minimizing real functions of complex variables as in
(12.109), since from (12.112)

∂ f

∂w∗
= 0⇔ ∂ f̂

∂x
= 0 and

∂ f̂

∂ y
= 0.

Applying this idea to our quadratic function, we see that

∂ f

∂w∗
= 0⇒ Rwo = r ⇒ wo = r/R,

if R = 0. In addition,
∂2 f

∂w ∂w∗
= R,

and we can conclude that wo is a minimum as long as R > 0.
The same conclusions could easily be obtained working directly with f̂ . The Wirtinger derivatives

are merely a shortcut, that makes working with complex variables very similar to working with real
variables. A good detailed description of Wirtinger derivatives can be found in [34].

In the vector case, the definitions and results are very similar. Given a function

g : CM → R,

w =

⎡⎢⎢⎢⎣
w0
w1
...

wM−1

⎤⎥⎥⎥⎦ ∈ CM �→ g(w),

with wi = xi + j yi , i = 0, . . . ,M − 1, we define

∂g

∂w
=
[
∂g
∂w0

. . .
∂g

∂wM−1

]
= 1

2

[
∂g
∂x0
− j ∂g

∂ y0
. . .

∂g
∂xM−1

− j ∂g
∂ yM−1

]
,

∂g

∂wH
=

⎡⎢⎢⎣
∂g
∂w∗0
...
∂g

∂w∗M−1

⎤⎥⎥⎦ = 1

2

⎡⎢⎢⎣
∂g
∂x0
− j ∂g

∂ y0
...

∂g
∂xM−1

− j ∂g
∂ yM−1

⎤⎥⎥⎦ .
Using our definition of gradients, the second derivative of f (its Hessian) is

∂2 f

∂w ∂wH
=

⎡⎢⎢⎢⎣
∂
∂w

{
∂ f
∂w∗0

}
...

∂
∂w

{
∂ f

∂w∗M−1

}
⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
∂2 f

∂w0 ∂w
∗
0
. . .

∂2 f
∂wM−1 ∂w

∗
0

...
. . .

...
∂2 f

∂w0 ∂w
∗
M−1

. . .
∂2 f

∂wM−1 ∂w
∗
M−1

⎤⎥⎥⎥⎦ .
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The most important example is the quadratic function

f (w) = rd − wH rdφ − r H
dφw + wH Rφw,

where rd is a real variable, and Rφ is Hermitian symmetric. Then, we have

∂ f

∂wH
= −rdφ + Rφw.

We see that a stationary point of f is such that Rφwo = rdφ . In addition,

∂2 f

∂w ∂wH
= Rφ,

and we conclude that wo is the single point of minimum of f if and only if Rφ is positive-definite.
Note that in the complex case, the gradient and the Hessian do not have the factors of 2 that we saw

in the real case (see Box 1).

1.12.3 Stochastic algorithms
In this section, we focus on three of the most important adaptive algorithms: the least-mean squares
(LMS) algorithm, the normalized least-mean squares (NLMS) algorithm, and the recursive least-squares
(RLS) algorithm, which are the basis of many other algorithms. These three stochastic algorithms are
derived in detail and analyzed using different methods. We present different approaches for analyzing
an adaptive filter, because the variety and complexity of their behavior makes it difficult for a single
technique to be able to handle all situations. The analyses provided here allow us to predict the behavior
of the algorithms in transient and steady-state, and choose values of parameters (such as the step-size)
for which the filters operate adequately. In particular, we study conditions under which the filters will
remain stable.

We assume linearly parametrized classes, such as FIR (FFIR) and Volterra (FV) filters (see Section
1.12.2.1). In these classes, each element of the input regressor vector is given by a certain function φi

i = 0, 1, . . . ,M − 1 of x(n), x(n − 1), . . . , x(n − N ). In the case of length-M FIR filters, we have

φ(n) = [
φ0(n) φ1(n) · · · φM−1(n)

]T

= [
x(n) x(n − 1) · · · x(n − M + 1)

]T
, (12.113)

whereas in the case of second-order Volterra filters with memory N = 1 and real-valued signals, we
have

φ(n) = [
φ0(n) φ1(n) φ2(n) φ3(n) φ4(n)

]T

= [
x(n) x(n − 1) x2(n) x(n)x(n − 1) x2(n − 1)

]T
. (12.114)

As much as possible, our presentation in this section is independent of the choices of F and φ(·).
However, some algorithms are designed for a specific class F (the most common case are fast algorithms
designed for FIR filters (12.113)). In these cases, we will alert the reader of the restriction.
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Using the results of Box 6, the derivation of algorithms for real or circular complex inputs is very
similar, the only differences being the need of conjugating a few variables in some expressions, and the
appearance of a factor β = 2 in the expressions of gradients of functions of real variables, and β = 1
in the complex case.

In general, the output of a length-M adaptive filter is given by

ŷ(n) = wH (n)φ(n) = w∗0(n)φ0(n)+ w∗1(n)φ1(n)+ · · · + w∗M−1(n)φM−1(n). (12.115)

In the case of Volterra filters, it is common to use the notation wk,� for the weight related to the input
x(n− k)x(n− �) (see Eq. (12.43)). However, to obtain a common formulation independent of the class
F , we denote the weight vector as

w(n) = [
w0(n) w1(n) w2(n) · · · wM−1(n)

]T
. (12.116)

The task of the adaptive filter will be to choose in a recursive form the values of the parameters
w0, w1, . . . , wM−1 that best fit the data at each time instant n.

Figure 12.24 shows the scheme of a length-M adaptive filter for linearly parametrized classes, where
� denotes the set of functions φi (·), i = 0, 1, . . . ,M−1 of x(n), x(n−1), . . . , x(n− N ) that generate
the elements φ0(n), φ1(n), . . . , φM−1(n) of the input regressor vector φ(n). The number of samples of
the signal x(n) depends on the class F and is given by N + 1. An FIR filter with length M requires
N + 1 = M samples. On the other hand, a Volterra filter with memory N , requires N + 1 samples, but
the length of the corresponding adaptive filter depends on the order of the Volterra series expansion.
At each time instant, the output of the adaptive filter ŷ(n) is compared with the desired signal d(n) to
compute the error e(n) = d(n) − ŷ(n). In order to minimize a cost function of this error, a stochastic
algorithm uses e(n) to adjust the filter weights.

1.12.3.1 LMS algorithm
The update equation of the steepest-descent algorithm is given by

w(n + 1) = w(n)− μ
β

∇w J (n), (12.117)

whereμ is a step-size and β = 1 (resp., β = 2) for complex (resp., real) data (see Box 6). This algorithm
requires exact measurements of the gradient vector. For the case of minimization of the mean-square
error, that is, if J (n) = E{|e(n)|2},

∇w J (n) = −βrdφ + βRφw(n) (12.118)

at each iteration n (see Box 1 for an introduction to gradient algorithms). Note that the exact gradient
requires a prior knowledge of the correlation matrix Rφ and the cross-correlation vector rdφ , which is
not feasible in real-time applications. For example, in the hands-free telephone application described
in Section 1.12.1.1, the input signal of the adaptive filter is the far-end speech (see Figures 12.3 and
12.4). A speech signal is nonstationary and therefore, it is not possible to obtain exact estimates for Rφ

and rdφ at each time instant. Furthermore, good estimates would demand much processing time, which



Author’s personal copy
676 CHAPTER 12 Adaptive Filters

z −1z −1z −1

. . .

. . .

. . .
x (n) x (n−1) x (n−2) x(n−N)

Φ

w ∗
0 ( n ) w ∗

1 ( n ) w ∗
2 ( n ) w ∗

M−1 (n)

φ0 (n) φ1 (n) φ2 (n) φM −1 (n)
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FIGURE 12.24

Scheme for a length-M adaptive filter assuming linearly parametrized classes.

could insert an inadmissible delay in the system, making this approach not feasible, except in off-line
applications. Similar restrictions appear in virtually all adaptive filtering applications.

To circumvent this problem, a stochastic version of the steepest descent algorithm was proposed,
the least-mean squares (LMS) algorithm. Instead of minimizing the exact mean-square error, the LMS
algorithm minimizes a straightforward approximation to it: |e(n)|2. The idea, as we saw in Section
1.12.1.2.4, is that the algorithm will approximately average the cost-function if adaptation is slow
(small step-size). The estimation error is

e(n) = d(n)− wH (n)φ(n), (12.119)

so the gradient of the instantaneous cost function is

∇̂w J (n) = −βφ(n)d∗(n)+ βφ(n)φH (n)w(n) = −βφ(n)e∗(n). (12.120)

Since e(n) depends on the old estimate of the weight vector, it is called an a priori estimation error,
by opposition to the a posteriori error that will be introduced in (12.129). Instead of minimizing the
instantaneous cost function, the stochastic gradient defined in (12.120) can be obtained by replacing
the instantaneous estimates

R̂φ(n) = φ(n)φH (n) (12.121)

and
r̂dφ(n) = φ(n)d∗(n) (12.122)

in (12.118).
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Table 12.2 Summary of the LMS Algorithm

Initialization:
Set w(0) = 0
For n = 0, 1, 2, . . ., compute

ŷ (n) = wH (n)φ(n)
e(n) = d (n)− ŷ (n)
w(n + 1) = w(n)+ μe∗(n)φ(n)

Table 12.3 Computational Cost of the LMS Algorithm for Complex and Real-Valued Signals in
Terms of Real Multiplications and Real Additions Per Iteration

Term Real Signals Complex Signals

× + × +
ŷ ∗(n) = φH (n)[w(n)] M M − 1 4M 4M − 2
e∗(n) = d∗(n)− [ŷ ∗(n)] 1 2
μ[e∗(n)] 1 2
[μe∗(n)]φ(n) M 4M 2M
w(n + 1) = [w(n)] + [μe∗(n)φ(n)] M 2M

TOTAL per iteration 2M + 1 2M 8M + 2 8M

Replacing (12.120) in (12.117), we arrive at the update equation for LMS, i.e.,

w(n + 1) = w(n)+ μφ(n)e∗(n). (12.123)

As explained in Section 1.12.1.2.4 and illustrated in the animations of Figure 12.9, although there is no
explicit average being taken in the LMS algorithm, it in fact computes an implicit approximate average
if the step-size is small.

The LMS algorithm is summarized in Table 12.2. Its computational cost increases linearly with
the length of the filter, i.e., the computational cost is O(M). Table 12.3 shows the number of real
multiplications and real additions per iteration for real and complex-valued signals. The quantities
inside brackets were computed in previous steps. We assume that a complex multiplication requires 4
real multiplications and 2 real additions (it is possible to use less multiplications and more additions),
and a complex addition requires 2 real additions. Different ways of carrying out the calculations may
result in a different computational cost. For example, if we first computed μ × φ(n) followed by[
μφ(n)

]×e∗(n), LMS would require M−1 more real multiplications per iteration than the ordering of
Table 12.3, considering real-valued signals. For complex-valued signals, the cost would be even higher,
since LMS would require 4M − 2 and 2M more real multiplications and real additions, respectively.
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1.12.3.1.1 A deterministic approach for the stability of LMS
Finding the range of step-sizes such that the recursion (12.123) converges is a complicated task. There
are two main approaches to finding the maximum step-size: an average approach and a deterministic
(worst-case) approach. The average approach will be treated in Section 1.12.4.3. Since the deterministic
approach is easy to explain intuitively, we address it in the sequel (although a precise proof is not so
simple, see [35,36] for a full analysis).

For simplicity, assume that our filter is such that d(n) ≡ 0. Although this is not a very likely situation
to encounter in practice, it allows us to avoid technical details that would complicate considerably the
discussion, and still arrive at the important conclusions.

Let us rewrite the LMS recursion, expanding the error with d(n) = 0 as e∗(n) = −(wH (n)φ(n))∗ =
−φH (n)w(n) to obtain

w(n + 1) =
[

I − μφ(n)φH (n)
]
w(n). (12.124)

This is a linear system, but not a time-invariant one. It will be stable if the eigenvalues λi (n) of the
matrix A(n) = I − μφ(n)φH (n) satisfy

max
i
|λi (n)| ≤ 1, for all n ≥ 0. (12.125)

Be careful, if d(n) were not identically zero, condition (12.125) would have to be slightly modified to
guarantee stability (see, e.g., [36,37]).

The eigenvalues of A(n) are easy to find, if we note that φ(n) is an eigenvector of A(n) (the case
φ(n) = 0 is trivial):

A(n)φ(n) = φ(n)− μφ(n)φH (n)φ(n) = (1− μ‖φ(n)‖2)φ(n),
where ‖φ(n)‖2 = φH (n)φ(n) is the square of the Euclidean norm. The corresponding eigenvalue is
λ1 = 1−μ‖φ(n)‖2. All other eigenvalues are equal to one (the eigenvectors are all vectors orthogonal
to φ(n).) Therefore, the LMS algorithm (12.124) will be stable whenever

− 1 ≤ 1− μ‖φ(n)‖2 ≤ 1⇐⇒ 0 ≤ μ ≤ 2

supn≥0 ‖φ(n)‖2
. (12.126)

The supremum (sup) of a sequence is an extension to the maximum, defined to avoid a technicality.
Consider the sequence f (n) = {1− 0.5n}, n ≥ 0. Strictly speaking, it has no maximum, since there is
no n0 for which f (n0) ≥ f (n) for all n ≥ 0. The supremum is defined so we can avoid this problem:
supn≥0 f (n) = 1. Therefore, the supremum is equal to the maximum whenever the later exists, but is
also defined for some sequences that do not have a maximum. The infimum ( inf ) has a similar relation
to the minimum.

This condition is sufficient for stability, but is too conservative, since ‖φ(n)‖2 is not at its highest
value at all instants. A popular solution is to use normalization. The idea is simple: adopt a time-variant
step-size μ(n) such that

μ(n) = μ̃

ε + ‖φ(n)‖2 , (12.127)

with 0 < μ̃ < 2 and where ε > 0 is used to avoid division by zero. The resulting algorithm is known
as normalized LMS (NLMS). We will talk more about it in the next section.
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1.12.3.2 Normalized LMS algorithm
One problem with the LMS algorithm is how to choose the step-size. How large should it be to enable a
high convergence rate, provide an acceptable misadjustment, and even ensure the stability of LMS? More
importantly, how can this choice be made so that the filter will work correctly even for very different
input signals? One answer to this problem is the normalized LMS algorithm which we describe now. It
uses a time varying step-size, which is particularly useful when the statistics of the input signals change
quickly.

Thus, replacing the fixed step-size μ by a time varying step-size μ(n) in (12.123), we obtain

w(n + 1) = w(n)+ μ(n)φ(n)e∗(n). (12.128)

In order to increase the convergence speed, we could try to findμ(n) such that the a posteriori estimation
error,

ξ(n) = d(n)− wH (n + 1)φ(n), (12.129)

is zeroed. Note that, in contrast to the a priori estimation error defined in (12.119), ξ(n) depends on the
updated estimate of the weight vector, hence the name a posteriori estimation error. Replacing (12.128)
in (12.129), we obtain

ξ(n) = d(n)− wH (n)φ(n)︸ ︷︷ ︸
e(n)

−μ(n)φH (n)φ(n)e(n)

= [1− μ(n)φH (n)φ(n)]e(n). (12.130)

In order to enforce ξ(n) = 0 at each time instant n, we must select

μ(n) = 1

φH (n)φ(n)
= 1

‖φ(n)‖2 . (12.131)

Replacing (12.131) in (12.128), we obtain the update equation of the normalized least-squares algo-
rithm, i.e.,

w(n + 1) = w(n)+ 1

‖φ(n)‖2 φ(n)e∗(n). (12.132)

Note that the time varying step-size μ(n) depends inversely on the instantaneous power of the input
vector φ(n). Indeed, we will show in Section 1.12.4.3 that the maximum value of the fixed step-size
μ to ensure the convergence and mean-square stability of LMS depends inversely on the power of the
input signal.

In order to make (12.132) more reliable for practical implementations, it is common to introduce
two positive constants: a fixed step-size μ̃ to control the rate of convergence (and the misadjustment)
and the regularization factor ε to prevent division by a small value when ‖φ(n)‖2 is small. With these
constants, the NLMS update equation reduces to

w(n + 1) = w(n)+ μ̃

ε + ‖φ(n)‖2 φ(n)e∗(n). (12.133)
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Some authors refer to (12.132) as NLMS and to (12.133) as ε-NLMS. However, for simplicity we
will refer to both as NLMS. The name “normalized” is due to a most useful property of NLMS: the
range of values of μ̃ for which the algorithm remains stable is independent of the statistics of x(n), i.e.,
0 < μ̃ < 2, as can be observed in Section 1.12.3.1.1.

As pointed out in [3], the NLMS algorithm can also be interpreted as a quasi-Newton algorithm. As
briefly explained in Box 1, a quasi-Newton algorithm updates the weights using approximations for the
Hessian matrix and gradient vector, i.e.,

w(n + 1) = w(n)− μ
β

[
∇̂2

w J (n)
]−1 ∇̂w J (n). (12.134)

Assuming the following instantaneous approximations

∇̂w J (n) = −βφ(n)d∗(n)+ βφ(n)φH (n)w(n) = −βφ(n)e∗(n) (12.135)

and
∇̂2

w J (n) = ε I + φ(n)φH (n), (12.136)

and replacing them in (12.134), we arrive at the stochastic recursion

w(n + 1) = w(n)+ μ
[
ε I + φ(n)φH (n)

]−1
φ(n)e∗(n). (12.137)

The term ε I guarantees that (12.136) is invertible (a rank-one matrix such as φ(n)φH (n) is never
invertible).

To compute [ε I + φ(n)φH (n)]−1, we can use the matrix inversion lemma (Box 3), which gives us
an expression for the inverse of an M × M matrix of the form

A = B + C DC H , (12.138)

where B and D are two square matrices with dimensions M and N , respectively, and C is an M × N
matrix. According to the matrix inversion lemma, the inverse of A is given by

A−1 = B−1 − B−1C(D−1 + C H B−1C)−1C H B−1. (12.139)

Thus, identifying

A = ε I + φ(n)φH (n), B = ε I, C = φ(n), and D = 1,

we obtain

[ε I + φ(n)φH (n)]−1 = ε−1 I − ε−2

1+ ε−1φH (n)φ(n)
φ(n)φH (n). (12.140)

Multiplying (12.140) from the right by φ(n), after some algebraic manipulations, we get

[ε I + φ(n)φH (n)]−1φ(n) = φ(n)

ε + φH (n)φ(n)
= φ(n)

ε + ‖φ(n)‖2 . (12.141)
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Table 12.4 Summary of the NLMS Algorithm

Initialization:
Set w(0) = 0 and 0 < μ̃ < 2
For n = 0, 1, 2, . . ., compute

ŷ (n) = wH (n)φ(n)
e(n) = d (n)− ŷ (n)

w(n + 1) = w(n)+ μ̃

ε + ‖φ(n)‖2 e∗(n)φ(n)

Replacing (12.141) in (12.137), we arrive at (12.133). Since Newton-based algorithms converge faster
than gradient-based algorithms, it is expected that NLMS exhibits a higher convergence rate than that
of LMS, which is indeed the case in general.

The NLMS algorithm is summarized in Table 12.4. To obtain its computational cost, we can use the
same procedure considered in the computation of the number of operations of LMS (see Table 12.3).
For complex-valued signals, NLMS requires 10M + 2 real multiplications, 10M real additions and one
real division per iteration. For real-valued signals, it requires 3M + 1 real multiplications and 3M real
additions per iteration. Note that for input vectors with a shift structure such as the FIR filters of Eq.
(12.113), its computational cost can be reduced if ‖φ(n)‖2 is computed by the following recursion

‖φ(n)‖2 = ‖φ(n − 1)‖2 − |x(n − M)|2 + |x(n)|2 (12.142)

with initialization ‖φ(−1)‖ = 0.

1.12.3.3 RLS algorithm
The convergence rate of LMS-type algorithms varies considerably with the input signal x(n), since they
are based on steepest-descent optimization algorithms. If x(n) is a white noise, the convergence rate
is high. On the other hand, if the correlation between successive samples of x(n) is high, LMS-type
algorithms converge slowly. The RLS algorithm does not have this drawback. However, this advantage
has a price: a considerable increase in the computational cost. Furthermore, numerical errors play a more
important role in RLS and may even lead to divergence of the weight estimates. Different versions of RLS
were proposed to circumvent this problem. In the sequel, we obtain the equations of the conventional
RLS algorithm.

The RLS can be derived in different ways (much as NLMS). Each form of arriving at the algorithm
highlights a different set of its properties: one that leads to many new algorithms and insights is the
connection between RLS and Kalman filters described in [38].

We present here shorter routes, starting with a derivation based on deterministic arguments. In fact,
RLS solves a deterministic least-squares problem, which is based on the weighted least-squares cost
function

JLS(n) =
n∑
�=0

λn−�|ξ(�)|2, (12.143)
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where 0� λ < 1 is a constant known as forgetting factor,

ξ(�) = d(�)− wH φ(�), (12.144)

are a posteriori errors and
w(n + 1) = arg min

w
JLS(n). (12.145)

The factor λn−� emphasizes the most recent errors, forgetting the errors from the remote past. This is
important, otherwise the algorithm would give too much weight to the remote past and would not be
able to track variations in the input signals. Note that w(n + 1) minimizes JLS(n) at each time instant.
Thus, RLS provides an exact solution for the least-squares problem at each time instant. As the NLMS
algorithm, RLS seeks to minimize the a posteriori error |ξ(n)|2, searching for an exact solution to an
optimization problem. The difference is that RLS searches for a weight vector w(n + 1) that takes into
consideration the whole past history of inputs, minimizing λn|ξ(0)|2 + λn−1|ξ(1)|2 + · · · + λ|ξ(n −
1)|2 + |ξ(n)|2 at each time instant n, not only the current value |ξ(n)|2 as in NLMS.

The error sequence ξ(�) weighted by λ(n−�)/2 in the interval 0 ≤ � ≤ n can be written in a vectorial
form, i.e.,

ξ(n) = d(n)−�(n)w∗, (12.146)

where

ξ(n) = [
ξ(n) λ1/2ξ(n − 1) · · · λn/2ξ(0)

]T
, (12.147)

d(n) = [
d(n) λ1/2d(n − 1) · · · λn/2d(0)

]T
(12.148)

and

�(n) =

⎡⎢⎢⎢⎢⎢⎣
φ0(n) φ1(n) · · · φM−1(n)

λ1/2φ0(n − 1) λ1/2φ1(n − 1) · · · λ1/2φM−1(n − 1)
λφ0(n − 2) λφ1(n − 2) · · · λφM−1(n − 2)

...
. . .

. . .
...

λn/2φ0(0) λn/2φ1(0) · · · λn/2φM−1(0)

⎤⎥⎥⎥⎥⎥⎦ . (12.149)

Note that the weighted least-squares cost function can be rewritten in terms of the vector ξ(n), i.e.,

JLS(n) = ξ H (n)ξ(n) = ‖ξ(n)‖2 =
n∑
�=0

λn−�|ξ(�)|2. (12.150)

Now, we have to find the weight vector w(n + 1) that minimizes (12.150). The gradient of JLS(n)
with relation to wH is given by

∇w JLS(n) = −β�T (n)d∗(n)+ β�T (n)�∗(n)w, (12.151)

where as usual, β = 1 (resp., β = 2) for complex (resp., real) data. Defining

R̂φ(n) = �T (n)�∗(n) =
n∑
�=0

λn−�φ(�)φH (�) (12.152)
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and

r̂dφ(n) = �T (n)d∗(n) =
n∑
�=0

λn−�d∗(�)φ(�), (12.153)

in which φ(n) is defined as before, (12.151) can be rewritten as

∇w JLS(n) = −β r̂dφ(n)+ β R̂φ(n)w. (12.154)

Equating ∇w JLS(n) to the null vector, we get the normal equations

R̂φ(n)w(n + 1) = r̂dφ(n). (12.155)

Note that these are a deterministic version of the normal equations we saw in Section 1.12.2.1. Therefore,
to minimize JLS(n), the weight vector w(n + 1) must satisfy

w(n + 1) = R̂
−1
φ (n)r̂dφ(n), (12.156)

which requires the computation of the inverse correlation matrix R̂
−1
φ (n) at each time instant. Note that

this is only valid if R̂
−1
φ (n) is nonsingular. In particular, the inverse does not exist if n < M (Box 3).

Assuming λ = 1 and that the signals x(n) and d(n) are jointly stationary and ergodic, we obtain the
following steady-state relations

lim
n→∞

1

n + 1
R̂φ(n)|λ=1 = Rφ and lim

n→∞
1

n + 1
r̂dφ(n)|λ=1 = rdφ .

Therefore, the deterministic normal equations converge to the stochastic normal equations when λ = 1,
and the weight vector obtained from (12.156) converges to the Wiener solution, i.e.,

lim
n→∞w(n + 1)|λ=1 = R−1

φ rdφ = wo. (12.157)

We should mention that with λ = 1 the convergence rate of RLS goes to zero, i.e., it loses the ability to
follow the statistical variations of the observed data. An equivalent result is obtained for LMS or NLMS
when the fixed step-size μ or μ̃ is replaced by 1/n [39].

The computational cost of (12.156) is high due to the computation of the inverse matrix. In order to
solve the normal equations in real-time and with less cost, we should rewrite (12.152) and (12.153) as
recursions, i.e.,

R̂φ(n) = λR̂φ(n − 1)+ φ(n)φH (n), (12.158)

and
r̂dφ(n) = λr̂dφ(n − 1)+ d∗(n)φ(n), (12.159)

with initializations R̂φ(−1) = δ I and r̂dφ(−1) = 0, where δ is a small positive constant. Note that
(12.159) is identical to (12.153), but (12.158) leads to the estimate

R̂φ(n) = λn+1δ I +
n∑
�=0

λn−�φ(�)φH (�), (12.160)
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and therefore the initialization guarantees the existence of the inverse at all instants. For 0 � λ < 1,
the initialization R̂φ(−1) = δ I is forgotten and (12.158) becomes close to (12.152) as n increases.
Furthermore, if you want the algorithm to forget quickly the initialization, besides using 0 � λ < 1,
you should choose δ small (δ−1 large). Note however that a certain amount of regularization may be
useful in practice, to avoid problems when the input signal has long stretches with low power.

In order to obtain a recursion for the inverse matrix R̂
−1
φ (n), we can use the matrix inversion lemma

(Box 3) by comparing (12.138) with (12.158) and identifying

A = R̂φ(n), B = λR̂φ(n − 1), C = φ(n), and D = 1.

Thus, using (12.139), we obtain

R̂
−1
φ (n) = λ−1 R̂

−1
φ (n − 1)− λ

−2 R̂
−1
φ (n − 1)φ(n)φH (n)R̂

−1
φ (n − 1)

1+ λ−1φH (n)R̂
−1
φ (n − 1)φ(n)

. (12.161)

Defining P(n) � R̂
−1
φ (n), with some algebraic manipulations in (12.161), we arrive at

P(n) = 1

λ

[
P(n − 1)− P(n − 1)φ(n)φH (n)P(n − 1)

λ+ φH P(n − 1)φ(n)

]
(12.162)

with initialization P(−1) = δ−1 I . This equation allow us to compute the inverse correlation matrix in
a recurrent form, avoiding the explicit computation of a matrix inverse. However, the implementation
of (12.162) in finite precision arithmetic requires some care to avoid numerical problems, as explained
in Section 1.12.3.3.1.

To simplify the following equations, it is convenient to define the column vector

k(n) = P(n − 1)φ(n)

λ+ φH (n)P(n − 1)φ(n)
, (12.163)

which is the so-called Kalman gain. Thus, (12.162) can be rewritten as

P(n) = λ−1
[

I − k(n)φH (n)
]

P(n − 1). (12.164)

Using (12.164) and some algebraic manipulations in (12.163), we arrive at

k(n) = λ−1 P(n − 1)φ(n)− λ−1k(n)φH (n)P(n − 1)φ(n)

= λ−1
[

I − k(n)φH (n)
]

P(n − 1)φ(n)

= P(n)φ(n). (12.165)

Thus, using (12.159) and (12.165) in (12.156), the weight vector w(n + 1) can also be computed
recursively, i.e.,

w(n + 1) = P(n)r̂dφ(n)

= λP(n)r̂dφ(n − 1)+ P(n)φ(n)d∗(n)
= λP(n)r̂dφ(n − 1)+ k(n)d∗(n). (12.166)
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Table 12.5 Summary of the Conventional RLS Algorithm

Initialization:
Set P(−1) = δ−1I; δ = small positive constant
w(0) = 0 and 0� λ < 1
For n = 0, 1, 2, . . ., compute

k(n) = P(n − 1)φ(n)

λ+ φH (n)P(n − 1)φ(n)
ŷ (n) = wH (n)φ(n)
e(n) = d (n)− ŷ (n)
w(n + 1) = w(n)+ k(n)e∗(n)
P(n) = λ−1

[
I− k(n)φH (n)

]
P(n − 1)

Replacing (12.164) in (12.166), we arrive at

w(n + 1) = P(n − 1)r̂dφ(n − 1)− k(n)φH (n)P(n − 1)r̂dφ(n − 1)+ k(n)d∗(n)
= w(n)− k(n)φH (n)w(n)+ k(n)d∗(n)
= w(n)+ k(n)[d(n)− wH (n)φ(n)︸ ︷︷ ︸

e(n)

]∗. (12.167)

The RLS algorithm was derived here as an exact solution for the least-squares problem. However, it
also can be interpreted as a quasi-Newton algorithm assuming the instantaneous approximation for the
gradient vector as in (12.135) and considering P(n) as an approximation for the inverse Hessian matrix.
Replacing these approximations in (12.134), we arrive at the same stochastic recursion (12.167).

The RLS algorithm is summarized in Table 12.5. Its computational cost increases with M2, much
faster than those of LMS and NLMS. Different ways of carrying out the calculations may result in a
slightly different computational cost, but all with the same order of magnitude, i.e., O(M2). Performing
the calculations in the following order [3]:

φH (n)× [w(n)]
d∗(n)− [φH (n)w(n)]
λ−1φ(n)

P(n − 1)× [λ−1φ(n)]
φH (n)× [λ−1 P(n − 1)φ(n)]
1+ [λ−1φH (n)P(n − 1)φ(n)]
1/[1+ λ−1φH (n)P(n − 1)φ(n)]
[λ−1φH (n)P(n − 1)φ(n)] ×

[
1

1+ λ−1φH (n)P(n − 1)φ(n)

]
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[λ−1 P(n − 1)φ(n)] ×
[

λ−1φH (n)P(n − 1)φ(n)

1+ λ−1φH (n)P(n − 1)φ(n)

]

P(n)φ(n) = [λ−1 P(n − 1)φ(n)] −
[
λ−2 P(n − 1)φ(n)φH (n)P(n − 1)φ(n)

1+ λ−1φH (n)P(n − 1)φ(n)

]
[P(n)φ(n)] × [d∗(n)− φH (n)w(n)]
w(n + 1) = [w(n)] + [P(n)φ(n)(d∗(n)− φH (n)w(n))],

the conventional RLS requires 4M2+16M+1 real multiplications, 4M2+12M−1 real additions, and
one real division per iteration for complex-valued signals. For real-valued data, it requires M2+5M+1
real multiplications, M2+3M real additions, and one real division per iteration. Note that the quantities
inside brackets were computed in previous steps.

1.12.3.3.1 Practical implementation of RLS
The RLS algorithm must be implemented carefully, because it is sensitive to numerical errors, which
may accumulate and make the algorithm unstable. The problem can be understood intuitively as follows.
In the conventional RLS algorithm, the inverse of the autocorrelation matrix is computed recursively
by (expanding (12.161))

P(n) = λ−1 P(n − 1)− λ
−2 P(n − 1)φ(n)φH (n)P(n − 1)

1+ λ−1φH (n)P(n − 1)φ(n)
,

i.e., as the difference between two positive (semi-) definite matrices. Note that, since λ ≤ 1, the factor
multiplying the current P(n − 1) is λ−1 ≥ 1. In infinite precision arithmetic, any growth due to this
factor will be compensated by the second term. However, in finite precision arithmetic this compensation
may not take place, and the factor λ−1 may make the recursion numerically unstable—usually, what
happens is that P(n) looses its positive character, so the matrix will have a negative eigenvalue, which in
its turn leads to the divergence of the coefficients. Thus, to avoid problems one would need to guarantee
that P(n) stays symmetric and positive-definite for all time instants n (these properties are known as
backward consistency of RLS [40,41]). Symmetry can be guaranteed by computing only the upper or
lower triangular part of P(n), and copying the result to obtain the rest of elements. However, it is also
necessary to guarantee positive-definiteness. Reference [42] describes how this can be achieved.

Due to the fast convergence rate of RLS, a large literature is devoted to finding numerically stable and
low-cost (i.e., O(M)) versions of RLS. This is not an easy problem, that required the work of numerous
researchers to be solved. Nowadays the user has a very large number of different versions of RLS to
choose from. There are versions with formal proofs of stability, versions that work well in practice,
but without formal proofs, versions with O(M2) complexity, and versions with O(M) complexity. The
interested reader can find more references in Section 1.12.5.1.2.

One approach to ensure the consistency of P(n) uses a property of symmetric and positive-definite
matrices (see Box 3): Cholesky factorizations. A symmetric and positive-definite matrix P(n) may
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always be factored as
P(n) = P(n)P H (n), (12.168)

where P(n) is a lower triangular M×M matrix, called Cholesky factor of P(n). Thus, an algorithm that
computes P(n) instead of P(n) can avoid the numerical instability of the conventional RLS algorithm.
There are many algorithms based on this main idea; for some of them a precise stability proof is available
[40]. A recent and very complete survey of QR-RLS algorithms is available in [43].

Another approach is available when the regressor sequence {φ(n)} has shift structure. In this case,
it is possible to derive lattice-based RLS filters that are in practice stable, although no formal proof is
available at this time, as described, for example, in [5].

A more practical solution for the implementation of the RLS algorithm was proposed recently in
[44]. This approach avoids propagation of the inverse covariance matrix, using an iterative method to
solve (12.155) at each step. The computational complexity is kept low by using the previous solution
as initialization, and by restricting the majority of the multiplications to multiplications by powers of
two (which can be implemented as simple shifts). See Section 1.12.5.1.3.

1.12.3.4 Comparing convergence rates
To compare the convergence of LMS, NLMS, and RLS, we show next two examples. In Example 1, we
consider a system identification application and in Example 2, we use these algorithms to update the
weights of an equalizer.

As we will see in more detail in Section 1.12.4, adaptive filters are compared based on how well they
handle different classes of signals. For example, we could be interested in seeing how two filters handle
white noise, or how they handle a certain level of correlation at the input. Given the stochastic nature of
the inputs, the performance measures are defined in terms of averaged cost functions, most commonly
the mean-square error (MSE), that is, the average of |e(n)|2 over all possible inputs in a given class.
These averages can be computed theoretically, as we show in Section 1.12.4, or via simulations.

For example, the MSE as a function of time, that is, the curve E{|e(n)|2} × n, is called a filter’s
learning curve. A comparison of learning curves obtained theoretically and from simulations can be
seen in Figure 12.30 further ahead. When simulations are used, one runs a filter L times for an interval
of N samples, starting always from the same conditions. For each run �, the error e(�)(n) is computed
for 1 ≤ n ≤ N , and one obtains the so-called ensemble-average learning curve

Ê(n)
�= 1

L

L∑
�=1

|e(�)(n)|2.

Usually the ensemble-average learning curve will be a reasonable approximation of the true learning
curve for a reasonably small value of L (say, from 50 to 1000), but in some situations this may not be
true—see [45,46] for examples and a detailed explanation.

Example 1. The aim of this example is to identify the system wo = [1 − 0.8]T , assuming that the
regressor φ(n) is obtained from a process x(n) generated with a first-order autoregressive model, whose
transfer function is 1/(1 − 0.8z−1). This model is fed with an i.i.d. Gaussian random process with
unitary variance. Moreover, additive i.i.d. noise v(n) with variance σ 2

v = 0.01 is added to form the
desired signal.
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FIGURE 12.25

LMS (μ = 0.01), NLMS (μ̃ = 0.05, ε = 0.5) and RLS (λ = 0.99, δ = 1) initialized at w(0) =
[−1.5 − 1.4]T , σ2

v = 0.01. Click the animation video file.

Considering an adaptive filter with M = 2 coefficients, we can obtain a contour plot of the mean-
square error cost as a function of w0 and w1 as shown in Figure 12.25. The animations in Figure 12.25
illustrate the behavior of LMS (μ = 0.01), NLMS (μ̃ = 0.05, ε = 0.5), and RLS (λ = 0.99, δ = 1)
initialized at w(0) = [−1.5− 1.4]T . The correspondent curves of MSE along the iterations, estimated
from the ensemble-average of 1000 independent runs, are shown in Figure 12.26. As expected for a
colored input signal, RLS converges much faster than NLMS and LMS. NLMS converges faster than
LMS and achieves the solution through a different path. To obtain a good behavior of NLMS in this
example, we had to choose a relatively large regularization factor ε. This is always necessary when
NLMS is used with few coefficients since in this case, ‖φ(n)‖2 has a high probability of becoming too
close to zero and de-stabilizing the algorithm. This is shown in the analysis of Section 1.12.4.

Example 2. Now, we assume the transmission of a QPSK (quadrature phase shift-keying) signal,
whose symbols belong to the alphabet {±1 ± j1}. This signal suffers the effect of the channel (taken
from [47])

H(z) = (−0.2+ j0.3)+ (−0.5+ j0.4)z−1 + (0.7− j0.6)z−2

+(0.4+ j0.3)z−3 + (0.2+ j0.1)z−4 (12.169)

and of additive white Gaussian noise (AWGN) under a signal-to-noise ratio (SNR) of 30 dB. The
equalizer is an adaptive filter with M = 15 coefficients initialized with zero and the desired signal is the
transmitted sequence delayed by L = 9 samples (go back to Figure 12.16 to see the equalization scheme).
The adaptation parameters (μ, μ̃, ε, λ)were chosen in order to obtain the same steady-state performance
of LMS, NLMS, and RLS (note that with a longer filter, the regularization parameter ε can be much

http://booksite.elsevier.com/9780124166165/chapter.php
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FIGURE 12.26

MSE along the iterations for LMS (μ = 0.01), NLMS (μ̃ = 0.05, ε = 0.5) and RLS (λ = 0.99, δ = 1)
initialized at w(0) = [−1.5 − 1.4]T , σ2

v = 0.01, and ensemble-average of 1000 independent runs.

smaller than in the previous example). Figure 12.27 shows the MSE along the iterations, estimated
from the ensemble-average of 1000 independent runs. Again, RLS presents the fastest convergence
rate, followed by NLMS and LMS. These algorithms achieve the same steady-state MSE and therefore,
present the same performance after convergence, which can be observed in Figure 12.28 where the
equalizer output signal constellations are shown. The Matlab file used in this simulation is available at
http://www.lps.usp.br.

1.12.4 Statistical analysis
Closed-form expressions for the mean-square performance of adaptive filters facilitate comparisons
between different algorithms and provide information about stability, convergence rate, mean-square
error, and tracking capability. Since adaptive algorithms are obtained from stochastic approximations
of the cost-functions, gradients and Hessians, their performance will degrade in comparison with the
performance of the exact algorithms. Thus, stochastic analyses are also important to measure the per-
formance degradation in relation to the exact algorithms.

The analysis of an adaptive algorithm constitutes a very hard problem, since adaptive filters are time-
variant, stochastic, and nonlinear systems. Therefore, it is common to introduce simplifying approxi-
mations. They consist in most cases of disregarding the dependence between variables, for example,
approximating the expected value of the product of two random variables, say, E{xy}, by the product
of the expected values, E{x}E{y}. For historical reasons, these approximations are usually referred to
as assumptions in the literature.

http://www.lps.usp.br
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FIGURE 12.27

MSE along the iterations for LMS (μ = 10−3), NLMS (μ̃ = 0.08, ε = 10−5), and RLS (λ = 0.997,
δ = 1) initialized at w(0) = 0; QPSK, L = 9, M = 15, and ensemble-average of 1000 independent runs;
equalization of the channel (12.169).
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FIGURE 12.28

Equalizer output signal constellations after convergence for (a) LMS (μ = 10−3), (b) NLMS (μ̃ = 0.08,
ε = 10−5), and (c) RLS (λ = 0.997, δ = 1); initialized at w(0) = 0; QPSK, L = 9, M = 15; equalization of
the channel (12.169).

In some situations, in particular for LMS and some of its variants, the approximations are proved to
converge to the exact solution in the limiting case of slow adaptation (μ→ 0 in the case of LMS), and
their predictions tend to be reasonable for the range of step-sizes used in practice. We will not reproduce
these proofs here, since they are in general very technical, but they can be found in [48–53] for the case
of LMS, and [39] for more general filters.
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The literature contains a few exact analytical results, but only for LMS, under very particular con-
ditions [54–56]. In addition, the complexity of these exact models grows very quickly with the number
of coefficients, so they are only useful for short filters (up to about five coefficients.).

The performance of an adaptive filter is usually described by evaluating the mean and the mean
square (variance) of the weight error vector and of the error signal e(n). This usually works very well
for slow adaptation (i.e., small step-size). However, for fast adaptation, the behavior of an adaptive filter
is considerably more complicated than can be seen by looking only at means and variances. Some of the
phenomena that appear in LMS with large step-sizes are described in [46,57]. References [45,58–60]
study algorithms with strong nonlinearities, for which the usual approximations are not always valid.

The analysis of NLMS was considered in [61–68]. Many works consider only tapped-delay line
regressors, the case of Volterra filters is considered for example in [69–73]. For RLS filters, important
models for infinite-precision arithmetic can be found in [74,75]. The case of finite-precision arithmetic
is discussed in Section 1.12.5.1.2.

The real importance of the approximations used in the adaptive filtering literature is that they lead
to reasonably simple models that capture well the overall behavior of an adaptive filter. Simple models
provide intuition about how a filter will behave if a given parameter is changed, which is important
for a designer to make good decisions. Some approximations are made because without them the
mathematical analysis would not be feasible, but others are used mainly because they lead to simpler
models. Of course, there are situations in which it is important to study a filter in more detail, reducing
the number of assumptions used in the analysis, as in the references just cited.

In this section we analyze three of the most common adaptive filters—LMS, NLMS, and RLS, starting
with LMS in Section 1.12.4.3, and then showing how to extend these results to the other algorithms
in Section 1.12.4.4. To start, we need to define some useful performance measures. The mean-square
error (MSE) is simply the expected value of |e(n)|2:

J (n)
�=E{|e(n)|2}. (12.170)

The most widely measure of performance used in the literature of adaptive filtering is the excess mean-
square error (EMSE), which is defined as

ζ(n) � E{|ea(n)|2}, (12.171)

where the excess a priori error is given by

ea(n) = w̃H (n)φ(n), (12.172)

and the weight error vector by
w̃(n) = wo(n)− w(n). (12.173)

Note that the optimal solution wo(n) is now allowed to be time-variant. Note also the difference between
ea(n) and e(n), defined in (12.119). Both are a priori errors, but ea(n) is computed with w̃(n), whereas
e(n) is computed with w(n). The EMSE measures how much J (n) exceeds its minimum value Jmin(n)
due to adaptation: if you were able to find the optimum filter coefficients wo(n) at each time, the EMSE
would be zero. Since the actual filter coefficients are never exactly equal to the optimum values, the
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EMSE measures the effect of this difference on the error variance. Closely related to the EMSE, the
misadjustment is defined as

M(n) � ζ(n)/σ 2
v . (12.174)

The excess a posteriori error ep(n) is mostly used in the analysis and derivations of algorithms. It
is the error obtained after using the current data φ(n) to update the coefficient vector (thus the names a
priori and a posteriori), i.e.,

ep(n) = w̃H (n + 1)φ(n). (12.175)

Again, note the difference with respect to ξ(n), defined in (12.129).
Another common performance measure is the mean-square deviation (MSD). It measures how far

w(n) is from wo(n) in average:

χ(n)
�=E{‖w̃(n)‖2}. (12.176)

The EMSE is the most frequently performance measure used for comparisons between adaptive filters;
however in some applications, particularly for system identification, the MSD is more adequate.

We now will discuss a general model for the input signals, considering a set of approximations that
leads to reasonable, yet simple models.

1.12.4.1 Data model
From the orthogonality principle (recall Section 1.12.2), the optimal solution wo(n) satisfies the property

E{φ(n)[d(n)− wH
o (n)φ(n)]} = 0, (12.177)

i.e., the input regressor vector φ(n) is uncorrelated with the optimal estimation error

vo(n) � d(n)− wH
o (n)φ(n), (12.178)

whose mean is zero and whose variance σ 2
v (n) = E{|vo(n)|2} is equal to the minimum cost Jmin(n).

Thus, a linear regression model for d(n) holds, i.e.,

d(n) = wH
o (n)φ(n)+ vo(n). (12.179)

It then follows that

e(n) = d(n)− wH (n)φ(n) = w̃H (n)φ(n)+ vo(n) = ea(n)+ vo(n), (12.180)

and the MSE is given by

J (n) = E{|e(n)|2} = E{|ea(n)|2} + 2E{ea(n)vo(n)} + E{|vo(n)|2} =
= ζ(n)+ 2E{ea(n)vo(n)} + σ 2

v (n).

The first approximation (or assumption) used in adaptive filtering analysis is to disregard the cross-term
E{ea(n)vo(n)}. Since vo(n) and φ(n) are uncorrelated, but not necessarily independent, the cross-
term does not vanish in general. From observations, however, one notes that the cross-term is usually
negligible, compared to the other terms. In order to obtain a simple model for the adaptive filter, we will
assume that φ(n) and vo(n) are independent of each other, and of previous samples φ(n− k), v(n− k)
for k > 0:
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Assumption 1. The sequences {φ(n)} and {vo(n)} are independent and identically distributed (iid), and
independent of each other (not only orthogonal). In addition, the sequence {φ(n)} is assumed stationary
and {vo(n)} is zero-mean.

The last two assumptions are not in fact necessary, but they simplify the analysis. In general the
sequence {φ(n)} is not iid: for example if φ(n) is formed from a tap-delay line or from a Volterra series
expansion (see Eqs. (12.113) and (12.114)) φ(n) and φ(n − 1) will have terms in common. However,
assuming that the sequences are iid leads to simple models that in general are good approximations for
the range of step-sizes usually found in practice, in particular for small step-sizes. The analysis based
on Assumption 1 is known in the literature as independence theory.

Going back to the adaptive filter recursions (see Tables 12.2–12.5, and also Eq. (12.221) further
ahead) we see that the current weight error w̃(n) is a function of past inputs φ(n− 1),φ(n− 2), . . . and
noise samples v(n − 1), v(n − 2), . . ., but not of the current samples φ(n) and vo(n). Therefore, under
Assumption 1, w̃(n) is independent of vo(n) and φ(n), so that

E{ea(n)vo(n)} = E{w̃H (n)}E{φ(n)}E{vo(n)} = 0.

We conclude that under Assumption 1, the MSE J (n) = E{|e(n)|2} is related to the EMSE via

J (n) = ζ(n)+ Jmin(n) = ζ(n)+ σ 2
v , (12.181)

since Assumption 1 implies that Jmin(n) is a constant.
We also need a model for the variation of the optimal solution. Again, our choice is a model that cap-

tures the main consequences of a non-constant wo(n), without unnecessarily complicating the analysis.

Assumption 2 (Random-walk model). In a nonstationary environment, wo varies as

wo(n + 1) = wo(n)+ q(n), (12.182)

where q(n) is zero-mean i.i.d vector with positive-definite autocorrelation matrix Q = E{q(n)q H (n)},
independent of the initial condition w(0), and of {φ(�), v(�)} for all �.

The covariance matrix of wo, according to (12.182), grows slowly to infinity. A more general model
for the variation of wo uses the recursion{

wo(n + 1) = wo(n)+ θ(n),
θ(n) = αθ(n − 1)+ q(n), 0 ≤ |α| < 1,

whose covariance matrix remains bounded, but the analysis becomes more complicated [3]. Therefore,
it is common in the literature to adopt the model (12.182). Note that both models assume that {x(n)} is
a stationary random sequence, although wo(n) is allowed to vary with n.

1.12.4.2 Relating the covariance matrix of the weight-error vector to the EMSE
and the MSD

The covariance matrix of the weight-error vector is defined as

S(n) � E
{
w̃(n)w̃H (n)

}
. (12.183)
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This matrix is important in the statistical analysis of adaptive filters since it is related to the MSD and
the EMSE as we show next.

Recall that the MSD is given by

χ(n) = E
{
‖w̃(n)‖2

}
=

M−1∑
i=0

E
{
w̃2

i (n)
}
.

Now, the terms E{w̃2
i (n)} are exactly the terms that appear in the diagonal of S(n), therefore, recalling

that the trace of a square matrix is the sum of its main-diagonal elements (see Box 3), we obtain

χ(n) =
M−1∑
i=0

E{w̃2
i (n)} =

M−1∑
m=0

smm(n) = Tr(S(n)). (12.184)

Under Assumption 1, φ(n) and w̃(n) are independent, as we just saw. Therefore,

ζ(n) = E{|w̃H (n)φ(n)|2} = E{w̃H (n)φ(n)(w̃H (n)φ(n))∗}
= E{w̃H (n)φ(n)φH (n)w̃(n)} = E

{
E{w̃H (n)φ(n)φH (n)w̃(n)|w̃(n)}

}
= E

{
w̃H (n)E{φ(n)φH (n)|w̃(n)}w̃(n)

}
= E{w̃H (n)Rφw̃(n)},

where we used Assumption 1 to write E{φ(n)φH (n)} = Rφ (constant), and two properties of expected
values. The first is that, for any two random variables a, b,

E{ab} = E {E{ab|b}} = E {E{a|b}b} ,
where the inner expected value is taken with respect to a, and the second with respect to b. The second
property is that, if a and b are independent, then E{a|b} does not depend on b, i.e., E{a|b} = E{a}.

To proceed, we apply a useful trick from matrix theory. You can check by direct computation that,
if A ∈ CK×L and B ∈ CL×K , then Tr(AB) = Tr(B A). Applying this property with A← w̃H (n) and
B← Rφw̃(n), we obtain

ζ(n) = Tr
(

RφE{w̃(n)w̃H (n)}
)
= Tr

(
Rφ S(n)

)
. (12.185)

Since Rφ is symmetric, there always exists an orthogonal matrix U (i.e., U−1 = U H ) that diago-
nalizes Rφ , that is,

U H RφU =

⎡⎢⎢⎢⎣
λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 0 λM

⎤⎥⎥⎥⎦ �=�, (12.186)

where λ1, λ2, . . . , λM are the eigenvalues of Rφ (see Box 3). Defining the rotated matrix

S′(n) � U H S(n)U
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and recalling that UU H = I , (12.184) and (12.185) can be rewritten respectively as

χ(n) = Tr(U U H S(n)U︸ ︷︷ ︸
S′(n)

U H ) = Tr(U S′(n)U H ) (12.187)

and

ζ(n) = Tr(U U H RφU︸ ︷︷ ︸
�

U H S(n)U︸ ︷︷ ︸
S′(n)

U H ) = Tr(U�S′(n)U H ). (12.188)

Using again the fact that Tr(AB) = Tr(B A), with A← U , we obtain

χ(n) = Tr
(
S′(n)

)
(12.189)

and

ζ(n) = Tr
(
�S′(n)

)
. (12.190)

Note that both the MSD (12.189) and the EMSE (12.190) depend only on the diagonal entries of S′(n).
We can work therefore only with these diagonal entries, defining the vectors

s′(n) = diag(S′(n)) = [
s′0(n)s′1(n) · · · s′M−1(n)

]T
, (12.191)

and

l = [
λ0, . . . , λM−1

]T
, (12.192)

where diag(A) represents a column vector with the diagonal elements of A, and evaluating the MSD
and EMSE respectively as

χ(n) =
M−1∑
k=0

s′k(n) (12.193)

and

ζ(n) = lT s′(n) =
M−1∑
k=0

λks′k(n). (12.194)

Again, the MSD and EMSE depend only on the elements of the diagonal of the rotated matrix S′(n). In the
case of EMSE, these elements are weighed by the eigenvalues of the autocorrelation matrix Rφ . As we
shall see in Section 1.12.4.3, the stability of LMS can be studied through a recursion for the vector s′(n).

Thus, according to the previous results, in order to obtain closed-form expressions for the MSD and
the EMSE of an adaptive algorithm, one path is to find a recursion for the covariance matrix S(n) or
for the vector s′(n). However, this is not the only method to analyze adaptive algorithms, as we shall
see in Section 1.12.4.4.
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1.12.4.3 Statistical analysis of the LMS algorithm
In this section, we present a statistical analysis for the LMS algorithm, assuming that the optimal solution
wo remains constant (q(n) ≡ 0, for all n). This analysis predicts the behavior of LMS in steady-state
and in transient, and provides a range of the step-size μ for which LMS operates adequately. If you are
familiar with the LMS analysis, go to Section 1.12.4.4, where we present a unified analysis for LMS,
NLMS, and RLS algorithms in a nonstationary environment.

We first rewrite (12.123) in terms of the weight-error vector w̃. Thus, subtracting both sides of
(12.123) from wo, we obtain

wo − w(n + 1) = wo − w(n)− μφ(n)e∗(n),
w̃(n + 1) = w̃(n)− μφ(n)e∗(n). (12.195)

Replacing e∗(n) = e∗a(n)+ v∗o(n) = φH (n)w̃(n)+ v∗o(n) in (12.195), we arrive at

w̃(n + 1) =
[

I − μφ(n)φH (n)
]
w̃(n)− μφ(n)v∗o(n). (12.196)

First-order analysis. Taking expectations on both sides of (12.196), we obtain

E{w̃(n + 1)} = E
{[

I − μφ(n)φH (n)
]
w̃(n)

}
− μE{φ(n)v∗o(n)}

= E
{[

I − μφ(n)φH (n)
]
w̃(n)

}
, (12.197)

where the last equality follows from the fact that φ(n) is orthogonal to v∗o(n), according to the orthog-
onality condition (see Eq. (12.96)). Since w̃(n) is assumed to be independent of φ(n) (see Assumption
1), we arrive at

E{w̃(n + 1)} = [
I − μRφ

]
E{w̃(n)}. (12.198)

This is the same recursion we saw in Box 1. According to linear systems theory, this recursion converges
as long as the largest eigenvalue of A = I −μRφ has absolute value less than one, which implies (see
Box 1)

|1− μλ| < 1⇔ 0 < μ <
2

λk
, ∀k ⇔

0 < μ <
2

λmax
, (12.199)

where λk , k = 1, 2, . . . ,M are the eigenvalues of Rφ , and λmax is its maximum eigenvalue. We should
notice that this range for μ does not ensure the stability of LMS, since it ensures the convergence of
the mean of w̃(n) = wo − w(n) towards 0, but the autocovariance of w̃(n) may still be diverging. We
show next that the range for μ based on a second-order analysis is indeed more restrict.
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Second-order analysis. Now, we use (12.196) to find a recursion for S(n) and (12.185) to evaluate the
EMSE of LMS. Multiplying (12.196) by its Hermitian, taking the expectations of both sides, we arrive at

E{w̃(n + 1)w̃H (n + 1)} = E{w̃(n)w̃H (n)}

−
A︷ ︸︸ ︷

μE{w̃(n)w̃H (n)φ(n)φH (n)}

−
B︷ ︸︸ ︷

μE{φ(n)φH (n)w̃(n)w̃H (n)}

+
C︷ ︸︸ ︷

μ2E{φ(n)φH (n)w̃(n)w̃H (n)φ(n)φH (n)}

+
D︷ ︸︸ ︷

μ2E{|vo(n)|2φ(n)φH (n)}

−
E︷ ︸︸ ︷

μE{vo(n)w̃(n)φ
H (n)}

−
F︷ ︸︸ ︷

μE{v∗o(n)φ(n)w̃H (n)}

+
G︷ ︸︸ ︷

μ2E{vo(n)φ(n)φ
H (n)w̃(n)φH (n)}

+
H︷ ︸︸ ︷

μ2E{v∗o(n)φ(n)w̃H (n)φ(n)φH (n)} . (12.200)

Now, using Assumption 1, we can evaluate the terms A−H of (12.200):

A- Recalling that Assumption 1 implies that w̃(n) is independent from φ(n), the term A can be
approximated by

A = μE
{

E
{
w̃(n)w̃H (n)φ(n)φH (n)|φ(n)

}}
≈ μE

{
E
{
w̃(n)w̃H (n)

}
φ(n)φH (n)

}
= μS(n)E

{
φ(n)φH (n)

}
= μS(n)Rφ . (12.201)

B- Analogously, we obtain for B
B ≈ μRφ S(n). (12.202)

C- Using Assumption 1, the term C can be rewritten as

C = μ2E
{
φ(n)φH (n)w̃(n)w̃H (n)φ(n)φH (n)

}
≈ μ2E

{
φ(n)φH (n)S(n)φ(n)φH (n)

}
. (12.203)

We return to this term further on.
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D- Using the fact that vo(n) is independent of φ(n) and w̃(n), D reduces to

D = μ2E{|vo(n)|2φ(n)φH (n)} ≈ μ2σ 2
v Rφ . (12.204)

E- Using the fact that vo(n) is a zero-mean random variable, which is independent of φ(n) and
w̃(n), E is a M × M null matrix. Using the same arguments, the terms F , G, and H are also null
matrices. We should point out that the zero-mean assumption for vo(n) is not necessary, but it really
facilitates the analysis. Furthermore, as we saw in Section 1.12.2.1.4, we can enforce E{vo(n)} = 0
using simple methods.

From the previous results, (12.200) reduces to

S(n + 1) ≈ S(n)− μS(n)Rφ − μRφ S(n)

+μ2E
{
φ(n)φH (n)S(n)φ(n)φH (n)

}
︸ ︷︷ ︸

C

+μ2σ 2
v Rφ . (12.205)

This recursion is convenient to obtain closed-form expressions for the EMSE and the MSD of LMS.
Observe that the four first terms on the right-hand side of (12.205) are linear in S(n). Assuming that μ
is sufficiently small, the term C can be neglected with respect to the three first terms. Thus, for small
step-sizes, (12.205) reduces to

S(n + 1) ≈ S(n)− μ [S(n)Rφ + Rφ S(n)
]+ μ2σ 2

v Rφ, (12.206)

with initialization S(0) = [
wo − w(0)

] [
wo − w(0)

]H .
Since we can obtain the EMSE and the MSD from S(n) and Rφ through (12.185) and (12.184), we

should use recursion (12.206) to compute S(n) and then, evaluate ζ(n) = Tr(S(n)Rφ) and χ(n) =
Tr(S(n)). Particularly for n→∞, since S(n + 1) ≈ S(n), we obtain

S(∞)Rφ + Rφ S(∞) = μσ 2
v Rφ . (12.207)

Taking the trace of both sides of (12.207), we arrive at an analytical expression for the steady-state
EMSE of LMS, i.e.,

ζLMS(∞) ≈ μσ 2
v Tr(Rφ)

2
(for sufficiently small μ). (12.208)

This expression indicates that the EMSE of LMS increases with μ and with the length of the filter. The
dependence with the filter length is through the trace of Rφ . It is more evident when the class of filters

we are considering is FIR, that is, when φ(n) = [
x(n) . . . x(n − M + 1)

]T (a tapped-delay line). In
this case, if {x(n)} is stationary, then Tr(Rφ) = ME{x2(n)}, M times the average power of x(n).

Turning now to the filter coefficients, if we multiply both sides of (12.207) from the right by R−1
φ ,

taking the trace of both sides, and recalling that Tr(AB) = Tr(B A), we obtain an expression for the
steady-state MSD of LMS, i.e.,

χLMS(∞) ≈ μσ 2
v M

2
(for sufficiently small μ). (12.209)
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Again, the smaller the step-size μ and the filter length M , the smaller the MSD of LMS.
These results explain what we observed in the simulations in Section 1.12.1.2 (Figures 12.9 and

12.10): for larger values of μ the filter converges faster, but hovers around the optimum solution in a
larger region. The size of this region is what the MSD attempts to measure—the EMSE measures how
much this hovering affects the error.

These quantities are important in practical situations. For example, in an actual implementation of an
acoustic echo canceler, when the near-end user is speaking, his voice is part of v(n). Since the near-end
speech is normally stronger than the echo, σ 2

v tends to be quite large when the near-end speaker is
talking. If the adaptive filter were allowed to keep adapting at these moments, (12.208) shows that the
filter estimates would wander too far from the optimum. To avoid this problem, the step-size is reduced
to zero whenever the near-end user is speaking. A double-talk detector is used to decide when to stop
adaptation.

It can be shown that (12.206) is stable for sufficiently small μ. However, (12.206) cannot be used
to find a range of values of μ that guarantee stability, due to the approximations made, particularly the
discarding of term C. Thus, in order to study the stability of LMS, we consider next an approximation
for this term, based the assumption that the input vector is Gaussian. This assumption allows us to
approximate C as

C ≈ RφTr(S(n)Rφ)+ βRφ S(n)Rφ, (12.210)

where as usual, β = 1 (resp., β = 2) for complex (resp., real) data. See Box 7 for the derivation of
(12.210).

Replacing (12.210) in (12.205), we arrive at

S(n + 1) ≈ S(n)− μ [S(n)Rφ + Rφ S(n)
]

+μ2
[

RφTr
(
S(n)Rφ

)+ βRφ S(n)Rφ + σ 2
v Rφ

]
. (12.211)

The stability of (12.211) is determined through a recursion for the vector s′(n), which contains the
elements of the diagonal of the rotated matrix S′(n) = U H S(n)U (see Section 1.12.4.2). A recursion
for S′(n) can be obtained by multiplying (12.211) from the left by U H and from the right by U and
recalling that UU H = I , which leads to

S′(n + 1) ≈ S′(n)− μ [S′(n)�+�S′(n)
]

+μ2 [�Tr(�S′(n))+ β�S′(n)�
]+ μ2σ 2

v�, (12.212)

where � is defined as in (12.186). Thus, a recursion for s′(n + 1) is given by

s′(n + 1) =
[

I − 2μ�+ μ2
(
β�2 + l lT

)]
s′(n)+ μ2σ 2

v l, (12.213)

where l is defined in (12.192).
The system matrix A of (12.213) is given by

A = I − 2μ�+ μ2
(
β�2 + l lT

)
= (

I − μ�
)2 + μ2(β − 1)�2 + μ2l lT .
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Although it is possible to obtain the exact values of all eigenvalues of A, as done in [36], we follow here
a much simpler, approximate route. We can use Fact 7 in Box 3 to find an upper bound for the largest
eigenvalue νi of A, using the 1-norm of A:

max
0≤i≤M−1

|νi | ≤ ‖A‖1 = max
0≤i≤M−1

M−1∑
j = 0

|ai j |,

where ai j are the entries of A. If we find a range of μ for which ‖A‖1 ≤ 1, then the recursion will be
stable. This will be of course a conservative condition (sufficient, but not necessary).

Now note that the ith column of A has entries λiλ j if i = j , and (1−μλi )
2+μ2(β−1)λ2

i +μ2λ2
i

in the term corresponding to the diagonal. Since all terms are positive, the 1-norm is

max
0≤i≤M−1

⎡⎣(1− μλi )
2 + μ2(β − 1)λ2

i + μ2λi

M−1∑
j = 0

λ j

⎤⎦
= max

0≤i≤M−1

[
(1− μλi )

2 + μ2(β − 1)λ2
i + μ2λi Tr(�)

]
.

Recall that Tr(�) = Tr(Rφ) (Fact 1 from Box 3). Therefore, the recursion will be stable if

1− 2μλi + μ2λ2
i + μ2(β − 1)λ2

i + μ2λi Tr(Rφ) ≤ 1, 0 ≤ i ≤ M − 1.

Simplifying, we obtain the condition

μ ≤ 2

βλi + Tr(Rφ)
, 0 ≤ i ≤ M − 1.

The smallest bound is for λi = λmax:

μ ≤ 2

βλmax + Tr(Rφ)
. (12.214)

If we replace λmax by Tr(Rφ) ≥ λmax in the denominator, we obtain a simpler, but more conservative
condition:

μ ≤ 2

(β + 1)Tr(Rφ)
. (12.215)

For real data, this range reduces to

0 < μ <
2

3Tr(Rφ)
(real data) (12.216)

and for complex data to

0 < μ <
1

Tr(Rφ)
(complex data). (12.217)
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Table 12.6 Parameters of LMS, NLMS, and RLS Algorithms

Algorithm ρ(n) M−1(n)

LMS μ I

NLMS
μ̃

ε + ‖φ(n)‖2 I

RLS 1− λ (1− λ)
n∑
�=1

λn−�φ(�)φH (�)

If the input is a tapped-delay line as in (12.113), Tr(Rφ) = ∑M−1
k=0 E{|x(n − k)|2}. If {x(n)} is a

stationary sequence, the stability condition for LMS is easy to obtain: we need to choose μ in the range

0 < μ <
2

(β + 1)× M × (average power of x(n))
. (12.218)

This concludes our stability analysis for LMS. We now show how to extend these results to NLMS
and RLS, in a unified way. At the end of the next section, we give examples comparing the models to
simulated results.

1.12.4.4 A unified statistical analysis
In this section, we assume a nonstationary environment, where the optimal solution varies according
to the random walk model (see Assumption 2). We start by obtaining a general update equation for the
LMS, NLMS, and RLS algorithms, in order to provide a unified statistical analysis for these algorithms.

1.12.4.4.1 A general update equation
In order to provide a unified analysis for the LMS, NLMS and RLS algorithms, we consider the following
general update equation

w(n + 1) = w(n)+ ρ(n)M(n)φ(n)e∗(n), (12.219)

where ρ(n) is a step-size, M(n) is a non-singular matrix with hermitian symmetry (M H (n) = M(n)),
and e(n) = d(n) − wH (n)φ(n) is the estimation error. Many adaptive algorithms can be written as
in (12.219), by proper choices of ρ(n) and M(n). The LMS, NLMS, and RLS algorithms employ the
step-sizes ρ(n) and the matrices M(n) as in Table 12.6, where I is the M × M identity matrix, μ and
0 < μ̃ < 2 are step-sizes, and 0� λ < 1 is a forgetting factor. For RLS, M(n) = (1− λ)−1 P(n) (see
Eq. (12.162)). Note that, since (1− λ) plays the role of step-size in RLS, we multiply the matrix P(n)
by (1− λ)−1, keeping the update equation of the RLS weights as in (12.167).

We must rewrite (12.219) in terms of the weight-error vector w̃. Thus, subtracting both sides of
(12.219) from wo(n + 1) = wo(n)+ q(n) (Eq. (12.182)), we obtain

wo(n + 1)− w(n + 1) = wo(n)+ q(n)− w(n)− ρ(n)M(n)φ(n)e∗(n),
w̃(n + 1) = w̃(n)− ρ(n)M(n)φ(n)e∗(n)+ q(n). (12.220)
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Replacing e∗(n) = e∗a(n)+ v∗(n) = φH (n)w̃(n)+ v∗(n) in (12.220), we arrive at

w̃(n + 1) =
[

I − ρ(n)M(n)φ(n)φH (n)
]
w̃(n)− ρ(n)M(n)φ(n)v∗(n)+ q(n). (12.221)

We next use recursion (12.221) to evaluate the EMSE and the MSD of LMS, NLMS, and RLS.

1.12.4.4.2 Alternative analysis methods
Closed-form expressions for the EMSE and MSD can be obtained in two ways:

i. Finding a recursion for the correlation matrix of the weight-error vector, denoted by S(n). The
EMSE and MSE can be easily computed given S(n), as we saw in Section 1.12.4.2. This is the
earlier approach in the literature [1,2] and therefore, we refer to it here as traditional method.

ii. Using the energy conservation analysis of [3,76–78]. The energy conservation approach relies
on an energy conservation relation that holds for a large class of adaptive filters. The energy
conservation method presents some advantages when compared to the traditional one. For example,
using energy conservation, one can obtain steady-state results directly, bypassing several of the
difficulties encountered in obtaining them as a limiting case of a transient analysis. This method
can also be used in transient analyses of adaptive algorithms (see, e.g., Part V of [3]).

It is important to understand that both methods involve different sets of approximations (assumptions),
so they do not always arrive at the same expressions. Generally, they tend to be equal in the limit of slow
adaptation (i.e., if ρ(n) → 0 in (12.221)). For larger values of ρ(n), which method will provide the
best approximation depends on the algorithm. As for the work necessary to arrive at the final answers,
the energy conservation approach is almost always easier to use if one is interested only in steady-state
results. If one is interested in transient performance and stability studies, then the traditional method
may be simpler, depending on the algorithm under study.

To give an overview of both methods, we first use the traditional method to obtain the transient and
steady-state performance of the LMS, NLMS, and RLS algorithms. This is an extension of what we did
for LMS in Section 1.12.4.3, taking advantage of the similarities between the algorithms. In the sequel,
we employ the energy conservation method to obtain closed-form expressions for the steady-state EMSE
of the same algorithms.

In this section we allow the environment to be nonstationary, i.e., the optimal solution wo is time-
variant. The results for stationary environments can be obtained simply by making Q = 0 in the
equations below. In order to simplify the arguments, we require that the regressor sequence {φ(n)} be
wide-sense stationary, that is, we assume that Rφ is constant.

1.12.4.4.3 Analysis with the traditional method
The traditional analysis method consists of finding a recursion for S(n), and using (12.184) and (12.185)
to evaluate the MSD and the EMSE, respectively. A recursion for S(n) can be obtained by multiply-
ing (12.221) by its Hermitian, taking the expectations of both sides, and recalling that Assumption 1
implies that w̃(n) is independent of φ(n) and of the zero-mean vo(n). Furthermore, using the fact that
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E{w̃(n)q H (n)} = 0 since the sequence {q(n)} is iid (Assumption 2), we arrive at

E{w̃(n + 1)w̃H (n + 1)} = E{q(n)q H (n)} + E{w̃(n)w̃H (n)}

−
A︷ ︸︸ ︷

E{ρ(n)w̃(n)w̃H (n)φ(n)φH (n)M(n)}

−
B︷ ︸︸ ︷

E{ρ(n)M(n)φ(n)φH (n)w̃(n)w̃H (n)}

+
C︷ ︸︸ ︷

E{ρ2(n)M(n)φ(n)φH (n)w̃(n)w̃H (n)φ(n)φH (n)M(n)}

+
D︷ ︸︸ ︷

E{ρ2(n)|vo(n)|2 M(n)φ(n)φH (n)M(n)} . (12.222)

To simplify (12.222), we also need two additional assumptions:

Assumption 3. Matrix M(n) varies slowly in relation to w̃(n). Thus, when M(n) appears inside the
expectations of (12.222), we simply replace it by its mean. For LMS and NLMS, this assumption is not
necessary, since M(n) = I . For RLS, M(n) = (1− λ)−1 P(n) ≈ (1− λ)−1E{P(n)} if λ ≈ 1;

Assumption 4. The input regressor vector φ(n) is assumed to be Gaussian. This assumption makes
the analysis more tractable, since Gaussianity facilitates the computation of the expected values in C.

Now, using the Assumptions 1–4, we can evaluate the terms A-D of (12.222):

A- The term A can be approximated by

A = E
{

E
{
ρ(n)w̃(n)w̃H (n)φ(n)φH (n)M(n)|φ(n)

}}
≈ E

{
ρ(n)E

{
w̃(n)w̃H (n)

}
φ(n)φH (n)

}
E {M(n)}

= S(n)E
{
ρ(n)φ(n)φH (n)

}
E {M(n)} . (12.223)

For LMS, this term reduces to
ALMS ≈ μS(n)Rφ . (12.224)

For NLMS, we must obtain an approximation for

E
{
ρ(n)φ(n)φH (n)

}
= E

{
μ̃φ(n)φH (n)

ε + φH (n)φ(n)

}
. (12.225)

It is possible to evaluate this expected value exactly (see [61,63,64]), but our intention here is to
obtain the simplest possible model. Therefore, we will use two additional approximations:

Assumption 5. The number of coefficients M is large enough for each element φ(n)φH (n) in

the numerator to be approximately independent from the denominator
∑M−1

k=0 |φ(n − k)|2.
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This is equivalent to apply the averaging principle proposed in [79], since for large M, ‖φ(n)‖2 tends
to vary slowly compared to the individual entries of φ(n)φH (n).
Thus, (12.225) can be approximated as

E

{
φ(n)φH (n)

ε + φH (n)φ(n)

}
≈ E

{
1

ε + φH (n)φ(n)

}
E
{
φ(n)φH (n)

}
. (12.226)

Under Assumption 5, the first expected value in (12.226) can by approximated by:

E

{
1

ε + φH (n)φ(n)

}
≈ 1

E{ε + φH (n)φ(n)} =
1

ε + Tr(Rφ)
. (12.227)

An alternative, more accurate approximation is obtained when φ(n) is Gaussian and a tapped-delay
line:

Assumption 6. The regressor φ(n) is formed by a tapped-delay line with Gaussian entries as in
(12.113), and ε = 0.

Under Assumptions 4, 5, and 6 it can be shown (see [65] for details) that

E

{
1

ε + φH (n)φ(n)

}
≈ 1

σ 2
x (M − 2)

. (12.228)

Both approximations are only valid for long filters. However, (12.228) shows that NLMS needs a
large regularization constant if M < 3, which is verified in practice [63]. We will present the final
results for NLMS in terms of Assumption 6, but recall that a less precise, but more general option is
available using only Assumption 4 and approximations such as (12.227).
Thus, the term A for NLMS reduces to (using (12.228))

ANLMS ≈ μ̃

σ 2
x (M − 2)

S(n)Rφ . (12.229)

Finally, for RLS, we obtain
ARLS ≈ S(n)Rφ P(n), (12.230)

where P(n) � E{R−1
φ (n)}, which we will evaluate later on.

B- Analogously, we obtain for B

B ≈ E {M(n)}E
{
ρ(n)φ(n)φH (n)

}
S(n). (12.231)

Particularizing for each algorithm, we have

BLMS ≈ μRφ S(n), (12.232)

BNLMS ≈ μ̃

σ 2
x (M − 2)

Rφ S(n), (12.233)

and
BRLS ≈ P(n)Rφ S(n). (12.234)
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C- The term C can be approximated by

C = E
{
ρ2(n)M(n)φ(n)φH (n)w̃(n)w̃H (n)φ(n)φH (n)M(n)

}
≈ E {M(n)}E

{
ρ2(n)φ(n)φH (n)S(n)φ(n)φH (n)

}
E {M(n)} . (12.235)

Under the Gaussianity assumption 4, it holds that (see Box 7)

E
{
φ(n)φH (n)S(n)φ(n)φH (n)

}
= RφTr(S(n)Rφ)+ βRφ S(n)Rφ, (12.236)

where β = 1 (resp., β = 2) for complex (resp. real) data. Thus, for LMS we have

CLMS ≈ μ2 [RφTr(S(n)Rφ)+ βRφ S(n)Rφ

]
. (12.237)

For NLMS, using the same arguments to get (12.226), the following approximation holds for large M :

E
{
ρ2(n)φ(n)φH (n)S(n)φ(n)φH (n)

}
≈ μ̃2E

{
1[

φH (n)φ(n)
]2

}
E
{
φ(n)φH (n)S(n)φ(n)φH (n)

}
. (12.238)

Under Assumption 5, the first expectation on the r.h.s. of (12.238) is given by

E

{
1[

φH (n)φ(n)
]2

}
= 1

ε + Tr(Rφ)+ βTr(R2
φ)
. (12.239)

On the other hand, under Assumption 6, we obtain [65]

E

{
1[

φH (n)φ(n)
]2

}
= 1

σ 4
x (M − 2)(M − 4)

. (12.240)

Replacing (12.240) and (12.236) in (12.238), we arrive at

CNLMS ≈ μ̃2

σ 4
x (M − 2)(M − 4)

[
Rφ Tr(S(n)Rφ)+ βRφ S(n)Rφ

]
. (12.241)

Finally, for RLS we obtain

CRLS ≈ P(n)
[
Rφ Tr(S(n)Rφ)+ βRφ S(n)Rφ

]
P(n). (12.242)

D- Using the fact that vo(n) is independent of φ(n) and w̃(n),D reduces to

D = E{ρ2(n)|vo(n)|2 M(n)φ(n)φH (n)M(n)}
≈ σ 2

v E{M(n)}E{ρ2(n)φ(n)φH (n)}E{M(n)}. (12.243)
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Particularizing for each algorithm, we obtain

DLMS ≈ μ2σ 2
v Rφ(n), (12.244)

DNLMS ≈ μ̃2

σ 4
x (M − 2)(M − 4)

σ 2
v Rφ(n), (12.245)

where we could also have used (12.239), and

DRLS ≈ σ 2
v P(n)Rφ P(n). (12.246)

From the previous results, (12.222) reduces to

S(n + 1) ≈ S(n)− E{ρ(n)} [S(n)RφE{M(n)} + E{M(n)}Rφ S(n)
]

+E{ρ2(n)}E{M(n)} [Rφ Tr(S(n)Rφ)+ βRφ S(n)Rφ

]
E{M(n)}

+σ 2
v E{ρ2(n)}E{M(n)}RφE{M(n)} + Q (12.247)

with initialization S(0) = [
wo(0)− w(0)

] [
wo(0)− w(0)

]H .
For RLS, we still need an approximation for P(n) = E{P(n)}. Initializing the estimate of the

autocorrelation matriz with R̂φ(−1) = δ I , we will have at iteration n

R̂φ(n) = λnδ I +
n∑
�=1

λn−�φ(�)φH (�). (12.248)

Taking the expectations of both sides of (12.248), we obtain

E
{

R̂φ(n)
} = λnδ I + Rφ

1− λn

1− λ . (12.249)

For λ ≈ 1, the variance of R̂φ(n) is small, and we can approximate P(n) ≈ [
E
{

R̂φ(n)
}]−1

, so that

P(n) ≈
[
λnδ I + Rφ

1− λn

1− λ
]−1

. (12.250)

This approximation is good for large n and in steady-state. During the initial phases of the transient,
however, the approximation will only be reasonable if δ is large enough to make the last term in (12.249)
small compared to λnδ I . This is because for n < M , the term

∑n
�=1 λ

n−�φ(�)φH (�) in (12.248) will
be singular, and thus will not be well approximated by (1− λn)Rφ/(1− λ).

Using the previous approximations, (12.247) can be particularized for the LMS, NLMS, and RLS
algorithms as shown in Table 12.7. Since we can obtain the EMSE and the MSD from S(n) and Rφ

through (12.185) and (12.184), we should use the recursions of Table 12.7 to compute S(n) and then
evaluate ζ(n) = Tr(S(n)Rφ) and χ(n) = Tr(S(n)).

Example 3. To verify the accuracy of the expressions of Table 12.7, we consider a system identification
application in a stationary environment (Q = 0). The optimal solution is a lowpass FIR filter with linear
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Table 12.7 Recursions for Covariance Matrix S(n+1). The Expressions for NLMS Assume that
the Regressor is a Tapped-Delay Line. Alternative Expressions for NLMS are Available Using
(12.227) and (12.239)

Algorithm S(n + 1)

LMS S(n + 1) ≈ S(n)− μ [S(n)Rφ + RφS(n)
]

+μ2
[
RφTr

(
S(n)Rφ

)+ βRφS(n)Rφ + σ2
v Rφ

]
+Q

NLMS S(n + 1) ≈ S(n)− μ̃

σ2
x (M − 2)

[
S(n)Rφ + RφS(n)

]
+ μ̃2

σ4
x (M − 2)(M − 4)

[
RφTr

(
S(n)Rφ

)+ βRφS(n)Rφ + σ2
v Rφ

]
+Q

RLS S(n + 1) ≈ S(n)−
[
S(n)RφP(n)+ P(n)RφS(n)

]
+P(n)

[
RφTr

(
S(n)Rφ

)+ βRφS(n)Rφ + σ2
v Rφ

]
P(n)+Q

phase, whose coefficients are shown in Figure 12.29. The regressor φ(n) is obtained from a process
x(n) generated with a first-order autoregressive model, whose transfer function is

√
1− b2/(1−bz−1).

Note that the sequence {φ(n)} is not iid. This model is fed with an iid Gaussian random process, whose
variance is such that Tr(Rφ) = 1. Moreover, additive iid noise vo(n) with variance σ 2

v = 0.01 is added
to form the desired signal.

Figure 12.30 shows the EMSE for RLS (λ = 0.995, δ = 1), NLMS (μ̃ = 0.1, ε = 10−5), and
LMS (μ = 0.05), estimated from the ensemble-average of 2000 independent runs. The dashed lines
represent the theoretical EMSE computed as ζ(n) = Tr(S(n)Rφ). We can observe a good agreement
between theory and simulation.

Figure 12.31 shows the EMSE of RLS (λ = 0.995), assuming different values for δ. We can observe
that the theoretical EMSE of RLS presents a good agreement with simulation during the initial phases
of the transient, but only for large values of δ due to the approximation (12.250).

1.12.4.4.4 Steady-state analysis with the energy conservation method
This method (also known as feedback approach [78,80]) is based on an energy conservation relation that
holds for a large class of adaptive filters. To obtain this relation for the algorithms of the form (12.219),
we first assume a stationary environment (q(n) ≡ 0).
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Impulse response wo of the unknown lowpass filter.
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EMSE for RLS (λ = 0.995, δ = 1), NLMS (μ̃ = 0.1, ε = 10−5), and LMS (μ = 0.05); b = 0.8, σ2
v =

10−2, σ2
q = 0; mean of 2000 independent runs. The dashed lines represent the predicted values of ζ(n)

for each algorithm.

Recall that the excess a posteriori error is given by

ep(n) = w̃H (n + 1)φ(n). (12.251)

Then, we multiply both sides of the Hermitian of (12.220) (with q(n) ≡ 0) from the right by φ(n) to
obtain

w̃H (n + 1)φ(n) = w̃H (n)φ(n)− ρ(n)φH (n)M(n)φ(n)e(n). (12.252)

Using (12.172) and (12.251), (12.252) reduces to

ep(n) = ea(n)− ρ(n)‖φ(n)‖2M(n)e(n), (12.253)



Author’s personal copy
1.12.4 Statistical Analysis 709

−10

0

0 1000 2000 5000

−20

−30

−40

iterations

E
M

SE
(d

B
)

(a) δ = 10−5

−10

0

300 0 4000 0 1000 2000 3000 4000 5000

−20

−30

−40

iterations

E
M

SE
(d

B
)

(b) δ = 10−2

−10

0 1000 2000 3000 4000 5000

−15

−20

−25

−30

−35

−40

iterations

E
M

SE
(d

B
)

(c) δ = 102

−10

0 1000 2000 3000 4000 5000

−15

−20

−25

−30

−35

−40

iterations

E
M

SE
(d

B
)

(d) δ = 105

FIGURE 12.31

EMSE for RLS considering λ = 0.995 and different values of δ;b = 0.8, σ2
v = 10−2, σ2

q = 0; mean of
2000 independent runs. The dashed lines represent the predicted values of ζ(n) for each algorithm.

where ‖u‖2A = uH Au stands for the Euclidean norm of u weighted by the matrix A. Using (12.253)
to eliminate e(n) in (12.220) (with q(n) ≡ 0) and assuming that φ(n) = 0, we get

w̃(n + 1)+ M(n)φ(n)

‖φ(n)‖2M(n)

e∗a(n) = w̃(n)+ M(n)φ(n)

‖φ(n)‖2M(n)

e∗p(n). (12.254)

Defining

ρ̄(n) �
{

1/‖φ(n)‖2M(n), if φ(n) = 0
0, otherwise

(12.255)
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to include the case of zero regressor and equating the squared weighted norms on both sides of (12.254)
with M−1(n) as a weighting matrix, the cross-terms cancel and we obtain

‖w̃(n + 1)‖2
M−1(n)

+ ρ̄(n)|ea(n)|2 = ‖w̃(n)‖2M−1(n)
+ ρ̄(n)|ep(n)|2. (12.256)

This relation shows how the weighted energies of the weight-error vectors at two successive time
instants are related to the energies of the excess a priori and excess a posteriori errors. This relation
is the reason why this approach is known as the energy conservation method—(12.256) relates the
(weighted) coefficient error energies at instants n and n+1 to the a priori and a posteriori errors. In [3],
this energy conservation relation is used extensively to find models for a wide class of adaptive filters.
We follow here a shorter route, however, and derive in a more direct way the relations necessary for the
study of just LMS, NLMS and RLS.

We can obtain the steady-state EMSE by computing the squared weighted norms on both sides of
(12.220) with M−1(n) as a weighting matrix, which leads to

‖w̃(n + 1)‖2
M−1(n)

= ‖w̃(n)‖2
M−1(n)

+ ρ2(n)|e(n)|2‖φ(n)‖2M(n)

−ρ(n) [ea(n)e
∗(n)+ e∗a(n)e(n)

]+ ‖q(n)‖M−1(n). (12.257)

By taking expectations on both sides of (12.257), we arrive at (we already used Assumption 2 to eliminate
cross-terms with q(n) on the right-hand side)

A︷ ︸︸ ︷
E
{
‖w̃(n + 1)‖2

M−1(n)

}
=

B︷ ︸︸ ︷
E
{
‖w̃(n)‖2

M−1(n)

}

+
C︷ ︸︸ ︷

E
{
ρ2(n)|e(n)|2‖φ(n)‖2M(n)

}
−

D︷ ︸︸ ︷
E
{
ρ(n)

[
ea(n)e

∗(n)+ e∗a(n)e(n)
]}

+
E︷ ︸︸ ︷

‖q(n)‖M−1(n) . (12.258)

To proceed, we have to assume again that matrix M−1(n) varies slowly in relation to w̃(n) and
q(n), as in Assumption 3. Since now we are dealing only with the steady-state, this approximation is
in general good. Instead of Assumption 1, in energy conservation analysis the following assumptions
are used:

Assumption 7. ‖φ(n)‖2M(n) is independent of ea(n) at the steady-state.

Assumption 8. The noise sequence {vo(n)} is iid and independent of the input sequence {φ(n)}.
Assumption 7 is referred to in the literature as separation principle and is reasonable in steady-state

since for large n, ea(n) tends to be less sensitive to the regressor data, in particular for long filters.
Assumption 8 is a weakened version of Assumption 1, which is necessary to relate the MSE with the
EMSE through (12.181).

Under model 2 and Assumptions 3 and 7, we can now evaluate the terms A− E:
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A- Using 3, we obtain

A ≈ E
{
‖w̃(n + 1)‖2

E{M−1(n)}
}
. (12.259)

For LMS and NLMS, we have

ALMS = ANLMS ≈ E
{
‖w̃(n + 1)‖2

}
. (12.260)

For RLS,
ARLS ≈ E

{
‖w̃(n + 1)‖2Rφ

}
. (12.261)

B- Assuming that the filter is stable and reaches a steady-state, we have

B = E
{
‖w̃(n)‖2

M−1(n)

}
≈ E

{
‖w̃(n + 1)‖2

M−1(n)

}
. (12.262)

C- Given that e(n) = ea(n) + vo(n) and since vo(n) is assumed independent of ea(n)
(Assumption 8), we obtain

E{|e(n)|2} ≈ E{|ea(n)|2} + σ 2
v .

Then, using Assumptions 3 and 8, we arrive at

C ≈ E
{
ρ2(n)φH (n)E{M(n)}φ(n)

} (
E{|ea(n)|2} + σ 2

v

)
. (12.263)

For LMS, this term reduces to

CLMS ≈ μ2Tr(Rφ)
(

E{|ea(n)|2} + σ 2
v

)
. (12.264)

For NLMS,

CNLMS ≈ μ̃2E

{
1

ε + φH (n)φ(n)

}(
E{|ea(n)|2} + σ 2

v

)
, (12.265)

which for long filters and Gaussian tapped-delay line regressors can be approximated as (see
Eq. (12.228), and the alternative (12.227) for general regressors)

CNLMS ≈ μ̃2

σ 2
x (M − 2)

(
E{|ea(n)|2} + σ 2

v

)
. (12.266)

Finally, for RLS we obtain

CRLS ≈ (1− λ)2 M
(

E{|ea(n)|2} + σ 2
v

)
. (12.267)

D- Using the same arguments, D reduces to

D ≈ 2E{ρ(n)}E{|ea(n)|2}. (12.268)

For LMS, DLMS ≈ 2μE{|ea(n)|2}. Using (Eq. (12.228)) for NLMS, we get

DNLMS ≈ 2μ̃2

σ 2
x (M − 2)

E{|ea(n)|2}.

For RLS, this term is given by DRLS ≈ 2(1− λ)E{|ea(n)|2}.
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Table 12.8 Expressions for the Steady-State EMSE Obtained from the Energy Conservation
Method for LMS, NLMS, and RLS

Algorithm ζ(∞) ζ(∞)

for a wider range of μ, μ̃,
and λ

for small μ and μ̃, and λ ≈ 1

LMS
μσ2

v Tr(Rφ)+ μ−1Tr(Q)

2− μTr(Rφ)

μσ2
v Tr(Rφ)+ μ−1Tr(Q)

2

NLMS
μ̃σ2

v + μ̃−1σ2
x (M − 2)Tr(Q)

2− μ̃
μ̃σ2

v + μ̃−1σ2
x (M − 2)Tr(Q)
2

RLS
σ2

v (1− λ)M +
Tr(QRφ)

1− λ
2− (1− λ)M

σ2
v (1− λ)M +

Tr(QRφ)

1− λ
2

E- Using Assumption 3 and recalling that Tr(AB) = Tr(B A), we obtain

E ≈ E
{

q H (n)E{M−1(n)}q(n)
}
= Tr

(
E
{

M−1(n)
}

E{q(n)q H (n)}
)
.

For LMS and NLMS this reduces to

ELMS = ENLMS ≈ Tr(Q). (12.269)

For RLS,
ERLS ≈ Tr(Rφ Q). (12.270)

Using these approximations in (12.258), we arrive at the following steady-state approximation

E{|ea(n)|2} ≈ σ 2
v E

{
ρ2(n)φH (n)E{M(n)}φ(n)}+ Tr(QE{M−1(n)})
2E{ρ(n)} − E

{
ρ2(n)φH (n)E{M(n)}φ(n)} . (12.271)

Particularizing (12.271) for LMS, NLMS, and RLS, we obtain the results of the second column of Table
12.8, which hold over a wide range of step-sizes and forgetting factors.

1.12.4.4.5 Relation between the results obtained with both analysis methods
As we explained before, each method is based on a different set of approximations. We now show how
they are related.

The energy conservation method is capable of obtaining closed-form expressions for the EMSE
using less restrictive assumptions, in particular φ(n) is not required to be Gaussian. These results are
equivalent to those obtained for LMS and RLS using the traditional analysis, taking the recursions
of Table 12.7 to the limit as n → ∞, and assuming β = 0 (recall that the values of β used for the
traditional analysis are only valid if φ(n) is Gaussian). The assumption of β = 0 implies the following
approximation:

E
{
φ(n)φH (n)S(n)φ(n)φH (n)

}
≈ RφTr(S(n)Rφ).
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Table 12.9 Expressions for the Optimal Adaptation Parameters (ρo) and Minimum Steady-State
EMSE (ζmin(∞)) Obtained from the Expressions of the Third Column of Table 12.8

Algorithm ρo ζmin(∞)

LMS μo =
√

Tr(Q)

σ2
v Tr(Rφ)

√
σ2

v Tr(Rφ)Tr(Q)

NLMS μ̃o =
√
(M − 2)σ2

x Tr(Q)

σ2
v

√
σ2

v σ
2
x (M − 2)Tr(Q)

RLS 1− λo =
√

Tr(QRφ)

Mσ2
v

√
σ2

v MTr(QRφ)

For small step-sizes, this approximation does not have a large impact, since we are disregarding a term
of O(μ2), that is small compared to other O(μ) terms. For NLMS, in order to recover (12.271) using
the traditional method, we would choose β = 0 and make

E

{
1[

ε + φH (n)φ(n)
]2

}
≈
[

E

{
1

ε + φH (n)φ(n)

}]2

,

which leads to reasonable results at the steady-state for long filters.
For small step-sizes (or forgetting factors close to one), the denominator of (12.271) can be approxi-

mated by 2E{ρ(n)}. In this case, the expressions of the second column reduce to those of the third column
of Table 12.8. Again, these results can be obtained from the recursions of Table 12.7, disregarding the
term C (Eq. (12.235)), which will be negligible compared to B in (12.222) if ρ ≈ 0.

The results for steady-state analysis using the traditional method are commonly obtained as the
limiting case of a transient analysis. Although this procedure is adequate for understanding both the
steady-state and the transient behavior of an adaptive algorithm, it tends to be more laborious than
using the the energy conservation method to analyze the steady-state behavior. This is one of the largest
advantages of this last method.

1.12.4.4.6 Optimal step-size for tracking
From the results of the third column of Table 12.8, we can observe that the expressions for the steady-
state EMSE have two terms: one for the stationary environment, that increases as the step-size increases,
and another that appears in the nonstationary case, and increases as the step-size decreases. Therefore,
there exist optimal adaptation parameters ρo, that minimize the EMSE. These parameters are μo, μ̃o,
and 1− λo for LMS, NLMS, and RLS, respectively. The corresponding minima, denoted by ζmin(∞),
can also be evaluated. All these results are summarized in Table 12.9. The results for a wider range of
adaptation parameters lead to more complicated expressions for ρo and ζo(∞) (see, e.g., [3]).

We can use the results of Table 12.9 to compare the tracking performance of the algorithms. For
instance, comparing the minimum EMSE for LMS to that of RLS, we obtain the ratio

ζRLS
min

ζLMS
min

=
√

MTr(Q Rφ)

Tr(Rφ)Tr(Q)
. (12.272)
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Clearly, the results of this comparison depend on the environment. There are situations where RLS has
superior tracking capability compared to LMS, and vice versa. This is highlighted considering three
different choices for matrix Q. It can be shown [81] that

i. If Q is a multiple of I : the performance of LMS is similar to that of RLS;
ii. If Q is a multiple of Rφ : LMS is superior; and

iii. If Q is a multiple of R−1
φ : RLS is superior.

These choices for Q do not model practical situations, but they highlight that, even though the conver-
gence rate of RLS is in general much higher than that of LMS, this advantage, unexpectedly, does not
necessarily follow to the problem of tracking a slowly-varying parameter vector.

Example 4. To verify the accuracy of the expressions of Tables 12.8 and 12.9, we use the LMS,
NLMS, and RLS filters to identify the same lowpass FIR system of Figure 12.29. Now, the environment
is assumed nonstationary with Q = 10−6 I . The input signal and minimum MSE (σ 2

v ) are the same of
Example 3.

Figure 12.32 shows the measured steady-state EMSE with varying adaptation factors considering the
theoretical and experimental results for LMS, NLMS, and RLS. Each value of experimental EMSE was
obtained from the ensemble-average of 100 independent runs. The theoretical minimum EMSE predicted
by the expressions of Table 12.9 are ζLMS

o (∞) = ζRLS
o (∞) = −32.9251 dB and ζNLMS

o (∞) =
−33.0989 dB, which correspond to the optimal adaptation parameters μo = 5.1× 10−2, μ̃o = 4.9×
10−2 and 1− λo = 2 × 10−3 (λo = 0.998). The experimental values for ζmin(∞) and ρo are close to
the predicted by the expressions of Table 12.9 as shown in Figure 12.32.

Example 5. Again, we consider a system identification application but with the initial optimal solution
given by

wT
o (0) = [ 0.5349 0.9527 −0.9620 −0.0158 −0.1254 ].

The input signal is assumed to be colored Gaussian noise with variance σ 2
x = 0.2. This signal is obtained

from the filtering of a white Gaussian noise by a first-order autoregressive model (b = 0.8). We also
assume that the minimum MSE is σ 2

v = 0.01.
As predicted by (12.272), the performance of RLS and LMS are similar when Q = σ 2

q I . Thus,
assuming Q = 10−6 I , we computed μo and λo from the expressions of Table 12.9 and used these
parameters in the adaptation, such that the same minimum EMSE could be achieved by both algorithms in
this situation. Figure 12.33 shows the EMSE estimated from the ensemble-average of 5000 independent
runs for RLS (λ = λo = 0.9955, δ = 4.5 × 10−3) and LMS (μ = μo = 0.0224). At every 7 × 104

iterations, the nonstationary environment is changed. During the first 7× 104 iterations, Q = 10−6 Rφ

and LMS presents a slightly better tracking performance than that of RLS. When Q = 10−6 R−1
φ , this

behavior changes: RLS becomes better than LMS. Finally for Q = 10−6 I , RLS and LMS present
similar performance. The dashed lines represent the theoretical values of ζ(∞) for each algorithm,
predicted from the expressions of the second column of Table 12.8.
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FIGURE 12.32

Theoretical and experimental EMSE as a function of the adaptation parameter for a) LMS, b) NLMS, and c)
RLS. The asterisks represent simulation results and the solid lines represent the theoretical models.

Box 7: Fourth-order moments of Gaussian vectors

The second-order moments of a random sequence are related to its average power (of course, this is an
approximation unless the sequence is stationary and ergodic.) This makes second-order moments intu-
itive to work with and relatively easy to evaluate in practice. Therefore, when studying an adaptive filter,
it is common to try to describe its performance in terms of the autocorrelation of the input sequence x(n).

During the analysis of LMS, one encounters a term that contains fourth-order powers of the input
vector x(n):

F
�=E{x(n)x H (n)w̃(n)w̃H (n)x(n)x H (n)}. (12.273)
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EMSE for RLS (λ = 0.9955, δ = 4.5× 10−3), and LMS (μ = 0.0224); b = 0.8, σ2
v = 10−2, σ2

q = 10−6;
mean of 5000 independent runs. The dashed lines represent the predicted values of ζ(∞) for each algorithm.

In order to evaluate a term such as this, one needs to know much more information about the statistics
of x(n) than is provided simply by its mean and autocorrelation. However, in general this additional
information is not available, and one assumes that the signals are Gaussian in order to proceed.

Why not any other distribution? First, because many processes in Nature are indeed approximately
Gaussian. Second, because uncorrelated Gaussian variables are also independent, which is of great help
when evaluating fourth-order terms, such as E{x2(n)x2(n − 1)} or E{x3(n)x(n − 2)}.

Although in many cases the input sequence is not Gaussian (for example, speech does not follow
a Gaussian distribution), this approximation describes the most important features of adaptive filter
learning with reasonable accuracy, and leads to a relatively simple model.

In order to simplify the notation, we will write simply x and w̃ instead of x(n) and w̃(n) in the
following. Assume then that x is a Gaussian random vector, with autocorrelation E{xx} = R, and that
w̃ is another vector independent of x, and with autocorrelation E{w̃w̃H } = S (we do not need to know
the exact distribution of w̃.) Assume also that all variables have zero mean. Our goal is to evaluate

F = E{xx H w̃w̃H xx H }.
Since w̃ is independent of x, we can write

F = E{xx H w̃w̃H xx H } = E{xx H E{w̃w̃H }xx H } = E{xx H Sxx H }. (12.274)

The autocorrelation of x is in general a full matrix, that is,

R =

⎡⎢⎢⎢⎣
r11 r12 . . . r1M

r∗12 r22 . . . r2M
...

...
. . .

...

r∗1M r∗2M . . . rM M

⎤⎥⎥⎥⎦ ,
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that is, in general the elements of x are correlated. R has hermitian symmetry and is non-negative
definite, which implies that there exists a unitary matrix U such that

U H RU = � =

⎡⎢⎢⎢⎣
λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λM

⎤⎥⎥⎥⎦ ,
where λi ≥ 0 for i = 1, . . . ,M . Define x′ = U H x. Then E{x′x′H } = E{U H xx H U} = U H E{xx H }
U = �, and we see that the entries of x′ are uncorrelated. Since x is Gaussian, and a linear transformation
of a Gaussian vector is also Gaussian, this means that the entries of x′ are independent of each other.
Multiplying (12.274) by U H on the left and U on the right, and recalling that U H U = UU H = I , we
obtain

F′ �=U H FU = E{U H xx H UU H︸ ︷︷ ︸
=I

S UU H︸ ︷︷ ︸
=I

xx H U} = E{x′x′H U H SU x′x′H }.

Defining S̄ = U H SU , we can expand F in terms of the elements s′i j of S̄ and x ′k of x′. Each element
of F will have terms of the form

E{x ′k1
x ′k2 x ′∗k3 x ′∗k4

}s′i j .

If the signals are real, then, as x ′k1
is independent of x ′k2

if k1 = k2, these expected values will be nonzero
only if k1 = k2 = k3 = k4 or if k1 = k3 and k2 = k4, or k1 = k4 and k2 = k3, or if k1 = k2 and k3 = k4.
Evaluating all such terms that appear in the expression for F′ will result in

F|real signals = RTr(SR)+ 2RSR. (12.275)

If, on the other hand, the signals are complex-valued, then we need to know how the real and imaginary
parts of each entry of x relate to each other. One common assumption is that x is circularly-Gaussian.
We explain more about this in Section 1.12.2.2.1. For now, we only remark that if this is the case, the
real and imaginary parts of each entry of x and of x′ are such that E{x2

k } = E{x ′2k } = 0 for all k (note
that E{|xk |2} = rkk,E{|x ′k |2} = λk are still nonzero.) This will result in a different expression for F:

F|complex signals = RTr(SR)+ RSR. (12.276)

1.12.5 Extensions and current research
In this section we briefly describe some important extensions to the basic adaptive filtering algorithms,
as well as some promising current research topics. The intention is not to describe in any detail all
these techniques, but rather to give a list of key references where the interested reader may find more
information.

It is usual when starting such lists to put a disclaimer, that the authors do not claim to have included
all the important contributions, nor that their list is really of the most important contributions to an area.
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This is not intended for legal purposes, nor false modesty: the size of the literature is indeed so large
(a search on “adaptive filter” on Google gives over one million hits) that we cannot claim to know with
certainty the best of it all. We included therefore the techniques that we found useful during our own
research and experience, which is perforce limited.

1.12.5.1 Finite-precision arithmetic
Any operation made using finite-precision arithmetic may involve errors. For example, the product of
a = 0.957 and b = 0.542 would result in c = 0.518694. However, if all numbers were stored keeping
only three digits, the final result would be c̄ = 0.519, with an error of c − c̄ = −3.06× 10−4 [82,83].
These quantization errors will accumulate and modify the behavior of an adaptive filter in important
ways. A precise analysis of the effect of quantization errors is quite complicated, since these errors are
highly nonlinear functions of the variables.

When finite-precision arithmetic effects are studied, it is usually important to know exactly how and
in which order the arithmetic operations are performed. In particular, the exact numerical representation
used is important: fixed-point vs. floating-point, truncation vs. rounding, etc. For this reason, it is
more difficult to perform analyses that are equally valid for a large class of filters. The most important
differences are between gradient-based algorithms (i.e., algorithms similar to LMS and NLMS) and
Hessian-based algorithms (i.e., algorithms similar to RLS). We will give references to works treating
both cases, starting with LMS.

1.12.5.1.1 Finite-precision effects in LMS
The simplest models for adaptive filters in finite-precision arithmetic treat the quantization error as
random noise, uniformly distributed and independent of all variables [84–87]. These models show that
the quantization errors will add another term to the EMSE. However, this term does not converge to
zero when the step-size is reduced to zero, even in a stationary environment: quite the opposite, it is
inversely proportional to the step-size (similar to the EMSE in a nonstationary environment).

Another important undesirable effect is that the product μe(n) may be rounded down to zero when
e(n) becomes small (underflow), virtually stopping the adaptation. When the step-size is small, this
may happen when the filter is rather far from the optimum solution. Therefore, there is an optimum
value for the step-size—neither too large, to avoid increasing the misadjustment, neither too small, to
avoid underflow and excessive growth of the EMSE. A similar effect happens in RLS [1, p. 595].

This underflow problem, which is usually known as stopping phenomenon, was studied in more detail
in [88–91], using a nonlinear model. These works show that the adaptation does not really stop, but
rather convergence is reduced to a very low rate. Note that this phenomenon is less important in floating-
point arithmetic, since floating-point is able to represent much smaller numbers without underflow than
fixed-point arithmetic.

Finite precision effects may have worse consequences, in particular they may make the adaptive
filter unstable. In the case of LMS, this phenomenon is rare, and will only happen when the regressor
sequence {φ} has a very ill-conditioned covariance matrix, and the noise vo has a nonzero mean (this
nonzero mean may itself appear due to quantization errors) [92–94]. This problem is not difficult to
solve, using regularization as described in Section 1.12.5.2. The problem of numerical stability in RLS
is much more serious and harder to solve, and has received much attention, as we see next.
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In addition to studying the effect of quantization errors in the performance of an adaptive filter, another
important topic is how to reduce the computational cost of a filter, taking advantage of implementation
details. One such approach is to replace the error e(n) in the LMS recursion by its sign, i.e., to use the
recursion

w(n + 1) = w(n)+ μsign
(
e(n)

)
φ(n), (12.277)

where sign(·) is the sign function, defined by

sign
(
e
) =

⎧⎨⎩
1, if e > 0,
0, if e = 0,
−1, if e < 0.

(12.278)

The resulting algorithm, known as sign-LMS, has a smaller computational cost, if μ is restricted to
be a power of two, that is, if μ = 2k for an integer (usually negative) k. In this case, μsign

(
e(n)

)
is

always equal to ±2k (or zero), and the product
[
μsign

(
e(n)

)]
φ(n) can be implemented in fixed-point

arithmetic as M shifts, instead of M multiplications. In floating-point arithmetic, the multiplications
are replaced by sums, since we would need to add k to the exponent terms of all entries of φ(n). This
algorithm is very robust (see also Section 1.12.5.4), although its convergence rate under Gaussian inputs
is considerably slower than that of LMS. Sign-LMS was thoroughly studied in [81,95–98].

Another possibility, that works surprisingly well, reducing the computational cost with only a slight
decrease in convergence speed is the power-of-two LMS algorithm [99]. In it, the error is rounded to
the nearest power of two, using the function:

f
(
e
) =

⎧⎨⎩
sign(e), |e| ≥ 1,
sign(e)2�ln (|e|)�, 2−B+1 ≤ |e| < 1,
0, |e| < 2−B+1,

where B is the number of bits used to represent the error, and �x� returns the largest integer smaller
than x . In this case, μ should also be a power of two.

1.12.5.1.2 Finite-precision effects in RLS
As we briefly described in Section 1.12.3.3.1, the conventional RLS is numerically unstable in finite
precision arithmetic and has O(M2) complexity. To solve these problems, different versions of RLS
were proposed in the literature. Many of these versions are based on coordinate transformations of the
state-space representation of the conventional RLS algorithm. This representation can be obtained by
replacing k(n) by P(n)φ(n) in(12.166), i.e.,

w(n + 1) = λP(n)r̂dφ(n − 1)+ P(n)φ(n)d∗(n). (12.279)

Recalling that w(n) = P(n − 1)r̂dφ(n − 1), we can replace r̂dφ(n − 1) in (12.279) as a function of
P−1(n − 1) and w(n), which leads to

w(n + 1) = λP(n)P−1(n − 1)w(n)+ P(n)φ(n)d∗(n). (12.280)
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This equation in conjunction with the definition of the a priori error e(n) characterize the adaptation
and filtering operations of the RLS algorithm and constitute its state-space representation, i.e.,

[
w(n + 1)

e∗(n)

]
=
[
λP(n)P−1(n − 1) P(n)φ(n)
−φH (n) 1

] [
w(n)
d∗(n)

]
. (12.281)

In this representation, w(n) is the state, e∗(n) is the output, and d∗(n) is the input.
Performing a coordinate transformation, (12.281) can be transformed to an unlimited number of

systems with the same input-output relation, and hence solving the same least-squares problem (that is,
the output error is always the same). Although all these realizations are equivalent in infinite precision
arithmetic, the numerical behavior will vary from one coordinate system to another. Thus, the numerical
instability of the conventional RLS can be avoided by choosing a convenient transformation of (12.281)
[40,100].

An alternative method of implementing RLS is based on the QR decomposition (QRD) [14] to
triangularize the input data matrix. The main advantages of QRD-RLS-based algorithms are the possi-
bility of implementation in systolic arrays (e.g., [101]) and the improved numerical behavior in finite
precision arithmetic. Some versions require O(M2) operations per iteration, but others have a reduced
computational cost of O(M). The low-cost versions of QRD-RLS algorithms are known as fast-QR
algorithms. Some important references on this subject are [38,101–116]. A good tutorial on QRD-RLS-
based algorithms can be found in [43], where the most recent developments as well as the basic concepts
are covered.

Another important class of fast algorithms solves the least-squares problem in a recursive form based
on the lattice realization. These algorithms are very attractive due to the possible modular implementation
and low cost (O(M)). Lattice-RLS-based algorithms are derived by solving the forward and backward
linear prediction problems and require time-update and order-update recursions. They explore the time-
shift property of the input signal vector (such as in (12.113)) and do not compute explicitly the filter
weights. Recall that many applications do not require the computation of the filter weights and have
regressors that satisfy the time-shift property as, for example, channel equalization and interference
cancellation (see Section 1.12.1.3). In these applications, a fast RLS algorithm can be a reasonable
choice since it presents a good tradeoff between convergence rate and computational cost. One of
these algorithms is the modified EF-LSL (error-feedback least-squares lattice algorithm) that presents
reliable numerical properties when implemented in finite-precision arithmetic [5]. This algorithm was
proposed for echo-cancellation applications and was used in the example of Section 1.12.1.1. Some
lattice-RLS-based algorithms can be found in the references [5,117–124].

More recently, lattice-RLS algorithms have been generalized to filter structures other than tapped-
delay lines, in particular, to Laguerre filters [125–127].

Other fast algorithms that solve the least-squares problem in a recursive form are the fast transversal
RLS (FTRLS) algorithms. Unlike the lattice-based algorithms, the FTRLS algorithms require only
time-recursive equations and therefore, compute explicitly the filter weights. The main drawback of
these algorithms is that they are very sensitive to quantization effects and become unstable if certain
actions are not taken [1]. The list of fast transversal RLS algorithms is vast. Some of the most important
versions can be found in the references [128–134].
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1.12.5.1.3 DCD-RLS
The DCD-RLS algorithm, proposed in [44], is a low-complexity alternative to the RLS algorithm,
based on the dichotomous coordinate-descent (DCD) algorithm for function minimization proposed in
[135]. The DCD algorithm is designed to be easily implementable in hardware (such as FPGAs, for
example), and thus avoids multiplications, divisions and other operations that are costly to implement
in hardware—most of its operations are additions and comparisons.

The RLS weight vector estimates are given by the solution of the following set of linear equations,
which we repeat from Section 1.12.3.3:

R̂φ(n)w(n + 1) = r̂dφ(n), (12.282)

where R̂φ(n) and r̂dφ(n) are given by the recursions

R̂φ(n) = λR̂φ(n − 1)+ φ(n)φH (n), (12.283)

and
r̂dφ(n) = λr̂dφ(n − 1)+ d∗(n)φ(n). (12.284)

The difficulty in solving these expressions is that a general solution for (12.282) involves a number
of operations of the order of M3(O(M3)) for a filter with M coefficients. This is usually too costly
for practical applications, except perhaps for very short filters. The classical RLS algorithm described
in Section 1.12.3.3 solves this problem partially by using the matrix inversion lemma to compute the
inverse of R̂φ(n) recursively using the already computed inverse of R̂φ(n − 1). This reduces the total
number of computations to O(M2). However, the resulting algorithm is still difficult to implement in
practice, because numerical errors may easily cause divergence.

The DCD-RLS algorithm avoids both these problems by using a couple of clever tricks. First, assume
that you have a good approximation ŵ(n) for w(n). Then you could use a recursive algorithm to find
an approximation ŵ(n + 1) to the solution of (12.282), using your current approximation ŵ(n) as an
initial condition. Since the initial condition is already close to the solution, you would need only a few
iterations of your recursive algorithm to obtain ŵ(n+1). However, this idea only helps if each iteration
of the recursive algorithm is very cheap to compute. We explain next how this can be done using DCD.

DCD minimization of quadratic functions
Let us consider first a one-dimensional quadratic problem

min
w

{
f (w) = 1

2
aw2 − bw + c

}
,

where a > 0, b, and c are constants. Assume in addition that you want to implement your algorithm in
hardware, using fixed-point arithmetic.

In order to solve this problem, you could proceed as follows. Assume you have an initial approxi-
mation ŵ(0). Choose a step-size H > 0 and compute

� f+ = f (ŵ(0)+ H)− f (ŵ(0)), � f− = f (ŵ(0)− H)− f (ŵ(0)).
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FIGURE 12.34

DCD applied to one-dimensional minimization.

Then, if � f+ < 0, choose ŵ(1) = ŵ(0) + H , and if � f− < 0, choose ŵ(1) = ŵ(0) − H . If both
are positive, choose ŵ(1) = ŵ(0) and reduce the step-size H ← H/2 (note that if f (·) is convex, the
case of both � f+ < 0 and � f− < 0 can never occur). With the new estimate ŵ(1), the procedure can
be repeated to find a new improved estimate ŵ(2), and so on. It can be shown that this algorithm will
converge to the minimum of f (·) whenever f (·) is a convex function—see Figure 12.34.

Although the description given so far explains the general working of the DCD algorithm, it does
not show how it can be efficiently implemented, using as few operations as possible. We will turn to this
point now, but already extending the algorithm to minimize a quadratic function of several variables.
Consider then the problem of finding the solution wo to

min
w

{
f (w) = 1

2
wT Rw − bT w + c

}
,

where R is a positive-definite matrix, b is a vector, and c is a constant (note that the minimum wo of
f (w) is also the solution wo to Rwo = b, that is, any algorithm to find wo can be also used to solve
the normal equations (12.282)).

Assume that we have an initial approximation ŵ(0) to the solution, and we want to find an improved
approximation, changing one entry of ŵ(0) at a time. In order to differentiate each new approximation,
we use the following notation. Define ŵ

(0)
(0) = ŵ(0). We shall first seek an improved estimate to the

first entry of ŵ
(0)
(0). The resulting vector will be denoted by ŵ

(1)
(0). Continuing, we find an improved

estimate to the second entry of ŵ
(1)
(0), resulting in vector ŵ

(2)
(0) and so on. After updating all entries

of the initial estimate, we have ŵ
(M)
(0). We then let ŵ

(0)
(1) = ŵ

(M)
(0), and repeat the procedure.

Then we need to check if f (ŵ(0)
(0)± H e1) < f (ŵ(0)) if we add or subtract H to the first entry of

ŵ
(0)
(0) (e1 is the vector [1 0 . . . 0]T ). The change � f+ in the cost-function obtained by adding H to

the first entry of ŵ
(0)
(0) is

� f+ = 1

2

(
ŵ
(0)
(0)+ H e1

)T
R
(
ŵ
(0)
(0)+ H e1

)
− bT

(
ŵ
(0)
(0)+ H e1

)
+ c (12.285)

−
(

1

2
ŵ
(0)T

(0)Rŵ
(0)
(0)− bT ŵ

(0)
(0)+ c

)
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= H eT
1 Rŵ

(0)
(0)+ 1

2
H2eT

1 Re1 − H bT e1. (12.286)

Similarly, the variation � f− obtained from subtracting H from the first entry of ŵ(0) is

� f− = −H eT
1 Rŵ

(0)
(0)+ 1

2
H2eT

1 Re1 + H bT e1. (12.287)

Therefore, we should make

ŵ
(1)
(0) =

⎧⎪⎨⎪⎩
ŵ
(0)
(0)+ H e1, if � f+ < 0,

ŵ
(0)
(0)− H e1, if � f− < 0,

ŵ
(0)
(0), otherwise.

(12.288)

The same steps can be repeated for the second entry of ŵ
(1)
(0) and so on, that is, we can update the

(m + 1)th entry of ŵ
(m)
(0) to obtain a new approximation ŵ

(m+1)
(0) for m = 0, . . . ,M − 1. After

obtaining ŵ
(M)
(0), we have updated all entries of ŵ(0). We can then make ŵ

(0)
(1) = ŵ

(M)
(0) and

repeat the procedure. However, if no update is made for m = 1, . . . ,M , before repeating we decrease
the step H by a factor of two (i.e., H ← H/2). By reducing H only when no update is necessary for
any entry of the vector, we avoid problems that would appear if the initial value of H were too small.

Implemented as described so far, the algorithm has a high computational cost. For example, for the
evaluation of � f+ at each step we must

• Evaluate eT
m Rŵ

(m−1)
(i). This is equivalent to multiplying the mth row of R by ŵ

(m−1)
(i), involving

M multiplications and M − 1 additions.
• Multiply −eT

m Rŵ
(m−1)

(i) + bT em by H and add the result to (H2/2)Rm,m (Rm,m is the element
(m,m) of R). This requires 2 multiplications and 2 additions, assuming H2/2 is pre-computed.

The same steps would be necessary for the computation of� f−. Note that all these computations would
have to be repeated at each step, therefore the update of all entries of ŵ

(0)
(i) would require more than

M2 multiplications.
However, the number of computations can be reduced substantially, if we take advantage of some

properties of hardware implementations of arithmetic operations, as we describe next. Assume in the
following that all variables are fixed-point binary numbers (see Box 8).

First, we can avoid the computation of Rŵ
(m−1)

(i) by introducing a residue vector that is updated
at each step. Let r(0)(0) = b − Rŵ

(0)
(0) be the initial residue vector. Note that this is the residue of

solving Rw = b using ŵ
(0)
(0) as an approximation to the solution.

At the end of the first step, ŵ
(0)
(0) is updated as in (12.288). Since only one entry of ŵ

(0)
(0) is

changed, the modification in the residue is simple to evaluate

r(1)(0) = b− Rŵ
(1)
(0) =

⎧⎨⎩
b− R(ŵ(0)

(0)+ H e1) = r(0)(0)− H Re1, if � f+ < 0,
b− R(ŵ(0)

(0)− H e1) = r(0)(0)+ H Re1, if � f− < 0,
r(0)(0), otherwise.

(12.289)

This still requires M multiplications (H multiplied by the first column of R). However, if H is a
power of two, that is, if H = 2k for some integer k, than the computation of r(1)(0) in fixed-point
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arithmetic requires only M shifts and M additions, which are much easier to implement in hardware
than multiplications. Moreover, if both � f+ and � f− are positive, no update is necessary.

Next, we note that it is not really necessary to compute both � f+ and � f−: from (12.286) and
(12.287), when updating the mth element of ŵ

(m−1)
(i) at step i , we have

� f+ = −H eT
m r(m−1)(i)+ 1

2
H2eT

m Rem = −Hr (m−1)
m (i)+ 1

2
H2 Rm,m, (12.290)

where r (m−1)
m (i) is the mth entry of the residue vector r(m−1)(i), r(0)(i + 1)

�= r(M)(i), and em is the
mth column of the M × M identity matrix. Similarly,

� f− = Hr (m−1)
m (i)+ 1

2
H2 Rm,m . (12.291)

Then, recalling that H and Rm,m are positive (R is positive-definite), � f+ < 0 only if

r (m−1)
m (i) >

1

2
H Rm,m ≥ 0.

Repeating the arguments for� f−, we see that the mth entry of ŵ
(m−1)

(i) will be updated if and only if

|r (m−1)
m (i)| > 1

2
H Rm,m, (12.292)

with updates

ŵ
(m)
(i) = ŵ

(m−1)
(i)+ Hsign(r (m−1)

m (i))em, (12.293)

r(m)(i) = r(m−1)(i)− Hsign(r (m−1)
m (i))Rem . (12.294)

Equations 12.292–12.294 require one comparison, M + 1 shifts, and M + 1 additions. Table 12.10
summarizes the DCD algorithm for minimization of quadratic cost-functions. Note that the algorithm
will update the entries of ŵ(i) bit by bit. It therefore makes sense to choose the initial step-size H the
power-of-two value represented by the most-significant bit in the fixed-point representation being used.
The conditional jump in step 10 prevents problems in case H is chosen too small.

As seen in Table 12.10, the total number of operations never exceeds (2M+2)(B−1)+Nu(4M+3)
(note that here we are counting additions, comparisons and shits as operations—the algorithm does not
involve multiplications). In DCD-RLS, the maximum number of updates Nu can be chosen between 1
and 4 with good performance, while keeping the cost low.

When applied to RLS, one final simplification can be used when implementing DCD: instead of
updating all entries of vector ŵ(i), we can only update the entry corresponding to the largest residue.
As explained in [44], the resulting algorithm is still guaranteed to converge to the optimum solution.

DCD-RLS
As we mentioned before, DCD-RLS uses the DCD algorithm just described to solve the normal equations
as each new sample arrives. Since DCD is an iterative algorithm, we can use the current solution w(n)
as the initial value for computation of w(n + 1). In this way, the number of updates Nu of DCD can be
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Table 12.10 Summary of DCD Algorithm for Minimization of a Quadratic Cost-Function

Step Initialization: Number of
Choose step H = 2k , number of bits B, Additions, Shifts, Multiplications
and maximum update count Nu . Comparisons
Let ŵ = 0, r = b, h = H , and c = 0.

1 for b = 0 : B − 1
2 h← h/2 1 0
3 flag← 0 0 0
4 for m = 1 : M
5 if |rm | > 1

2
hRm,m 2 0

6 ŵm ← ŵm + hsign(rm) 1 0
7 r← r− hsign(rm)Rem 2M 0
8 c ← c + 1, flag← 1 1 0
9 if c > Nu , stop algorithm. 1 0

10 if flag = 1, go to step 2 1 0

Total: (worst case) ≤ (2M + 2)(B − 1) 0
Nu (2M + 3)

restricted to a small number (in many situations from 1 to 4 updates is enough for performance close to
that of exact RLS). This further reduces the computational cost of the algorithm.

In the following, we will use w(n + 1) to denote the exact solution of (12.282) (i.e., the exact RLS
estimate), and ŵ(n + 1) to denote the approximation computed by DCD-RLS (both would be equal if
we let Nu →∞). Assume that at time instant n, we have available both ŵ(n) and the residue

r(n) = r̂dφ(n − 1)− R̂φ(n − 1)ŵ(n), (12.295)

In order to apply the DCD algorithm to solve for ŵ(n + 1), it is convenient to update the difference

�w(n + 1) = w(n + 1)− ŵ(n). (12.296)

Define also

�R̂φ(n) = R̂φ(n)− R̂φ(n − 1), (12.297)

�r̂dφ(n) = r̂dφ(n)− r̂dφ(n − 1). (12.298)

The normal Eq. (12.282) then become

R̂φ(n)
[
ŵ(n)+�w(n + 1)

] = r̂dφ(n),

and thus

R̂φ(n)�w(n + 1) = r̂dφ(n − 1)+�r̂dφ(n)− R̂φ(n − 1)ŵ(n)−�R̂φ(n)ŵ(n)

= r(n)+�r̂dφ(n)−�R̂φ(n)ŵ(n)
�=β(n). (12.299)
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Given an approximate solution �ŵ(n+1) to these equations, we obtain an updated approximate solution
ŵ(n + 1) = ŵ(n)+�ŵ(n + 1). Note that the residue of solving (12.282) using ŵ(n + 1),

r(n + 1) = r̂dφ(n)− R̂φ(n)ŵ(n + 1)

= r̂dφ(n − 1)+�r̂dφ(n)− R̂φ(n)
[
ŵ(n)+�ŵ(n + 1)

]
= r̂dφ(n − 1)+�r̂dφ(n)− R̂φ(n)�ŵ(n + 1)− [

R̂φ(n − 1)+�R̂φ(n)
]
ŵ(n)

= r(n)+�r̂dφ(n)− R̂φ(n)�ŵ(n + 1)−�R̂φ(n)ŵ(n)

= β(n)− R̂φ(n)�ŵ(n + 1), (12.300)

is exactly the residue of approximately solving (12.299) by �ŵ(n + 1).
To complete, we only need to evaluate �R̂φ(n) and �r̂dφ(n). From (12.297), (12.298), (12.283)

and (12.284), we obtain

�R̂φ(n) = (λ− 1)R̂φ(n − 1)+ φ(n)φT (n), (12.301)

�r̂dφ(n) = (λ− 1)̂ddφ(n − 1)+ d(n)φ(n). (12.302)

Substituting these results in the definition of β(n), we obtain

β(n) = r(n)+ (λ− 1)r̂dφ(n − 1)+ d(n)φ(n)−
[
(λ− 1)R̂φ(n − 1)+ φ(n)φT (n)

]
ŵ(n)

= r(n)+ (λ− 1)r(n)+ e(n)φ(n) = λr(n)+ e(n)φ(n). (12.303)

We can therefore use the DCD algorithm to compute an approximate solution to (12.299) and update
the residue defined by (12.300), as described in Table 12.11.

As we mentioned before, the number of operations of the DCD algorithm can be reduced if we
modify the algorithm in Table 12.10 to update only the entries of the weight vector corresponding to
the largest residue entry, as described in Table 12.12.

The total number of operations of DCD-RLS as described in Tables 12.11 and 12.12 is M2 + 4M
multiplications and M2/2 + 3.5M + (2M + 1)Nu + B additions. Most of these operations are due
to the updating of R̂φ in Table 12.11, which is responsible for the terms in M2. While this cannot be
helped for general regressors φ(n), the operation count can be substantially reduced when our filter is
modeling an FIR relation as in (12.41) (i.e., φ(n) is a tap-delay line), as we show next.

If

φ(n) = [
x(n) x(n − 1) . . . x(n − M + 1)

]T
, (12.304)
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Table 12.11 Summary of the DCD RLS Algorithm for General Regressors

Initialization:
ŵ(0) = 0, r(0) = 0, R̂φ(−1) = � > 0
for n = 0, 1, 2, . . .

R̂φ(n) = λR̂(n − 1)+ φ(n)φT (n) (use (12.306) for tap-delay lines)

ŷ (n) = ŵT
(n)φ(n),

e(n) = d (n)− ŷ (n),
β(n) = λr(n)+ e(n)φ(n),

Use DCD algorithm to compute new �ŵ(n + 1) and r(n + 1) from R̂φ(n)�ŵ(n + 1) = β(n),
ŵ(n + 1) = ŵ(n)+�ŵ(n + 1).

Table 12.12 Summary of Leading-Element DCD Algorithm for Use in DCD-RLS, from [44]

Step Initialization: Choose initial condition step H = 2k , number of bits B, and maximum
update count Nu . Let �ŵ = 0, r = β(n), h = H/2, b = 1.

for k = 1 : Nu
1 p = arg max1≤m≤M {|rm |}, go to step 4
2 b ← b + 1, h← h/2
3 Stop if b > B
4 Go to step 2 if |rp | ≤ (h/2)Rp,p
5 �ŵp = �ŵp + sign(rp)h
6 r = r− sign(rp)hR̂φep

then R̂(n) and R̂(n − 1) share a common structure. Assume that the initial condition R̂(−1) = � =
diag(λM−1, λM−2, . . . , 1). Then

R̂(0) = λ

⎡⎢⎢⎢⎣
λM−1 0 . . . 0

0 λM−2 . . . 0
...

...
. . .

...

0 0 . . . 1

⎤⎥⎥⎥⎦+
⎡⎢⎢⎢⎣

x(0)
0
...

0

⎤⎥⎥⎥⎦ [ x(0) 0 . . . 0 ]

=

⎡⎢⎢⎢⎣
λM + x2(0) 0 . . . 0

0 λM−1 . . . 0
...

...
. . .

...

0 0 . . . λ

⎤⎥⎥⎥⎦ =
⎡⎣λM + x2(0) 0T

0 [R̂φ(−1)]1:M−1,1:M−1

⎤⎦ ,
where [R̂φ(−1)]1:M−1,1:M−1 denotes the top-left (M − 1)× (M − 1) block of R̂φ(−1). We note that,
except for its first row and column, R̂(0) can be obtained directly from R̂(−1).
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Following this observation, we claim that for tapped-delay line regressors, the computation of R̂φ(n)
in Table 12.11 can be replaced by an update of only its first column [R̂φ(n)]1, that is,

[R̂φ(n)]1 = λ[R̂φ(n − 1)]1 + x(n)φ(n). (12.305)

Since R̂φ(n) is symmetric, its first row is the transpose of (12.306), and does not need to be evaluated
again.

We show next by induction that this pattern holds for all n. We just showed that it it true for n = 0.
Assume then that for a certain n, it holds that

R̂φ(n) =
⎡⎣ (·)T
λ[R̂φ(n − 1)]1 + x(n)φ(n)

[R̂φ(n − 1)]1:M−1,1:M−1

⎤⎦ , (12.306)

where we use (·)T to indicate that the entries of the first row are the same as the entries of the first
column. We show next that R̂φ(n + 1) must follow the same pattern. Indeed,

R̂φ(n + 1) = λR̂φ(n)+

⎡⎢⎢⎢⎣
x(n + 1)

x(n)
...

n(n − M + 2)

⎤⎥⎥⎥⎦[
x(n + 1) x(n) . . . x(n − M + 2)

]

=
⎡⎣ (·)T
λ[R̂φ(n)]1

λ[R̂φ(n − 1)]1:M−1,1:M−1

⎤⎦

+

⎡⎢⎢⎢⎢⎢⎣
(·)T

x(n + 1)φ(n + 1) ⎡⎢⎣ x2(n) . . . x(n)x(n − M + 2)
...

. . .
...

x(n)x(n − M + 2) . . . x2(n − m + 2)

⎤⎥⎦

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎣ (·)T
λ[R̂φ(n)]1 + x(n + 1)φ(n + 1)

[R̂φ(n)]1:M−1,1:M−1

⎤⎦ ,
where in the last step we identified the (2, 2) block of the intermediate result with the first M − 1 rows
and columns of R̂φ(n), from (12.283).

Note that in practice we should not actually move the entries of R̂φ(n−1) to their new position; rather,
we should use an indexing system to access the entries of R̂φ(n) to avoid this costly moving operation.
The total number of operations of DCD-RLS using (12.306) is 3M multiplications and 2M Nu + 6M
additions. This is not much larger than the complexity of NLMS. The DCD-RLS algorithm has been
implemented in FPGAs and run for long periods of time without observation of divergence [44].

Figure 12.35 shows a comparison of RLS and DCD-RLS in a system identification problem. We are
trying to identify an M = 10 FIR filter, so we use (12.306) to update R̂φ(n) with lower cost. The input
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FIGURE 12.35

EMSE for RLS and DCD-RLS for different values of Nu , with λ = 0.95, M = 10, and for DCD, H = 2 and
B = 16. Average of L = 500 realizations.

signal x(n) is white Gaussian noise with zero mean and unit variance. The optimum coefficient vector
wo(n) follows a random-walk model as in (12.182) with Q = 10−5 I (the initial value, wo(0) is random,
taken from a Gaussian distribution with covariance matrix equal to I). Both RLS and RLS-DCD use
a forgetting factor of λ = 0.95. RLS-DCD is implemented with leading DCD (Table 12.12), B = 16
and H = 2. The maximum number of updates Nu is varied from 1 to 8. The optimum vector wo(n)
suffers an abrupt change at n = 400. The learning curves were obtained from the average of L = 500
realizations. As the figure shows, even for Nu = 1, the performance of RLS-DCD is very close to that of
RLS. The only difference is a smaller convergence rate at the start of the algorithm. However, after the
abrupt modification of wo(n) at instant n = 400, all filters converge equally quickly to the new vector.
This shows that RLS-DCD does not loose in tracking capability when compared to standard RLS.

1.12.5.2 Regularization
There are applications in which the autocorrelation matrix Rφ may become very ill-conditioned (i.e.,
nearly singular). In these cases, it can be shown that the LMS weight estimates may slowly drift to quite
large values, even though the error remains small. The problem arises when the filter is implemented
in finite-precision arithmetic, because the variables holding the filter weights may overflow, thereby
making the error grow suddenly very large.

This can happen, for example, for certain kinds of equalizers in communications [87,92,93]. The
mechanism through which the LMS coefficients may slowly drift is explained in [94,136].

The usual solution to this problem is to modify the cost function to add a term proportional to ‖w‖2,
so that large values of the weight vector are penalized:

Jleaky = E

{∣∣∣d(n)− wH φ(n)
∣∣∣2}+ α‖w‖2, (12.307)
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where ‖·‖ is the Euclidean norm andα > 0 is a small constant. With this cost function, the corresponding
algorithm is

w(n + 1) = (1− μα)w(n)+ μe∗(n)φ(n). (12.308)

This is known as leaky-LMS algorithm [4]. It can be shown that the introduction of leakage will bias the
solution away from the Wiener solution, but will prevent any excessive growth of the weight coefficients.
A detailed analysis of the leaky-LMS algorithm is available in [137]. Reference [94] proposes a modified
version of the algorithm without the bias.

Difficulties with singular or near-singular autocorrelation matrices also appears with RLS. For exam-
ple, if the input is a periodic signal with little noise, the autocorrelation matrix will become nearly
singular, and matrix P(n) in RLS will diverge. This problem, as well as a solution to it using variable
forgetting-factor, is described in [138]. A constant regularization method based on DCD can be found
in [139]. Another approach, valid only for short filters, but which allows constant regularization, is
described in [140].

The leaky-LMS algorithm has found other important applications, most particularly in beamforming,
in which it is used to turn the beamformer robust against array imperfections [141]. The algorithms used
in beamforming are examples of constrained adaptive filters, in which the cost function incorporates
equality conditions that must be satisfied at all times—see Section 1.12.5.11.

Another algorithm closely related to leaky-LMS, in which the extra term in the cost function penal-
izes large values of the filter output (that is, α|wH (n)φ(n)|2 instead of α‖w(n)‖2 in (12.307)), was
recently employed to improve the performance of FIR adaptive filters in the presence of saturation
nonlinearities [142].

More recent applications of regularization involve the use of the �1-norm,

‖w‖1 = |w0| + |w1| + . . .+ |wM−1|,
instead of the Euclidean norm. This is because the �1 norm promotes solutions that are sparse, that is,
a filter that minimizes the cost function

Jsparse = E

{∣∣∣d(n)− wH φ(n)
∣∣∣2}+ α‖w‖1, (12.309)

will favor solutions in which the vector w has only a few nonzero entries (an intuitive explanation
for this can be found in [143], which is a good introduction to compressive sensing). Algorithms for
promoting sparsity have been receiving much attention lately, due to the interest in compressive sensing
applications [144–148]. See also the references for the proportionate NLMS (PNLMS) algorithm in
Section 1.12.5.3.

1.12.5.3 Variable step-size
The steady-state analysis of Section 1.12.4.4 shows that the step-sizeμplays an import role in controlling
the performance of the LMS algorithm since it is one of the main factors affecting the convergence rate
and the misadjustment. To obtain a better tradeoff between convergence speed and steady-sate EMSE,
several authors proposed different forms of adjusting the step-size of LMS. Variable step-size algorithms
allow the filters to dynamically adjust their performance in response to conditions in the input data and
error signals.
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In this context, one of the most popular algorithms is the variable step-size LMS (VSLMS) proposed
in [149]. In the VSLMS algorithm, each coefficient wk(n), k = 0, . . . ,M − 1 is updated with a time-
varying step-size μk(n), whose adjustment is given by

μk(n) = μk(n − 1)+ ρsign
[
e(n)φk(n)

]
sign[e(n − 1)φk(n − 1)], (12.310)

where ρ is a small positive constant. This algorithm operates in a very intuitive way. When the algorithm
has not yet converged, the gradient term e(n)φk(n) shows a positive or negative direction in successive
iterations and the step-size μk(n) increases up to an allowed maximum value. On the other hand, near
steady-state e(n)φk(n) approaches zero and its sign changes in successive iterations, which reduces
μk(n) (the step-size is lower-bounded by a small minimum value). Therefore, during the initial conver-
gence VSLMS uses a large step-size, which leads to a high convergence rate. When its coefficients are
close to the optimum solution, the algorithm is updated with a small step-size, which allows VSLMS
to achieve a small EMSE. A variant of this algorithm is obtained by dropping the sign functions in
(12.310), i.e.,

μk(n) = μk(n − 1)+ ρe(n)e(n − 1)φk(n)φk(n − 1). (12.311)

The choice between (12.310) and (12.311) depends on the application [150].
The NLMS algorithm, proposed independently by Nagumo and Noda [151] and Albert and Gardner

[152], can be interpreted a variable step-size LMS with a particular choice forμ(n) (see Section 1.12.3.2).
An important variant of NLMS is the so-called power-normalized LMS (PN-LMS) algorithm, which
uses the following variable step-size

μ(n) = μ̃

ε + p(n)
, (12.312)

where

p(n) = γ p(n − 1)+ (1− γ )|φ0(n)|2, (12.313)

with p(−1) = 0 and γ being a positive scalar chosen from within the interval 0 < γ ≤ 1. This
algorithm is useful when the regressor is a tapped-delay line, that is, when φi (n) = x(n − i), so that
the scalar p(n) is an estimate for the power of the input sequence {x(n)}. The range of μ̃ in (12.312) is
0 ≤ μ̃ ≤ 2

M [3].
Over the years, several variable step-size algorithms were proposed in the literature. Some of these

algorithms are in the papers [153–167] and in their references. Besides the variable step-size approaches,
an alternative scheme to improve the tradeoff between convergence speed and steady-sate EMSE is
constituted by combinations of adaptive algorithms, described in Section 1.12.5.8.1.

Another class of variable step-size algorithms was developed specifically to accelerate the conver-
gence of filters whose optimum weight vector wo is sparse, that is, has only a small fraction of nonzero
elements. The primary application for this is echo cancellation, mainly for echo due to reflections in the
telephone connection. The algorithms are known as proportionate NLMS (PNLMS) algorithms, and
have usually very good performance for approximating sparse weight vectors [168–172].
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Table 12.13 Fourth- and Sixth-Order Moments of Different Distributions

Distribution E{(x−μx )4}
σ4

x

E{(x−μx )6}
σ6

x

Binary 1 1
Uniform 9/5 27/7
Gaussian 3 15
Exponential 6 90

1.12.5.4 Non-Gaussian noise and robust filters
Consider a problem in which we know that the regressor φ(n) and the desired signal d(n) are related
through a model (we assume for simplicity that all variables are real)

d(n) = wT
o φ(n)+ v(n), (12.314)

in which v(n) is independent of φ(n). It is shown in [173] that minimization of the fourth power of
the error may lead to an adaptive filter with better compromise between convergence rate and excess
mean-square error than LMS, if v(n) is sub-Gaussian. Let us explain what this means.

Recall that for any random variable x , it holds that 0 ≤ σ 2
x = E{x2} − (

E{x})2. Similarly, if we
define μx = E{x},

E
{
(x − μx )

4
}
≥
(

E
{
(x − μx )

2
})2 = σ 4

x , E
{
(x − μx )

6
}
≥
(

E
{
(x − μx )

2
})3 = σ 6

x .

In general, we can write E{(x − μx )
4} = ασ 4

x , with α ≥ 1. For example, consider the distributions

in Table 12.13. Distributions for which
E
{
(x−μx )

4
}

σ 4
x

< 3, such as binary and uniform, are called sub-

Gaussian, and those for which
E
{

x4
}(

E{(x−μx )2})2 > 3, such as the exponential, are called super-Gaussian.

These relations are usually given in terms of the kurtosis γ4 of a distribution

γ4 = E
{
(x − μx )

4
}

σ 4
x

− 3.

Therefore, a distribution is sub-Gaussian if its kurtosis is negative, and super-Gaussian if its kurtosis
is positive. A distribution with positive kurtosis is such that its probability density function (pdf) f (x)
decays more slowly than the Gaussian as |x | → ∞.

The authors of [173] show that when the noise v(n) is sub-Gaussian, an algorithm based on the
minimization of

JLMP = E{|e(n)|p}, (12.315)

with p > 2 results in lower steady-state excess mean-square error (EMSE) than LMS. They study
particularly the case p = 4, for which the stochastic gradient algorithm is of the form

w(n + 1) = w(n)+ μe3(n)φ(n). (12.316)
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This algorithm is known as least-mean fourth (LMF) algorithm. Analyses of general algorithms with
error nonlinearities can be found in [174], and a unified analysis is available in [175].

The LMF algorithm can be understood intuitively as a variable-step version of LMS:

w(n + 1) = w(n)+
(
μe2(n)

)
e(n)φ(n).

When the error is large, the “equivalent” step-size μe2(n) is large, and the filter converges quickly.
On the other hand, when the error is small, the “equivalent” step-size is reduced, which consequently
reduces the EMSE.

This idea works well if the distributions of φ(n) and v(n) are indeed sub-Gaussian, but it was soon
noticed that the algorithm becomes sensitive to outliers (large but rare values of the input signals). This
is also easy to understand: if the error is too large, the “equivalent” step-size may be such that the
recursion becomes unstable. References [176,177] proposed changing the cost function to a mixture of
quadratic and quartic, in an attempt to reduce this sensitivity. In [178, p. 313], a different modification
of the cost function is proposed, with the same purpose. The new cost function is the following

JLMF,mod = E
{

f
(
e(n)

)}
, f (e) =

{
e4, if |e| ≤ γ,
e2, if |e| > γ,

(12.317)

in which γ is a constant. References [45,59] show that when the regressor is Gaussian, LMF has a
non-zero probability of diverging. From these results one can see that the solution proposed in [178]
indeed stabilizes the algorithm.

Since the LMF recursion contains a cubic nonlinearity, it can be used as a simpler platform to
understand the behavior of blind-equalization algorithms such as CMA (see Section 1.12.5.5), which
also contains a cubic nonlinearity.

Set-membership algorithms [1], which are explained in more detail in Section 1.12.5.10, can be seen
as an extreme version of (12.317), in which f (e) is reduced to simply 0 when |e| ≤ γ . The corresponding
cost function is

JSM = E
{

f
(
e(n)

)}
, f (e) =

{
0, if |e| ≤ γ,
e2, if |e| > γ.

(12.318)

Set-membership algorithms are particularly well-suited to bounded noise, i.e., to the case in which one
knows that |v| ≤ γ .

All these methods are suited to the case in which the noise v(n) is sub-Gaussian. When the noise
is super-Gaussian, there is a small but significant probability that v(n) will assume a very large value.
This may make the performance of even LMS become poor. The solution is to give less weight to large
errors, and one choice is to use p < 2 in (12.315). This will give rise to several robust adaptive filters,
that is, algorithms that are insensitive to outliers. It should be noticed that LMS itself is quite robust in
terms of energy (quadratic) relations: in fact, [179] shows that LMS is optimal in the H∞ sense (see also
[178, ch. 17]). However, for noise distributions with higher kurtosis, it is convenient to use a smaller
value of p [180–183].

One important algorithm of this class is the sign-LMS algorithm [98,184], which is obtained from
(12.315) with p = 1, and which we already saw in Section 1.12.5.1.1.

For very impulsive signals, methods based on order statistics (such as the median, for example), may
produce better results, although their complexity tends to be higher [185].



Author’s personal copy
734 CHAPTER 12 Adaptive Filters

adaptive

filter

blind
algorithm

HOS of
s (n )

channel

η(n )

e(n)

s (n ) x (n ) y(n)
H(z)

ˆ

FIGURE 12.36

Simplified communications system with a blind adaptive equalizer.

1.12.5.5 Blind equalization
As described in Section 1.12.1.3, the objective of equalization is to mitigate the intersymbol interference
(ISI) introduced by dispersive channels in order to recover the transmitted sequence. Assuming that the
equalizer is an adaptive FIR filter, its coefficients may be updated in two different ways:

i. using a supervised algorithm in the training and decision-directed modes, as explained in Section
1.12.1.3; or

ii. using a blind equalization algorithm, which uses higher-order statistics (HOS) of the transmitted
signal instead of a training sequence, as shown in Figure 12.36. In this case, the available bandwidth
is used in an more efficient manner due to the absence of a training sequence.

The literature contains many blind equalization algorithms based on HOS, but the most popular is
the constant modulus algorithm (CMA), proposed independently by Godard [186] and Treichler and
Agee [187] in the 1980s. CMA seeks to minimize the constant-modulus cost function defined as

JCM = E
{
(r − |ŷ(n)|2)2

}
, (12.319)

where r = E{|s(n)|4}/E{|s(n)|2} is a dispersion constant, which contains information about higher-
order statistics of the transmitted signal s(n) and ŷ(n) = wH x(n) is the equalizer output. This function
penalizes deviations in the modulus of the equalized signal away from the dispersion constant r . Different
from the mean-square-error cost function used in supervised adaptive filtering, JCM is not convex in
relation to the coefficients of the equalizer (see the definition of convex functions in Box 5). It has local
minima, and constant-modulus-based algorithms can get stuck at these suboptimal solutions.

CMA is obtained from an instantaneous approximation for the gradient of JCM in relation to w.
Defining the estimation error

e(n) = (r − |ŷ(n)|2)ŷ(n), (12.320)
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Constant-modulus cost function as a function of the equalizer weights.

the update equation of CMA can be written as

w(n + 1) = w(n)+ μe∗(n)x(n), (12.321)

where μ stands for a step-size. Since CMA is a stochastic-gradient type algorithm, the similarity of
(12.321) to the LMS update equation is not surprising. Due to this similarity, CMA is sometimes inter-
preted as a blind version of the LMS algorithm [188]. Thus, as in LMS, small step-sizes lead to a small
misadjustment and slow convergence. However, the similarity to LMS stops here. The multimodality
of the CM cost function makes the prediction of the behavior of CMA a hard task.

To illustrate the constant-modulus cost function, we assume the transmission of a binary signal
{−1,+1} through the IIR channel H(z) = 1/(1+ 0.6z−1) in the absence of noise [189]. Considering
an FIR equalizer with M = 2 coefficients, we can obtain a 3-D plot of JCM as a function of w0 and w1
as shown in Figure 12.37. As indicated in the figure, JCM contains two global minima at±[1 0.6]T and
two local minima. Note that if w converges to one of the global minima, the transmitted sequence or
its inverse will be recovered. These two possibilities occur due the fact that CMA seeks to recover only
the modulus of the transmitted signal and does not solve phase ambiguities introduced by the channel.
The phase ambiguities can be corrected by using differential code, which is based on the change of sign
between two successive samples.

The animations in Figure 12.38 illustrate the behavior of CMA initialized at the different points.
Initializing at w(0) = [1 0]T , the weight vector converges to [+1 + 0.6]T . Now, considering w(0) =
[−0.4 0.05]T , we get w(n) ≈ [−1 − 0.6]T at the steady-state. On the other hand, if CMA is initialized
at [0.05 − 0.4]T , the algorithm gets stuck at a local minimum. We should notice that in the presence
of noise or depending on the step-size, CMA also can escape from a minimum and drift to another
solution.
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CMA initialized at different points, μ = 0.016, channel H(z ) = 1/(1 + 0.6z−1) in the absence of noise.
Click on each caption to see animations on your browser.

Despite the name of the algorithm, CMA also works for non-constant modulus signals. However,
as shown analytically in [80,190], its best performance occurs for constant-modulus signals since the
variability in the transmitted signal modulus plays a role similar to the measurement noise in supervised
algorithms.

The stochastic analysis of constant-modulus based algorithms is a hard task. Due to the nonlinearity
and multimodality of the CM cost function, additional assumptions are necessary. A good review of
the main results in the analysis of CMA can be found in [191], but many results were obtained after its

http://booksite.elsevier.com/9780124166165/chapter.php
http://booksite.elsevier.com/9780124166165/chapter.php
http://booksite.elsevier.com/9780124166165/chapter.php
http://booksite.elsevier.com/9780124166165/chapter.php
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publication. These results address different issues of constant-modulus based algorithms as the steady-
state and transient behavior [77,80,190,192–196], convergence and stability [58,60,197–200], phase
rotation [201–203], solutions for non-constant modulus signals [204–207], among others.

1.12.5.6 Subband and transform-domain adaptive filters
In transform-domain adaptive filters, the input signals are transformed (using the FFT, the DCT or other
convenient transform), and the adaptation is performed in the transform domain. The gains are twofold:
first, using block processing, one can obtain large reductions in computational cost. Second, by using
the decorrelation properties of the transforms, it is possible to use different step-sizes for each tap in the
transformed domain, thereby reducing the equivalent eigenvalue spread and increasing the convergence
rate [208–216].

A related approach is that of subband adaptive filters, which are also useful to both reduce the
computational cost and increase the convergence speed of long filters, in particular for acoustic echo.
The main idea is to split the input signal in several parts using an analysis filter bank. Each part, relative
to a particular band of the full spectrum, is processed separately, and finally all parts are joined together
again by a synthesis filter bank [217]. Since each subsignal has a smaller bandwidth, the sampling rate
can be reduced. The whole process must be made carefully to avoid as much as possible a deterioration
of the signals due to aliasing, while still gaining in computational cost, in comparison with standard
full-band filters [218–224]. It is important to point out that it is possible to avoid the introduction of
extra delay (compared with a full-band filter) [225–228].

Good introductions to the subject can be found in [1,3,150].

1.12.5.7 Affine projections algorithm
The affine projections algorithm (APA) is an extension of NLMS, designed to obtain a convergence rate
closer to that of RLS, but with a low computational cost, as close as possible to that of NLMS. We saw
in Section 1.12.3.2 that NLMS can be derived as a method for choosing the step-size so that the current
a posteriori estimation error is zeroed (12.130). The APA extends this idea, by canceling a vector of a
posteriori errors, obtained from data from times n − K to n, and the weight vector at time n + 1:

ξ(n) = d(n)−�(n)w∗(n + 1), (12.322)

in which

d(n) =

⎡⎢⎢⎢⎣
d(n)

d(n − 1)
...

d(n − K − 1)

⎤⎥⎥⎥⎦ , �(n) =

⎡⎢⎢⎢⎣
φT (n)

φT (n − 1)
...

φT (n − K − 1)

⎤⎥⎥⎥⎦ . (12.323)

The affine projections algorithm chooses as next weight estimate the vector w(n + 1) closest to the
current estimate w(n) such that ξ(n) = 0 [229–234]:

w(n + 1) = arg min
w

s.t. ξ(n)=0

|w − w(n)|2 . (12.324)
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The solution to this problem is a recursion

w(n + 1) = w(n)+�T (n)
(
�∗(n)�T (n)

)−1
e(n), (12.325)

where
e(n) = d(n)−�(n)w∗(n). (12.326)

Note that (12.325) reduces to NLMS when K = 1. Similarly to what is done for NLMS, it is
convenient to introduce a regularization term ε I , with ε > 0 and a step-size 0 < μ ≤ 1 in (12.325),
leading to

w(n + 1) = w(n)+ μ�T (n)
(
ε I +�∗(n)�T (n)

)−1
e(n). (12.327)

The advantage of this algorithm is that �∗(n)�T (n) is K × K (as opposed to the M × M matrix
that must be recursively inverted for RLS), and the value of K does not need to be large, which keeps
the computational cost low. In general, a value of two or three already gives a good improvement to the
convergence rate even for regressors whose covariance matrix has large spreading factor.

In order to implement (12.327), it is useful to remember that computing the inverse explicitly is never
a good idea: it is much better to solve the linear system(

ε I +�∗(n)�T (n)
)

a = e(n), (12.328)

and then compute �T (n)a. From a numerical point of view, the best option would be to use the QR
decomposition of �(n) and avoid forming �∗(n)�T (n), but the computational cost would be larger.
When the regressor is a tapped-delay line and K is large, one can use a fast version of APA, in which
the solution of (12.328) is obtained in O(K ) operations, instead of the usual O(K 3) [235–237].

Recent works focusing in the analysis of the APA are [238–241]. The problem of regularization
(choice of ε) is considered in [242,243]. Applications to echo cancellation can be found in [244,245].

A related approach is the sliding-window RLS algorithm, a version of RLS in which only a finite
memory is considered, instead of a forgetting factor as used in Section 1.12.3.3 [246,247].

1.12.5.8 Cooperative estimation
In this section, we briefly describe important advances in adaptive filtering through cooperative esti-
mation. We first describe combinations of adaptive filters and in the sequel, we focus on distributed
adaptive filtering.

1.12.5.8.1 Combinations of adaptive filters
Combinations of adaptive filters have received considerable attention lately, since they decrease the
sensitivity of the filter to choices of parameters such as the step-size, forgetting factor or filter length.
The idea is to combine the outputs of two (or several) different independently-run adaptive algorithms
to achieve better performance than that of a single filter. In general, this approach is more robust than
variable parameter schemes [190].
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Convex combination of two transversal adaptive filters.

The first combined scheme that attracted attention was the convex combination of adaptive filters
due to its relative simplicity and the proof that the optimum combination is universal, i.e., the combined
estimate is at least as good as the best of the component filters in steady-state, for stationary inputs [248].
This scheme was proposed in [249] and further extended and analyzed in [248,250]. The original idea
was to combine one fast and one slow LMS filter to obtain an overall filter with fast convergence and low
misadjustment, but it was extended to other algorithms to take advantages of different characteristics,
as explained below.

Figure 12.39 shows the convex combination of two adaptive filters, in which the output of the overall
filter is computed as

ŷ(n) = η(n)ŷ1(n)+ [1− η(n)]ŷ2(n), (12.329)

where η(n) ∈ [0, 1] is the mixing parameter, ŷi (n) = wH
i (n)φ(n), i = 1, 2, are the outputs of the

transversal filters, φ(n) is the common regressor vector, and wi (n) are the weight vectors of the com-
ponent filters. Note that the weight vector and the estimation error of the overall filter are given respec-
tively by

w(n) = η(n)w1(n)+ [1− η(n)]w2(n) (12.330)

and
e(n) = d(n)− ŷ(n) = η(n)e1(n)+ [1− η(n)]e2(n), (12.331)

where ei (n) = d(n)− ŷi (n) are the estimation errors of each component filter.
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In order to restrict the mixing parameter to the interval [0, 1] and to reduce gradient noise when
η(n) ≈ 0 or η(n) ≈ 1, a nonlinear transformation and an auxiliary variable a(n) are used, i.e.,

η(n) = sgm[a(n)] � 1

1+ e−a(n)
, (12.332)

where a(n) is updated to minimize the overall squared error e2(n), i.e.,

a(n + 1) = a(n)− μa

2
∇ae2(n) = a(n)+ μa

[
ŷ1(n)− ŷ2(n)

]
e(n)η(n)

[
1− η(n)] . (12.333)

In practice, a(n)must be restricted by saturation of (12.333) to an interval [−a+, a+], since the factor
η(n)

[
1− η(n)] would virtually stop adaptation if a(n) were allowed to grow too much. The correct

adjustment of the step-size μa depends on the input signal and additive noise powers and also on the
step-sizes of the component filters. To make the choice of μa independent of the filtering scenario, a
normalized scheme was proposed in [251].

The combination of one fast and one slow LMS (with μ1 > μ2) operates in a very intuitive way.
When fast changes appear, the fast filter outperforms the slow one, making η(n) ≈ 1. In stationary
situations, the slow filter gets a lower quadratic error and η(n) ≈ 0, which allows the overall filter
to achieve the misadjustment of the slow LMS filter. There are situations in which the combination
outperforms each component filter and in these cases, 0 < η(n) < 1. This behavior can be observed in
the simulation results shown in Figure 12.40, where the convex combination of two LMS filters with
different step-sizes (μ1 = 0.1 and μ2 = 0.01) was used to identity the system (from [248])[

0.9003 −0.5377 0.2137 −0.0280 0.7826 0.5242 −0.0871
]
.

The regressor φ(n) is obtained from a process x(n) generated with a first-order autoregressive model,
whose transfer function is

√
1− b2/(1−bz−1). This model is fed with an iid Gaussian random process,

whose variance is such that Tr(Rφ) = 1. Moreover, additive iid noise v(n) with variance σ 2
v = 0.01 is

added to form the desired signal. Figure 12.40a shows the EMSE curves estimated from the ensemble-
average of 500 independent runs and filtered by a moving-average filter with 128 coefficients to facil-
itate the visualization. The combined filter acquires the faster convergence of μ1-LMS and attains the
EMSE of μ2-LMS. Figure 12.40b shows the time evolution of the mixing parameter. We can observe
that it rapidly changes toward sgm[a+] during the initial convergence, while its steady-state value is
1− sgm[a+].

After the publication of [249], many papers on combinations of adaptive filters appeared in the
literature. Apparently, the idea of combining the outputs of several different independently-run adaptive
algorithms was first proposed in [252], and later improved in [253,254]. The algorithms proposed
in [252–254] are based on a Bayesian argument, and construct an overall (combined) filter through a
linear combination of the outputs of several independent adaptive filters. The weights are the a posteriori
probabilities that the underlying models used to describe each individual algorithm are “true.” Since the
weights add up to one, in a sense these first papers also proposed “convex” combinations of algorithms.
Unconstrained linear combinations of adaptive filters were also proposed in [255]. However, the method
of [248,249] has received more attention due to its relative simplicity and the proof that the optimum
combination is universal. By this, we mean that if the combination uses at every instant the optimum
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(a) EMSE for μ1-LMS, μ2-LMS, and their convex combination; (b) ensemble-average of η(n);μ1 = 0.1, μ2 =
0.01, μa = 100, a+ = 4, b = 0.8; mean of 500 independent runs.

value of η, then the combined filter is always at least as good as the best component filter. However, in
practice η must also be estimated, so the performance of the combination may be slightly worse than
that of the best filter.

In the sequel, we briefly describe some of the most important recent contributions in this area.
In [250], the convergence of the overall filter is greatly improved by transferring a part of the fast

filter w1 to the slow filter w2 when λ(n) ≥ γ , that is,

w2(n + 1) = α [w2(n)+ μ2e2(n)x(n)
]+ (1− α)w1(n), (12.334)

where α is a parameter close to 1 and γ is a threshold close to the maximum value that can be reached
by λ(n).

A steady-state analysis of the combined filter was presented in [248]. This analysis shows that the
convex combination is universal if the optimum η is used, a property that was exploited to design filters
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with improved tracking performance. Due to the nonlinear function (12.332), a transient analysis of
the convex combination needs additional simplifications. This issue was addressed in [256] and [257],
which provide models for the transient of the convex combination based on first and second-order Taylor
series approximations.

The convex combination was used in [258] to improve the performance of a variable tap-length LMS
algorithm in a low signal-to-noise environment (SNR ≤ 0 dB). The adaptation of the tap-length in
the variable tap-length LMS algorithm is highly affected by the parameter choice and the noise level.
Combination approaches improve such adaptation by exploiting advantages of parallel adaptive filters
with different parameters.

The convex combination was exploited in [190] to improve the tracking performance of adaptive
filters by combining filters with different tracking capabilities, as are the cases of LMS and RLS (see
Section 1.12.4.4). The combination of algorithms of different families was also addressed in [259],
where it was shown that a combination of two filters from the same family (i.e., two LMS or two
RLS filters) cannot improve the performance over that of a single filter of the same type with optimal
selection of the step-size (or forgetting factor). However, combining LMS and RLS filters, it is possible
to simultaneously outperform the optimum LMS and RLS filters. In other words, combination schemes
can achieve smaller errors than optimally adjusted individual filters.

Convex combinations were used for sparse echo cancellation in [260], considering the combination
of two improved proportionate normalized least-mean-square (IPNLMS) filters. The combined scheme
increases the IPNLMS robustness to channels with different degrees of sparsity and also alleviates
the tradeoff between rate of convergence versus steady-state misadjustment imposed by the selection
of the step-size. Still considering the echo cancellation application, [261] proposes a combination of
adaptive Volterra kernels that presents a similar behavior to that of the complete Volterra filters, but
with a reduction in the computational load. This scheme is robust regardless of the level of nonlinear
distortion, which is a desired property for nonlinear echo cancellation.

In [262], the convex combination was also used as a scheme for adaptively biasing the weights of
adaptive filters using an output multiplicative factor. Interpreting the biased estimator as the combination
of the original filter and a filter with constant output equal to zero, practical schemes to adaptively adjust
the multiplicative factor were proposed. This scheme provides a convenient bias versus variance tradeoff,
leading to reductions in the filter mean-square error, especially in situations with a low signal-to-noise
ratio.

Extending [248], the authors of [263] proposed an affine combination of two LMS algorithms, where
the condition on the mixing parameter is relaxed, allowing it to be negative. Thus, this scheme can be
interpreted as a generalization of the convex combination since the mixing parameter is not restricted
to the interval [0, 1]. This approach allows for smaller EMSE in theory, but suffers from larger gradient
noise in some situations. Under certain conditions, the optimum mixing parameter was proved to be
negative in steady-state. Although the optimal linear combiner is unrealizable, two realizable algorithms
were introduced. One is based on a stochastic gradient search and the other is based on the ratio of the
average error powers from each individual adaptive filter. Under some circumstances, both algorithms
present performance close to the optimum.

Similarly to the convex combination, the correct adjustment of the step-size for the updating of
the mixing parameter in the affine combination (using the stochastic algorithm of [263]) depends on
characteristics of the filtering scenario. This issue was addressed in [193], where a transient analysis for
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Diffusion network with N = 7 nodes: at time n, every node k takes a measurement {dk (n), φk (n)}.

the affine combination of two adaptive filters was presented. The results of this analysis were used to
facilitate the adjustment of the free parameters of the scheme and to propose two normalized algorithms
to update the mixing parameter. Recently, the scheme based on the ratio of error powers of the two
filters proposed in [263] to update the mixing parameter was analyzed in [264].

Finally, Kozat et al. [265] studied different mixing strategies in which the overall output is formed
as the weighted linear combination (not necessarily constrained to convex or affine, as before) of the
outputs of several component algorithms for stationary and certain nonstationary data.

1.12.5.8.2 Distributed adaptive filtering
Adaptive networks use the information from data collected at nodes distributed over a certain region.
Each node collects noisy observations related to a parameter of interest and interacts with its neighbors
considering a certain network topology. The objective is to obtain an estimate of the parameter of interest
as accurate as the one that would be obtained if each node had access to the information across the entire
network [266,267]. Distributed estimation algorithms are useful in several contexts, including wireless
and sensor networks, where scalability, robustness, and low power consumption are desirable. They
also find applications in precision agriculture and environmental monitoring and transportation [268].

Figure 12.41 shows a network composed by N nodes distributed over some geographical area. At time
instant n, every node k takes a measurement {dk(n),φk(n)} to estimate some parameter vector wo. The
scalar measurement dk(n) represents the desired signal and φk(n) denotes the length-M input regressor
vector for node k. There are different solutions to the problem of estimating wo. In the centralized
solution, every node transmits its data {dk(n),φk(n)} to a fusion center for processing. This solution
is non-robust to failure in the fusion center. In distributed solutions, every node exchanges information
with a subset of its neighboring nodes, and the processing is distributed among all nodes in the network.
The set of nodes connected to node k (including k itself) is denoted by Nk and is called the neighborhood
of node k.

There are three main network topologies used in distributed estimation: incremental, diffusion, and
probabilistic diffusion [267]. In incremental networks, the nodes are connected so that information flows
sequentially from node to node, in a cyclic manner (Figure 12.42a). In diffusion networks, each node
communicates with its entire neighborhood at each instant (Figure 12.42b). Finally, in probabilistic
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Different network topologies.

diffusion networks each node communicates with a (possibly random) subset of its neighbors at each
instant (Figure 12.42c).

Several estimation algorithms have been proposed in the context of distributed adaptive filtering,
such as incremental LMS, incremental RLS, diffusion LMS, diffusion RLS, diffusion Kalman filtering,
and smoothing algorithms. In these algorithms, the nodes share information with their neighbors, and
perform local adaptation and merging of information using convex combinations of available estimates.
Distributed algorithms only require local communications between neighboring nodes, and can attain
good estimation performance compared to centralized solutions. This is a current area of intense research
[268–280].

Recently, adaptive distributed algorithms have also been used to model biological systems due to
their the self-organization property. Examples include fish joining together in schools, bacterial motility,
and bird flight formations [281–286].

1.12.5.9 Adaptive IIR filters
Adaptive infinite impulse response (IIR) filters represent an advantageous alternative in relation to
adaptive FIR filters, due to their capacity of providing long impulse responses with a small number of
coefficients. Their use may be desirable in applications requiring hundreds or thousands of taps, such as
satellite-channel and mobile-radio equalizers. The advantages of adaptive IIR filters have a price: slow
convergence, possible instability, error surface with local minima or biased global minimum [1,287–
290]. In addition, not all long impulse responses will necessarily be well approximated by an IIR filter
with low order.

The nonlinear relation between the adaptive-filter coefficients and the internal signals makes the
gradient computation and convergence analysis more complicated than those of adaptive FIR filters
[1]. Over the years, problems related to local minima, stability, and the effect of poles close to the unit
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Constraint imposed by data at time n.

circle have been addressed by several authors leading to different adaptive algorithms and realization
structures [291–300].

Another difficulty with adaptive IIR filters is that the performance of simple constant-gain algorithms
may rapidly degrade as the order of the filter grows. Even in the absence of local minima, the adaptation
of filters with order greater than two can remain almost stopped in regions where the mean square error
is relatively high. This issue was addressed in [287], which was able to obtain a large acceleration in
the convergence rate of IIR filters.

1.12.5.10 Set-membership and projections on convex sets
When the desired signal and the regressor are related as

d(n) = wH
o φ(n)+ v(n),

where v(n) is bounded, that is, |v(n)| ≤ γ for all n, it is natural to consider that each pair
(
d(n),φ(n)

)
defines a region in which the true solution w∗ must lie:

wo ∈ S(n) =
{
w ∈ CM :

∣∣∣d(n)− wH φ(n)
∣∣∣ ≤ γ} . (12.335)

For example, if all vectors are two-dimensional and real, the region S(n)would be as in Figure 12.43.
Set-membership algorithms aim to find the set of possible solutions, by tracking the intersection

T (n) =
n⋂

k=0

S(k) (12.336)

of all S(n) [301]. In the control literature and earlier algorithms, this is made by approximating T (n) by
ellipsoids [301–303]. However, very good performance is obtained if one uses just any point contained
in T (n) as a point estimate of wo at each instant. In fact, it is more interesting to restrict the memory,
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so that the filter can track variations of wo. In this case, only the last K constraint sets S(n) are used:

TK (n) =
n⋂

k=n−K+1

S(k). (12.337)

This approach has a very nice property: close to steady-state, if the weight estimates are already inside
TK (n), it is not necessary to perform any update. This may reduce considerably the average complexity
of the filter [304–310].

More recently, the approach has been extended to a more general setting, using projections onto
convex sets and subgradients. This allows the extension of the results to non-differentiable cost functions,
with different descriptions for the constraints (not restricted to (12.335)), also allowing the design of
kernel adaptive filters [6,311–313] (an introduction to kernel adaptive filters can be found in [314]).

1.12.5.11 Adaptive filters with constraints
In some applications, one wishes to minimize a cost function given certain constraints: a typical case is
beamforming. In the simplest example, an array of antennas or microphones receives a signal coming
from a certain (known) direction, and interference from other (unknown) directions. The output of the
array is a linear combination of the signals φi (n) received at each antenna, e.g.,

ŷ(n) = w∗0φ0(n)+ w∗1φ1(n)+ · · · + w∗M−1φM−1(n).

One way of improving the signal-to-noise ratio at the output is to minimize the output power, under the
restriction that the gain of the array in the direction of the desired signal is one. This is described by a
constraint of the kind

cH w = 1,

where w = [w0 . . . wM−1] is the weight vector, and c ∈ CM is a vector describing the constraint. The
goal of the filter would then be to find the optimum wo that is the solution of

wo = arg min
w

s.t. cH w=1

∣∣ŷ(n)∣∣2 .
This solution is known as minimum-variance distortionless response (MVDR), or Capon beamformer,
since it was originally proposed in [315]. There is an extensive literature on this subject [312,316–325].
Introductions to the topic can be found in [326–328].

1.12.5.12 Reduced-rank adaptive filters
In applications in which large filters are necessary, such as acoustic echo cancellation and nonlinear
models using Volterra expansions, it may be useful to reduce the order of the problem, by working in
a smaller subspace of the original problem. This reduces the number of parameters to be estimated,
increasing the convergence speed and reducing the excess mean-square error [329]. Several methods
have been proposed, such as [330,331], based on eigen-decompositions, the multi-stage Wiener filter
of [332–334], the auxiliary vector filtering algorithm [335], and the joint iterative optimization method
of [336–339]. This last method has the advantage of having low computational cost.
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Box 8: [Fixed-point arithmetic]

In fixed-point arithmetic, all variables are restricted to lie in a fixed interval [−a, a), and are stored as a
sequence of B bits b0b1 . . . bB−1. Assuming that two’s complement arithmetic is used and that a = 1 ,
then b0 represents the signal of the variable and the sequence of bits represents the number

−b0 +
B−1∑
m=1

bm2−m .
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