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NOTES AND DISCUSSIONS

o .
The parachute paradox
David Auerbach

If a freely falling parachutist opens the chute at the local
erminal velocity, will the deceleration be larger higher up or
jower down? Naively (the stuff of paradoxa) one might say
wjower down” because of the higher air density there. One
soon notices that this typical student tutorial problem on fall-
ing bodies requires a second and even a third glance.

The obvious equation of motion is 0 =m,g—Fv® with
ihe last term, the viscous drag (F=1/2 C mr p, with C,
the drag coefficient, equal to unity for a hemispherical para-
chute; r, the radius of the parachute; p, the local density of
the air and v, the parachutist’s velocity. The v-squared power
law means turbulent flow is assumed). If the parachute opens
instantaneously' after reaching the local terminal velocity v;
(the initial veiocitg for the deceleration problem) the dy-
namic pressure pu”, thus the right-hand side—and thus the
deceleration is independent of the density, and thus, of the
altitude.? Tt is interesting to integrate the equation of motion
to calculate the distance z for the opened chute to reach a
velocity v. This is

1 Pui—1
z—iﬁln 2or=1l’ 1)

1/1 = \(m,g/F), the terminal velocity of the opened
parachute.3 If we assume the final velocity to be a fixed
fraction of this terminal velocity, say 1.1, then the term in the
logarithm contains p and v; only in the combination pv;2 S0
that it does not change with altitude. The distance z is thus
inversely proportional to the density and, interestingly, inde-
pendent of g. Is the above equation of motion really correct?

For when a body is accelerated in a fluid, work must be
done against the inertia of the body; the viscosity of the fluid
and, in addition, against the inertia of the fluid. Nearby fluid
will be more accelerated than distant fluid, and one can
imagine the entire change of fluid momentum to take place
in an equivalent finite mass—the added mass of the fluid.*
This mass of fluid associated with the accelerating body has
to be added to the body mass in the equation of motion. For
a hemispherical parachute the added mass is equal to the
mass of air displaced by the corresponding spheres:’
pd/3mr3, which, for a 4 m (radius) parachute at sea level
(ps=1.2 kg/m®) is 322 kg. Assuming the mass of a parachut-
ist to be 90 kg and that of the parachute, 10 kg, i.e., the
combined parachutist mass m,=100 kg, the added mass is
more than three times the mass of the parachutist! What hap-
pens if we include the added mass?
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Now the equation of motion reads
(my,+myv=myg—Fv 2 and the initial deceleration v; is
. mpg—Fv% 1-1%07
v;= =

my+m, _1+ma/mp ‘

This acceleration is inversely proportional to the sum of the
masses, 422 kg at sea level and, since the density of air at
12000 m is around 1/6 of that at sea level, only 54+100
=154 kg, at 12 000 m. The deceleration at sea level is vir-
tually a third that at 12 000 m and a quarter that not taking
the added mass into consideration (24 g at sea level; 65 g at
12 000 m—c.f. 99 g not including the added mass—for a
parachutist with an effective radius of 0.4 m). The distance z
for the parachute to decelerate is now a factor 1+m,/m,
greater than that in Eq. (1). We would thus make a nasty
error by not incorporating the added mass in estimating the
braking distance, for example, to calculate the latest moment
at which the parachute should be opened for a safe landing:
The value obtained from Eq. (1) is 10 m compared to 43 m
with the above factor, a fatal 33 m!

And if p does not change significantly over small distances. For problems
in these assumptions see, e.g.. C. K. Lee, “Modeling of parachute open-
ing: An experimental investigation,” J. Aircraft 26, 444 -451 (1989).
2A parachutist falling from high up has a better feel for the air pressure than
the snatch velocity v, (at which the parachute opens and begins
decelerating—an action which takes little time), which will be smaller
lower down (=1/,p).
3There are two length scales in the problem, 1/(gi*)—(twice) the distance
taken for the parachute falling in a vacuum from rest to reach the terminal
velocily 1/l—and the parachute diameter. Their quotient (formally the
Froude number—the ratio of inertial to gravitational forces—known to
ship designers) is one of the important scaling parameters in parachute
dynamics.
4The added mass idea seems to have been born in Bessel’s work on cor-
rections to pendulum clocks (F. W. Bessell, see Ref. 5). Although the
parachute is perhaps the most extreme example of its importance, F. S.
Crawford [“Acceleration of a buoyant sphere in dry water,” Am. J. Phys.
54, 584 (1986)] showed that its inclusion for the initial acceleration of a
submerged sphere removed the singularity. It is also important for (class-
room) balloon experiments [K. Thompson, “Hydrodynamic mass,” Am. 1.
Phys. 56, 1043 (1988) and J. Bisquert, P. Ramirez, A. J. Barbero, and S.
Mafe.” A classroom demonstration on air drag forces,” Eur. I. Phys. 12,
249-252 (1991)]. It is of practical importance, for example, in understand-
ing the flapping flight of birds and insects; the paddling (e.g., fish and
whale fins) and whipping swimming motion (e.g., water beetles) as well as
periodic flow situations such as blood circulation.
5D. J. Cockrell, “The aerodynamics of parachutes,” Agardograph No. 295,
Agard, Essex, UK. 1987.
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