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Abstract 

This paper surveys the results from 126 pricing experiments with dynamic pricing and time-of-use pricing 

of electricity.  These experiments have been carried out across three continents at various times during 

the past decade.  Data from 74 of these experiments are sufficiently complete to allow us to identify the 

relationship between the strength of the peak to off-peak price ratio and the associated reduction in 

peak demand or demand response.  An “arc of price responsiveness” emerges from our analysis, showing 

that the amount of demand response rises with the price ratio but at a decreasing rate.  We also find 

that about half of the variation in demand response can be explained by variations in the price ratio. This 

is a remarkable result, since the experiments vary in many other respects – climate, time period, the 

length of the peak period, the history of pricing innovation in each area, and the manner in which the 

dynamic pricing designs were marketed to customers.  We also find that enabling technologies such as 

in-home displays, energy orbs and programmable and communicating thermostats boost the amount of 

demand response.  The results of the paper support the case for widespread rollout of dynamic pricing 

and time-of-use pricing. 

Introduction 

Electric utilities, which run a capital-intensive business, could lower their costs of doing business by 

improving their load factor.  Other capital intensive industries, such as airlines, hotels, car rental 

agencies, sporting arenas, movie theaters routinely practice a technique known as dynamic pricing to 

improve load factor.  In dynamic pricing, prices vary to reflect the changing balance of demand and 

supply through the day, through the week and through the seasons of the year.   

Congestion pricing, a simpler form of dynamic pricing, is used to regulate the flow of cars into central 

cities.  Parking spaces in most central cities are priced on a time-of-day basis and in some cities such as 

San Francisco the prices are varying dynamically.  In California, special lanes on freeways are priced 

dynamically and the Bay Bridge charges toll on a time-of-use basis.   

But it has been difficult for electric utilities to follow these examples.  There has always been doubt that 

electric users can change their usage patterns.  To assuage these doubts, in the late 1970s and early 

1980s, a dozen electricity pricing experiments were carried out with time-of-use rates in the United 
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States. 2  They showed that customers do respond to such rates by lowering peak usage and/or shifting it 

to less expensive off-peak periods.  But smart meters that would charge on a time-of-day basis were 

expensive in those days and little progress occurred in the ensuring years.  Even now, less than one 

percent of the more than 125 million electric customers in the United States are charged on a time-of-

use basis. 

However, the California energy crisis of 2000-01 reinvigorated interested in dynamic pricing, not only in 

that state but globally.  Over the past decade, two dozen dynamic pricing studies featuring over one 

hundred dynamic time-of-use and dynamic pricing designs were carried out across North America, in the 

European Union and in Australia and New Zealand.3  

These experiments have yielded a rich body of empirical evidence.  We have compiled this into a 

database, D-Rex, which stands for Dynamic Rate experiments.  This contains the following data from 

each pilot: details of the specific rate designs tested in the pilot, whether or not enabling technologies 

were offered to customers in addition to the time-varying rates, and the amount of peak reduction that 

was realized with each price-technology combination.  The D-Rex results provide an important 

perspective on the potential magnitude of impacts with different dynamic rate approaches and should 

inform the public debate about the merits of smart meters and smart pricing. Across the 129 dynamic 

pricing tests, peak reductions range from near zero values to near 60 percent values.  However, it would 

be misleading to conclude that there is no consistency in customer response.4     

We focus on nine of the best designed, more recent experiments to examine the impact of the peak to-

off peak price ratio on the magnitude of the reduction in peak demand, or demand response. Because 

the amount of demand response varies with the presence or absence of enabling technology, such as a 

smart thermostat, an energy orb or an in-home display, we separate those pricing tests without and 

with enabling technology.  We find a statistically significant relationship between the price ratio and the 

amount of peak reduction, and quantify this relationship with a logarithmic model. This relationship is 

termed the Arc of Price Responsiveness.  We find that for a given price ratio, experiments with enabling 

technologies tend to produce larger peak reductions, and display a more price-responsive Arc.  

 

Sidebar: The Dynamic Rates 

                                                           
2
 For an early summary, see Ahmad Faruqui and J. Robert Malko, “The Residential Demand for Electricity by Time-

Of-Use: A Survey of Twelve Experiments with Peak Load Pricing,” Energy, Volume 8, Issue 10, October 1983. For 
more recent surveys, see Ahmad Faruqui and Jenny Palmer, “Dynamic Pricing and its Discontents,” Regulation, Fall 
2011 and Ahmad Faruqui and Sanem Sergici, “Household Response to Dynamic Pricing of Electricity – A Survey of 
15 Experiments,” Journal of Regulatory Economics, October 2010.  Faruqui and Palmer also discuss the more 
common myths that surround legislative and regulatory conversations about dynamic pricing.   
3
 Most dynamic pricing studies have included multiple tests. For example, a pilot could test a TOU rate and a CPP 

rate and it could test each rate with and without enabling technology.  Thus, this pilot would include a total of four 
pricing tests. 
4
 See, for example, the concluding remarks in an otherwise excellent paper by Paul Joskow, “Creating a smarter 

U.S. electrical grid,” Journal of Economic Perspectives, Winter 2012. 



3 
 

Time-of-Use (TOU). A TOU rate could either be a time-of-day rate, in which the day is divided into time 

periods with varying rates, or a seasonal rate into which the year is divided into multiple seasons and 

different rates provided for different seasons.  In a time-of-day rate, a peak period might be defined as 

the period from 12 pm to 6 pm on weekdays, with the remaining hours being off-peak.  The price would 

be higher during the peak period and lower during the off-peak, mirroring the variation in marginal costs 

by pricing period.     

Critical Peak Price (CPP). On a CPP rate, customers pay higher peak period prices during the few days a 

year when wholesale prices are the highest (typically the top 10 to 15 days of the year which account for 

10 to 20 percent of system peak load). This higher peak price reflects both energy and capacity costs 

and, as a result of being spread over relatively few hours of the year, can be in excess of $1 per kWh.  In 

return, the customers pay a discounted off-peak price that more accurately reflects lower off-peak 

energy supply costs for the duration of the season (or year).  Customers are typically notified of an 

upcoming “critical peak event” one day in advance but if enabling technology is provided, these rates 

can also be activated on a day-of basis.  

Peak Time Rebate (PTR). If a CPP tariff cannot be rolled out because of political or regulatory constraints, 

some parties have suggested the deployment of peak-time rebate.  Instead of charging a higher rate 

during critical events, participants are paid for load reductions (estimated relative to a forecast of what 

the customer otherwise would have consumed).  If customers do not wish to participate, they simply 

buy through at the existing rate.  There is no rate discount during non-event hours.  Thus far, PTR has 

been offered through pilots, but default (opt-out) deployments have been approved for residential 

customers in California, the District of Columbia and Maryland.    

Real Time Pricing (RTP). Participants in RTP programs pay for energy at a rate that is linked to the hourly 

market price for electricity. Depending on their size, participants are typically made aware of the hourly 

prices on either a day-ahead or hour-ahead basis.  Typically, only the largest customers —above one 

megawatt of load — face hour-ahead prices. These programs post prices that most accurately reflect the 

cost of producing electricity during each hour of the day, and thus provide the best price signals to 

customers, giving them the incentive to reduce consumption at the most expensive times.   

The Dynamic Pricing Studies 

The D-Rex Database contains the results of 129 dynamic pricing tests from 24 pricing studies. 5 As shown 

in Figure 1, these results range from close to zero to up to 58 percent. Part of the variation in impacts 

comes simply from the fact that different rate types are being tested.  Filtering by rate in Figure 2, some 

trends begin to emerge.  We observe that the Critical Peak Pricing (CPP) rate tends to have higher 

impacts than Time-of-Use (TOU) rates, likely because the CPP rates have higher peak to off-peak price 

ratios. We can also filter by the presence of enabling technology, as in Figure 3, and observe that for the 

same rates, the impacts with enabling technologies tends to be higher.  
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Figure 1. Impacts from Residential Dynamic Pricing Tests, Sorted from Lowest to Highest 

 

Figure 2. Impacts from Pricing Tests, by Rate Type 
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Figure 3. Impacts from Pricing Tests, by Rate Type and Presence of Enabling Technologies 

 

Even with the rate and technology filters, there remains significant unexplained variation.  In order to 

understand the cause of this variation, we first limit the sample to only the best-designed studies which 

have reported the relevant data. We selected studies in which samples are representative of the 

population and the results are statistically valid. Moreover, we selected studies in which participants 

were selected randomly, as opposed to volunteers responding to a mass mailing. The nine best-designed 

pilots, shown in Table 1, include 42 price-only tests and 32 pricing tests with prices cum enabling 

technology.6 In these 74 tests, the peak reductions range from 0% to just under 50%.  The remainder of 

this paper focuses on explaining the variation in these results.  
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Table 1. Features of the Nine Dynamic Pilots 

            

      
Utility Location Year Rates 

Enabling 
Technologies 

Number of 
Tests 

            

      
Baltimore Gas & Electric Maryland 

2008, 2009, 
2010 

CPP, PTR 
CPP w/ Tech, PTR w/ 
Tech 

17 

Connecticut Light & Power Connecticut 2009 TOU, CPP, PTR 
TOU w/ Tech, CPP w/ 
Tech, PTR w/ Tech 

18 

Consumers Energy Michigan 2010 CPP, PTR CPP w/ Tech 3 

Pacific Gas & Electric  
(Full scale rollout) 

California 2009, 2010 TOU, CPP Not tested 4 

Pacific Gas & Electric, San Diego Gas 
& Electric, Southern California 
Edison (Statewide Pricing Pilot) 

California 2003, 2004 TOU, CPP CPP w/ Tech 4 

Pepco DC 
District of 
Columbia 

2008, 2009 CPP, PTR, RTP
2
 

CPP w/ Tech, PTR w/ 
Tech, RTP w/ Tech 

4 

Salt River Project Arizona 2008, 2009 TOU Not tested 2 

Utilities in Ireland
2
 Ireland 2010 TOU TOU w/ Tech 16 

Utilities in Ontario 
Ontario, 
Canada 

2006 TOU, CPP, PTR Not tested 6 

            

      1. Run by the Commission for Energy Regulation (CER) 

 

Total 74 

2. The two RTP pricing tests are excluded from this analysis because they do not have a clear peak to off-peak price ratio. 
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Figure 4. Impacts from Pricing Tests, by Rate Type and Presence of Enabling Technologies 

 

Methodology 

The nine best-designed studies in D-Rex include 42 price-only test results and 32 price-cum-enabling 

technology test results for a total of 74 observations.  For each result, we plot the all-in peak to off-peak 

price ratio against the corresponding peak reduction. As expected, the CPP and PTR rates tend to have 

higher peak to off-peak ratios than the TOU rates, with some overlap, and those rates with higher price 

ratios tend to yield greater peak reductions. 7 It also appears that that the enabling technology impacts 

may be greater than those with price only.  
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Figure 5. Impacts from Pricing Tests by Peak to Off-Peak Ratio, Showing Rate Type and Presence of Enabling Technologies 

 

The plot suggests that peak impacts increase with the price ratio but at a decreasing rate.  The 

logarithmic model would model rapid increases in peak reduction in the lower price ratios, followed by 

slower growth.8 

Logarithmic Model 

        (           ) 

where y = peak reduction percent 

 

Results  

When we fit the logarithmic model to the full dataset (n = 74), it yields a coefficient of 0.106 with a 

standard error of 0.012, significant at the 0.001 level. In other words, as the price ratio increases, the 

peak reduction is also expected to increase. The peak-to-off-peak price ratio successfully explains 49 

percent of the variation in demand response. The logarithmic curve suggests that if the peak to off-peak 

price ratio were to get as high as 16, the peak reduction could be close to 30 percent. 
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Figure 6. Impacts from Pricing Tests by Peak to Off-Peak Ratio with the Fitted Logarithmic Curve 

 

We can narrow down the model to focus on the price-only observations separately from the enabling 

technology observations. With this data, the model yields a coefficient of 0.077 with a standard error of 

0.012, again significant at the 0.001 level. The coefficient is slightly lower here than in the full dataset, 

suggesting that the impacts increase more slowly in the absence of enabling technology. In this case, the 

adjusted R-squared value is 48 percent, meaning the ratio again explains almost half of the variation in 

response. The logarithmic curve suggests that if the peak to off-peak price ratio were to get as high as 

16, the peak reduction would be slightly over 20 percent.  

With the enabling technology tests, we find that the curve has a steeper slope than the result with price-

only tests. The coefficient of the enabling technology curve is 0.130 which has a standard error of .02.  

The regression successfully explains 53 percent of the variation in demand response. With a peak to off-

peak ratio of 16, the peak reduction is expected to be over 30 percent.  
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Figure 7. Impacts from Pricing Tests by Peak to Off-Peak Ratio with the Fitted Logarithmic Curves, Segregated by Presence of 

Enabling Technologies  

 
The full regression results for the three different data specifications are shown in Table 2 below. In each 

case, the coefficient on the natural log of the price ratio is positive and significant at the 0.001 level.  

Table 2. Regression Results 

              

       
Coefficient Full Dataset Price-Only  

Enabling 

Technology 

              

       Ln(Price Ratio) 0.10611  *** 0.07682 *** .13029  *** 

 

(0.01254 ) 

 

(0.01220) 

 

(0.02164 ) 

 Intercept -0.01985  

 

0.00654 

 

-0.03668  

 

 

(0.02234 ) 

 

(0.02071) 

 

(0.04080 ) 

               

       Adjusted R-Squared 0.4916  

 

0.4852  

 

0.532  

 F-Statistic 71.59 

 

39.65 

 

36.24 

 Observations 74 

 

42 

 

32 

 

                     

       Standard errors are shown in parentheses below the estimates 

  *** = 0.001 significance 

** = 0.01 significance 

* = 0.05 significance 
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Conclusion 

In our view, the results presented in this paper provide strong support for the deployment of dynamic 

pricing.  They conclusively show that customers are responsive to changes in the price of electricity.  In 

other words, they lower demand when prices are higher.  Moreover, the results suggest that the 

presence of enabling technology allows customers to increase their peak reduction even further. These 

results may be used to quantify the potential peak reductions that may be expected when new dynamic 

rates are rolled out and to monetize these benefits using estimates of the avoided capacity of capacity 

and energy.9  
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Appendix 

Impacts from Pricing Tests by Peak to Off-Peak Ratio, Showing Utility Names 
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