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A rigorous derivation of non-linear equations governing the dynamics of an axially loaded beam is given
with a clear focus to develop robust low-dimensional models. Two important loading scenarios were con-
sidered, where a structure is subjected to a uniformly distributed axial and a thrust force. These loads are
to mimic the main forces acting on an offshore riser, for which an analytical methodology has been devel-
oped and applied. In particular, non-linear normal modes (NNMs) and non-linear multi-modes (NMMs)
have been constructed by using the method of multiple scales. This is to effectively analyse the transversal
vibration responses by monitoring the modal responses and mode interactions. The developed analytical
models have been crosschecked against the results from FEM simulation. The FEM model having 26 ele-
ments and 77 degrees-of-freedom gave similar results as the low-dimensional (one degree-of-freedom)
non-linear oscillator, which was developed by constructing a so-called invariant manifold. The compar-
isons of the dynamical responses were made in terms of time histories, phase portraits and mode shapes.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Fatigue prediction and understanding of how a structure or its
component may react to applied external loads are becoming in-
creasingly important with greater demands on the design of modern
engineering systems. Linearisation for modern structures, especially
the light and flexible ones that must carry greater loads for longer
periods of time, may not be sufficient because of the inexact results
such an analysis would give. Consequently, non-linearities should
be accounted for and included in the mathematical models, which
leads to the use of non-linear normal modes (NNMs).

Rosenberg and Pak proposed the extension from linear to NNMs
and gave proof of the existence of general non-linear modal motions
in non-linear dynamical systems [1]. Shaw and Pierre [2] extended
Rosenberg's definition to include systems with arbitrary damping
and gyroscopic properties. Based on their definition they devised a
technique for calculating non-linear modes of discrete [3] and con-
tinuous [4] systems where modal motion is limited to a surface in
the system's phase space, a so-called invariant manifold. Like the
name suggests, the invariance property of the NNMs is retained,
which extends also to invariant manifolds of systems with internal
resonances.
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In flexible structures undergoing large amplitudes of oscillation,
geometric and other non-linearities not only considerably affect
dynamical behaviour but also couple modes in a manner that cause
those, whose natural frequencies are (nearly) commensurate, to
interact as coupled NNMs, which respond as a multi-modal peri-
odic motion with constant relative phase [5]. Consequently, when
motion at a single natural frequency is initiated, influences of the
connected modes can be detected in the oscillation. There is a
vast literature on the existence, evaluation and stability analysis
of coupled and uncoupled normal modes of weakly non-linear
systems exhibiting quadratic and cubic non-linearities [5--15].
Rega and his co-workers [16--18] used multi-modes to describe
the dynamical behaviour of cables. Understanding the proper-
ties of systems with internal resonance helps in the prediction of
coupled modes, enabling computational time to be saved, which
would be especially welcome for modal analysis with finite ele-
ments. Mazzilli and co-workers implemented non-linear modes
in the finite-element analysis of reticulated structures oscillat-
ing in a purely single mode [19] as well as those with internal
resonances [20].

This paper aims at: (i) clarifying the formulation of the non-linear
equations off motion of a continuous model of a straight beam, sub-
jected to uniformly distributed axial load and an end axial thrust, us-
ing Hamilton's Principle; (ii) obtaining non-linear modes by means
of an asymptotic analysis and (iii) comparing the analytical results
with those obtained via finite-element modelling.
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With respect to (i), classical simplifying assumptions, such as ne-
glecting longitudinal inertial forces and averaging geometric stiff-
ness effects along the beam, as already proposed by a number of
authors---see Kauderer [21], Nayfeh and Nayfeh [22], Nayfeh et al.
[23] and Singh et al. [24]---lead to an equation of motion for the
transversal displacement, which is de-coupled from the longitudinal
one.

Then, referring to (ii), the method of multiple scales is used
to determine the NNMs, considering both bending and geomet-
ric stiffness effects. It is found that these modes are similar to
the linear ones, as far as the transversal motion is concerned. In
other words, the invariant manifold that characterises the NNM
coincides with the corresponding linear-mode eigenplane, though
a non-linear oscillator rules the system dynamics---see Shaw and
Pierre [2,3] and Shaw et al. [25]. Further, due to the quasi-rational
relationship between the linear natural frequencies, a number
of internal resonances may arise, which would require consid-
eration of non-linear multi-modes (NMMs)---see Baracho et al.
[19,20]. Again, the method of multiple scales is used to investi-
gate a particular NMM, which couples the first and the third linear
modes.

The obtained analytical solutions, after the approximations in-
curred, obviously have shortcomings, especially for long beams, such
as those of typical vertical offshore risers, which are seen when they
are compared to non-linear finite-element results---see Sanches et al.
[26] and Soares and Mazzilli [27]. A critical appraisal of the dis-
crepancies found emphasises the role played by the constant nor-
mal force hypothesis in the analytical model, which is the purpose
of (iii).

Although outside the paper scope, non-linear modes are expected
to be a useful tool whenmodelling forced vibrations of slender struc-
tural systems with a huge number of degrees-of-freedom (DOF),
since they may provide efficient projecting functions for number of
DOF reduction---see Shaw et al. [25] and Mazzilli et al. [28]---thus
allowing for a smaller computational effort. This is the case, for in-
stance, of vertical offshore risers subjected to fluid-dynamic insta-
bilities [29--32], such as those caused by vortex-induced vibrations
(VIVs).

The paper is organised as follows. Next, the non-linear equations
of an axially loaded Bernoulli--Euler beam are derived. In Sections
3 and 4, NNMs and NMMs are developed, by using a combination
of a perturbation method and the invariant manifold approach. The
developed methodology is applied in Section 5 to the case study of
a pinned--pinned riser beam.

2. Non-linear equations of motion of an axially loaded beam

In this section the non-linear equations of motion of an axially
loaded beam are presented, as they appear following a Hamiltonian
procedure---see Pars [33] and Meirovitch [34]. Fig. 1(a) introduces
the basic notation, whereas Fig. 1(b) refers to the kinematics of the
Bernoulli--Euler beam model.

Here, m and p are the mass and the axial load per unit length,
and EA and EI are the axial and flexural rigidity. The Bernoulli--Euler
kinematical assumption leads to the following expressions for the
displacements of a generic point P:

up = u − z sin��u − zw′,

wp = w + z(cos� − 1)�w,

� = arctan
(

w′
1 + u′

)
�w′. (1)

Primes denote differentiation with respect to the axial co-ordinate.
The Lagrangian and the engineering strains are assumed to be iden-

tical for practical purposes, provided they are small. The strain at a
generic point P of the riser along the longitudinal direction is

�P = u′
P + 1

2 (u′
P)2 + 1

2 (w′
P)2�u′ − zw′′ + 1

2 (w′)2 = � − zw′′, (2)

where � is the axial strain:

� = u′ + 1
2 (w′)2. (3)

The assumption that up = O(w2
P) is implicit in the approximation

introduced in (2). Eq. (4) of transversal motion has been derived
using the Hamilton's Principle. Overdots indicate differentiation with
respect to time. Details of all steps undertaken to arrive at Eq. (4)
are given in Appendix A.

mẅ + EIwIV − EA

[
u� − u0

�
+ 1

2�

∫ �

0
w′2 dx

+ p

EA

(
�

2
− x

)]
w′′ + pw′ = 0. (4)

Here, two different problems can be distinguished, namely that of
an imposed axial displacement or an imposed thrust at the beam-
ends. In the first one, supposing that the right end is fixed, that is,
u� =0, a tensile axial force N0(0) is applied to the originally rectilin-
ear beam at its left end in time t = 0 together with the rightward-
distributed axial load p, still resulting a certain leftward axial
displacement −u0, before the onset of transversal vibration. The
left end is then fixed, that is, u0(t) = −u0 = const., so that once the
transversal oscillation takes place, the axial force at the left end
varies with time (as a matter of fact, N0(t)�N0(0), due to the axial
strain increase caused by bending):

N0(t) = N0(0) + EA
2�

∫ �

0
w′2 dx, (5)

where

N0(0) = −EAu0
�

+ p�

2
. (6)

Note that the axial force along the beam length for any time is given
by

N(x, t) = N0(t) − px

= − EAu0
�

+ p

(
�

2
− x

)
+ EA

2�

∫ �

0
w′2 dx. (7)

Taking Eq. (7) into consideration, Eq. (4) can be concisely rewritten
as

mẅ + EIwIV − N(x, t)w′′ + pw′ = 0. (8)

A further approximation is now introduced to eliminate the spatial
dependence of N(x, t) by taking its average value along the beam in
Eq. (7), when solving Eq. (8), that is

mẅ + EIwIV − N̄w′′ − EA
2�

w′′
∫ �

0
w′2 dx + pw′ = 0, (9)

where

N̄ = N0(0) − p�

2
= −EAu0

�
. (10)

Once w is determined from Eq. (9), the axial displacements can be
obtained from Eq. (A.13) as

u(x, t) = − N̄(� − x)

EA
+ px(� − x)

2EA
− 1

2

∫ x

0

(
dw

d�

)2
d�

+ x

2�

∫ �

0
w′2 dx. (11)
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Fig. 1. (a) Schematics of an axially loaded beam with uniformly distributed load p, (b) Bernoulli--Euler beam model.

In the second problem, a constant axial thrust N0(t) = N0 = const.
is applied at the beam left end, while the axial displacement u0(t) is
not constrained, so that Eq. (9) can be simply written as

mẅ + EIwIV − N(x)w′′ + pw′ = 0, (12)

where

N(x) = N0 − px. (13)

If the same approximation is applied, as before, to eliminate the
spatial dependence of N(x) in (13), the following equation of motion
appears:

mẅ + EIwIV − N̄w′′ + pw′ = 0. (14)

It is to be reckoned that, although Eq. (14) is a linear equation, the
axial displacement will still be a non-linear function of the transver-
sal displacement amplitudes. In particular, at the beam left end it
will be

u0(t) = −N0�

EA
+ p�2

2EA
+ 1

2

∫ �

0
w′2 dx. (15)

As compared to the first problem, the second one has a weaker
geometric stiffness. Therefore, the transversal amplitudes and veloc-
ities are expected to be larger in the second problem than those in the
first problem. In this paper, only the first problem will be dealt with
in the analytical analysis using the method of multiple scales---see
Nayfeh [22,35]. It is to be reckoned that the strong simplifying as-
sumption of constant normal force will probably be the main reason
for the differences found between the results of the analytical and
the finite-element models (FEMs) considered in Section 5.

Therefore, Eq. (9) is conveniently rewritten as

ẅ + �wIV − �w′′ − �w′′
∫ �

0
w′2 dx + �3�w′ = 0, (16)

where

� = EI
m

, � = N̄

m
, � = EA

2m�
, �3� = p

m
, 0< � <1.

The term p/m in Eq. (16) has been conveniently scaled as one of
order O(�3), where � from now on will stand for the book-keeping
parameter of the perturbation analysis, because it is much smaller
than � and � for usual design parameters---see Section 5.

According to the method of multiple scales, the solution will be
sought in the form

w(x, t) = �w1(x, T0, T1 . . .) + �2w2(x, T0, T1 . . .) + · · · , (17)

where the time scales are

Tj = �jt. (18)

The following differential operators and relationships are intro-
duced:

D
q
j

= �q

�T
q
j

,

d
dt

= D0 + �D1 + �2D2 + · · · ,

d2

dt2
= D2

0 + �2D0D1 + �2(D2
1 + 2D0D2) + · · · . (19)

Substituting Eqs. (17)--(19) into Eq. (16) and collecting terms of the
same order of �, it is possible to arrive at differential equations whose
solutions and solvability conditions allow for the characterisation of
the NNMs.

Order � solution
The equation of order � leads to

D2
0w1 + �wIV

1 − �w′′
1 = 0 (20)

with the boundary conditions w1(0) = w1(�) = w′′
1(0) = w′′

1(�) =0. So,
the solution w1 can be written in the form

w1(x, T0, T1 . . .) =
∑
k

w1k(x, T0, T1 . . .),

w1k(x, T0, T1 . . .) = A1k(T0, T1 . . .) sin
k	x

�
. (21)

After substituting Eq. (21) into Eq. (20), it is obtained

D2
0A1k + 
2

k
A1k = 0, 
k = k	

�

√
� + �k2	2

�2
, (22)

where 
k is the frequency of the linear mode k, taking into account
both the riser geometric and bending stiffness. It should be noticed
that the geometric stiffness effect is larger at the left end, where
the normal force is larger, and decreases rightwards. In Eq. (22) an
average geometric stiffness was used, as it is clear from the definition
for � in Eq. (16). The solution for Eq. (22) can be written in complex
variables as

A1k = Yk(T1, T2 . . .)ei
kT0 + cc. (23)

For long beams, such as offshore risers, the geometric stiffness �
largely prevails over the bending stiffness �, so that there is an almost
linear relationship between 
k and the mode number k. Therefore,
due to the almost commensurability of the natural frequencies, the
linear modes can be strongly coupled, thus favouring internal reso-
nance. Besides other possibilities of internal resonance, it is of par-
ticular interest that one of the 1:3 type between modes 1,3,9,27 . . .

or 2,6,18 . . . .
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3. Non-linear normal modes

A NNM is a non-linear system free-vibration motion about
its static equilibrium configuration, which takes place on a two-
dimensional invariant manifold embedded in the phase space, so
that it is tangent at the equilibrium point to the corresponding
linear system eigenplane---see Shaw and Pierre [2,3]. Hence, once
the initial conditions have set a motion on this manifold, it will stay
there. The NNM will be evaluated as the solution Eq. (17) is found
following the next steps of the method of multiple scales. After
collecting terms of order �2 in Eq. (16), one gets:

Order �2 solution

D2
0w2k + �wIV

2k
− �w′′

2k
= −2D0D1w1k . (24)

The solvability condition requires that D1Yk = 0, hence
Yk = Yk(T2, . . .). Also, the homogeneous solution w2k is already in-
cluded in w1k . After collecting terms of order �3 in Eq. (16), one gets:

Order �3 solution

D2
0w3k + �wIV

3k
− �w′′

3k

= −2D0D2w1k + �w′′
1k

∫ �

0
w′2
1k

dx

= [−2i
ke
i
kT0D2Yk − �k(Y3

k
ei3
kT0

+ 3Y2
k
Ȳke

i
kT0 )] sin k	x

�
, (25)

where

�k =
(

��

2

)
k4	4

�4
=

(
EA
4m

)
k4	4

�4
. (26)

Eq. (25) requires the following solvability condition:

−2i
kD2Yk − 3�kY2
k
Ȳk = 0. (27)

In order to determine a solution for Eq. (27), let Yk be written in the
form

Yk = 1
2ake

i�k , ak, �k ∈ R. (28)

One finds out that

ak = ak(T3), �k = �0k(T3) + 3�k

8
k
a2
k
T2. (29)

By considering the solutions w1k , w2k and w3k , the k-th NNM is thus
defined in the time domain as

wk(x, t) = (�ak)

{
cos(
kt + �0k)

+�k(�ak)2

32
2
k

cos 3(
kt + �0k)

}
sin

k	x

�
+ O(�4),

uk(x, t) = − k	

8�
(�ak)2

{
cos(
kt + �0k)

+�k(�ak)2

32
2
k

cos 3(
kt + �0k)

}2

sin
2k	x

�

� − k	

16�
(�ak)2[1 + cos 2(
kt + �0k)] sin 2k	x

�

+ O(�4), (30)

where �ak is the amplitude of the associated k-th linear mode and


k = 
k

[
1 + 3�k

8
2
k

(�ak)2
]
. (31)

Eq. (31) establishes the frequency--amplitude relationship for the
k-th non-linear mode. In the above solution, the influence of the
distributed axial load is restricted to the value of the average normal
force along the beam N̄, as defined in Eq. (10). Further influence
would appear with terms of order O(�4), by means of (p/m)w′. As
anticipated, the geometric stiffness of the so-called first problem is
larger than that of the second problem and of the linearised problem,
as well, and this is confirmed by the increase in the frequency 
k ,
due to increasing vibration amplitudes, as observed in Eq. (31).

Construction of invariant manifold: The NNMs can be characterised
by writing the displacements and velocities as functions of two ad
hoc chosen modal variables. For this purpose, consider the following
modal variables:

Uk(t) = wk(x̄, t), Vk(t) = U̇k(t), (32)

so that x̄ is such that

sin
(

k	

�

)
x̄ = 1. (33)

In this way, displacements for the k-th NNM can be written in terms
of the modal variables as follows:

wk(x, t) = Fw
1k

(x)Uk(t), uk(x, t) = Fu
3k

(x)U2
k
(t). (34)

Note that this corresponds to a similar mode, at least as far as the
transversal displacement is considered alone! Recasting now Eq.
(34), the velocities for the NNM can be written in terms of the modal
variables as follows:

ẇk = Gw
2k

Vk, u̇k = Gu
4k

UkVk , (35)

where

Fw
1k

(x) = Gw
2k

= sin
k	x

�
, (36)

Fu
3k

(x) = 1
2

Gu
4k

= −k	

8�
sin

2k	x

�
. (37)

Within the invariant manifold, the equation of the modal oscillator is

Ük + 
2
k
Uk + �2�kU3

k
= 0, (38)

where, as already seen, 
k = (k	/�)
√

� + �k2	2/�2 and �k =
(��/2)k4	4/�4 = (EA/4m)k4	4/�4.

Notice that

w(x, t) =
∑
k

wk(x, t), u(x, t) = ue +
∑
k

uk(x, t), (39)

where

ue = −N0(� − x)

EA
+ px

2EA
(� − x). (40)

4. Non-linear multi-modes

A NMM, coupling n normal modes, is a non-linear system free-
vibration motion about a static equilibrium configuration, which
takes place on a 2n-dimensional invariant manifold embedded in the
phase space, so that it is tangent at the equilibrium point to the n
corresponding linear system eigenplanes---see Shaw et al. [25] and
Nayfeh [36]. Hence, once the initial conditions have set a motion on
this manifold, it will stay there. The NMM will be evaluated as the
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solution Eq. (17) is found following the steps of the method of mul-
tiple scales.

Order � solution
If only terms of order � are retained in Eq. (16), the following

free-vibration problem appears:

D2
0w1 + �wIV

1 − �w′′
1 = 0. (41)

As seen before, the solution of the above equation for the k-th mode
reads

w1k = Yk(T2)ei
kT0 sin
k	x

�
+ cc. (42)

Now, a multi-mode that only couples the first and the third modes
is considered. The two resonating modes of smaller and larger fre-
quency will be assigned indices I and II. To the order of �, the time
response of a free-vibration motion, which solely contains contribu-
tions from these two modes, can be written as

w1 = YI(T2)ei
IT0 sin
	x

�
+ YII(T2)ei
IIT0 sin

3	x

�
+ cc, (43)

where


II = 3
I. (44)

By imposing the solution to be of the form Eq. (43), it is being as-
sumed that the phase trajectory stays on the invariant manifold that
is tangent to the eigenplane defined by the first and the third linear
modes in the phase plane.

Order �2 solution
Following the same approach presented in Section 3, the follow-

ing result comes out from the corresponding solvability conditions:

YI = YI(T2), YII = YII(T2). (45)

Order �3 solution
After collecting terms of order �3, it can be seen that

D2
0w3 + �wIV

3 − �w′′
3 = −2D0D2w1 + �w′′

1

∫ �

0
(w′

1)2 dx. (46)

Solution of Eq. (46) is sought in the form

w3 = A3,I sin
	x

�
+ A3,II sin

3	x

�
. (47)

Substituting Eq. (47) into Eq. (46) gives

(D2
0A3,I + 
2

I A3,I) sin
	x

�
+ (D2

0A3,II + 
2
IIA3,II) sin

3	x

�

= −2i
I(D2YIe
i
IT0 + cc) sin

	x

�

− 2i
II(D2YIIe
i
IIT0 + cc) sin

3	x

�

− 	4�

2�3
(YIe

i
IT0 + cc)(Y2
I e

2i
IT0

+ YIȲI + 9Y2
II e

2i
IIT0 + 9YIIȲII + cc) sin
	x

�

− 9	4�

2�3
(YIIe

i
IIT0 + cc)(Y2
I e

2i
IT0 + YIȲI + 9Y2
II e

2i
IIT0

+ 9YIIȲII + cc) sin
3	x

�
. (48)

Firstly, the terms with sin 	x/� on both sides of Eq. (48) are equated,
which yields

D2
0A3,I + 
2

I A3,I

= −2i
I(D2YIe
i
IT0 + cc)

− 	4�

2�3
(YIe

i
IT0 + cc)(Y2
I e

2i
IT0 + YIȲI

+ 9Y2
II e

2i
IIT0 + 9YIIȲII + cc). (49)

Then the terms with sin 3	x/� on both sides of Eq. (48) are equated
giving

D2
0A3,II + 
2

IIA3,II

= −2i
II(D2YIIe
i
IIT0 + cc)

− 9	4�

2�3
(YIIe

i
IIT0 + cc)(Y2
I e

2i
IT0 + YIȲI

+ 9Y2
II e

2i
IIT0 + 9YIIȲII + cc). (50)

Now, the elimination of secular terms in Eqs. (49) and (50) should
be enforced, leading to

−2i
ID2YI − 3�1Y2
I ȲI − 18�1YIYIIȲII = 0,

−2i
IID2YII − 18�1YIȲIYII − 243�1Y2
II ȲII = 0, (51)

where �1 comes from Eq. (26), with k=1. The solution is sought as in
Eq. (28). After real and imaginary parts are separated, the following
set of first-order differential equations is integrated:

D2aI = 0 ⇒ aI = const, D2aII = 0 ⇒ aII = const,


IaID2�I − 3�1
8

a3I − 18�1
8

aIa
2
II = 0

⇒ �I = �I,0 + �1
8
I

(3a2I + 18a2II)T2,


IIaIID2�II − 18�1
8

a2I aII − 243�1
8

a3II = 0

⇒ �II = �II,0 + �1
8
II

(18a2I + 243a2II)T2. (52)

Hence

A3,I = �1

8
2
I

Y3
I e

3i
IT0 + 9�1

24
2
I

ȲIY
2
II e

i(2
II−
I)T0

+ 9�1

48
2
I

YIY
2
II e

i(2
II+
I)T0 + cc,

A3,II = − 9�1

8
2
I

Ȳ2
I YIIe

i(
II−2
I)T0 + 9�1

16
2
I

Y2
I YIIe

i(
II+2
I)T0

+ 81�1

72
2
I

Y3
II e

3i
IIT0 + cc. (53)

The NMM that couples the first and the third linear modes is de-
scribed by Eqs. (54) and (55). Obviously, Eq. (31) is a particular
case of Eq. (55) and both equations indicate that the non-linear
system has larger modal frequencies and smaller periods, as com-
pared to the linearised one, i.e. it stiffens with increasing amplitudes.
Small corrections to the vibration amplitudes of the linear solution
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also apply.

wI,II(x, t)

= (�aI)

[
cos(
It + �I,0) + �1

32
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I

(�aI)
2 cos 3(
It + �I,0)
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× sin
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2
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, (54)

uI,II(x, t)

= − 	

16�
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− 3	

16�
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8
I

[3(�aI)
2 + 18(�aII)

2],


II = 
II + �1
8
II

[18(�aI)
2 + 243(�aII)

2]. (55)

5. Case study

The outcomes of Sections 3 and 4 are here applied to the analysis
of a vertical riser subjected to pre-stressing and immersed weight. It
is reckoned that further investigations should still be carried out to
take into account the hydrodynamic effects with surrounding and in-
side flowing fluid, which makes the assumption of negligible inertial
forces in the axial direction questionable. In the case of an immersed
riser,m should account for water or oil inside it, plus the added mass
of surrounding water. Table 1 lists the chosen system parameters.

Fig. 2 represents a FEM of the riser, detailing the DOF and the
boundary conditions. A model having 26 elements and 77 DOFs was
chosen for numerical simulation. It requires about 17h of processing
time in a PC with 2GB RAM memory and 1.6GHz processor for a
typical non-linear mode analysis.

From the analytical result Eq. (38), it is clear that the equation
of motion of the first non-linear modal oscillator is:

Ü + 2.90 × 10−2U + 3.81 × 10−5U3 = 0, (56)

where U = w(0.5�) is the mid-span transversal displacement. From
the finite-element procedure described in [27], it is also possible to
obtain the equation of motion of the non-linear modal oscillator for
k = 1, which is

Ü + 2.70 × 10−2U − 1.85 × 10−14V + 7.014 × 10−15U2

+ 1.09 × 10−15UV − 2.73 × 10−13V2 + 2.52 × 10−4U3

− 8.19 × 10−14U2V − 2.27 × 10−2UV2

+ 1.014 × 10−12V3 = 0, (57)

Table 1
Data for a typical vertical steel riser

Young's modulus E = 2.1 × 1011 N/m2

Riser length � = 1800m
Cross-section area A = 1.1021 × 10−2 m2

Cross-section moment of inertia I = 4.72143 × 10−5 m4

Initial tension (at the top) N0 = 2 × 106 N
Initial tension (at the bottom) N� = 6.914 × 105 N
Riser mass per unit length (water inside + added mass) m = 141.24kg/m
Riser immersed weight per unit length p = 727N/m

Fig. 2. Schematics of the FEM showing the number of elements and DOFs. Each
node (a black dot) apart from the boundary ones was allocated three DOFs.

where U = w(0.5�) and V = ẇ(0.5�). It is readily observed from
the inspection of Eq. (56), for the analytical model, and Eq. (57),
for the FEM, that there are noticeable quantitative differences be-
tween both models. In fact, the coefficient of the term in U is 7%
smaller in the analytical model, which leads to a 3.5% deviation in
the linear frequency values. For a perfect matching of the linear fre-
quencies, a constant normal force Nconst = 1.25 × 106N should be
used in the analytical solution instead of the actual average normal
force N̄ = 1.345 × 106N. Further, the oscillator equation coefficient
that characterises the non-linear bending stiffening effect (term in
U3) is 6.6 times larger in the FEM. Even more important, there are
noticeable qualitative differences, such as the non-linear velocity-
dependent term UV2 in Eq. (57), which was not detected in the
analytical solution. It is believed that all these discrepancies might
be associated with the approximation, in the analytical model, of a
constant normal force N̄ along the riser length prior to the onset of
transversal oscillation, in particular the loss of velocity-dependent
non-linearities in the analytical model. In fact, since the geometric
stiffening effect decreases and the period to complete a vibration
cycle increases from top to bottom, one can guess that the NNMs
nodal points are not fixed and, therefore, travelling waves along
the beam should be expected, thus emphasising the influence of
velocity-dependent terms. It is also interesting to observe that the
velocity-dependent terms might be further connected to the term
pw′/m, as seen from Eq. (16), which introduces an influence upon
wk(x, t) that is in quadrature with the other terms. The numerical
solution, although still considering a constant normal force within
each finite element, does account for the tension variation along
the riser length. Silveira et al. [37] refer to riser tension variation
effects.

Fig. 3, which refers to the mid-span displacement for the
first NNM, shows that the non-linear analytical solution looks
still very much alike the linear one, although with an ampli-
tude varying frequency, whereas the non-linear FEM solution
displays a very distinct pattern and a ``squeezed'' phase trajec-
tory. The increase of the initial displacement leads to lower ve-
locities close to the static equilibrium configuration, for the FEM
solution.

Fig. 4 shows a trajectory projection with respect to the displace-
ments p8 = w(0.12�) and p32 = w(0.42�), considering the first NNM,
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Fig. 3. Transversal mid-span displacement time responses and phase portraits (FEM: red---analytical: blue).

Fig. 4. Trajectory projection p32 = w(0.42�) × p8 = w(0.12�) for the first non-linear
normal mode.

as obtained from the FEM. From the linear theory one should ex-
pect a linear relationship between p32 and p8, that is, the phase
trajectory projection onto the plane p32 × p8 should be a straight
line.

As for the multi-mode results---see Figs. 5 and 6---the analytical
solution qualitatively correlateswith that of the FEM reasonablywell.
Fig. 5 shows the trajectory projection onto the plane p32 × p8 and
correlates coordinates that are less (p32) or more (p8) affected by the
third mode. For the linear first mode, the largest displacements are
expected at mid-span (near to where p32 is measured). As for the
linear third mode, the maximum displacements would take place at
x = �/6 (near to where p8 is measured).

In Fig. 6, one finds four phase portraits p8 × ṗ8 and p32 × ṗ32
(analytical and FEM). It is seen a smaller motion close to the initial
displacement, followed by a larger motion that leads the system to a
new smaller motion around a new attractor placed symmetrically to
the previous one. The interaction between the two-coupled normal
modes (first and third) is embodied in a sole multi-mode. Multi-
modes are expected to capture the main global behaviour requiring
a smaller number of DOF, for which reason they may be useful as
inputs for a model-reduction technique.

Fig. 7 displays ``snapshots'' of the first and third NNMs, as well
as the 1--3 multi-mode, every �t�T1/12, where T1 is the first-mode
period, as obtained from the FEM. The relative influence of each of
the NNMs on the multi-mode is readily seen, as the oscillation takes
place.
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Fig. 5. Trajectory projections p32 = w(0.42�) × p8 = w(0.12�) for the non-linear multi-modal interactions obtained analytically (left) and through FEM (right).

Fig. 6. Phase trajectories p8 × ṗ8 = v8 and p32 × ṗ32 = v32 for the non-linear multi-modal interactions obtained analytically (left) and through FEM (right).

6. Closing remarks

The current paper aims to rigorously derive the non-linear equa-
tions governing the dynamics of an axially loaded beam in order
to develop robust low-dimensional dynamical models, which can
be easily analysed. In particular, interest is placed in the complex
modal interactions and how they can be effectively modified by the
system parameters. The analysis is to support design and control of
real structures; the application in mind is a vertical offshore riser.
Derivations have helped also to clarify the formulation of the non-
linear equations of motion of a continuous model of a straight beam
subjected to uniformly distributed axial load and an end axial thrust,
see Eq. (4) and Appendix A. The governing equations were formu-

lated for two different loading scenarios, namely that of imposed end
axial displacements or imposed end thrusts, however, only the for-
mer one was further studied by the analytical methods of non-linear
dynamics.

The analytical expressions for the non-linear normal modes,
Eqs. (30) and (31), and non-linear multi-modes, Eqs. (54) and
(55), have been developed for the beam with a distributed ax-
ial load by using the method of multiple scales. The solutions
up to the third order have been retained and an invariant man-
ifold has been constructed. This analytical treatment was to re-
duce the problem complexity and dimension; consequently to
reduce the computational effort involved in further dynamical
analyses.
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Fig. 7. Snapshots of the first and the third non-linear modes. Modal responses for: (a) t =0.0 s, (b) t =3.1 s, (c) t =6.1 s, (d) t =9.2 s, (e) t =12.2 s, and (f) t =15.3 s. Continuous
line---reference configuration; broken line---NL mode 1; dotted line---NL mode 3; dash-dot line---multi-mode.

The developed analytical models have been verified against the
results from FEM simulation undertaken on the FEM model of a
vertical riser comprising 26 elements and having 77 DOF. The size of
the model was dictated by a compromise between the accuracy and
computational time, which on average took around 17h on a fast PC.
First, the dynamics at themid-span was compared. The displacement
magnitudes (Fig. 3) correspond well, but the phase portrait shapes
and frequencies differ. The trajectory projections and phase portraits
shown in Figs. 5 and 6 for the multi-modal responses correspond
reasonably well. A further improvement in the analytical solution
can be made by considering the normal force spatial variation. This
is a topic of the authors' future studies.
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Appendix A

Here it is assumed the non-linear axial strain, Eq. (3), to derive
an equation of transversal motion for the considered slender beam.
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The kinetic energy, neglecting rotational inertia, is

K =
∫ �

0

m

2
(u̇2 + ẇ2)dx (A.1)

from which, after taking into account the natural boundary condi-
tions, it can be seen that∫ t2

t1
�K dt = −

∫ t2

t1

∫ �

0
m(ü�u + ẅ�w)dxdt. (A.2)

As for the variation of the total potential energy, it is possible to write

�V = �U −
∫ �

0
p�udx + N0�u0, (A.3)

where

�U =
∫ �

0

∫
A

E�P��P dAdx

=
∫ �

0

∫
A

E

(
u′ − zw′′ + 1

2
w′2

)
× (�u′ − z�w′′ + w′�w′)dAdx. (A.4)

After integrating by parts it is found that

�U = − EA�0�u0 −
∫ �

0
EA(u′′ + w′w′′)�udx

−
∫ �

0
EA

(
u′′w′ + u′w′′ + 3

2
w′2w′′

)
�w dx

+
∫ �

0
EIwIV�w dx, (A.5)

where �0 stands for the axis strain, Eq. (3), evaluated at x =0. There-
fore∫ t2

t1
�V dt

= (N0 − EA�0)�u0

−
∫ t2

t1

∫ �

0
EA

(
u′′ + w′w′′ + p

EA

)
�udxdt,

−
∫ t2

t1

∫ �

0
EA

(
u′′w′ + u′w′′ + 3

2
w′2w′′

)
�w dxdt

+
∫ t2

t1

∫ �

0
EIwIV�w dxdt. (A.6)

The equations of motion are sought according to Hamilton's Princi-
ple:∫ t2

t1
(�K − �V)dt = 0. (A.7)

By substituting Eqs. (A.2) and (A.6) in Eq. (A.7), it is found that

− (N0 − EA �0)�u0 +
∫ t2

t1

∫ �

0

[
−mü + EA

(
u′′

+w′w′′ + p

EA

)]
�udxdt,

+
∫ t2

t1

∫ �

0

[
−mẅ + EA

(
u′′w′ + u′w′′ + 3

2
w′2w′′

)

− EIwIV
]

�w dxdt = 0, ∀�u, �w. (A.8)

Since Eq. (A.8) must hold true for any virtual displacement, the fol-
lowing conclusions are drawn:

mü − EA
(

u′′ + w′w′′ + p

EA

)
= 0, (A.9)

mẅ + EIwIV − EA[u′w′′ + u′′w′ + 3
2w′2w′′] = 0 (A.10)

and

N0 = EA �0. (A.11)

If inertial effects along the longitudinal direction are further ne-
glected in Eq. (A.9)---see, for example Kauderer [21]---then

u′′ + w′w′′ + p

EA
= 0. (A.12)

Integrating the above equation once with respect to x, one obtains

u′ + 1
2

w′2 + px

EA
= �0(t) (A.13)

or simply,

�(x, t) = u′ + 1
2

w′2 = �0(t) − px

EA
, (A.14)

where �0(t) can be evaluated by taking the average value on both
sides of Eq. (A.13) along the beam length:

�0(t) = u� − u0
�

+ 1
2�

∫ �

0
w′2 dx + p�

2EA
. (A.15)

Substituting from Eqs. (A.13) and (A.15) for u′ and from Eq. (A.12)
for u′′ in Eq. (A.10), the following equation of transversal motion
appears:

mẅ + EIwIV − EA

[
u� − u0

�
+ 1

2�

∫ �

0
w′2 dx

+ p

EA

(
�

2
− x

)]
w′′ + pw′ = 0. (A.16)
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