
Packet Recovery in High-speed Networks Using Coding and Buffer Management*

Nachum Shacham
Paul McKenney

Information and Telecommunication
Sciences Center SRI International

Menlo Park, CA 94025

Abs t rac t

Traditional data reliability techniques such as retransmis-
sions can result in intolerable storage requirements and data de-
lay when they are used in gigabit wide-area networks. This pa-
per presents a novel technique based on forward error correction
(FEC) that allows the destination to reconstruct missing data
packets by using redundant parity packets that the source adds
to each block of data packets. Methods for generating several
types of parity packets are described, along with decoding tech-
niques and their implementations. We also present algorithms
for packet interleaving and selective rejection of packets from
node buffers, both of which disperse missing packets among many
blocks, thereby reducing the required coding complexity. Perfor-
mance evaluation, by both analytic and simulation models, shows
that this technique can result in a reduction of up to three orders
of magnitude in the packet loss rate.

1 INTRODUCTION

Rapid progress in the development of fiber optics and com-
ponents for photonic transmission, reception, coupling, filtering,
and related communications functions has created the technol-
ogy for constructing gigabit/second multi-user networks [13]. So
far most of the research in high speed communication systems
has focused on local and metropolitan area networks (LAN and
MAN) [6, 14, 16, 15, 121, and on high-speed switches [lo, 17, 11.
Efforts are now under way to design and construct wide-area
networks to span large geographical regions and provide long-
distance data paths of bandwidth in excess of 1 gigabit/second
to individual end users. We call such systems gigabit, wide-area
networks (GWANs).

GWAN data paths are composed of fiber-optic links with
very low bit-error rates (BER). It is not uncommon to achieve
error rates of over a long-distance fiber cable, despite the
presence of regenerators every 100 km.

Despite their enormous link bandwidths, GWANs are still
expected to experience bottlenecks due to limited storage, pro-
cessing power, and switching speed. Statistical resource shar-
ing by a large number of high speed, fluctuating-rate streams is
bound to cause congestion and occasional buffer overflow. Even
when a GWAN guarantees users a minimum data rate, its flow-
enforcement mechanisms, such as Leaky Bucket 1171, are designed
to delete packets that exceed the network’s ability to switch and
forward. Packet loss is likely to be the dominant factor in data
distortion in GWANs.

Network switches and end users traditionally rely on ac-
knowledgement (ACK)-based closed-loop control to recover lost
packets, and adjust incoming traffic rates to overcome conges-
tion [3]. The high delay.bandwidth product of long distance data
paths in GWAN results in a large “path storage.” For example,
assuming data travel at the speed of light, the propagation delay
on a 3000 km path is 10 ms, which translates to lo7 bit dura-
tions at l gigabit/second. In such an environment, ACK-based

‘This work was supported by SRI International under IR&D funds,
and by DARPA under NASA contract NAS2-11555.

end-to-end protocols require large data storage, reduce channel
utilization, and may cause instability. Because of these reasons,
end-to-end protocols based on open-loop control are being devel-
oped for GWAN. An example of this trend is the aforementioned
Leaky Bucket flow control.

Another example of open-loop control is forward error cor-
rection (FEC) coding, in which a recipient can recover lost or
erroneously received data based on parity bits, which are added
by the source to the information sequence. Recovering lost pack-
ets reduces the need for retransmissions of reliable data, and
enhances the quality of real-time data that cannot rely on ACKs
and retransmissions because of the large delays involved.

A coding scheme for GWAN must (1) deal with long se-
quences of lost bits (that is, missing packets), (2) correct occa-
sional bit errors, and (3) result in low probability of undetected
errors. Since bits are transmitted at extremely high rates, coding
should be done with minimal processing per packet, preferably
by low-complexity hardware. It should add little delay to tzhe
data and require minimal amounts of storage. In section 2 we
present several coding schemes suitable for a GWAN environ-
ment. These schemes are based on grouping the data packets
into blocks, to which control packets are added. Each coding
scheme is limited in the number of packets it can recover; no
packets may be recovered if more than that number is missing
from a single block. In section 3 we discuss techniques for reduc-
ing the effect of bursts of missing packets by interleaving and by
intelligent buffer management, whereby packets are selected for
deletion based on their block affiliation. In Section 4 we use the
reduction in packet loss rate as the performance measures for our
coding schemes, and discuss the effect of block size. packet arrival
rate, and amount of coding overhead on performance. We pro-
vide results from both a simple analytic model and more realistic
simulations which show the limitations of the coding schemes and
the conditions under which they result in a substantial reduction
in loss rate. Section 5 contains some concluding remarks.

2 CODING FOR PACKET RECOVERY

2.1 Genera l considerations

When noise-induced bit errors are the main cause for data
distortion, as is the case in current computer communication net-
works, data are carried in the same packet as the error-control
bits protecting them. However, recovery of lost packets requires
that the error-control bits and the data they protect be carried
in separate packets. Chiou and Li [4] proposed duplication of
each data packet to enhance data survivability in high-loss mil-
itary data networks. In GWAN, packet loss rate is expected to
be sufficiently small to make this 1/2 rate repetition code quite
inefficient.

Our approach utilizes sequence numbers, which are already
required by many protocols. Since packets are sent in increas-
ing order, a data recipient identifies missing packets by gaps in
the arriving sequence, either upon the arrival of a packet with a
larger number, or after a pre-determined waiting time. Thus, a
missing packet can be considered as a sequence of bit era.sure.9,

124
CH2826-5/90/0000/0124/$01 .OO 0 1990 IEEE

i.e., unreliable bits whose location is known [2]. There are sev-
eral FEC codes that efficiently correct erasures, most notably
the Reed-Solomon codes [2]. However, the special case we con-
sider, in which erasures come in packet-size sequences, allows us
to employ simpler techniques for recovering lost data.

The rate at which packets are lost often depends on the rate
at which packets are emitted by the source. In particular, packets
are more likely to be rejected because of buffer overflow as their
rate of arrival to the buffer increases. Since coding increases the
volume of traffic entering the network, the data packet loss rate is
likely to increase after the control bits are added. Thus, the lower
the code overhead (higher code rate), the lower is the increase in
the packet loss rate. However, using control bits to recover lost
packets should bring the packet loss rate below the loss rate when
no coding is used. The ratio of packet loss rate after decoding to
the rate when no coding is used is denoted as the loss ratio, and
it must be smaller than 1 for the code to be useful.

In addition to the above consideration, the coding scheme
must be suitable for implementation in gigabit/second networks,
that is, it should require little processing and even be amenable
to hardware implementation. Both coding and decoding should
add a minimal amount of delay to the packets, and should require
only small data storage for operation.

Based on the above considerations we propose to group data
packet into blocks of predetermined size, and add to each block a
number of parity packets, to contain the error-control bits. The
number of parity packets, and their construction, determines the
maximum number of data packets that can be recovered. How-
ever. any subset of missing packets can be recovered by using
the parity packets and the other data packets of the block. The
balance of this section presents several methods for constructing
parity packets and using them recover lost packets. For simplic-
ity of presentation we assume that all packets are m bits long;
however, the schemes can also work with variable length pack-
ets. We begin with the simplest technique for recovering a single
packet per block.

2.2 A single packet recovery

To each block of K data packets the source adds an m-bit
parity packet, whose i-th bit is given by:

where cJ,’ is the i-th bit of the j - t h packet. We denote such
packet as a “vertical” parity packet since, arranging the block
as a rectangular array with packets as rows, c ~ + 1 , , is the sum
modulo 2 of the bits in the i-th column.

The parity packet is generated by an encoder consisting of
m exclusive-or gates (XOR, or symbolically e), each of which
has its output connected to one of its input ports, as shown in
Figure 1. Packets are given, one at a time, to the encoder, with
bits 1 ,2 , . . . , m applied to the input ports of gates 1 ,2 , . . . , m, re-
spectively. At a clock pulse, the decoder output port i represents
the sum modulo 2 of bits in position i of the previous packets in
the block and bit i of the current packet. There is no need to
store the whole block of packets at the source; thus, immediately
following its “contribution” to the encoder, a packet can be sent
over the network. Following the application of the K- th packet,
the gates‘ m output ports contain the parity packet, which is
then transmitted.

The recipient of the packet sequence employs a decoder sim-
ilar in structure to the encoder. For a given block, each arriving
packet is applied in parallel to the m input ports of the decoder.
Following the application of any subset of K packets from a block,
the m output ports contain the remaining packet. If no data
packet was lost or excessively delayed in the network, those first

OUfput

Packet i t 1 1 2 3 . . .

Packet i
Input

Clock

Output

Figure 1: Parity packet generation

K packets are the data packets of the block, in which case the
recipient may ignore the parity packet. If, however, data packets
are missing from a block, the recipient identifies the location of
the missing packets from the gap in the sequence numbers, and
considers these packets as erasures. If only one of the block’s data
packets is missing, the K packets applied to the decoder include
K - 1 data packets and the vertical parity packet. In this case,
the erasure is replaced by the contents of the parity generator’s
output after those K packets are applied to the decoder.

Notice that the arriving packets need not be delayed at the
receiver. Every packet is applied to the parity encoder/decoder,
and immediately thereafter can be forwarded onward. Further-
more, since the XOR operation is commutative, packets may be
applied to the decoder in an arbitrary order. This is particularly
important for networks that do not guarantee sequenced delivery.

2.3 Mult ip le packet recovery

When a block protected by a single vertical parity packet is
received with two or more packets missing, none of those packets
can be recovered. More control data must be added to recover
multiple packets in a block. Since recovering an erased packet
amounts to solving an equation with one unknown, there must
be at least as many parity packets as there are missing packets.
Each of those parity packets must add a linearly independent
equation to the set.

To recover two packets in a block we propose to add a di-
agonal parity packet, the bits of which are the modulo-2 sums of
bits along block diagonals, as follows:

m + l < i s m + K
(2)

where we assume K < m - 1. Similar equations can be written
for K 2 m - 1. Notice that the diagonal parity packet has m + K
bits, compared to m bits in a data or vertical parity packet. If
the network requires all transmission units to be of the same
size, such as ATM cells [8], a diagonal parity packet may have
to occupy more than one unit. For K < m, a diagonal packet
occupies two transmission units.

The encoder-to construct the diagonal parity packet is simi-
lar in structure to that shown in Figure 1, except that its registers
have m+ K storage elements each and the i th packet of the block
(i = 1 , . . . , IC + 1) is shifted to the right and placed with its first
bit in the i - 1 element. To create a block with two-packet recov-
ery capability, the source employs a vertical encoder as described
in Section 2.2 and a diagonal encoder. The operation is still se-
quential, in that as soon as a packet is clocked into both encoders
(possibly in parallel), it is shipped to the network. Following the
clocking of the K-th packet, the vertical parity packet is ready,
but before it is sent, it is also clocked into the diagonal encoder.
At that point, the diagonal packet is ready.

The recipient employs two encoders identical to those used

125

by the source. Its first step in decoding is to generate two new
parity packets, one from each encoder, as follows. The data pack-
ets of a given block are clocked into each encoder and, as soon as
the last one is clocked, the outputs of each encoder are summed
modulo 2 bitwise with the corresponding parity packets which ar-
rive from the networks. The new parity packets, one vertical with
m and the other diagonal with m+ IC bits, are used by the recip-
ient to construct up to two missing packets in the block. We de-
note the bits of these new parity packets d ~ + l , ; (i = l, 2,. . . , m)
and dK+z,; (i = 1,2,. . . , m + K) , respectively.

Let us examine how the recipient reconstructs two packets in
a block by using the new parity packets. Assume that packets 1
and 2 are missing. The first bit of packet 1, c1,1 can be recovered
since it equals the first bit of the diagonal packet, CK+2,1, and
C Z J = c l , l $ d ~ + 1 , 1 . For 1 < i 5 m, then c1,j = c z , ; - l @ d ~ + z , i and
cz,; = c l ,$ @ d ~ + l , i . Decoding of any other pair of data packets
is done in a similar fashion. See Figure 2 for a possible hardware
implementation of the decoder; note that the interconnections of
gates and registers in that figure are for decoding packets 1 and
2, and would be somewhat different for other packet pairs.

If one data packet and one parity packet are missing from
an arriving block, the other parity packet is used to recover the
data packet. If the only missing packets are the parity packets,
the recipient ignores them and forwards only the data packets.
If there are more than two missing packets in a block, none can
be recovered with this 2-packet coding scheme.

It is possible to incrementally enhance the packet recovering
capability by adding parity packets which are constructed by a
set of modulo-2 additions, linearly independent of the previously
constructed parity packets. For example, to be able to recon-
struct three lost packets in a block, we add to the previously
described vertical and diagonal parity packets another diagonal
parity packet, this one with parity operations along the block
diagonals orthogonal to those used in the first diagonal parity
packet. The source must now employ an additional encoder and
the decoding scheme is somewhat more complex.

2.4 Handling bit errors

Although bit errors are rare in GWAN, they nevertheless do
occur and must be anticipated. A parity bit added to a packet
(“horizontal” parity), detects a single bit error in that packet,
through a mismatch between its value and the modulo 2 sum of
the received data bits. If a single bit error occurs in a block in
which no packet is missing, the bit in the vertical parity, which
is in the same position in the packet as the erroneous bit, shows
a similar mismatch. The intersection of the column and row
identifies the bit in error, thereby allowing the recipient to correct
it. To detect more than one bit error in a packet, a stronger error
detecting code is needed, for example 16-bit CRC [2]. Multiple
errors per packet can be corrected by the CRC and the parity
packet, provided no packet is missing from that block and no
other packets contain errors. This condition is quite reasonable
because of the very low error probability in fiber optic links.

If there are both missing packets and bit errors in a block,
and the total number of those packets is not larger than the max-
imum that can be recovered, the recipient considers the packets
with bit errors as erasures and recovers all the packets as de-
scribed in the previous subsection.

It is also possible to add a small amount of parity bits that
allow the recipient to correct bit errors in a packet and recover
the maximum number of erased packet allowed by the parity
packets. Consider for example a block of K data packets to
which vertical and diagonal parity packets, as described in the
previous subsection, are added. Suppose that in such a block
packets 1 and 2 are missing and in packet 3 bit c3 j is erroneous.

The recipient first attempts to recover packets 1 and 2, as
if packet 3 does not include a bit error. This results in an error

pattern consisting of two bit errors in packet 2 and a single error
in packet 1. To correct these errors the recipient needs additional
m / 2 parity bits. Each such bit includes in its construction only
one of the errors in the above pattern. By knowing the packets
in which the error occurred, two diagonal parity packets are suf-
ficient to determine the location of the errors. Notice that these
m / 2 parity bits can be accommodated in the second part of the
diagonal parity packet, where K < m / 2 , so that no additional
packets are generated.

2.5 Recovering a burst of lost packet

Arranging the data in a matrix, and adding parity bits both
for the rows and the columns, can used for correcting bit er-
rors [5]; this idea also be employed to recover bursts of lost pack-
ets. To do so, we arrange the data packets in a I(x il/I array and
add to each row and each column of the array a parity packet,.
The i-th bit of a parity packet is the modulo 2 sum of the i - t h bits
of the data packets in the corresponding row or column. That
is, if we denote by c; , j ,k the k-th bit of the packet in the (L , j)
position in the array, then:

(3)
and

C ~ + l , j , k = x C i , j , k mod (2) 1 5 k 5 m , 1 5 j 5 ?/I . Cl) ill)
The code rate, w, can be varied by adjusting the dimensions
of the array.

If the packets are sent by rows, this scheme can recover
bursts of missing packets of any length less than or equal to M .
Such recovery is done with the aid of the column parity pack-
ets only. The row parity packet are used to recover additional
missing packets scattered over the array. This technique requires
larger hardware complexity: K + M coders similar to those de-
scribed in subsection 2.2. Note that packets do not encounter
larger delays at the source than they would with no interleaving.
Also, if a row suffers only a single missing packet, that packet
can be recovered after the last packet of the row is received. On
the other hand, if two or more packets are missing in a row, they
must wait until their respective columns are fully received.

3 BUFFER MANAGEMENT AND
INTERLEAVING

Bit errors are caused by random processes, and although a
network designer can affect the average error rate, say by adjust-
ing signal power, he cannot select the bits that will be received in
error. In contrast, a congested node selects a particular packet
for deletion from the set of packets available in its buffer, ac-
cording to pre programmed buffer management rules. In current
networks, these rules are designed to support congestion control
and improve throughput and fairness in service. For example, a
buffer management scheme may give priority to packets that are
already in the buffer and reject all packets that arrive when the
buffer is full. Other rules may assign priority to packets based on
their source or destination, on the elapsed time they have spent,
in the network, or according to the rate at which those packets
are emitted by their source.

Buffer management rules may not affect the average rate at
which packets are lost, but they can have a strong effect on the
distribution of lost packets. The performance of the error control
scheme described above strongly depends on this distribution.
For example, two missing packets in a block are not recoverable

I26

but two packets in adjacent blocks are. Thus, the role of buffer
management procedures in enhancing end-to-end error control
can be that of dispersing the deleted packets so as t o minimize
the number of blocks that arrive with multiple missing packets.
This can be done in the following manner. When an arriving
packet finds a full buffer and that packet’s block has already
suffered a lost packet, the server deletes from its buffer a packet
from a previous block that has not lost any packets so far and
admits the arriving packet. Only if such an intact block cannot
be found does the server delete a second packet from a block.
Figure 3 depicts the algorithm by which packets are deleted from
the buffer.

Suppose now that the server in question has a finite buffer
that can store up to B packets, and that the arrival process con-
sists of a stream of packets sent in ascending sequence numbers
from a single source. Making the block size K less than B guar-
antees that whenever an arriving packet finds a full buffer, there
IS at least one packet from a previous block in the buffer. If
B 5 K , arriving packets from the end of the i-th block may not
find packets from the (i - 1)-th block in the buffer, thereby limit-
ing the usefulness of this technique. In the next section we show
that although the best performance without buffer management
is sometimes achieved for a block length larger than the buffer
size, not much degradation is encountered when K is restricted
to be smaller than or equal to B. This provides for further im-
provement by buffer management.

d K + l

dKtZ

Figure 2: A decoder for reconstructing two packets

In the discussion so far we assumed that the packet stream
arriving at the server consists of a consecutive sequence of con-
tiguous packet blocks. Under these circumstances, the server has
access at any moment to at most rB/K1 blocks aside from from
the block whose packets are arriving a t that moment. For a sin-
gle packet recovery coding, rB/K] + 1 is the maximum length
burst of missing packets that can be recovered.

If the level of spreading offered by the buffer management is
not sufficient, the source can arrange its packets in N interleaved
streams, by assigning to each stream every N-th packet. Such
deterministic interleaving, which is similar to the array parity
discussed in subsection 2.5, spreads bursts of deleted packets in
the arriving stream over multiple blocks. However, monitoring
multiplexed streams requires more effort by the server than is
needed for a single stream.

“Natural” spreading of bursts occurs when the arriving
stream comprises intermixed packets from many sources. This
is the case, for example, when the server represents a controller
of an output queue in a space-division switch [SI, t o which pack-
ets are arriving from all input ports, each carrying an indepen-
dent stream. In this case the packet mix is random rather than
deterministic, in the sense that a given packet belongs to a spe-
cific stream with some probability. It is interesting t o note that
deterministic interleaving offers better burst spreading and thus
lower probability of loss than random interleaving. To see this,
consider a burst of length s 5 N . All the packets in this burst
are recoverable under deterministic interleaving because no block
suffers more than one missing packet. On the other hand, in the
random case, there is some probability that some blocks suffer
two or more losses. This probability may be quite large, a phe-
nomenon known as the “birthday paradox” [7], so named because
of the “paradoxical” fact that among a group of 23 people, there
is a better than 50% probability that two of them will share
a birthday. In our case, a burst of 14 consecutive erasures in
a data stream consisting of 100 randomly multiplexed streams
resiilis in 0.615 probability that two of the erasures will share
the same traffic stream, thereby resulting in an unrecoverable
erasure. In contrast, the use of a 100-way deterministically inter-
leaved stream would guarantee that each of the erasures in the
burst of 14 would occur in a different FEC block.

NEW
ARRIVAL

DELETE PACKET
FROM UNDELETED BLOCK

I ADMITNEWARRIVAL 1
Figure 3: An algorithm for packet rejection

127

Source Network Recipient

I I I D--0-

Figure 4: Performance evaluation model

4 PERFORMANCE EVALUATION

4.1 Genera l considerations

As indicated above, the two factors in the packet loss process
which must be incorporated in a model are:

The packet rejection distribution and the effect of adding
parity packets on that distribution

The reduction in packet loss rate through buffer manage-
ment and coding

The model we use in this section for ascertaining this effects
is depicted in Figure 4. It consists of a data source to generate
both data and parity packets and send them through a single
server with a finite buffer, which represents the network. Packets
are lost when an arriving packet finds a full buffer. The specific
packet that is rejected in this case depends on the buffer manage-
ment scheme exercised by the server. The data recipient gets the
packet sequence and attempts to recover missing data packets by
using the parity packets.

The main parameters in the model are the buffer size (B) ,
the number of parity packets per block (n) , the number of
data packets in a block (K) , and the rate, denoted by A pack-
ets/second, at which the source generates fixed size (m bits) data
packets. Time is slotted and each data packet requires exactly
one slot to be transmitted. We assume that the number of pack-
ets arriving during slots 1 , 2 , . . ., are independent Poisson dis-
tributed random variables with mean A. The measure of perfor-
mance we use is the loss ratio, defined in the following paragraph.

When only data packets are sent, at rate A, the loss rate
Ploss(A) experienced at the server is also the loss rate observed
at the recipient output assuming no retransmissions. Adding n
parity packets to every block of K data packets, increases the
packet rate at the server to A(1 + 3) and consequently the loss
rate of the packet stream to Ploss(Afi+g)). This latter loss rate,
however, is reduced by decoding at the recipient to Pde,(A(l +
2)). The loss ratio, G, of the coding scheme is defined as

(5)

and for a coding scheme to be useful, it must have G < 1.
Several interesting tradeoffs can be investigated with this

model. An example is the percent of parity bits in the packet
stream. On the one hand, the number of packets that can be re-
covered in a block increases with the number of parity packets in
the block. On the other hand, a large percent of overhead pack-
ets increases the traffic rate and hence the loss rate in the packet
stream arriving at the decoder. The percent of overhead packets
is also constrained by the requirement that the total packet rate,

data and parity, should be less than 1 to avoid buffer saturation.
We investigate these and other considerations in the subsections
below with a simple analytic model and with more realistic sim-
ulation results. We end this section with a discussion of FEU
code design constraints.

4.2 Analytic model

To analytically model the performance, we consider the case
in which the packets arriving at the server are from a single
source, and coding is based on adding a single parity packet to
each block of K data packets with no interleaving. We assume
that the numbers of packets arriving in time slots 1 , 2 , . . . are
independent, Poisson distributed random variables with rates X
and A(1+ h), for the uncoded and coded packet streams respec-
tively.

The packet loss probabilities, f i o s 3 (A) and f i o S 3 (X (l + A))
are each the rejection probability for a discrete-time, single-server
queue with finite size B , and constant service time of one slot.
The buffer behavior is modeled as a finite-state discrete time
Markov chain, in which the state is the number of packets in
the queue just before the beginning of a slot. The state transi-
tion probabilities can be found in the literature (for example, in
reference [111).

The decoder performance is evaluated under an additional
assumption, which is that each packet finds a ful l buffer with
probability p = Pias3(A(l + &)), independently of other packets.
That is, we represent the effect of buffer overflow by marking each
packet with a ‘‘loss’’ tag with probability p and leave i t unmarked
with probability 1 - p .

Consider first decoding with no buffer management. A t the
decoder, the number of lost packets in a block is a random vari-
able with binomial distribution and parameters Ii t 1. p. That
is,

Pr{i lost packets in a block) = b (I i f 1. i , p)

A lost packet can be recovered if and only if i t is the only lost
packet in its block. The average number of packets lost in a block
after decoding is given by

K+1

j=2
E L = x j b (K + l , j , p) = (l i t l) p - (K t l) p (l - p) K . (6)

The packet loss rate after decoding, Pdec, is thus given by

P d e c = ~ ~ / (l i + 1) = p - p (l - p) K 3 p (1 - E - K P) , (7)

where the approximation is for small values of p and large values
of K such that Kp is finite.

Let us now consider the selective rejection of packets at a
typical network node. Suppose that the node buffer is not smaller
than the block length, so that whenever an arriving packet, say
from block I , finds a full buffer, there is at least one packet from
block I - 1. The new packet is accepted to the buffer only if a
previous packet from block I has been rejected and block I - 1
did not suffer any packet loss. Jn this case, a packet from block
I - 1 is rejected to make room for the new arrival from block I .
This implies that block I - 1 arrives with no lost packets if and
only if block I has no more than one lost packet.

To ascertain the effect of this buffer management procedure
on the decoder’s performance, we start with the stream of re-
jected (“marked”) and accepted packets. If two or more packets
are missing from block 1 and none from I - 1, the buffer manage-
ment action amounts to deleting a packet from block I - 1 and

128

,oss Probability
after 1 with buffer

1.2171 10W7

Figure 5: Probability of packet loss with B = 20 and X = 0.8; all
quantities are for X (1 t +)

restoring a packet in block 1. If a packet is already missing from
block 1 - 1, no “trading” is done.

Let i,j be the quantity of missing packets in blocks I and
I - 1, respectively. Let L,,j be the number of packets that cannot
be recovered after decoding in block I , given i , j .

I O i = O . l

Thus, the probability of packet loss after decoding with buffer
management is given by

E L
Pdec = - K t l

Figures 5 and 6 depict the performance of the scheme de-
scribed above, for buffer size B = 20, and packet arrival rates be-
fore encoding of 0.8 and 0.9, respectively. The entries for K = 00

represent no encoding, and the packet loss probabilities are those
for a single server queue with the above arrival rates. The second
row shows the packet loss rate for the value of K that minimizes
that loss rate after decoding, without buffer management. For
example, for X = 0.8, with no encoding the packet loss rate is
2.55 10-j. With block size K = 70, the higher packet rate of
O.8(1 t 1/70) causes the loss probability to increase to 4.17
However, the decoder reduces that rate to 1.22 thereby
achieving a total packet loss reduction of more than two orders
of magnitude. For K = 19, the largest block size for which the
server can apply the buffer management scheme effectively, the
total improvement in Pdec is almost three orders of magnitude.
At data-packet rate X = 0.9, the initial loss rate is higher than
before and the improvement is smaller, as Figure 6 shows. How-
ever, even at that congested level, the packet recovery scheme,
along with proper buffer management, reduces the packet loss
rate by more than an order of magnitude.

4.3 Simulation

In the analytic model we assume that packets are rejected
independently. To study the sensitivity of the coding scheme
to correlation in the rejection process, we simulated the model
shown in Figure 4. Runtime parameters to the simulation include
data input rate, the type of FEC, the amount of deterministic

Loss Probability
before I after I with buffer

2.8907

I I

Figure 6: Probability of packet loss with B = 20 and X = 0.9

interleaving or random multiplexing, and the type of buffer man-
agement.

Each simulation run was repeated five times with different
random number generator seeds. In all cases, the confidence
intervals computed from these values are more narrow than the
lines on the graphs. Although the effects of initial conditions
were not eliminated, comparisons with analytic results, where
available, indicate that the measured simulation results deviate
by less than 10% from the computed values.

The following paragraphs compare the results of the sim-
ulation with those of the analytic model, then present simula-
tion results comparing the efficacy of buffer management, FEC,
deterministic interleaving, and random multiplexing. These re-
sults show that buffer management is necessary to achieve an ac-
ceptable loss ratio, that a simple single-erasure-correcting FEC
scheme used in conjunction with deterministic interleaving is su-
perior to more complex FEC schemes, that deterministic inter-
leaving is superior to random multiplexing, and that loss ratios
of are achievable.

K

70
19
10
8
6

-
00

-

Loss Probability
before I after 1 with buffer

Figure 7: Probability of packet loss with B = 20 and X = 0.8
(simulation)

-

K

70
19
10
8
6

-
00

-

before
decoding
1.61 10-3
1.87 10-3
5.78 lW3
1.47 10W2
2.41
4.68 lo-’

oss Probability
after I with buffer

Figure 8: Probability of packet loss with B = 20 and X = 0.9
(simulation)

4.3.1 Compar ison to Analy t ic Resul t s Figures 7
and 8 show that the loss probability, both with and without
buffer management, is much worse than that predicted by the
analytic model; in fact, in all cases the FEC gain is insufficient
to overcome the greater erasure rate caused by the addition of the

129

redundant packets. This is due to the extremely bursty nature of
the queue overflow process. The following sections evaluate some
methods for improving this situation.

lo2 [

10' 1 I

10-3

1 oo 10' 1 o2
NUMBER OF STREAMS

..........._. Without Buffer Management
- With Buffer Management

Figure 9: Loss ratio with and without buffer management

4.3.2 Buffer Management The great improvement
due to buffer management is clearly illustrated in Figure 9, which
shows the loss ratio with and without buffer management, re-
spectively, for a M/D/1/10 queue carrying randomly multiplexed
streams with an aggregate X of 0.85. Each stream has single-
erasure-correcting FEC, each block of which consists of 20 data
packets and a single FEC packet. A loss ratio of zero indicates
perfect performance.

As can be seen from the figure, buffer management improves
the loss ratio by up to two orders of magnitude. Note that more
than two traffic streams must be present in order for coding to
show any benefit at all, even with buffer management. As will be
shown later, deterministic interleaving may be used to overcome
this difficulty.

1 oo
0

5 10-1

E s
1 o - ~

10-4
1 oo 10' 1 oz 1 o3

NORMALIZED DEGREE OF INTERLEAVING

- Single-erasure-correcting FEC
--- Double-erasure-correcting FEC

Triple-erasure-correcting FEC

Figure 10: FEC versus deterministic interleaving

4.3.3 FEC Versus Deterministic Interleaving An-
other method of reducing the loss ratio is to increase the erasure-
correcting capability of the FEC coding scheme, by using the di-
agonal parity packets described in previous sections. Recall that
a diagonal parity packet is longer than a data packet. We make

the pessimistic assumption that two m-bit packets are added to
the traffic for each diagonal packet.

This section compares three FEC coding schemes: a single-
erasure-correcting scheme requiring one overhead packet per
block, a double-erasure-correcting scheme requiring three over-
head packets per block, and a triple-erasure-correcting scheme
requiring five overhead packets per block. These scheme are
compared at equal code rates; thus the first scheme has 20 data
packets per block, the second has 60, and the third has 100.

The single-erasure-correcting scheme with a three-way in-
terleave can be considered to act as a separate coding scheme
with 60 data packets per block that is capable of correcting from
one t o three erasures per block, depending on the distribution of
erasures within the block. Similarly, the single-erasure-correcting
scheme with a five-way interleave can be considered to act as a
separate coding scheme with 100 data packets per block that is
capable of correcting from one to five erasures per block, again
depending on the distribution of erasures within the block.

Figure 10 demonstrates that interleaving the single-erasure-
correcting scheme is superior to using the more complex multiple-
erasure-correcting schemes for a M/D/1/10 queue with buffer
management and X = 0.85. The loss ratio for each FEC cod-
ing scheme is plotted against a normalized degree of interleav-
ing consisting of the actual degree of interleaving multiplied
by the ratio of the block length divided by the block length
of the single-erasure-correcting scheme. Figure 10 thus com-
pares the double-erasure-correcting scheme to the single-erasure-
correcting scheme at triple the interleave, and compares the
triple-erasure-correcting scheme to the single-erasure-correcting
scheme at quintuple the interleave.

in Fig-
ure 10.

Note the presence of loss ratios of better than

lo2 7
10'

0

E
5 100

E 10-1 s

1 0 - ~
1 oc I oz

NUMBER OF STREAMS

.._.. Multiplex
- Interleave

Figure 11: Interleaving versus multiplexing

4.3.4 In te r leaving versus multiplexing Figure 11
shows that deterministic interleaving is slightly superior to ran-
dom multiplexing for an M/D/1/10 queue with buffer manage-
ment and load X = 0.85. This effect becomes more pronounced
for larger queues, which have lower raw loss rates.

However, the increased interleaving results in increased de-
lay for correction of erased packets. The tradeoff between delay
and reliability is application-dependent. It is instructive to com-
pare the delay caused by interleaving with the delay imposed by
round-trip time on retransmissions. Assuming that the source
and destination are located 3000 km from each other, commii-
nicate at a rate of 1 gigabit/second, and are connected by a
speed-of-light communications medium, the round-trip time will

130

be greater than 1600 packet durations. This means that an FEC
scheme that uses a block length of 20 packets may use up to
160-way interleaving while still maintaining an average reconsti-
tution delay smaller than is possible with a retransmission-based
scheme.

5 CONCLUSION

In this paper, we have presented a novel technique for re-
ducing packet loss rate in high speed wide area networks. Parity
packets, which the source adds to each block of data packets,
are used by the recipient to reconstruct lost packets from the
respective blocks. The missing packets are identified by observ-
ing a sequence-number gap in the stream of incoming packets.
Methods for recovering a single, double, and larger numbers of
losses from a block were presented. Bit errors can be corrected
by either reconstructing the affected packet as if it were missing
or by additional parity information.

To alleviate the effect of packet loss correlation, we proposed
to enhance buffer management procedures in the networks so
that packets are rejected based on their block affiliation and the
number of packets already lost in their block. A similar effect can
be achieved by interleaving the data, either intentionally by the
source. or as it occurs naturally during statistical multiplexing.

We evaluated the performance of these packet recovery
schemes using a model, which consists of a source that codes the
data; a single-server, discrete-time, finite-capacity queue which
causes packet loss and at which buffer management is carried
out; and a recipient, which uses a decoder to reconstruct miss-
ing packets. The performance measure we selected was the ratio
of packet loss rate after decoding to the rate when no coding is
used. This ratio, denoted as loss ratio, must be smaller than 1
for the code to be useful. Both analytic and simulation results
were presented for this model. The former, obtained under the
assumption of independent packet losses, showed loss ratios of
the order and smaller.

The simulation runs showed that packet loss correlation is
a severe problem when each packet stream has a dedicated fi-
nite buffer. In this case buffer management and/or interleaving
is vital to the achievement of good loss ratios. We have also
shown that deterministic interleaving achieves better loss ratios
than statistical multiplexing. This observation implies that when
multiple streams are intermixed, as in output queues of a space-
division switch, round-robin polling is superior t o random polling.
Loss ratios of better than

In summary, our performance study shows that significant
reduction in packet loss rate can be achieve with a combination
of coding. buffer management, and interleaving.

were demonstrated.

References

[l] AS. Accampora. An overview of lightwave packet networks.

[2] R.E. Blahut. Theory and Practice of Error Control Codes.
Addison- Wesley, 1958.

[3] H. Burton and D. Sullivan. Error and error control. Pro-
ceedings of the IEEE, 60(11):1293-1301, Nov 1972.

[4] S.N. Chiou and V.O.K. Li. An optimal two-copy routing
scheme in a communication network. In Proceedings of IN-
FOCOM’88, New Orleans LA,, 1988.

[5] G. Clark and J.B. Cain. Error-Correcting Coding for Digital

[6] IEEE 802.6 Committee. Proposed standard: Distributed
queue dual bus (DQDB) Metropolitan area network, August
1989.

[7] W. Feller. A n Introduction to Probability Theoy and its

[8] P. Gonet, P. Adam, and J.P. Coudreuse. Asynchronous time
division switching: The way to flexible broadband commu-
nications networks. In Proc. Int. Zurich Sem. Digital Com-
mun., pages 141-145, Zurich, Switzerland, March 1986.

IEEE Network, 3(1):29-41, January 1989.

Communications. Plenum Press, 1981.

Applications. John Wiley, 1958.

[9] M. Hluchyj and M. Karol. Queueing in high-performance
packet switching. IEEE Transactions on Communications,
CQM-36(12):1587-1597, December 1988.

[lo] A. Huang and S. Knauer. Starlite: a wideband digital
switch. In Proc. of Globecom’84, pages 121-125, 1984.

[ll] M. Karol, M. Hluchyj, and S. Morgan. Input versus output
queueing on a space-division packet switch. IEEE Transac-
tions on Communications, COM-35(12):1347-1356, Decem-
ber 1987.

[12] N.F. Maxemchuck. The manhattan street network. In Proc.
of Globecom’86, pages 255-261, New Orleans LA,, 1986.

[13] E. Nussbaum. Communication network need and
technologies-a place for photonic switching? IEEE Jour-
nal on Selected Areas in Communications, 6(7):1036-1043,
August 1988.

12.5
gbit/s fiber-optic network using all-optical processing. Elec-
tronics Letters, 23(12):629-630, June 1987.

[14] P.R. Prucnal, D.J. Blumenthal, and M.A. Santoro.

[I51 R. Rom and N. Shacham. Reconfiguration algorithm for
a double-loop token passing ring. IEEE Transactions on
Computers, 37(2):182-189, February 1988.

SFPS: a synchronous fast packet
switching architecture for very high speeds. In Proc. of IN-
FOCOM’89, pages 641-646, Ottawa, Canada, 1989.

[17] J. Turner. New directions in Communications. IEEE Com-
munication Magazine, 24(lo), 1986.

[16] Y. Sun and M. Gerla.

