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Abs t rac t  

Traditional data reliability techniques such as retransmis- 
sions can result in intolerable storage requirements and data de- 
lay when they are used in gigabit wide-area networks. This pa- 
per presents a novel technique based on forward error correction 
(FEC) that allows the destination to  reconstruct missing data 
packets by using redundant parity packets that the source adds 
to each block of data packets. Methods for generating several 
types of parity packets are described, along with decoding tech- 
niques and their implementations. We also present algorithms 
for packet interleaving and selective rejection of packets from 
node buffers, both of which disperse missing packets among many 
blocks, thereby reducing the required coding complexity. Perfor- 
mance evaluation, by both analytic and simulation models, shows 
that this technique can result in a reduction of up to  three orders 
of magnitude in the packet loss rate. 

1 INTRODUCTION 

Rapid progress in the development of fiber optics and com- 
ponents for photonic transmission, reception, coupling, filtering, 
and related communications functions has created the technol- 
ogy for constructing gigabit/second multi-user networks [13]. So 
far most of the research in high speed communication systems 
has focused on local and metropolitan area networks (LAN and 
MAN) [6, 14, 16, 15, 121, and on high-speed switches [lo, 17, 11. 
Efforts are now under way to  design and construct wide-area 
networks to span large geographical regions and provide long- 
distance data paths of bandwidth in excess of 1 gigabit/second 
to  individual end users. We call such systems gigabit, wide-area 
networks (GWANs). 

GWAN data paths are composed of fiber-optic links with 
very low bit-error rates (BER). It is not uncommon to  achieve 
error rates of over a long-distance fiber cable, despite the 
presence of regenerators every 100 km. 

Despite their enormous link bandwidths, GWANs are still 
expected to  experience bottlenecks due to limited storage, pro- 
cessing power, and switching speed. Statistical resource shar- 
ing by a large number of high speed, fluctuating-rate streams is 
bound to cause congestion and occasional buffer overflow. Even 
when a GWAN guarantees users a minimum data rate, its flow- 
enforcement mechanisms, such as Leaky Bucket 1171, are designed 
to  delete packets that exceed the network’s ability to  switch and 
forward. Packet loss is likely to be the dominant factor in data 
distortion in GWANs. 

Network switches and end users traditionally rely on ac- 
knowledgement (ACK)-based closed-loop control to  recover lost 
packets, and adjust incoming traffic rates to overcome conges- 
tion [3]. The high delay.bandwidth product of long distance data 
paths in GWAN results in a large “path storage.” For example, 
assuming data travel at  the speed of light, the propagation delay 
on a 3000 km path is 10 ms, which translates to  lo7 bit dura- 
tions at  l gigabit/second. In such an environment, ACK-based 
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end-to-end protocols require large data storage, reduce channel 
utilization, and may cause instability. Because of these reasons, 
end-to-end protocols based on open-loop control are being devel- 
oped for GWAN. An example of this trend is the aforementioned 
Leaky Bucket flow control. 

Another example of open-loop control is forward error cor- 
rection (FEC) coding, in which a recipient can recover lost or 
erroneously received data based on parity bits, which are added 
by the source to  the information sequence. Recovering lost pack- 
ets reduces the need for retransmissions of reliable data, and 
enhances the quality of real-time data that cannot rely on ACKs 
and retransmissions because of the large delays involved. 

A coding scheme for GWAN must (1) deal with long se- 
quences of lost bits (that is, missing packets), (2 )  correct occa- 
sional bit errors, and (3) result in low probability of undetected 
errors. Since bits are transmitted at extremely high rates, coding 
should be done with minimal processing per packet, preferably 
by low-complexity hardware. It should add little delay to tzhe 
data and require minimal amounts of storage. In section 2 we 
present several coding schemes suitable for a GWAN environ- 
ment. These schemes are based on grouping the data packets 
into blocks, to which control packets are added. Each coding 
scheme is limited in the number of packets it can recover; no 
packets may be recovered if more than that number is missing 
from a single block. In section 3 we discuss techniques for reduc- 
ing the effect of bursts of missing packets by interleaving and by 
intelligent buffer management, whereby packets are selected for 
deletion based on their block affiliation. In Section 4 we use the 
reduction in packet loss rate as the performance measures for our 
coding schemes, and discuss the effect of block size. packet arrival 
rate, and amount of coding overhead on performance. We pro- 
vide results from both a simple analytic model and more realistic 
simulations which show the limitations of the coding schemes and 
the conditions under which they result in a substantial reduction 
in loss rate. Section 5 contains some concluding remarks. 

2 CODING FOR PACKET RECOVERY 

2.1 Genera l  considerations 

When noise-induced bit errors are the main cause for data 
distortion, as is the case in current computer communication net- 
works, data are carried in the same packet as the error-control 
bits protecting them. However, recovery of lost packets requires 
that the error-control bits and the data they protect be carried 
in separate packets. Chiou and Li [4] proposed duplication of 
each data packet to enhance data survivability in high-loss mil- 
itary data networks. In GWAN, packet loss rate is expected to 
be sufficiently small to  make this 1/2 rate repetition code quite 
inefficient. 

Our approach utilizes sequence numbers, which are already 
required by many protocols. Since packets are sent in increas- 
ing order, a data recipient identifies missing packets by gaps in 
the arriving sequence, either upon the arrival of a packet with a 
larger number, or after a pre-determined waiting time. Thus, a 
missing packet can be considered as a sequence of bit era.sure.9, 
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i.e., unreliable bits whose location is known [2]. There are sev- 
eral FEC codes that efficiently correct erasures, most notably 
the Reed-Solomon codes [2]. However, the special case we con- 
sider, in which erasures come in packet-size sequences, allows us 
to employ simpler techniques for recovering lost data. 

The rate at which packets are lost often depends on the rate 
at which packets are emitted by the source. In particular, packets 
are more likely to  be rejected because of buffer overflow as their 
rate of arrival to the buffer increases. Since coding increases the 
volume of traffic entering the network, the data packet loss rate is 
likely to increase after the control bits are added. Thus, the lower 
the code overhead (higher code rate), the lower is the increase in 
the packet loss rate. However, using control bits to recover lost 
packets should bring the packet loss rate below the loss rate when 
no coding is used. The ratio of packet loss rate after decoding to  
the rate when no coding is used is denoted as the loss ratio, and 
it must be smaller than 1 for the code to be useful. 

In addition to the above consideration, the coding scheme 
must be suitable for implementation in gigabit/second networks, 
that is, it should require little processing and even be amenable 
to hardware implementation. Both coding and decoding should 
add a minimal amount of delay to the packets, and should require 
only small data storage for operation. 

Based on the above considerations we propose to  group data 
packet into blocks of predetermined size, and add to  each block a 
number of parity packets, to contain the error-control bits. The 
number of parity packets, and their construction, determines the 
maximum number of data packets that can be recovered. How- 
ever. any subset of missing packets can be recovered by using 
the parity packets and the other data packets of the block. The 
balance of this section presents several methods for constructing 
parity packets and using them recover lost packets. For simplic- 
ity of presentation we assume that all packets are m bits long; 
however, the schemes can also work with variable length pack- 
ets. We begin with the simplest technique for recovering a single 
packet per block. 

2.2 A single packet recovery 

To each block of K data packets the source adds an m-bit 
parity packet, whose i-th bit is given by: 

where cJ,’ is the i-th bit of the j - t h  packet. We denote such 
packet as a “vertical” parity packet since, arranging the block 
as a rectangular array with packets as rows, c ~ + 1 , ,  is the sum 
modulo 2 of the bits in the i-th column. 

The parity packet is generated by an encoder consisting of 
m exclusive-or gates (XOR, or symbolically e),  each of which 
has its output connected to one of its input ports, as shown in 
Figure 1. Packets are given, one at a time, to  the encoder, with 
bits 1 ,2 , .  . . , m applied to the input ports of gates 1 ,2 , .  . . , m, re- 
spectively. At a clock pulse, the decoder output port i represents 
the sum modulo 2 of bits in position i of the previous packets in 
the block and bit i of the current packet. There is no need to  
store the whole block of packets at  the source; thus, immediately 
following its “contribution” to the encoder, a packet can be sent 
over the network. Following the application of the K- th  packet, 
the gates‘ m output ports contain the parity packet, which is 
then transmitted. 

The recipient of the packet sequence employs a decoder sim- 
ilar in structure to  the encoder. For a given block, each arriving 
packet is applied in parallel to the m input ports of the decoder. 
Following the application of any subset of K packets from a block, 
the m output ports contain the remaining packet. If no data 
packet was lost or excessively delayed in the network, those first 
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Figure 1: Parity packet generation 

K packets are the data packets of the block, in which case the 
recipient may ignore the parity packet. If, however, data packets 
are missing from a block, the recipient identifies the location of 
the missing packets from the gap in the sequence numbers, and 
considers these packets as erasures. If only one of the block’s data 
packets is missing, the K packets applied to the decoder include 
K - 1 data packets and the vertical parity packet. In this case, 
the erasure is replaced by the contents of the parity generator’s 
output after those K packets are applied to the decoder. 

Notice that the arriving packets need not be delayed at  the 
receiver. Every packet is applied to the parity encoder/decoder, 
and immediately thereafter can be forwarded onward. Further- 
more, since the XOR operation is commutative, packets may be 
applied to  the decoder in an arbitrary order. This is particularly 
important for networks that do not guarantee sequenced delivery. 

2.3 Mult ip le  packet  recovery 

When a block protected by a single vertical parity packet is 
received with two or more packets missing, none of those packets 
can be recovered. More control data must be added to recover 
multiple packets in a block. Since recovering an erased packet 
amounts to  solving an equation with one unknown, there must 
be at  least as many parity packets as there are missing packets. 
Each of those parity packets must add a linearly independent 
equation to the set. 

To recover two packets in a block we propose to add a di- 
agonal parity packet, the bits of which are the modulo-2 sums of 
bits along block diagonals, as follows: 

m + l <  i s m +  K 
(2) 

where we assume K < m - 1. Similar equations can be written 
for K 2 m - 1. Notice that the diagonal parity packet has m +  K 
bits, compared to m bits in a data or vertical parity packet. If 
the network requires all transmission units to  be of the same 
size, such as ATM cells [8], a diagonal parity packet may have 
to  occupy more than one unit. For K < m, a diagonal packet 
occupies two transmission units. 

The encoder-to construct the diagonal parity packet is simi- 
lar in structure to  that shown in Figure 1, except that its registers 
have m+ K storage elements each and the i th packet of the block 
(i = 1 , . . . , IC + 1) is shifted to the right and placed with its first 
bit in the i - 1 element. To create a block with two-packet recov- 
ery capability, the source employs a vertical encoder as described 
in Section 2.2 and a diagonal encoder. The operation is still se- 
quential, in that as soon as a packet is clocked into both encoders 
(possibly in parallel), it is shipped to the network. Following the 
clocking of the K-th packet, the vertical parity packet is ready, 
but before it is sent, it is also clocked into the diagonal encoder. 
At that point, the diagonal packet is ready. 

The recipient employs two encoders identical to  those used 

125 



by the source. Its first step in decoding is to  generate two new 
parity packets, one from each encoder, as follows. The data pack- 
ets of a given block are clocked into each encoder and, as soon as 
the last one is clocked, the outputs of each encoder are summed 
modulo 2 bitwise with the corresponding parity packets which ar- 
rive from the networks. The new parity packets, one vertical with 
m and the other diagonal with m+ IC bits, are used by the recip- 
ient to construct up to  two missing packets in the block. We de- 
note the bits of these new parity packets d ~ + l , ;  (i = l, 2,. . . , m) 
and dK+z,;  (i = 1,2,. . . , m + K ) ,  respectively. 

Let us examine how the recipient reconstructs two packets in 
a block by using the new parity packets. Assume that packets 1 
and 2 are missing. The first bit of packet 1, c1,1 can be recovered 
since it equals the first bit of the diagonal packet, CK+2,1, and 
C Z J  = c l , l $ d ~ + 1 , 1 .  For 1 < i 5 m, then c1,j = c z , ; - l @ d ~ + z , i  and 
cz,; = c l ,$  @ d ~ + l , i .  Decoding of any other pair of data packets 
is done in a similar fashion. See Figure 2 for a possible hardware 
implementation of the decoder; note that the interconnections of 
gates and registers in that figure are for decoding packets 1 and 
2, and would be somewhat different for other packet pairs. 

If one data packet and one parity packet are missing from 
an arriving block, the other parity packet is used to  recover the 
data packet. If the only missing packets are the parity packets, 
the recipient ignores them and forwards only the data packets. 
If there are more than two missing packets in a block, none can 
be recovered with this 2-packet coding scheme. 

It is possible to  incrementally enhance the packet recovering 
capability by adding parity packets which are constructed by a 
set of modulo-2 additions, linearly independent of the previously 
constructed parity packets. For example, to  be able to  recon- 
struct three lost packets in a block, we add to  the previously 
described vertical and diagonal parity packets another diagonal 
parity packet, this one with parity operations along the block 
diagonals orthogonal to  those used in the first diagonal parity 
packet. The source must now employ an additional encoder and 
the decoding scheme is somewhat more complex. 

2.4 Handling bit errors 

Although bit errors are rare in GWAN, they nevertheless do 
occur and must be anticipated. A parity bit added to  a packet 
(“horizontal” parity), detects a single bit error in that packet, 
through a mismatch between its value and the modulo 2 sum of 
the received data bits. If a single bit error occurs in a block in 
which no packet is missing, the bit in the vertical parity, which 
is in the same position in the packet as the erroneous bit, shows 
a similar mismatch. The intersection of the column and row 
identifies the bit in error, thereby allowing the recipient to  correct 
it. To detect more than one bit error in a packet, a stronger error 
detecting code is needed, for example 16-bit CRC [2]. Multiple 
errors per packet can be corrected by the CRC and the parity 
packet, provided no packet is missing from that block and no 
other packets contain errors. This condition is quite reasonable 
because of the very low error probability in fiber optic links. 

If there are both missing packets and bit errors in a block, 
and the total number of those packets is not larger than the max- 
imum that can be recovered, the recipient considers the packets 
with bit errors as erasures and recovers all the packets as de- 
scribed in the previous subsection. 

It is also possible to  add a small amount of parity bits that 
allow the recipient to  correct bit errors in a packet and recover 
the maximum number of erased packet allowed by the parity 
packets. Consider for example a block of K data packets to  
which vertical and diagonal parity packets, as described in the 
previous subsection, are added. Suppose that in such a block 
packets 1 and 2 are missing and in packet 3 bit c3 j  is erroneous. 

The recipient first attempts to  recover packets 1 and 2, as 
if packet 3 does not include a bit error. This results in an error 

pattern consisting of two bit errors in packet 2 and a single error 
in packet 1. To correct these errors the recipient needs additional 
m / 2  parity bits. Each such bit includes in its construction only 
one of the errors in the above pattern. By knowing the packets 
in which the error occurred, two diagonal parity packets are suf- 
ficient to determine the location of the errors. Notice that these 
m / 2  parity bits can be accommodated in the second part of the 
diagonal parity packet, where K < m / 2 ,  so that no additional 
packets are generated. 

2.5 Recovering a burst of lost packet 

Arranging the data in a matrix, and adding parity bits both 
for the rows and the columns, can used for correcting bit er- 
rors [5]; this idea also be employed to recover bursts of lost pack- 
ets. To do so, we arrange the data packets in a I( x il/I array and 
add to each row and each column of the array a parity packet,. 
The i-th bit of a parity packet is the modulo 2 sum of the i - t h  bits 
of the data packets in the corresponding row or column. That 
is, if we denote by c; , j ,k  the k-th bit of the packet in the ( L ,  j)  
position in the array, then: 

( 3 )  
and 

C ~ + l , j , k  = x C i , j , k  mod (2) 1 5 k 5 m ,  1 5 j 5 ?/I . Cl ) ill) 
The code rate, w, can be varied by adjusting the dimensions 
of the array. 

If the packets are sent by rows, this scheme can recover 
bursts of missing packets of any length less than or equal to M .  
Such recovery is done with the aid of the column parity pack- 
ets only. The row parity packet are used to recover additional 
missing packets scattered over the array. This technique requires 
larger hardware complexity: K + M coders similar to those de- 
scribed in subsection 2.2. Note that packets do not encounter 
larger delays at  the source than they would with no interleaving. 
Also, if a row suffers only a single missing packet, that packet 
can be recovered after the last packet of the row is received. On 
the other hand, if two or more packets are missing in a row, they 
must wait until their respective columns are fully received. 

3 BUFFER MANAGEMENT AND 
INTERLEAVING 

Bit errors are caused by random processes, and although a 
network designer can affect the average error rate, say by adjust- 
ing signal power, he cannot select the bits that will be received in 
error. In contrast, a congested node selects a particular packet 
for deletion from the set of packets available in its buffer, ac- 
cording to pre programmed buffer management rules. In current 
networks, these rules are designed to support congestion control 
and improve throughput and fairness in service. For example, a 
buffer management scheme may give priority to packets that are 
already in the buffer and reject all packets that arrive when the 
buffer is full. Other rules may assign priority to packets based on 
their source or destination, on the elapsed time they have spent, 
in the network, or according to the rate at which those packets 
are emitted by their source. 

Buffer management rules may not affect the average rate at 
which packets are lost, but they can have a strong effect on the 
distribution of lost packets. The performance of the error control 
scheme described above strongly depends on this distribution. 
For example, two missing packets in a block are not recoverable 
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but two packets in adjacent blocks are. Thus, the role of buffer 
management procedures in enhancing end-to-end error control 
can be that of dispersing the deleted packets so as t o  minimize 
the number of blocks that arrive with multiple missing packets. 
This can be done in the following manner. When an arriving 
packet finds a full buffer and that packet’s block has already 
suffered a lost packet, the server deletes from its buffer a packet 
from a previous block that has not lost any packets so far and 
admits the arriving packet. Only if such an intact block cannot 
be found does the server delete a second packet from a block. 
Figure 3 depicts the algorithm by which packets are deleted from 
the buffer. 

Suppose now that the server in question has a finite buffer 
that can store up to B packets, and that the arrival process con- 
sists of a stream of packets sent in ascending sequence numbers 
from a single source. Making the block size K less than B guar- 
antees that whenever an arriving packet finds a full buffer, there 
IS at least one packet from a previous block in the buffer. If 
B 5 K ,  arriving packets from the end of the i-th block may not 
find packets from the ( i  - 1)-th block in the buffer, thereby limit- 
ing the usefulness of this technique. In the next section we show 
that although the best performance without buffer management 
is sometimes achieved for a block length larger than the buffer 
size, not much degradation is encountered when K is restricted 
to be smaller than or equal to B. This provides for further im- 
provement by buffer management. 

d K + l  

dKtZ 

Figure 2: A decoder for reconstructing two packets 

In the discussion so far we assumed that the packet stream 
arriving at the server consists of a consecutive sequence of con- 
tiguous packet blocks. Under these circumstances, the server has 
access at any moment to at most rB/K1 blocks aside from from 
the block whose packets are arriving a t  that moment. For a sin- 
gle packet recovery coding, rB/K]  + 1 is the maximum length 
burst of missing packets that can be recovered. 

If the level of spreading offered by the buffer management is 
not sufficient, the source can arrange its packets in N interleaved 
streams, by assigning to each stream every N-th packet. Such 
deterministic interleaving, which is similar to the array parity 
discussed in subsection 2.5, spreads bursts of deleted packets in 
the arriving stream over multiple blocks. However, monitoring 
multiplexed streams requires more effort by the server than is 
needed for a single stream. 

“Natural” spreading of bursts occurs when the arriving 
stream comprises intermixed packets from many sources. This 
is the case, for example, when the server represents a controller 
of an output queue in a space-division switch [SI, t o  which pack- 
ets are arriving from all input ports, each carrying an indepen- 
dent stream. In this case the packet mix is random rather than 
deterministic, in the sense that a given packet belongs to a spe- 
cific stream with some probability. It is interesting t o  note that 
deterministic interleaving offers better burst spreading and thus 
lower probability of loss than random interleaving. To see this, 
consider a burst of length s 5 N .  All the packets in this burst 
are recoverable under deterministic interleaving because no block 
suffers more than one missing packet. On the other hand, in the 
random case, there is some probability that some blocks suffer 
two or more losses. This probability may be quite large, a phe- 
nomenon known as the “birthday paradox” [7], so named because 
of the “paradoxical” fact that among a group of 23 people, there 
is a better than 50% probability that two of them will share 
a birthday. In our case, a burst of 14 consecutive erasures in 
a data stream consisting of 100 randomly multiplexed streams 
resiilis in 0.615 probability that two of the erasures will share 
the same traffic stream, thereby resulting in an unrecoverable 
erasure. In contrast, the use of a 100-way deterministically inter- 
leaved stream would guarantee that each of the erasures in the 
burst of 14 would occur in a different FEC block. 

NEW 
ARRIVAL 

DELETE PACKET 
FROM UNDELETED BLOCK 

I ADMITNEWARRIVAL 1 
Figure 3: An algorithm for packet rejection 
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Figure 4: Performance evaluation model 

4 PERFORMANCE EVALUATION 

4.1 Genera l  considerations 

As indicated above, the two factors in the packet loss process 
which must be incorporated in a model are: 

The packet rejection distribution and the effect of adding 
parity packets on that distribution 

The reduction in packet loss rate through buffer manage- 
ment and coding 

The model we use in this section for ascertaining this effects 
is depicted in Figure 4. It consists of a data source to  generate 
both data and parity packets and send them through a single 
server with a finite buffer, which represents the network. Packets 
are lost when an arriving packet finds a full buffer. The specific 
packet that  is rejected in this case depends on the buffer manage- 
ment scheme exercised by the server. The data recipient gets the 
packet sequence and attempts to  recover missing data packets by 
using the parity packets. 

The main parameters in the model are the buffer size ( B ) ,  
the number of parity packets per block ( n ) ,  the number of 
data packets in a block ( K ) ,  and the rate, denoted by A pack- 
ets/second, at  which the source generates fixed size ( m  bits) data 
packets. Time is slotted and each data packet requires exactly 
one slot to  be transmitted. We assume that the number of pack- 
ets arriving during slots 1 , 2 , .  . ., are independent Poisson dis- 
tributed random variables with mean A. The measure of perfor- 
mance we use is the loss ratio, defined in the following paragraph. 

When only data packets are sent, at  rate A, the loss rate 
Ploss(A) experienced at  the server is also the loss rate observed 
at  the recipient output assuming no retransmissions. Adding n 
parity packets to  every block of K data packets, increases the 
packet rate at  the server to  A(1 + 3) and consequently the loss 
rate of the packet stream to  Ploss(Afi+g)). This latter loss rate, 
however, is reduced by decoding at  the recipient to  Pde,(A(l + 
2)). The loss ratio, G, of the coding scheme is defined as 

( 5 )  

and for a coding scheme to  be useful, it must have G < 1. 
Several interesting tradeoffs can be investigated with this 

model. An example is the percent of parity bits in the packet 
stream. On the one hand, the number of packets that  can be re- 
covered in a block increases with the number of parity packets in 
the block. On the other hand, a large percent of overhead pack- 
ets increases the traffic rate and hence the loss rate in the packet 
stream arriving at  the decoder. The percent of overhead packets 
is also constrained by the requirement that  the total packet rate, 

data and parity, should be less than 1 to avoid buffer saturation. 
We investigate these and other considerations in the subsections 
below with a simple analytic model and with more realistic sim- 
ulation results. We end this section with a discussion of FEU 
code design constraints. 

4.2 Analytic model 

To analytically model the performance, we consider the case 
in which the packets arriving at the server are from a single 
source, and coding is based on adding a single parity packet to 
each block of K data packets with no interleaving. We assume 
that the numbers of packets arriving in time slots 1 , 2 , .  . . are 
independent, Poisson distributed random variables with rates X 
and A(1+  h), for the uncoded and coded packet streams respec- 
tively. 

The packet loss probabilities, f i o s 3 ( A )  and f i o S 3 ( X ( l  + A ) )  
are each the rejection probability for a discrete-time, single-server 
queue with finite size B ,  and constant service time of one slot. 
The buffer behavior is modeled as a finite-state discrete time 
Markov chain, in which the state is the number of packets in 
the queue just before the beginning of a slot. The state transi- 
tion probabilities can be found in the literature (for example, in 
reference [ 111). 

The decoder performance is evaluated under an additional 
assumption, which is that each packet finds a ful l  buffer with 
probability p = Pias3(A(l + &)), independently of other packets. 
That is, we represent the effect of buffer overflow by marking each 
packet with a ‘‘loss’’ tag with probability p and leave i t  unmarked 
with probability 1 - p .  

Consider first decoding with no buffer management. A t  the 
decoder, the number of lost packets in a block is a random vari- 
able with binomial distribution and parameters Ii t 1. p. That 
is, 

Pr{i  lost packets in a block) = b ( I i  f 1. i , p )  

A lost packet can be recovered if and only if i t  is the only lost 
packet in its block. The average number of packets lost in a block 
after decoding is given by 

K+1 

j=2  
E L =  x j b ( K + l , j , p ) =  ( l i t l ) p - ( K t l ) p ( l - p ) K  . ( 6 )  

The packet loss rate after decoding, Pdec, is thus given by 

P d e c = ~ ~ / ( l i + 1 ) = p - p ( l - p ) K 3 p ( 1 - E - K P )  , ( 7 )  

where the approximation is for small values of p and large values 
of K such that Kp is finite. 

Let us now consider the selective rejection of packets at a 
typical network node. Suppose that the node buffer is not smaller 
than the block length, so that whenever an arriving packet, say 
from block I ,  finds a full buffer, there is at least one packet from 
block I - 1. The new packet is accepted to the buffer only if a 
previous packet from block I has been rejected and block I - 1 
did not suffer any packet loss. Jn this case, a packet from block 
I - 1 is rejected to make room for the new arrival from block I .  
This implies that block I - 1 arrives with no lost packets if  and 
only if block I has no more than one lost packet. 

To ascertain the effect of this buffer management procedure 
on the decoder’s performance, we start with the stream of re- 
jected (“marked”) and accepted packets. If two or more packets 
are missing from block 1 and none from I - 1, the buffer manage- 
ment action amounts to  deleting a packet from block I - 1 and 
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Figure 5: Probability of packet loss with B = 20 and X = 0.8; all 
quantities are for X ( 1 t  +) 

restoring a packet in block 1. If a packet is already missing from 
block 1 - 1, no “trading” is done. 

Let i,j be the quantity of missing packets in blocks I and 
I - 1, respectively. Let L,,j be the number of packets that cannot 
be recovered after decoding in block I ,  given i , j .  

I O  i = O . l  

Thus, the probability of packet loss after decoding with buffer 
management is given by 

E L  
Pdec = - K t l  

Figures 5 and 6 depict the performance of the scheme de- 
scribed above, for buffer size B = 20, and packet arrival rates be- 
fore encoding of 0.8 and 0.9, respectively. The entries for K = 00 

represent no encoding, and the packet loss probabilities are those 
for a single server queue with the above arrival rates. The second 
row shows the packet loss rate for the value of K that  minimizes 
that loss rate after decoding, without buffer management. For 
example, for X = 0.8, with no encoding the packet loss rate is 
2.55 10-j. With block size K = 70, the higher packet rate of 
O.8( 1 t 1/70) causes the loss probability to increase to 4.17 
However, the decoder reduces that rate to 1.22 thereby 
achieving a total packet loss reduction of more than two orders 
of magnitude. For K = 19, the largest block size for which the 
server can apply the buffer management scheme effectively, the 
total improvement in Pdec is almost three orders of magnitude. 
At data-packet rate X = 0.9, the initial loss rate is higher than 
before and the improvement is smaller, as Figure 6 shows. How- 
ever, even at that congested level, the packet recovery scheme, 
along with proper buffer management, reduces the packet loss 
rate by more than an order of magnitude. 

4.3 Simulation 

In the analytic model we assume that packets are rejected 
independently. To study the sensitivity of the coding scheme 
to correlation in the rejection process, we simulated the model 
shown in Figure 4. Runtime parameters to  the simulation include 
data input rate, the type of FEC, the amount of deterministic 
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before I after I with buffer 

2.8907 

I I 

Figure 6: Probability of packet loss with B = 20 and X = 0.9 

interleaving or random multiplexing, and the type of buffer man- 
agement. 

Each simulation run was repeated five times with different 
random number generator seeds. In all cases, the confidence 
intervals computed from these values are more narrow than the 
lines on the graphs. Although the effects of initial conditions 
were not eliminated, comparisons with analytic results, where 
available, indicate that the measured simulation results deviate 
by less than 10% from the computed values. 

The following paragraphs compare the results of the sim- 
ulation with those of the analytic model, then present simula- 
tion results comparing the efficacy of buffer management, FEC, 
deterministic interleaving, and random multiplexing. These re- 
sults show that buffer management is necessary to achieve an ac- 
ceptable loss ratio, that a simple single-erasure-correcting FEC 
scheme used in conjunction with deterministic interleaving is su- 
perior to  more complex FEC schemes, that deterministic inter- 
leaving is superior to  random multiplexing, and that loss ratios 
of are achievable. 
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Figure 7: Probability of packet loss with B = 20 and X = 0.8 
(simulation) 
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Figure 8: Probability of packet loss with B = 20 and X = 0.9 
(simulation) 

4.3.1 Compar ison  to Analy t ic  Resul t s  Figures 7 
and 8 show that the loss probability, both with and without 
buffer management, is much worse than that predicted by the 
analytic model; in fact, in all cases the FEC gain is insufficient 
to  overcome the greater erasure rate caused by the addition of the 
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redundant packets. This is due to  the extremely bursty nature of 
the queue overflow process. The following sections evaluate some 
methods for improving this situation. 

lo2 [ 

10' 1 I 

10-3 

1 oo 10' 1 o2 
NUMBER OF STREAMS 

..........._. Without Buffer Management 
- With Buffer Management 

Figure 9: Loss ratio with and without buffer management 

4.3.2 Buffer Management The great improvement 
due to buffer management is clearly illustrated in Figure 9, which 
shows the loss ratio with and without buffer management, re- 
spectively, for a M/D/1/10 queue carrying randomly multiplexed 
streams with an aggregate X of 0.85. Each stream has single- 
erasure-correcting FEC, each block of which consists of 20 data 
packets and a single FEC packet. A loss ratio of zero indicates 
perfect performance. 

As can be seen from the figure, buffer management improves 
the loss ratio by up to  two orders of magnitude. Note that more 
than two traffic streams must be present in order for coding to  
show any benefit at  all, even with buffer management. As will be 
shown later, deterministic interleaving may be used to  overcome 
this difficulty. 
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Figure 10: FEC versus deterministic interleaving 

4.3.3 FEC Versus Deterministic Interleaving An- 
other method of reducing the loss ratio is to  increase the erasure- 
correcting capability of the FEC coding scheme, by using the di- 
agonal parity packets described in previous sections. Recall that  
a diagonal parity packet is longer than a data packet. We make 

the pessimistic assumption that two m-bit packets are added to 
the traffic for each diagonal packet. 

This section compares three FEC coding schemes: a single- 
erasure-correcting scheme requiring one overhead packet per 
block, a double-erasure-correcting scheme requiring three over- 
head packets per block, and a triple-erasure-correcting scheme 
requiring five overhead packets per block. These scheme are 
compared at  equal code rates; thus the first scheme has 20 data 
packets per block, the second has 60, and the third has 100. 

The single-erasure-correcting scheme with a three-way in- 
terleave can be considered to  act as a separate coding scheme 
with 60 data packets per block that is capable of correcting from 
one t o  three erasures per block, depending on the distribution of 
erasures within the block. Similarly, the single-erasure-correcting 
scheme with a five-way interleave can be considered to act as a 
separate coding scheme with 100 data packets per block that is 
capable of correcting from one to five erasures per block, again 
depending on the distribution of erasures within the block. 

Figure 10 demonstrates that interleaving the single-erasure- 
correcting scheme is superior to  using the more complex multiple- 
erasure-correcting schemes for a M/D/1/10 queue with buffer 
management and X = 0.85. The loss ratio for each FEC cod- 
ing scheme is plotted against a normalized degree of interleav- 
ing consisting of the actual degree of interleaving multiplied 
by the ratio of the block length divided by the block length 
of the single-erasure-correcting scheme. Figure 10 thus com- 
pares the double-erasure-correcting scheme to the single-erasure- 
correcting scheme at triple the interleave, and compares the 
triple-erasure-correcting scheme to the single-erasure-correcting 
scheme at quintuple the interleave. 

in Fig- 
ure 10. 

Note the presence of loss ratios of better than 
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Figure 11: Interleaving versus multiplexing 

4.3.4 In te r leaving  versus multiplexing Figure 11 
shows that deterministic interleaving is slightly superior to ran- 
dom multiplexing for an M/D/1/10 queue with buffer manage- 
ment and load X = 0.85. This effect becomes more pronounced 
for larger queues, which have lower raw loss rates. 

However, the increased interleaving results in increased de- 
lay for correction of erased packets. The tradeoff between delay 
and reliability is application-dependent. It is instructive to com- 
pare the delay caused by interleaving with the delay imposed by 
round-trip time on retransmissions. Assuming that the source 
and destination are located 3000 km from each other, commii- 
nicate at a rate of 1 gigabit/second, and are connected by a 
speed-of-light communications medium, the round-trip time will 
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be greater than 1600 packet durations. This means that an FEC 
scheme that uses a block length of 20 packets may use up to 
160-way interleaving while still maintaining an average reconsti- 
tution delay smaller than is possible with a retransmission-based 
scheme. 

5 CONCLUSION 

In this paper, we have presented a novel technique for re- 
ducing packet loss rate in high speed wide area networks. Parity 
packets, which the source adds to each block of data packets, 
are used by the recipient to reconstruct lost packets from the 
respective blocks. The missing packets are identified by observ- 
ing a sequence-number gap in the stream of incoming packets. 
Methods for recovering a single, double, and larger numbers of 
losses from a block were presented. Bit errors can be corrected 
by either reconstructing the affected packet as if it were missing 
or by additional parity information. 

To alleviate the effect of packet loss correlation, we proposed 
to enhance buffer management procedures in the networks so 
that packets are rejected based on their block affiliation and the 
number of packets already lost in their block. A similar effect can 
be achieved by interleaving the data, either intentionally by the 
source. or as it occurs naturally during statistical multiplexing. 

We evaluated the performance of these packet recovery 
schemes using a model, which consists of a source that codes the 
data; a single-server, discrete-time, finite-capacity queue which 
causes packet loss and at which buffer management is carried 
out; and a recipient, which uses a decoder to reconstruct miss- 
ing packets. The performance measure we selected was the ratio 
of packet loss rate after decoding to the rate when no coding is 
used. This ratio, denoted as loss ratio, must be smaller than 1 
for the code to be useful. Both analytic and simulation results 
were presented for this model. The former, obtained under the 
assumption of independent packet losses, showed loss ratios of 
the order and smaller. 

The simulation runs showed that packet loss correlation is 
a severe problem when each packet stream has a dedicated fi- 
nite buffer. In this case buffer management and/or interleaving 
is vital to the achievement of good loss ratios. We have also 
shown that deterministic interleaving achieves better loss ratios 
than statistical multiplexing. This observation implies that when 
multiple streams are intermixed, as in output queues of a space- 
division switch, round-robin polling is superior t o  random polling. 
Loss ratios of better than 

In summary, our performance study shows that significant 
reduction in packet loss rate can be achieve with a combination 
of coding. buffer management, and interleaving. 

were demonstrated. 
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