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Preface — please read!

The most important chapter in this book is Chapter E: Ezercises. 1 have
left the interesting things for you to do. You can start now on the ‘EG’
exercises, but see ‘More about exercises’ later in this Preface.

The book, which is essentially the set of lecture notes for a third-year
undergraduate course at Cambridge, is as lively an introduction as I can
manage to the rigorous theory of probability. Since much of the book is
devoted to martingales, it is bound to become very lively: look at those
Exercises on Chapter 10! But, of course, there is that initial plod through
the measure-theoretic foundations. It must be said however that measure
theory, that most arid of subjects when done for its own sake, becomes
amazingly more alive when used in probability, not only because it is then
applied, but also because it is immensely enriched.

You cannot avoid measure theory: an event in probability is a measur-
able set, a random variable is a measurable function on the sample space,
the ezpectation of a random variable is its integral with respect to the prob-
ability measure; and so on. To be sure, one can take some central results
from measure theory as axiomatic in the main text, giving careful proofs in
appendices; and indeed that is exactly what I have done.

Measure theory for its own sake is based on the fundamental addition
rule for measures. Probability theory supplements that with the multipli-
cation rule which describes independence; and things are already looking
up. But what really enriches and enlivens things is that we deal with lots
of o-algebras, not just the one o-algebra which is the concern of measure
theory.

In planning this book, I decided for every topic what things I considered
just a bit too advanced, and, often with sadness, I have ruthlessly omitted
them.

For a more thorough training in many of the topics covered here, see

Billingsley (1979), Chow and Teicher (1978), Chung (1968), Kingman and



xii Preface

Taylor (1966), Laha and Rohatgi (1979), and Neveu (1965). As regards
measure theory, I learnt it from Dunford and Schwartz (1958) and Halmos
(1959). After reading this book, youmust read the still-magnificent Breiman
(1968), and, for an excellent indication of what can be done with discrete

martingales, Hall and Heyde (1980).

Of course, intuition is much more important than knowledge of measure
theory, and you should take every opportunity to sharpen your intuition.
There is no better whetstone for this than Aldous (1989), though it is a very
demanding book. For appreciating the scope of probability and for learning
how to think about it, Karlin and Taylor (1981), Grimmett and Stirzaker
(1982), Hall (1988), and Grimmett’s recent superb book, Grimmett (1989),
on percolation are strongly recommended.

More about exercises. In compiling Chapter E, which consists exactly of
the homework sheet I give to the Cambridge students, I have taken into
account the fact that this book, like any other mathematics book, implicitly
contains a vast number of other exercises, many of which are easier than
those in Chapter E. I refer of course to the exercises you create by reading
the statement of a result, and then trying to prove it for yourself, before
you read the given proof. One other point about exercises: you will, for
example, surely forgive my using expectation E in Exercises on Chapter 4
before E is treated with full rigour in Chapter 6.

Acknowledgements. My first thanks must go to the students who have
endured the course on which the book is based and whose quality has made
me try hard to make it worthy of them; and to those, especially David
Kendall, who had developed the course before it became my privilege to
teach it. My thanks to David Tranah and other staff of CUP for their help in
converting the course into this book. Next, I must thank Ben Garling, James
Norris and Chris Rogers without whom the book would have contained more
errors and obscurities. (The many faults which surely remain in it are my
responsibility.) Helen Rutherford and I typed part of the book, but the vast
majority of it was typed by Sarah Shea-Simonds in a virtuoso performance
worthy of Horowitz. My thanks to Helen and, most especially, to Sarah.
Special thanks to my wife, Sheila, too, for all her help.

But my best thanks — and yours if you derive any benefit from the book
— must go to three people whose names appear in capitals in the Index: J.L.
Doob, A.N. Kolmogorov and P. Lévy: without them, there wouldn’t have
been much to write about, as Doob (1953) splendidly confirms.

Statistical Laboratory, David Williams
Cambridge October 1990



A Question of Terminology

Random variables: functions or equivalence classes?

At the level of this book, the theory would be more ‘elegant’ if we regarded
a random variable as an equivalence class of measurable functions on the
sample space, two functions belonging to the same equivalence class if and
only if they are equal almost everywhere. Then the conditional-expectation

map
X - E(X|G)

would be a truly well-defined contraction map from L?(Q, F,P) to LP(2,G,P
for p > 1; and we would not have to keep mentioning versions (representa-
tives of equivalence classes) and would be able to avoid the endless ‘almost
surely’ qualifications.

I have however chosen the ‘inelegant’ route: firstly, I prefer to work
with functions, and confess to preferring

4+5=2mod7 to [4r+[5]r = [2r.

But there is a substantive reason. I hope that this book will tempt you to
progress to the much more interesting, and more important, theory where
the parameter set of our process is uncountable (e.g. it may be the time-
parameter set [0,00)). There, the equivalence-class formulation just will
not work: the ‘cleverness’ of introducing quotient spaces loses the subtlety
which is essential even for formulating the fundamental results on existence
of continuous modifications, etc., unless one performs contortions which are
hardly elegant. Even if these contortions allow one to formulate results, one
would still have to use genuine functions to prove them; so where does the
reality lie?!

xii



A Guide to Notation

» signifies something important, »» something very important, and »»»
the Martingale Convergence Theorem.

I use “:=’ to signify ‘is defined to equal’. This Pascal notation is particularly
convenient because it can also be used in the reversed sense.

I use analysts’ (as opposed to category theorists’) conventions:
> N:={1,23,...} €{0,1,2,...} = ZF.

Everyone is agreed that R* := [0, c0).
For a set B contained in some universal set S, Ip denotes the indicator
function of B: that is Ig : S — {0,1} and

Ip(s) = 1 ifs € B,

0 otherwise.

For a,b € R,
a A b := min(a, b), a V b := max(a,b).

CF':characteristic function; DF: distribution function; pdf: probability den-
sity function.

o-algebra, o(C) (1.1); o(Yy : v € C) (3.8, 3.13). w-system (1.6); d-system
(Al1.2).

a.e.: almost everywhere (1.5)
a.s.: almost surely (2.4)
bX: the space of bounded L-measurable functions (3.1)

xiv



B(S5):
CeX:
d\/du:
dQ/dP:
E(X):
E(X; F):
E(X]|G):
(E,,ev):
(En,i.0.):
fx:
fx,y:
fxv:
Fx:

lim inf:

lim sup:

r=Tlimz,:

log;:

Lx, Ax:
L?P, L?:
Leb:
mY:
MT:
(M):
n(f):
u(f; A):
Px:

e

A Guide to Notation

B := B(R) (1.2)
discrete stochastic integral (10.6)
Radon-Nikodym derivative (5.14)
Likelihood Ratio (14.13)

the Borel o-algebra on 5,

expectation E(X) := [, X(w)P(dw) of X (6.3)

[ XdP (6.3)

conditional expectation (9.3)
liminf E, (2.8)

limsup E,, (2.6)

probability density function (pdf) of X (6.12).

joint pdf (8.3)

conditional pdf (9.6)

distribution function of X (3.9)

for sets, (2.8)

for sets, (2.6)

zn Tz in that 2, < 2,41 (Vn) and z, — z.
natural (base e) logarithm

law of X (3.9)

Lebesgue spaces (6.7, 6.13)

Lebesgue measure (1.8)

space of -measurable functions (3.1)
process M stopped at time 7" (10.9)
angle-brackets process (12.12)

integral of f with respect to u (5.0, 5.2)
[ fdu (5.0,5.2)

CF of X (Chapter 16)

pdf of standard normal N(0,1) distribution
DF of N(0,1) distribution

X stopped at time T (10.9)






Chapter 0
A Branching-Process Example

(This Chapter is not essential for the remainder of the book. You can start
with Chapter 1 if you wish.)

0.0. Introductory remarks

The purpose of this chapter is threefold: to take something which is probably
well known to you from books such as the immortal Feller (1957) or Ross
(1976), so that you start on familiar ground; to make you start to think
about some of the problems involved in making the elementary treatment
into rigorous mathematics; and to indicate what new results appear if one
applies the somewhat more advanced theory developed in this book. We
stick to one example: a branching process. This is rich enough to show that
the theory has some substance.

0.1. Typical number of children, X

In our model, the number of children of a typical animal (see Notes below
for some interpretations of ‘child’ and ‘animal’) is a random variable X with
values in Zt. We assume that

P(X =0)> 0.

We define the generating function f of X as the map f : [0,1] — [0,1],
where

f(6) :=E(6X)= > 6*P(X =k).

kez+

Standard theorems on power series imply that, for 6 € [0,1],
F1(6) = E(X6X 1) = k6" 'P(X = k)

and

pi=EX)=f'(1)=> kP(X =k) < co.

1
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Of course, f'(1) is here interpreted as

. f@) = f(1) .. 1-Ff6)
bm = =lim——p

since f(1) = 1. We assume that

p < oo.

Notes. The first application of branching-process theory was to the question
of survival of family names; and in that context, animal = man, and child
= son.

In another context, ‘animal’ can be ‘neutron’, and ‘child’ of that neu-
tron will signify a neutron released if and when the parent neutron crashes
into a nucleus. Whether or not the associated branching process is super-
critical can be a matter of real importance.

We can often find branching processes embedded in richer structures
and can then use the results of this chapter to start the study of more
interesting things.

For superb accounts of branching processes, see Athreya and Ney (1972),
Harris (1963), Kendall (1966, 1975).

0.2. Size of nt* generation, Z,

To be a bit formal: suppose that we are given a doubly infinite sequence
(a) {X,(.m) :m,T € N}

of independent identically distributed random variables (IID RVs), each
with the same distribution as X:

P(X(™ =k)=P(X = k).

The idea is that for n € ZT and r € N, the variable X,(~"+1) represents the
number of children (who will be in the (n+1)'® generation) of the r** animal
(if there is one) in the n'* generation. The fundamental rule therefore is
that if Z,, signifies the size of the nt! generation, then

(b) Zai1 =X1(n+1) T +X(z:+1)'
We assume that Zg = 1, so that (b) gives a full recursive definition of

the sequence (Z, : m € Z*) from the sequence (a). Our first task is
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to calculate the distribution function of Z,, or equivalently to find the
generating function

(c) fa(8) = E(6%") =Y _6*P(Z, = k).

0.3. Use of conditional expectations

The first main result is that for n € Z+ (and 6 € [0,1])

(a) Jat1 (9) = fn(f(g))a
so that for each n € Zt, f, is the n-fold composition
(b) fan=fofo...of.

Note that the 0-fold composition is by convention the identity map fo(8) =
0, in agreement with — indeed, forced by — the fact that Zy = 1.

To prove (a), we use — at the moment in intuitive fashion - the fol-
lowing very special case of the very useful Tower Property of Conditional
Ezpectation:

(c) E(U) =EE(U|V);

to find the expectation of a random variable U, first find the conditional
expectation E(U|V') of U given V, and then find the expectation of that.
We prove the ultimate form of (c) at a later stage.

We apply (c) with U = §%»+1 and V = Z,,:
E(§%n+1) = EE(§%"+1|Z,,).

Now, for k € Z*, the conditional expectation of §2n+1 given that Z, =k
satisfies

(d) E(HZ"+1 lZn — k) _ E(9X£n+1)+".+x£n+l)lzn _ k)

But Z, is constructed from variables XY’ with r < n, and so Z,, is inde-
pendent of Xl("+1), e ,X,£"+1). The conditional expectation given Z,, = k
in the right-hand term in (d) must therefore agree with the absolute expec-
tation

(e) E@@XTTY L gXmTY),
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But the expression at (e) is a ezpectation of the product of independent
random variables and as part of the family of ‘Independence means multiply
results, we know that this expectation of a product may be rewritten as the
product of expectations. Since (for every n and r)

E0%™) = £(6),
we have proved that
E(§%+|Z, = k) = f(8)",
and this is what it means to say that
E(677+1|Z) = £(8)%".

[If V takes only integer values, then when V' = k, the conditional expectation
E(U|V) of U given V is equal to the conditional expectation E(U|V = k) of
U given that V = k. (Sounds reasonable!)] Property (c) now yields

EGZn-H _ Ef(g)Zn ,

and, since

E(a?r) = fa(a), O
result (a) is proved.
Independence and conditional ezpectations are two of the main topics
in this course.
0.4. Extinction probability, =
Let mp := P(Z, =0). Then m, = f(0), so that, by (0.3,b),

(a) Tnt1 = f(mn).
Measure theory confirms our intuition about the extinction probability:
(b) 7 :=P(Z,, =0 for some m) =1 limx,,.

Because f is continuous, it follows from (a) that

(c) ™ = f(m).

The function f is analytic on (0,1), and is non-decreasing and convex (of
non-decreasing slope). Also, f(1) =1 and f(0) = P(X = 0) > 0. The slope
f'(1) of f at 1is u = E(X). The celebrated pictures opposite now make

the following Theorem obvious.

THEOREM

IfE(X) > 1, then the eztinction probability 7 is the unique root of the

equation m = f(m) which lies strictly between 0 and 1. If E(X) < 1,
then 7 = 1.
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y= f(z)
. /
m
y==<
0
0 T T2 1

Case 1: subcritical, p = f'(1) < 1. Clearly, 7 = 1.

The critical case p = 1 has a similar picture.

Case 2: supercritical, p = f'(1) > 1. Now, 7 < 1.
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0.5. Pause for thought: measure

Now that we have finished revising what introductory courses on probability
theory say about branching-process theory, let us think about why we must
find a more precise language. To be sure, the claim at (0.4,b) that

(a) 7 =T limm,

is intuitively plausible, but how could one prove it? We certainly can-
not prove it at present because we have no means of stating with pure-
mathematical precision what it is supposed to mean. Let us discuss this
further.

Back in Section 0.2, we said ‘Suppose that we are given a doubly infinite
sequence {X M m,re N} of independent identically distributed random
variables each with the same distribution as X’. What does this mean? A
random variable is a (certain kind of) function on a sample space 2. We
could follow elementary theory in taking 2 to be the set of all outcomes, in
other words, taking 2 to be the Cartesian product

a=]z+,
rs

the typical element w of 2 being
w =(w£'") :r €N,s €N),

and then setting X{”(w) = w{”. Now Q is an uncountable set, so that
we are outside the ‘combinatorial’ context which makes sense of 7, in the
elementary theory. Moreover, if one assumes the Axiom of Choice, one
can prove that it is impossible to assign to all subsets of 2 a probability
satisfying the ‘intuitively obvious’ axioms and making the X’s IID RVs
with the correct common distribution. So, we have to know that the set
of w corresponding to the event ‘extinction occurs’ s one to which one can
uniquely assign a probability (which will then provide a definition of =).
Even then, we have to prove (a).

Example. Consider for a moment what is in some ways a bad attempt to
construct a ‘probability theory’. Let C be the class of subsets C of N for
which the ‘density’

p(C):= liTmﬂ{k:ISkSn;kEC'}

exists. Let C,, := {1,2,...,n}. Then C, € C and C, T N in the sense that
Cn C Cry1,VYn and also | Cr, = N. However, p(C,) = 0,Vn, but p(N) = 1.
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Hence the logic which will allow us correctly to deduce (a) from the
fact that
{Z, = 0} T {extinction occurs}

fails for the (N,C, p) set-up: (N,C, p) is not ‘a probability triple’. O

There are problems. Measure theory resolves them, but provides a huge
bonus in the form of much deeper results such as the Martingale Conver-
gence Theorem which we now take a first look at — at an intuitive level, I
hasten to add.

0.6. Our first martingale
Recall from (0.2,b) that

Zogr = X[ g XHY,

where the X ("*1) variables are independent of the values Zy, Zy,...,Zy. It
is clear from this that

P(Zn+1 =],Z0 = io,Zl = i],...,Zn - ’l,n) - P(Zn+1 =]|Zn == in),

a result which you will probably recognize as stating that the process Z =
(Zn :n20) is a Markov chain. We therefore have

E(Znt1lZ0 =i0,Z1 = i1, Zn =in) = Y jP(Znt1 = j|Zn = in)
J
= E(Zn+1|Zn = in),
or, in a condensed and better notation,
(a) E(Zn+1l20, Z1,.. ., Z0) = E(Zny1|Zn)-
Of course, it is intuitively obvious that

(b) E(Zn+1|Zn) = pZn,

because each of the Z, animals in the n*® generation has on average u
children. We can confirm result (b) by differentiating the result

E(67~+|Z,) = £()*"

with respect to 6 and setting 6 = 1.
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Now define
(c) My :=Z,/u", n > 0.
Then
E(Mn+11Z0,Z1,...,25) = My,

which exactly says that
(d) M is a martingale relative to the Z process.

Given the history of Z up to stage n, the next value M, 4+, of M is on average
what it is now: M is ‘constant on average’ in this very sophisticated sense
of conditional expectation given ‘past’ and ‘present’. The true statement

(e) E(Mn,)=1, Vn

is of course infinitely cruder.
A statement S is said to be true almost surely (a.s.) or with prob-
ability 1 if (surprise, surprise!)

P(S is true) =1.

Because our martingale M is non-negative (M, > 0,Vn), the Martin-
gale Convergence Theorem implies that it is almost surely true that

(f) My :=lmM, erists.

Note that if M., > 0 for some outcome (which can happen with positive
probability only when u > 1), then the statement

Zn/p™ = My (a.s.)

is a precise formulation of ‘exponential growth’. A particularly fascinating

question is: suppose that u > 1; what is the behaviour of Z conditional on
the value of My,?

0.7. Convergence (or not) of expectations

We know that M, := lim M, exists with probability 1, and that E(M,) = 1,
Vn. We might be tempted to believe that E(M.,) = 1. However, we already

know that if u < 1, then, almost surely, the process dies out and M, is
eventually 0. Hence

(a) if p <1, then Mo, = 0 (a.s.) and

0 = E(My) # im E(M,) = 1.
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This is an excellent example to keep in mind when we come to study
Fatou’s Lemma, valid for any sequence (Y5) of non-negative random vari-
ables:

E(liminf Y, ) < liminf E(Y}).

What is ‘going wrong’ at (a) is that (when u < 1) for large n, the chances
are that M, will be large if M, is not 0 and, very roughly speaking, this
large value times its small probability will keep E(M},) at 1. See the concrete
examples in Section 0.9.

Of course, it is very important to know when
(b) HmE(-) = E(lim-),

and we do spend quite a considerable time studying this. The best gen-
eral theorems are rarely good enough to get the best results for concrete
problems, as is evidenced by the fact that

(¢) E(Mw) =1 if and only if both p > 1 and E(X log X') < oo,

where X is the typical number of children. Of course Olog0 =0. If p > 1
and E(Xlog X) = oo, then, even though the process may not die out,
Mo =0, a.s.

0.8. Finding the distribution of M
Since M,, = M, (a.s.), it is obvious that for A > 0,

exp(~AM,) — exp(—A M) (a.s.)

Now since each M, > 0, the whole sequence (exp(—AM,)) is bounded
in absolute value by the constant 1, independently of the outcome of our
experiment. The Bounded Convergence Theorem says that we can now
assert what we would wish:

(a) E exp(—AMy) = im E exp(—AM,).
Since M, = Z,/u™ and E(8%") = f,(8), we have
(b) Eexp(—AMy) = fa(exp(—=A/u")),

so that, in principle (if very rarely in practice), we can calculate the left-hand
side of (a). However, for a non-negative random variable Y, the distribution
function y — P(Y < y) is completely determined by the map

A— Eexp(=AY) on (0,00).
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Hence, in principle, we can find the distribution of M.

We have seen that the real problem is to calculate the function
L(\) := Eexp(—AM).

Using (b), the fact that fo41 = f o fa, and the continuity of L (another
consequence of the Bounded Convergence Theorem), you can immediately
establish the functional equation:

(c) L(Ap) = f(L(A))-

0.9. Concrete example

This concrete example is just about the only one in which one can calculate
everything explicitly, but, in the way of mathematics, it is useful in many
contexts.

We take the ‘typical number of children’ X to have a geometric distri-
bution:

(a) P(X =k)=p¢* (keZt),

where
O0<p<l, g¢q:=1-p.

Then, as you can easily check,

(b) f(6) =

P _q
1__q0, oll p’
and

= dple ifg>p,
1 if ¢ <p.

To calculate fo fo...of, we use a device familiar from the geometry

of the upper half-plane. If
G = (gu glz)
921 g22

is a non-singular 2 x 2 matrix, define the fractional linear transformation:

0 + g12
®) 9210 + g22
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Then you can check that if H is another such matrix, then
G(H(6)) = (GH)(9),

so that composition of fractional linear transformations corresponds to ma-
trix multiplication.

Suppose that p # gq. Then, by the S™'AS = A method, for example,
we find that the n'® power of the matrix corresponding to f is

()= (D0 ()

ppt(1—6)+q6—p
qp(1—6)+q6—p

If o = q/p < 1, then lim, f,(0) = 1, corresponding to the fact that the
process dies out.

so that

(d) fa(8) =

Suppose now that u > 1. Then you can easily check that, for A > 0,

L(A) : = Eexp(—AMyo) = lim fo(exp(—A/p™))
_PAtqg—p
gA+q—p

o0
= me~ A0 +/ (1—m)2e r2e~ (M2 gy
0

from which we deduce that

Pz < Moo <z +dz) = (1—=7)%e" "%z (2 > 0),

and

or, better,
P(Mo > z) = (1 —n)e~(1—m= (z >0). -

Suppose that p < 1. In this case, it is interesting to ask: what is the
distribution of Z, conditioned by Z,, # 0? We find that

E(67"12n #0) = fn1(0-) ;n%m 1 iﬂ; k

where

P—q —qp”
ﬂn___q qu

Ay = s
" p—gquv’ p—qu"
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so0 < ap, <1and an + B, =1. As n — 0o, we see that

ap — 1-— M ﬂn — K,
so (this is justified)

(e) lim P(Z, = k|Z, £0) =1 —p)p*'  (keN).

n—oo
Suppose that p = 1. You can show by induction that

n—(n-—-1)0

fu(8) = (n+1)—nd’

and that
E(e 70/ Z, £ 0) —» 1/(1+ ),

corresponding to

(f) P(Zn/n>2z|Z, #£0) > e™ 7, x> 0.

‘The Fatou factor’
We know that when p <1, we have E(M,) =1, Vn, but E(M.) = 0. Can

we get some insight into this?

First consider the case when u < 1. Result (e) makes it plausible that
for large n,

E(Za|Zn # 0) is roughly (1 — p) 3" kp*~' =1/(1 — p).

We know that

P(Zn # 0) =1 — fn(0) is roughly (1 — p)u",

so we should have (roughly)

E(M,)=E (LZ'% T # o) P(Z, #0)
— 1 _ n _
- (1 — /,l)/,L" (1 /‘)/‘ 1,

which might help explain how the ‘balance’ E(M,) = 1 is achieved by big
values times small probabilities.
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Now consider the case when p = 1. Then
P(Zn #0)=1/(n+1),

and, from (f), Z,/n conditioned by Z, # 0 is roughly exponential with
mean 1, so that M,, = Z,, conditioned by Z,, # 0 is on average of size about
n, the correct order of magnitude for balance.

Warning. We have just been using for ‘correct intuitive explanations’

exactly the type of argument which might have misled us into thinking that
E(My) = 1 in the first place. But, of course, the result
E(M,) =E(M,|Z, #0)P(Z,, #0) =1

is a matter of obvious fact.



PART A: FOUNDATIONS

Chapter 1
Measure Spaces

1.0. Introductory remarks

Topology is about open sets. The characterizing property of a continuous
function f is that the inverse image f~(G) of an open set G is open.

Measure theory is about measurable sets. The characterizing property
of a measurable function f is that the inverse image f~1(A) of any measur-
able set is measurable.

In topology, one axiomatizes the notion of ‘open set’, insisting in par-
ticular that the union of any collection of open sets is open, and that the
intersection of a finite collection of open sets is open.

In measure theory, one axiomatizes the notion of ‘measurable set’; in-
sisting that the union of a countable collection of measurable sets is measur-
able, and that the intersection of a countable collection of measurable sets
is also measurable. Also, the complement of a measurable set must be mea-
surable, and the whole space must be measurable. Thus the measurable sets
form a o-algebra, a structure stable (or ‘closed’) under countably many set
operations. Without the insistence that ‘only countably many operations
are allowed’, measure theory would be self-contradictory — a point lost on
certain philosophers of probability.

The probability that a point chosen at random on the surface of the unit
sphere S? in R3 falls into the subset F of 52 is just the area of F divided
by the total area 47. What could be easier?

However, Banach and Tarski showed (see Wagon (1985)) that if the
Axiom of Choice is assumed, as it is throughout conventional mathematics,

then there exists a subset F' of the unit sphere $% in R?® such that for

14
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3 < k < oo (and even for k = o0), S? is the disjoint union of k exact copies

of F':
k

5% = U T,-(k)F,

=1

where each T'-(k) is a rotation. If F' has an ‘area’, then that area must
simultaneously be 47 /3,47 /4,...,0. The only conclusion is that the set F'
is non-measurable (not Lebesgue measurable): it is so complicated that one
cannot assign an area to it. Banach and Tarski have not broken the Law of
Conservation of Area: they have simply operated outside its jurisdiction.

Remarks. (i) Because every rotation 7 has a fixed point z on S? such that
7(z) = =, it is not possible to find a subset 4 of S? and a rotation 7 such
that AU 7(A) = S? and AN7(A) = 0. So, we could not have taken k = 2.

(ii) Banach and Tarski even proved that given any two bounded sub-
sets A and B of R? each with non-empty interior, it is possible to decompose
A into a certain finite number n of disjoint pieces A = |JI_, 4i and B into
the same number n of disjoint pieces B = |JI., Bi, in such a way that, for
each i, A; is Euclid-congruent to B;!!! So, we can disassemble A and rebuild
it as B.

(iii) Section Al.1 (optional!) in the appendix to this chapter gives
an Axiom-of-Choice construction of a non-measurable subset of S?.

This chapter introduces
o-algebras, m-systems, and measures

and emphasizes monotone-convergence properties of measures. We shall see
in later chapters that, although not all sets are measurable, it is always the
case for probability theory that enough sets are measurable.

1.1. Definitions of algebra, o-algebra

Let S be a set.
Algebra on S

A collection Ly of subsets of S is called an algebra on S (or algebra of
subsets of §) if
(l) S € o,
(i) FeXZy = Fc:=8\Fe¥,,
(111) F,GEE() = FUGEeZYL,.
[Note that § = 5S¢ € £y and

F,GeXZy = FNG=(F'UG) e€X.]
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Thus, an algebra on S is a family of subsets of S stable under finitely many
set operations.

Exercise (optional). Let C be the class of subsets C' of N for which the
‘density’

liTm m - I{k:1<k<m;keC}
exists. We might like to think of this density (if it exists) as ‘the probability
that a number chosen at random belongs to C’. But there are many reasons
why this does not conform to a proper probability theory. (We saw one in
Section 0.5.) For example, you should find elements F' and G in C for which
FNG¢cC. )

Note on terminology (‘algebra versus field’). An algebra in our sense is a
true algebra in the algebraists’ sense with N as product, and symmetric
difference

AAB = (AUB)\(4N B)

as ‘sum’, the underlying field of the algebra being the field with 2 elements.
(This is why we prefer ‘algebra of subsets’ to ‘field of subsets’: there is no
way that an algebra of subsets is a field in the algebraists’ sense - unless ¥

is trivial, that is, £y = {S, 0}.)
o-algebra on S

A collection ¥ of subsets of S is called a o-algebra on S (or o-algebra of
subsets of 5) if ¥ is an algebra on S such that whenever F;, € £ (n € N),

then :
UF.ex.
[Note that if ¥ is a o-algebra on S and F,, € & for n € N, then
Fo=(JF) ex]

Thus, a 0-algebraon S is a family of subsets of S ‘stable under any countable
collection of set operations’.

Note. Whereas it is usually possible to write in ‘closed form’ the typical
element of many of the algebras of sets which we shall meet (see Section
1.8 below for a first example), it is usually impossible to write down the
typical element of a o-algebra. This is the reason for our concentrating
where possible on the much simpler ‘r-systems’.

Measurable space

A pair (5,X), where S is a set and ¥ is a o-algebra on S, is called a
measurable space. An element of ¥ is called a X-measurable subset of .S.
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o(C), o-algebra generated by a class C of subsets

Let C be a class of subsets of S. Then o(C), the o-algebra generated by C,
is the smallest o-algebra ¥ on S such that C C ¥ . It is the intersection of
all o-algebras on S which have C as a subclass. (Obviously, the class of all
subsets of S is a o-algebra which extends C.)

1.2. Examples. Borel o-algebras, B(S), B = B(R)

Let S be a topological space.

B(S)

B(S), the Borel o-algebra on S, is the o-algebra generated by the family of
open subsets of S. With slight abuse of notation,

B(S) := o(open sets).

B :=B(R)
It is standard shorthand that B := B(R).

The o-algebra B is the most important of all g-algebras. Every subset
of R which you meet in everyday use is an element of B; and indeed it is
difficult (but possible!) to find a subset of R constructed explicitly (without
the Axiom of Choice) which is not in B.

Elements of B can be quite complicated. However, the collection
7(R) := {(—o0,z] : z € R}

(not a standard notation) is very easy to understand, and it is often the
case that all we need to know about B is that

() B = o(x(R)).

Proof of (a). For each z in R, (—o0,z] = [),en(—00, 2 +n71), so that as a
countable intersection of open sets, the set (—oo, z] is in B.

All that remains to be proved is that every open subset G of R is in
o(7(R)). But every such G is a countable union of open intervals, so we
need only show that, for a,b € R with a < b,

(a,b) € o(w(R)).
But, for any u with u > a,
(a,u] = (—o0,u] N (—o0,al’ € a(7(R)),

and since, for ¢ = (b — a),

(a,0) = | J(a,b~en™],

we see that (a, b) € o(7(R)), and the proof is complete. [
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1.3. Definitions concerning set functions

Let S be a set, let £¢ be an algebra on S, and let yo be a non-negative set
function
po : Lo — [0,00].
Additive
Then uyo is called additive if po(@) = 0 and, for F,G € Iy,

FNG=0 = po(FUG) = po(F)+ po(G).

Countably additive

The map pq is called countably additive (or o-additive) if p(@) = 0 and
whenever (F, : n € N) is a sequence of disjoint sets in ¥¢ with union
F = |JF, in X (note that this is an assumption since £y need not be a
o-algebra), then

po(F) =Y pro(Fn)-

Of course (why?), a countably additive set function is additive.

1.4. Definition of measure space

Let (S, L) be a measurable space, so that ¥ is a o-algebra on S.
A map
p: X — [0, 0]

is called a measure on (S, X) if p is countably additive. The triple (S, 2, )
is then called a measure space.

1.5. Definitions concerning measures

Let (S,%,pn) be a measure space. Then pu (or indeed the measure space

(5,3, 1)) is called
finite

if u(S) < o0,
o-finite

if there is a sequence (S, : n € N) of elements of ¥ such that
#(Sn) < oo (Yne€N) and | JSn =S.

Warning. Intuition is usually OK for finite measures, and adapts well for
o-finite measures. However, measures which are not o-finite can be crazy;
fortunately, there are no such measures in this book.
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Probability measure, probability triple

Our measure p is called a probability measure if

u(S) =1,

and (S,Z, p) is then called a probability triple.

p-null element of £, almost everywhere (a.e.)

An element F of ¥ is called p-nullif u(F) = 0. A statement S about points
s of S is said to hold elmost everywhere (a.e.) if

F := {s: 8(s) is false} € £ and pu(F) = 0.

1.6. LEMMA. Uniqueness of extension, 7-systems

Moral: o-algebras are ‘difficult’, but r-systems are ‘easy’; so we
aim to work with the latter.

»(a) Let S be a set. Let T be a m-system on S, that is, a family of subsets
of S stable under finite intersection:

L,,el = LNLel.

Let & := o(T). Suppose that p1 and pz are measures on (S,X) such
that p1(S) = p2(S) < 00 and puy = pug onI. Then

p1 = pz on X.

»(b) Corollary. If two probability measures agree on a w-system,
then they agree on the s-algebra generated by that 7-system.

The example B = o(w(R)) is of course the most important example of
the ¥ = ¢(Z) in the theorem.

This result will play an important role. Indeed, it will be applied more
frequently than will the celebrated existence result in Section 1.7. Because
of this, the proof of Lemma 1.6 given in Sections A1.2-1.4 of the appendix
to this chapter should perhaps be consulted — but read the remainder of
this chapter first.
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1.7. THEOREM. Carathéodory’s Extension Theorem
Let S be a set, let Xg be an algebra on S, and let

Y= 0a(Z).

If po 18 a countably additive map po : L9 — [0,00], then there exists a
measure u on (S,X) such that

= g on Xo.

If po(S) < oo, then, by Lemma 1.6, this extension i3 unique — an
algebra 18 a mw-system!

In a sense, this result should have more » signs than any other, for
without it we could not construct any interesting models. However, once
we have our model, we make no further use of the theorem.

The proof of this result given in Sections A1.5-1.8 of the appendix is
there for completeness. It will do no harm to assume the result for this
course. Let us now see how the theorem is used.

1.8. Lebesgue measure Leb on ((0,1],8(0,1])

Let $ = (0,1]. For F C S, say that F € X, if F may be written as a finite
union

(*) F=(a1,bl]U...U(a,-,br]

where r € N, 0 < a1 <b; £--- <a, £b,. <1 Then X is an algebra on
(0,1] and
Y = o(Xo) = B(0,1].

(We write B(0, 1] instead of B((0,1]).) For F as at (*), let

po(F) = (b — ax).

k<r

Then po is well-defined and additive on X, (this is easy). Moreover, uq is
countably additive on 3g. (This is not trivial. See Section Al1.9.) Hence,
by Theorem 1.7, there exists a unique measure x on ((0, 1], B(0, 1]) extend-
ing po on L. This measure y is called Lebesgue measure on ((0, 1], B(0,1])
or (loosely) Lebesgue measure on (0,1]. We shall often denote x by Leb.
Lebesgue measure (still denoted by Leb) on ([0, 1], B[0,1]) is of course ob-
tained by a trivial modification, the set {0} having Lebesgue measure 0. Of
course, Leb makes precise the concept of length.

In a similar way, we can construct (o-finite) Lebesgue measure (which
we also denote by Leb) on R (more strictly, on (R, B(R)).
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1.9. LEMMA. Elementary inequalities
Let (S,%, 1) be a measure space. Then

() W(AUB)< u(A)+u(B) (4,BeX),

>(b) “(UiSnFi)SZiSn“(Fi) (Fl,Fz,...,FnEE).
Furthermore, if u(S) < oo, then
() p(AUB)=p(A)+p(B)—p(ANB) (A,BEeX),

(d) (inclusion-exclusion formula): for Fy, F,,..., F, € L,

p(UiSn R) - Zign p(Fi) - Z Zi<i$"“(ﬂ N Fj)

AN Y HEOFNF) =4 (-1 W(RNRN. N Fy),

successive partial sums alternating between over- and under-estimates.

You will surely have seen some version of these results previously. Re-
sult (c) is obvious because AU B is the disjoint union AU(B\(AN B)). But
(c)=>(2)=>(b) - check that ‘infinities do not matter’. You can deduce (d)
from (c) by induction, but, as we shall see later, the neat way to prove (d)
is by integration.

1.10. LEMMA. Monotone-convergence properties of measures

- These results are often needed for making things rigorous. (Peep ahead
to the ‘Monkey typing Shakespeare’ Section 4.9.) Again, let (S,X,u) be a
measure space.

»(a) IfF, e L (n€N)and F, T F, then pu(F,) T u(F).

Notes. Fy, T F means: F,, C Fhy1 (Vn €N), |JFn. = F. Result (a) is
the fundamental property of measure.

Proof of (a). Write Gy := F}, Gn := Fo\Fa-1 (n = 2). Then the sets
Gn» (n € N) are disjoint, and

p(Fa) =p(G1UGU...UG) =Y u(Gr)T Y u(Gy) =p(F). O

k<n k<oco

Application. In a proper formulation of the branching-process example of

Chapter 0,
{Z, = 0} T {extinction occurs}, so that =, T =.

(A proper formulation of the branching-process example will be given later.)
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»(b) If G, € B, G, | G and p(Gi) < oo for some k, then p(G,) | p(G).
Proof of (b). For n € N, let F;, := G \Gg4n, and now apply part (a). [

Example - to indicate what can ‘go wrong’. For n € N, let
Hy, := (n,o0).

Then Leb(H,) = oo,Vn, but H, | 0.

»(c) The union of a countable number of p-null sets 18 p-null.
This is a trivial corollary of results (1.9,b) and (1.10,a).

1.11. Example/Warning

Let (S,%, 1) be ([0,1],B[0,1],Leb). Let e(k) be a sequence of strictly posi-
tive numbers such that €(k) | 0. For a single point z of S, we have

() {e} C (2 —e(k),z + (k) NS,

so that for every k, u({z}) < 2¢(k), and so u({z}) = 0. That {z} is B(S)-
measurable follows because {z} is the intersection of the countable number
of open subsets of S on the right-hand side of (a).

Let V = QN [0,1], the set of rationals in [0,1]. Since V is a count-
able union of singletons: V = {v, : n € N}, it is clear that V is B[0, 1]-
measurable and that Leb(V) = 0. We can include V in an open subset of
S of measure at most 4¢(k) as follows:

VCGe= |Jl(vn—ek)27"vn +e(k)27") N S] = | In -
neN n

Clearly, H := (), G satisfies Leb(H) = 0 and V C H. Now, it is a
consequence of the Baire category theorem (see the appendix to this chapter)
that H s uncountable, so

(b) the set H is an uncountable set of measure 0; moreover,
# = (YUt # Ui = ¥
k n n k

Throughout the subject, we have to be careful about interchanging orders
of operations.



Chapter 2
Events

2.1. Model for experiment: (2, F,P)

A model for an experiment involving randomness takes the form of a prob-
ability triple (2, F,P) in the sense of Section 1.5.

Sample space

12 is a set called the sample space.

Sample point

A point w of 2 is called a sample point.

Event

The o-algebra F on  is called the family of events, so that an event is an

element of F, that is, an F-measurable subset of 2.

By definition of probability triple, P is a probability measure on (£2,F).

2.2. The intuitive meaning

Tyche, Goddess of Chance, chooses a point w of Q2 ‘at random’ according to
the law P in that, for F' in F, P(F') represents the ‘probability’ (in the sense

understood by our intuition) that the point w chosen by Tyche belongs to
F.

The chosen point w determines the outcome of the experiment. Thus
there is a map
) — set of outcomes,

w +— outcome.

There is no reason why this ‘map’ (the co-domain lies in our intuition!)
should be one-one. Often it is the case that although there is some obvious
‘minimal’ or ‘canonical’ model for an experiment, it is better to use some
richer model. (For example, we can read off many properties of coin tossing
by imbedding the associated random walk in a Brownian motion.)

28
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2.3. Examples of (2, F) pairs
We leave the question of assigning probabilities until later.

(a) Ezperiment: Toss coin twice. We can take
Q={HH HT,TH,TT}, F =P(f):=set of all subsets of (2.

In this model, the intuitive event ‘At least one head is obtained’ is described

by the mathematical event (element of ) {HH,HT,TH}.
(b) Ezperiment: Toss coin infinitely often. We can take

Q={H,T}N,
so that a typical point w of {2 is a sequence
w= (wy,ws,...), wn€{H,T}.

We certainly wish to speak of the intuitive event ‘w, = W’, where W €
{H,T}, and it is natural to choose

F=o({lweQ:w, =W}:neN,We {HT}).

Although F # P(2) (accept this!), it turns out that F is big enough; for
example, we shall see in Section 3.7 that the truth set

. Mk <n:wp=H) 1
F—{U). " ——)-2-}

of the statement

number of heads in n tosses

1
_—)-_
n 2

is an element of F.

Note that wewbn use the current model as a more informative model

for the experiment in (a), using the map w +— (w;,ws) of sample points to
outcomes.

(c) Ezperiment: Choose a point between 0 and 1 uniformly at random. Take
Q = [0,1],F = B[0,1],w signifying the point chosen. In this case, we
obviously take P =Leb. The sense in which this model contains model (b)
for the case of a fair coin will be explained later.
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2.4. Almost surely (a.s.)

A statement S about outcomes is said to be true almost surely (a.s.), or
with probability 1 (w.p.1), if

F:={w:S(w)is true} € F and P(F) = 1.

(a) Proposition. If F, € F (n € N) and P(F,) =1,Vn, then

P(N, F) = 1.

Proof. P(FE) = 0,Vn, so, by Lemma 1.10(c), P({J, F¢) = 0. But | F, =
(U F3)° O
(b) Something to think about. Some distinguished philosophers have tried to

develop probability without measure theory. One of the reasons for difficulty
1s the following.

When the discussion (2.3,b) is extended to define the appropriate prob-
ability measure for fair coin tossing, the Strong Law of Large Numbers
(SLLN) states that F' € F and P(F) = 1, where F, the truth set of the
statement ‘proportion of heads in n tosses — %’, is defined formally in
(2.3,b).

Let A be the set of all maps a : N — N such that a(1) < a(2) <... .
For a € A, let

Fo— w.ﬂ(kSn:wa(k)=H)_+_l_
« ) n 2

the ‘truth set of the Strong Law for the subsequence a’. Then, of course,
we have P(F,) = 1,Va € A.

Exercise. Prove that

s ﬂF“___@'

(Hint. For any given w, find an « ... .)

The moral is that the concept of ‘almost surely’ gives us (i) absolute
precision, but also (ii) enough flexibility to avoid the self-contradictions
into which those innocent of measure theory too easily fall. (Of course,

since philosophers are pompous where we are precise, they are thought to
think deeply ... .)

2.5. Reminder: limsup, liminf, | lim, etc.

(a) Let (z, : n € N) be a sequence of real numbers. We define

limsup z, := inf { sup xn} =] lim { sup :c,.} € [—o0, oa].

n>2m n>2m
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Obviously, ym := Sup,>m Tn is monotone non-increasing in m, so that the
limit of the sequence y,, exists in [—o0, 00]. The use of {lim or |lim to signify
monotone limits will be handy, as will y, | Yoo to signify yoo =] limyy,.

(b) Analogously,

liminfz, = sup{ iglf x,,} =1 lim{ i1>1f mn} € [—o0, ).

m | n>m

(c) We have
x, converges in [—00,00] <= limsupz, = liminfz,,

and then limz,, = imsupz,, = liminf z,.

»(d) Note that
(1) if z > limsup z,,, then
Tn < z eventually (that is, for all sufficiently large n)
(ii) if 2 < limsup z,, then

zn > z infinitely often (that is, for infinitely many n).

2.6. Definitions. limsup E,, (E,, i.0.)

The event (in the rigorous formulation: the truth set of the statement)
‘number of heads/ number of tosses — 1’

is built out of simple events such as ‘the n*® toss results in heads’ in a
rather complicated way. We need a systematic method of being able to
handle complicated combinations of events. The idea of taking lim infs and
lim sups of sets provides what is required.

It might be helpful to note the tautology that, if £ is an event, then

E={w:weF}

Suppose now that (E, : n € N) i3 a sequence of events.
»(a) We define

(En, i.0.) : = (E, infinitely often)
:=limsup F, := n U E,
m n>m
= {w : for every m, 3In(w) > m such that w € E, ()}
={w:w€E, f/'or infinitely many n}.
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»(b) (Reverse Fatou Lemma - needs FINITENESS of P)
P(limsup E,) > limsup P(E,).

Proof. Let Gy :=J,,>,, En- Then (look at the definition in (a)) Gm | G,
where G := limsup E,,. By result (1.10,b), P(Gn) | P(G). But, clearly,

P(Gn) > sup P(E,).
n>2m

Hence,

P(G) >| li’;n { sup P(En)} =: limsup P(E,). O

n>m

2.7. First Borel-Cantelli Lemma (BC1)

> Let (E, : n € N) be a sequence of events such that
Y., P(Er) < 0. Then

P(limsup E,,) = P(E,, i.0.) =0.
Proof. With the notation of (2.6,b), we have, for each m,
P(G) <P(Gm) < Y P(Ew),

n>m
using (1.9,b) and (1.10,a). Now let m T co. O]

Notes. (1) An instructive proof by integration will be given later.

(ii) Many applications of the First Borel-Cantelli Lemma will be given
within this course. Interesting applications require concepts of indepen-
dence, random variables, etc..

2.8. Definitions. liminfE,, (E,, ev)

Again suppose that (En :n € N) is a sequence of events.

»(a) We define
(En, ev): = (E, eventually)
:=liminf E, := U n E,
m a>m
= {w: for some m(w), w € E,,Vn > m(w)}
= {w : w € E,, for all large n}.
(b) Note that (E,, ev)® = (Eg, i.0.).
»(c) (Fatou’s Lemma for sets - true for ALL measure spaces)
P(liminf E,) < liminf P(E,).

Exercise. Prove this in analogy with the proof of result (2.6,b), using
(1.10,a) rather than (1.10,b).
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2.9. Exercise

For an event E, define the indicator function Ig on ) via

_[1, fweE,
Ip(w) "‘{o, fw E.

Let (E, : n € N) be a sequence of events. Prove that, for each w,

Liim sup E, (w) = limsuplg, (w),

and establish the corresponding result for lim infs.

(2.9)
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Random Variables

Let (S,X) be a measurable space, so that ¥ is a o-algebra on S.

3.1. Definitions. X-measurable function, m¥, (mX)*,bX

Suppose that h : § — R. For A C R, define
h=1(A):={s € S: h(s) € A}.
Then h is called -measurableif k=1 : B — ¥, that is, h™1(A4) € I, VA € B.

So, here is a picture of a ¥-measurable function h:

SR

/ E*h—-lB

We write mY for the class of £-measurable functions on S, and (mX)* for
the class of non-negative elements in m¥. We denote by bX the class of
bounded ¥-measurable functions on S.

Note. Because lim sups of sequences even of finite-valued functions may be
infinite, and for other reasons, it is convenient to extend these definitions
to functions h taking values in [—oc0, 0] in the obvious way: h is called
Y -measurable if h=! : B[—o00,00] — Z.

Which of the various results stated for real-valued functions extend to
functions with values in [—o0, 00}, and what these extensions are, should be
obvious.

Borel function

A function h from a topological space S to R is called Borel if k is B(S)-
measurable. The most important case is when S itself is R.

29
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3.2. Elementary Propositions on measurability

(a) The map h™! preserves all set operations:
A1y 4a) = Uy h1(Aa),  A7(AS) = (h2(A)F, et
Proof. This is just definition chasing. O
»(b) IfCC B ando(C)=DB, then h™':C—-¥X = hemi.

Proof. Let € be the class of elements B in B such that A~1(B) € L. By
result (a), £ is a o-algebra, and, by hypothesis, £ 2 C. .

(c) If S is topological and h : S — R i3 continuous, then h is Borel.
Proof. Take C to be the class of open subsets of R, and apply result (b). (J
»(d) For any measurable space (S,X), a function h: S — R is L-measurable

if
{h<e}:={s€S:h(s)<c} €T (VceR).

Proof. Take C to be the class 7(R) of intervals of the form (—o0,¢], ¢ € R,
and apply result (b). O

Note. Obviously, similar results apply in which {h < ¢} is replaced by
{h > c}, {h > ¢}, etc.

3.3. LEMMA. Sums and products of measurable functions are
measurable

> mY 13 an algebra over R, that 1s,
if A €R and h,hy,hs € mX, then
hi + hy € m¥, hjhy €mX, Mh€mX.

Ezample of proof. Let ¢ € R. Thenfor s € S, it is clear that hy(s)+h2(s) > ¢
if and only if for some rational ¢, we have

hi(8) > ¢ > ¢ — ha(3).

In other words,

{h1+he>c}= ) ({h1 >} n{h2>c—q}),
gEQ

a countable union of elements of 3. O
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3.4. Composition Lemma.

If h € m¥ and f € mB, then foh € mX.
Proof. Draw the picture:
st r-LR

gl

Note. There are obvious generalizations based on the definition (important
in more advanced theory): if (5;,Z;) and (S2,¥2) are measurable spaces
and h : S; — S,, then h is called ¥, /%;-measurable if h~1 : £, — %;.
From this point of view, what we have called ¥-measurable should read
¥ /B-measurable (or perhaps ¥/B[—o00, co]-measurable).

3.5. LEMMA on measurability of infs, lim infs of functions
> Let (h, : n € N) be a sequence of elements of m¥. Then
(1) inf h,, (ii) liminf h,, (iii) limsup Ay,
are ¥X-measurable (into ([—o00, 00], B[—00, 00]), but we shall still write
inf hy, € mE (for ezample)). Further,

(iv) {s : lim h,(3) exists in R} € L.
Proof. (i) {inf hp > ¢} =, {hn > c}.
(i1) Let Ln(s) :=inf{h,(s) : r > n}. Then L, € mX, by part (i). But
L(s) := liminf h,(s) =1 lim L,(s) = sup L,(s),
and {L <c} =, {Ln<c}eZX.
(iii) This part is now obvious.

(iv) This is also clear because the set on which lim h,, exists in R is
{limsuphy, < 00} N {liminf h, > —o00} Ng~1({0}),

where
g :=limsup h, — liminf A,,. O

3.6. Definition. Random variable

»Let (2, F) be our (sample space, family of events). A random variable is an
element of mF. Thus,

X:QR, X':BoF
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3.7. Example. Coin tossing
Let @ = {H,T}N, w = (w1,ws,...), wn € {H,T}. As in (2.3,b), we define

F=o{w:wa=W}:neN,We{HdT}).

Let ; i
1 fw, =H,
Xn(w) = {0 if w, = T.

The definition of F guarantees that each X, is a random variable. By
Lemma 3.3,

Sp :=X1 + X2 + -+ X,, = number of heads in n tosses

is a random variable.

Next, for p € [0,1], we have

" number of tosses

A {w _ number of heads . p} ={w:Lt(w) =p}N{w: L™ (w) = p},

where Lt := limsupn~!S,, and L~ is the corresponding lim inf. By Lemma

3.5, Ae F.

> Thus, we have taken an important step towards the Strong Law: the
result is meaningful! It only remains to prove that it is true!

3.8. Definition. o-algebra generated by a collection of functions
on {2

This 13 an important idea, discussed further in Section 3.14. (Compare the

weakest topology which makes every function in a given family continuous,
etc.)

In Example 3.7, we have
a given set {2,
a family (X, : n € N) of maps X, : @ — R.
The best way to think of the o-algebra F in that example is as
F=0(Xn:n€eN)
in the sense now to be described.
»Generally, if we have a collection (Y, : v € C) of maps Y5 :  — R, then
YVi=0Y,:7v€C)
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is defined to be the smallest o-algebra Y on Q such that each map Y, (v € C)
18 YV-measurable. Clearly,

oYy:ye€C)=0({we:Y,(w)e B} :vye€ C,B € B).
If X is a random variable for some (2, F), then, of course, o(X) C F.
Remarks. (i) The idea introduced in this section is something which you

will pick up gradually as you work through the course. Don’t worry about
it now; think about it, yes!

(i1) Normally, 7-systems come to our aid. For example, if (X,, : n € N)is a
collection of functions on 2, and X,, denotes (X : k¥ < n), then the union
|J X is a 7-system (indeed, an algebra) which generates o(X, : n € N).

3.9. Definitions. Law, distribution function

Suppose that X is a random variable carried by some probability triple

(2, F,P). We have
0 -5R
0,1 £ F¥3,

or indeed [0,1] £- o(X) £B.
Define the law Lx of X by
Lx:=PoX™} Lx :B—[0,1].

Then (ExerCISe') Lx is a probability measure on (R,B). Since 7(R) =
{(—o0,¢] : ¢ € R} is a w-system which generates B, Uniqueness Lemma 1.6
shows that Lx is determined by the function Fx : R — [0, 1] defined as
follows:

Fx(c):=Lx(—00,c] =P(X < ¢)=P{w: X(w) < ¢}.
The function Fx is called the distribution function of X.

3.10. Properties of distribution functions

Suppose that F 13 the distribution function F = Fx of some mndom variable
X. Then

(a) F:R—[0,1], F1(thatis,z<y = F(z)<F(y)),
(b) " limyuoF(z) =1, lim;—_o F(z)=0,
(¢)  F is right-continuous.
Proof of (c). By using Lemma (1.10,b), we see that
. PX<z+n1)|PX <L2),
and this fact together with the monotonicity of Fix shows that Fx is right-
continuous.

Exercise! Clear up any loose ends.
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3.11. Existence of random variable with given distribution func-
tion

If F has the properties (a,b,c) in Section 3.10, then, by analogy with Sec-
tion 1.8 on the existence of Lebesgue measure, we can construct a unique
probability measure £ on (R, B) such that

L(—o0,z] = F(z),Vz.
Take (2, F,P) = (R,B,£), X(w)=w. Then it is tautological that
Fx(z) = F(z),Vz.
Note. The measure £ just described is called the Lebesgue-Stieltjes measure
assoctated with F. Its existence is proved in the next section.
3.12. Skorokhod representation of a random variable with pre-

scribed distribution function

Again let F : R — [0, 1] have properties (3.10,a,b,c). We can construct a
random variable with distribution function F' carried by

(R, F,P) = ([0,1], B[0, 1], Leb)

as follows. Define (the right-hand equalities, which you can prove, are there
for clarification only)

(al) Xt (w):=inf{z: F(z) > w} =sup{y : F(y) < w},

(al) X (w):=inf{z: F(z) > w} =sup{y: F(y) <w}.

The following picture shows cases to watch out for.

’/ o e

P - |

— ] |
ot— 0—"
X*(w) X~ (F(z))

By definition of X,

(w<F() > (X (w)<eo).
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Now,
(z>X"(w) = (F(z)2w),

so, by the right-continuity of F, F(X~(w)) > w, and
(X" (w)<e) = (w <F(X (w) < F(c))

Thus, (w < F(¢)) < (X~ (w) L ¢), so that

P(X~ < ¢) = F(c).

(b)  The variable X~ therefore has distribution function F, and the mea-
sure L in Section 8.11 is just the law of X .

It will be important later to know that

(¢) X7 also has distribution function F, and that, indeed,

P(Xt=X")=1.

Proof of (c). By definition of X,
(w<F() = X*w)<o),
so that F(c) < P(X* <¢). Since X~ < X1, it is clear that

(X~ #X*}=J{X <e< X}
cEQ

But, for every ¢ € R,
P(X" <c< XN =PH{X™ <c}\{X* <¢}) < F(c) - F(c) = 0.

Since Q 1s countable, the result follows. O

Remark. It is in fact true that every experiment you will meet in this (or
any other) course can be modelled via the triple ([0, 1}, B[0,1], Leb). (You
will start to be convinced of this by the end of the next chapter ) However,
this observation normally has only curiosity value.
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3.13. Generated o-algebras — a discussion

Suppose that (2,F,P) is a model for some experiment, and that the ex-
periment has been performed, so that (see Section 2.2) Tyche has made her
choice of w.

Let (Y, : v € C) be a collection of random variables associated with
our experiment, and suppose that someone reports to you the following
information about the chosen point w:

(*) the values Yo (w), that is, the observed values of the random variables

Yy (v€C).

Then the intuitive significance of the o-algebra ) := o(Y, : v € C) is that it
consists precisely of those events F' for which, for each and every w, you can
decide whether or not F has occurred (that is, whether or not w € F') on
the basis of the information (*); the information (*) is precisely equivalent
to the following information:

(**) the values Ip(w) (F € )).

(a) Exercise. Prove that the o-algebra o(Y") generated by a single random
variable Y is given by

o(Y)=Y"1(B):=({w:Y(w) € B} : B€B),
and that o(Y") is generated by the 7-system
7(Y):= ({w:Y(w) <z} : z € R) =Y} (x(R)). O

The following results might help clarify things. Good advice: stop
reading this section after (c)! Results (b) and (c) are proved in the appendix
to this chapter.

(b)IfY : @ — R, then Z :  — R is an o(Y)-measurable function if and
only if there exists a Borel function f : R — R such that Z = f(Y").

(¢) I Y1,Y2,...,Y, are functions from § to R, then a function Z : @ — R
is o(Y1,Y2,...,Y,)-measurable if and only if there exists a Borel function f
on R™ such that Z = f(Y1,Y3,...,Y,). We shall see in the appendix that

the more correct measurability condition on f is that f be ‘B™-measurable’.

(d) If (Y; : ¥ € C) is a collection (parametrized by the infinite set C) of
functions from Q to R, then Z : 2 — R is ¢(Y5 : ¥ € C)-measurable if and
only if there exists a countable sequence (v; : ¢ € N) of elements of C and a
Borel function f on RN such that

Z = f(Yy,,Yy,,...).
Warning - for the over-enthusiastic only. For uncountable C, B(R®) is
much larger than the C-fold product measure space [ o B(R). It is the
latter rather than the former which gives the appropriate type of f in (d).
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3.14. The Monotone-Class Theorem

In the same way that Uniqueness Lemma 1.6 allows us to deduce results
about o-algebras from results about w-systems, the following ‘elementary’
version of the Monotone-Class Theorem allows us to deduce results about
general measurable functions from results about indicators of elements of 7-
systems. Generally, we shall not use the theorem in the main text, preferring
‘just to use bare hands’. However, for product measure in Chapter 8, it
becomes indispensable.

THEOREM.

Let H be a class of bounded functions from a set S into R satisfying
the following conditions:

(1) H s a vector space over R;
(i1) the constant function 1 is an element of H;

(iii) #f (fn) i3 a sequence of non-negative functions in H such that

fn T f where fis a bounded function on S, then f € H.

Then sf H contains the indicator function of every set in some 7-
system I, then H contains every bounded o(Z)-measurable function

on S.
For proof, see the appendix to this chapter.
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Independence

Let (2, F,P) be a probability triple.
4.1. Definitions of independence

Note. We focus attention on the o-algebra formulation (and describe the
more familiar forms of independence in terms of it) to acclimatize ourselves
to thinking of o-algebras as the natural means of summarizing information.
Section 4.2 shows that the fancy o-algebra definitions agree with the ones
from elementary courses.

Independent o-algebras

»Sub-o-algebras Gy,G,,... of F are called independent if, whenever G; €
G: (teN)andri,,...,i, are distinct, then

P(Gi,N...NGy,) = [[P(Gs).
k=1

Independent random variables
»Random variables X1, X5,... are called independent if the o-algebras

U(X]),O’(Xz),. .o

are independent.

Independent events

»Events F,, E,... are called independent if the o-algebras &;,&,,... are
independent, where

En is the o-algebra {0, E,, Q\E,, Q}.

Since &, = o(Ig, ), it follows that events E,, F,,... are independent if and
only if the random variables Ig,, IE,, ... are independent.

38
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4.2. The m-system Lemma; and the more familiar definitions

We know from elementary theory that events E,, E,,... are independent if
and only if whenever n € N and 1,,...,t, are distinct, then

P(E,N---NE;,)= H P(Ei.),
k=1

corresponding results involving complements of the E;, etc., being conse-
quences of this.

We now use the Uniqueness Lemma 1.6 to obtain a significant general-
ization of this idea, allowing us to study independence via (manage-
able) w-systems rather than (awkward) o-algebras.

Let us concentrate on the case of two o-algebras.

»(a) LEMMA. Suppose that G and ‘H are sub-c-algebras of F, and that
T and J are w-systems with

: oI)=G, o(J)=H
Then G and H are independent if and only if T and J are independent

wn that
P(INJ)=P(IHP(J), Iel, JeJ.

Proof. Suppose that T and J are independent. Forfixed I in T, the measures
(check that they are measures!)

Hw—P(INH)and H — P(I)P(H)

on (£2,H) have the same total mass P(I), and agree on J. By Lemma 1.6,
they therefore agree on o(J) = H. Hence,

P(INH)=P(I)P(H), IeI, HeH.
Thus, for fixed H in H, the measures
G~ P(GNH) and G — P(G)P(H)

on (£2,G) have the same total mass P(H), and agree on Z. They therefore
agree on o(I) = G; and this is what we set out to prove. O
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Suppose now that X and Y are two random variables on (§2, F, P) such
that, whenever z,y € R,

(b) P(X <z;Y <y)=P(X < z)P(Y <y).

Now, (b) says that the m-systems w(X) and 7(Y") (see Section 3.13) are
independent. Hence (X)) and (YY) are independent: that is, X and Y are
independent in the sense of Definition 4.1.

In the same way, we can prove that random variables X;,X52,...,X,
are independent if and only if

P(Xy Sz :1<k<n)= [[P(Xk <zu),
k=1

and all the familiar things from elementary theory.
Command: Do Exercise E4.1 now.
4.3. Second Borel-Cantelli Lemma (BC2)
If (En :n €N) is a sequence of independent events, then

S P(E.)=c0 = P(E,, i0.)=P(limsup E,) = 1.
Proof. First, we have

(limsup Ey)¢ = liminf E¢ = U ﬂ E:.

m n>m

With p, denoting P(E,), we have

P(ﬂ Ez) = [T -pn),

n>m n>m

this equation being true if the condition {n > m} is replaced by condition
{r > n > m}, because of independence, and the limit as r T oo being
justified by the monotonicity of the two sides.

Forz >0, 1- 2z <exp(—z), so that, since }_ p, = oo,

H(l-—pn) < exp (-— an) =0.

n>m n>m
So, P [(limsup E,)¢] = 0. a

Exercise. Prove that if 0 < p, < 1and S := " pn < 0o, then [[(1—p,) >
0. Hint. First show that if S < 1, then [I1—pa)>1-S.
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4.4. Example

Let (X, : n € N) be a sequence of independent random variables, each
exponentially distributed with rate 1:

P(X,>z)=e¢"", >0

Then, for a > 0,
P(X, > alogn) =n"9,

so that, using (BC1) and (BC2),

0 ifa>1,

(a0) P(Xn > alogn for infinitely many n) = {1 ifa <1

Now let L := limsup(X,/logn). Then
P(L >1) >P(X, >logn, i.0.) =1,
and, for k € N,
P(L>1+2k"1) <P (X, > (1+Fk1)logn, i.0.) =0.
Thus, {L > 1} =|J,{L > 1+ 2k~1} is P-null, and hence

L =1 almost surely.

Something to think about

In the same way, we can prove the finer result

. _JOo fa>1,
(al) P(X, > logn + aloglogn, i.o. )= {1 o<l

or, even finer,

(a2) P(X, > logn + loglogn + alogloglogn, i.o. )= {(1) gz Z i:

or etc. By combining in an appropriate way (think about this!) the se-
quence of statements (a0),(al),(a2),... with the statement that the union of
a countable number of null sets is null while the intersection of a sequence
of probability-1 sets has probability 1, we can obviously make remarkably
precise statements about the size of the big elements in the sequence (X).

I have included in the appendix to this chapter the statement of a
truly fantastic theorem about precise description of long-term behaviour:
Strassen’s Law.



42 Chapter 4: Independence (4.4)--

A number of exercises in Chapter E are now accessible to you.

4.5. A fundamental question for modelling

Can we construct a sequence (X, : n € N) of independent random variables,
X, having prescribed distribution function F, ¥ We have to be able to answer
Yes to this question - for example, to be able to construct a rigorous model
for the branching-process model of Chapter 0, or indeed for Example 4.4
to make sense. Equation (0.2,b) makes it clear that a Yes answer to our
question is all that is needed for a rigorous branching-process model.

The trick answer based on the existence of Lebesgue measure given
in the next section does settle the question. A more satisfying answer is
provided by the theory of product measure, a topic deferred to Chapter 8.

4.6. A coin-tossing model with applications

Let (22, F,P) be ([0, 1], B[0,1], Leb). For w € 2, expand w in binary:
w = 0wiws...
(The existence of two different expansions of a dyadic rational is not going
to cause any problems because the set D (say) of dyadic rationals in [0, 1]
has Lebesgue measure 0 — it is a countable set!) An an Exercise, you can
prove that the sequence (£, : n € N), where
€n(w) := wp,
is a sequence of independent variables each taking the values 0 or 1 with

probability § for either possibility. Clearly, ({» : n € N) provides a model
for coin tossing,.

Now define
Yi(w) := 0wywsws . . . ,
Y2 (w) := 0uwawswy . . .,
Y3(w) := 0wgwgwys .. .,

and so on. We now need a bit of common sense. Since the sequence
wi,w3,we,...

has the same ‘coin-tossing’ properties as the full sequence (wn : n € N), it
is clear that

Y1 has the uniform distribution on [0, 1];
and similarly for the other Y’s.
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Since the sequences (1,3,6,...), (2,5,9,...), ... which giveriseto ¥1,Y>,... are
disjoint, and therefore correspond to different sets of tosses of our ‘coin’, it
is intuitively obvious that

> Y1,Ya2,... are independent random wvariables, each uniformly dis-
tributed on [0,1].

Now suppose that a sequence (F,, : n € N) of distribution functions
is given. By the Skorokhod representation of Section 3.12, we can find
functions g, on [0, 1] such that

Xp = gn(Yn) has distribution function Fj,.
But because the Y-variables are independent, the same is obviously true of
the X-variables.

> We have therefore succeeded in constructing a family (X, : n € N) of
independent random variables with prescribed distribution functions.

Exercise. Satisfy yourself that you could if forced carry through these
intuitive arguments rigorously. Obviously, this is again largely a case of
utilizing the Uniqueness Lemma 1.6 in much the same way as we did in
Section 4.2.

4.7. Notation: ITID RVs

Many of the most important problems in probability concern sequences of
random variables (RVs) which are independent and identically distributed
(IID). Thus, if (X,) is a sequence of IID variables, then the X, are inde-
pendent and all have the same distribution function F (say):

P(X, < z) = F(z), Vn,Vz.

Of course, we now know that for any given distribution function F,
we can construct a triple (2, F,P) carrying a sequence of IID RVs with
common distribution function F'. In particular, we can construct a rigorous
model for our branching process.

4.8. Stochastic processes; Markov chains

» A stochastic process Y parametrized by a set C is a collection
Y=(Y,:ve€(C)

of random variables on some triple (2, F,P). The fundamental question
about existence of a stochastic process with prescribed joint distributions
is (to all intents and purposes) settled by the famous Daniell-Kolmogorov
theorem, which is just beyond the scope of this course.
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Our concern will be mainly with processes X = (X, : n € Z1) indexed
(or parametrized) by Z+. We think of X, as the value of the process X at
time n. For w € Q, the map n — X,(w) is called the sample path of X
corresponding to the sample point w.

A very important example of a stochastic process is provided by a
Markov chain.

Let E be a finite or countable set. Let P = (pij : i,j € E) be a stochastic
E x E matrix, so that for z,j € E, we have

pij >0, D pix=1
k

Let 1 be a probability measure on E, so that u is specified by the values
pi := u({i}), (i € E). By a time-homogeneous Markov chain Z = (Zn, :n €
Zt) on E with initial distribution p and 1-step transition matriz P is meant
a stochastic process Z such that, whenever n € Z* and 19,?;,...,in € E,

(a) P(Zo =10; 21 = 11}...34n = in) = HigPigiy +++Pin_1in-

Exercise. Give a construction of such a chain Z expressing Z,,(w) explicitly
in terms of the values at w of a suitable family of independent random
variables. See the appendix to this chapter.

4.9. Monkey typing Shakespeare

Many interesting events must have probability 0 or 1, and we often show
that an event F' has probability 0 or 1 by using some argument based on

independence to show that P(F)? = P(F).

Here is a silly example, to which we apply a silly method, but one
which both illustrates very clearly the use of the monotonicity properties
of measures in Lemma 1.10 and has a lot of the flavour of the Kolmogorov
0-1 law. See the ‘Easy exercise’ towards the end of this section for an
instantaneous solution to the problem.

Let us agree that correctly typing WS, the Collected Works of Shake-
speare, amounts to typing a particular sequence of N symbols on a type-
writer. A monkey types symbols at random, one per unit time, producing
an infinite sequence (X, ) of IID RVs with values in the set of all possible
symbols. We agree that

e := inf{P(X1 = z) : z is a symbol} > 0.

Let H be the event that the monkey produces infinitely many copies of WS.
Let H be the event that the monkey will produce at least k copies of WS in
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et
all, and let H,, i be the ;si‘:abability that it will produce at least k copies by
time m. Finally, let H(™ be the event that the monkey produces infinitely
many copies of WS over the time period [m + 1,00).

Because the monkey’s behaviour over [1,m] is independent of its be-
haviour over [m + 1,00), we have

P(Hmx N H™) = P(H,, )P(H™).
But logic tells us that, for every m, H(™) = H! Hence,
P(HnxNH)=P(Hpi)P(H).

But, as m T oo, Hpx 1 Hi, and (Hnx N H) T (Hx N H) = H, it being
obvious that Hy O H. Hence, by Lemma 1.10(a),

P(H) = P(H,)P(H).
However, as k T co, Hy | H, and so, by Lemma 1.10(b),
P(H) =P(H)P(H),
whence P(H) =0 or 1.

The Kolmogorov 0-1 law produces a huge class of important events E
for which we must have P(E) = 0 or P(E) = 1. Fortunately, it does not tell
us which — and it therefore generates a lot of interesting problems!

Easy exercise. Use the Second Borel-Cantelli Lemma to prove that P(H) =
1. Hint. Let E; be the event that the monkey produces WS right away,
that is, during time period [1, N]. Then P(E;) > &V.

Tricky exercise ( to which we shall return). If the monkey types only
capital letters, and is on every occasion equally likely to type any of the 26,
how long on average will it take him to produce the sequence

‘ABRACADABRA’?

The next three sections involve quite subtle topics which take time to as-
similate. They are not strictly necessary for subsequent chapters. The
Kolmogorov 0-1 law is used in one of our two proofs of the Strong Law for
IID RVs, but by that stage a quick martingale proof (of the 0-1 law) will
have been provided.

Note. Perhaps the otherwise-wonderful TEX makes its 7 too like Z. Below,
I use K instead of Z to avoid the confusion. Script X, X, is too like Greek
chi, x, too; but we have to live with that.
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4.10. Definition. Tail o-algebras

Let X;,X32,... be random variables. Define

(a) Tp = 0(Xn11,Xn42,.-. ), T :=[]Tn.

The o-algebra T is called the tail o-algebra of the sequence (X, : n € N).

Now, 7 contains many important events: for example,

(b1) Fy := (lim X} exists) := {w: liinXk(w) exists},
(b2) F, := (Z X converges),
(b3) F; .= (lim X1+ % : o+ Xk exists) .

Also, there are many important variables which are in m7: for example,

Xi+Xp+- -+ Xk
k ?

(c) €1 := lim sup

which may be *o00, of course.:

Exercise. Prove that Fy, F; and Fj are are 7 -measurable, that the event
H in the monkey problem is a tail event, and that the various events of
probability 0 and 1 in Section 4.4 are tail events.

Hint — to be read only after you have already tried hard.

Look at Fj for example. For each n, logic tells us that F3 is equal to the set

Xop1(w) + -+ Xnyk(w)
k

F™ = {w: liin exists}.
Now, X,,+1, Xn42,... are all random variables on the triple (2, 7,,,P). That
Fgf") € 7, now follows from Lemmas 3.3 and 3.5.

4.11. THEOREM. Kolmogorov’s 0-1 Law

Let (X, : n € N) be a sequence of independent random variables,
and let T be the tail o-algebra of (X, : n € N). Then T is P-trivial:
that is, ~
()FeT = PF)=0o0rP(F)=1,

(i) of € is a T -measurable random variable, then, £ is almost deter-
ministic in that for some constant ¢ in [—o0, 00},

P({=c)=1.
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We allow £ = to0 at (ii) for obvious reasons.

Proof of (1). Let
Xpi=0(X1,...,Xn), Tni=0(Xnt1,Xn42,...).

Step 1: We claim that X, and 7T,, are independent.

Proof of claim. The class K of events of the form
{w:Xi(w)<zi:1<k<n}, z;€RU{co}
is a m-system which generates X,,. The class J of sets of the form
{w:Xjw)<zj:n+1<j<n+r}, reN, z; €RU{oo}

is a m-system which generates 7,,. But the assumption that the sequence
(X&) is independent implies that X and J are independent. Lemma 4.2(a)
now clinches our claim.

Step 2: X,, and T are independent.

This is obvious because 7 C 7,,.

Step 3: We claim that Xoo := 0(Xy : n € N) and T are independent.

Proof of claim. Because X, C X,41, Vn, the class Koo 1= |J&n is a 7-
system (it is generally NOT a o-algebra!) which generates Xo,. Moreover,
Ko and T are independent, by Step 2. Lemma 4.2(a) again clinches things.

Step 4.
Since T C X, T is independent of 7! Thus,

FeT = P(F)=P(FNF)=P(F)P(F),
and P(F) =0 or 1. O

Proof of (ii). By part (i), for every z in R,
P<z)=0orl
Let ¢ := sup{z : P(§ £ z) = 0}. Then, if ¢ = —o0, it is clear that
P(£ = —00) = 1; and if ¢ = o0, it is clear that P(£{ = c0) = 1.
So, suppose that ¢ is finite. Then P(¢ < ¢ —1/n) = 0,Vn, so that

| P(He<e-1/nh) =P <o) =0,
while, since P(§ < ¢+ 1/n) = 1,Vn, we have

P(ME<c+1/n})=PE <o) =1.
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Hence, P({ =¢) = 1. O
Remarks. The examples in Section 4.10 show how striking this result is.
For example, if X1, X2,... i3 a sequence of independent random variables,
then

either P(Z X, converges) = 0
or P(Z X, converges) = 1.

The Three Series Theorem (Theorem 12.5) completely settles the question
of which possibility occurs.

So, you can see that the 0-1 law poses numerous interesting questions.

Example. In the branching-process example of Chapter 0, the variable
My :=lim Z,/u"

is measurable on the tail o-algebra of the sequence (Z,, : n € N) but need
not be almost deterministic. But then the variables (Z, : n € N) are not
independent.

4.12. Exercise/Warning

Let Yo, Y:,Y3,... be independent random variables with
P(Y,=41)=P(Y,=-1)=1%, Vn.
For n € N, define
X, :=Y11...Y,.
Prove that the variables X;, X5,... are independent. Define
YV:=0ln,Y2,...), T,:=0(X;:7>n).

L:=(o(V,To)#0 (y,ﬂ:rn) =R.

n

Prove that

Hint. Prove that Yy € mL and that Y; is independent of R.

Notes. The phenomenon illustrated by this example tripped up even Kol-
mogorov and Wiener. The very simple illustration given here was shown to
me by Martin Barlow and Ed Perkins. Deciding when we can assert that
(for Y a o-algebra and (7,,) a decreasing sequence of o-algebras )

e Tw)=0 (y,ﬂf.,)

n

is a tantalizing problem in many probabilistic contexts.



Chapter 5
Integration

5.0. Notation, etc. u(f) :=: [ fdu, p(f;A)

Let (S, %, 1) be a measure space. We are interested in defining for suitable
elements f of m¥ the (Lebesgue) integral of f with respect to u, for which
we shall use the alternative notations:

u(f) =t [5 f(s)u(ds) =: [5 fdp.

It is worth mentioning now that we shall also use the equivalent nota-
tions for 4 € X:

Ja f(s)u(ds) :=: [, fdu :=: u(f; A) := u(fla)

(with a true definition on the extreme right!) It should be clear that, for
example,

p(f; f 2 x) = p(f; A), where A ={s € S: f(s) 2 z}.

Something else worth emphasizing now is that, of course, summation s

a special type of integration. If (a, : n € N) is a sequence of real numbers,
then with § =N, ¥ = P(N), and u the measure on (5, X) with p({k}) =1
for every k in N, then s + a, is y-integrable if and only if 3 |a.| < oo, and

then
Zanz/asu(ds)z/adu.
S S

We begin by considering the integral of a function f in (mX)*, allowing
such an f to take values in the extended half-line [0, 00].

49
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5.1. Integrals of non-negative simple functions, SF+

If A is an element of T, we define

po(La) = () < oo,
The use of po rather than u signifies that we currently have only a naive

integral defined for simple functions.

An element f of (mX)7 is called simple, and we shall then write f €
SF¥, if f may be written as a finite sum

(a) f= ZakIAk
k=1

where ai € [0, 00] and Ax € . We then define
(b) po(f) = Zak,u(Ak) <oo  (with 0,00 :=0=: 00.0).

The first point to be checked is that po(f) is well-defined; for f will have
many different representations of the form (a), and we must ensure that
they yield the same value of po(f) in (b). Various desirable properties also
need to be checked, namely (c), (d) and (e) now to be stated:

(c) if f,g € SF* and pu(f # g) = 0 then uo(f) = po(9);
(d) (‘Linearity’) if f,¢g € SF* and ¢ > 0 then f + g and cf are in SFT,

and

po(f +9) = po(f) + po(9),  po(cf) = cpo(f);
(e) (Monotonicity) if f,g € SF* and f < g, then uo(f) < po(g);
(f) if f,g € SF* then fAgand fV garein SF*.

Checking all the properties just mentioned is a little messy, but it in-
volves no point of substance, and in particular no analysis. We skip this, and
turn our attention to what matters: the Monotone-Convergence Theorem.

5.2. Definition of u(f), f € (mX)*
»For f € (mX)* we define

(a) p(f) :=sup{uo(h) : h € SF*,h < f} < oo,

Clearly, for f € SF+, we have u(f) = po(f)-

The following result is important.
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LEMMA
»(b) If f € (mX)* and u(f) =0, then

p({f >0})=0.

Proof. Obviously, {f > 0} =1 lim{f > n~!}. Hence, using (1.10,a), we see
that if u({f > 0}) > 0, then, for some n, u({f > n~'}) > 0, and then

1(f) 2 po(n ' Igs>1/a)) > 0. O

5.3. Monotone-Convergence Theorem (MON)

»(a) If (fn) is a sequence of elements of (mX)* such that f, T f,
then

#(fa) T u(f) < o0,

or, in other notation,
[ w1 [ souas).
S s

This theorem is really all there is to integration theory. We shall see that
other key results such as the Fatou Lemma and the Dominated-Convergence
Theorem follow trivially from it.

The (MON) theorem is proved in the Appendix. Obviously, the the-
orem relates very closely to Lemma 1.10(a), the monotonicity result for
measures. The proof of (MON) is not at all difficult, and may be read once
you have looked at the following definition of a(").

It is convenient to have an explicit way given f € (mX)* of obtaining
a sequence f(") of simple functions such that f(") 1 f. For r € N, definé the

rth staircase function a(" : [0, 00] — [0, o] as follows:
0 if z =0,

(b) a(z):=S (i-1)27" f(i-1)2""<z<i2"<r (i€eN),
r ifz>r.

Then (") = a(" o f satisfies f() € SF*, and f(") 1 f so that, by (MON),

p(f) =1 lim p(f) =1 Lim po (7).
We have made a(") left-continuous so that if f, T f then a("(f,) T a()(f).
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Often, we need to apply convergence theorems such as (MON) where
the hypothesis (f, T f in the case of (MON)) holds almost everywhere
rather than everywhere. Let us see how such adjustments may be made.

(c) If f,g € (mE)*t and f =g (a.e.), then p(f) = u(g).
Proof. Let f() =a(M o f, ¢ = al” og. Then f = g(" (a.e.) and so,
by (5.1,¢c), u(f) = 1(g™). Now let r T oo, and use (MON). O

(d)  If f € (mE)* and (fn) is o sequence in (mX)t such that, ezcept on
a p-null set N, fo T f. Then

p(fa) T 1(f).
Proof. We have pu(f) = u(fls\n) and p(fn) = p(fals\n). But fals\n 1
fIs\n everywhere. The result now follows from (MON). O

From now on, (MON) is understood to include this extension. We do not
bother to spell out such extensions for the other convergence theorems,
often stating results with ‘almost everywhere’ but proving them under the
assumption that the exceptional null set is empty.

Note on the Riemann integral

If, for example, f is a non-negative Riemann integrable function on ([0, 1],
B[0,1], Leb) with Riemann integral I, then there exists an increasing se-
quence (Ly) of elements of SF* and a decreasing sequence (U, ) of elements

of SF* such that
L.TLLf, UnlUZ>Ff

and u(Lp) TI, uw(Uys) | 1. If we define
_ {L if L=U,

f= 0 otherwise,

then it is clear that f is Borel measurable, while (since u(L) = u(U) = 1)
{f # f} is a subset of the Borel set {L # U} which Lemma 5.2(b) shows
to be of measure 0. So f is Lebesgue measurable (see Section Al.11)
and the Riemann integral of f equals the integral of f associated with
([0,1], Led[0, 1], Leb), Leb[0, 1] denoting the o-algebra of Lebesgue measur-
able subsets of [0,1].

5.4. The Fatou Lemmas for functions

(a) (FATOU) For a sequence (fp) in (mE)*,

p(liminf f,) < liminf u(f,).
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Proof. We have
(*) limninf fn =1limgg, where gx :=inf,>; fn.
For n > k, we have f,, > gi, so that u(fn) > u(gx), whence
ulgw) < inf u(fa);
and on combining this with an application of (MON) to (*), we obtain

pliminf fu) =T lim p(gx) <7 lim inf u(fn)
=: liminf u(fy). O

Reverse Fatou Lemma

»(b)  If (fn) 18 a sequence in (mE) such that for some g in (mX)*, we
have f, < g,Vn, and u(g) < oo, then

p(limsup fr) > limsup p(fr).

Proof. Apply (FATOU) to the sequence (g — frn). O

5.5. ‘Linearity’
For a, € Rt and f,g € (mX)*t,

plaf + Bg) = ap(f) + Bu(g) (£ o).

Proof. Approximate f and g from below by simple functions, apply (5.1,d)
to the simple functions, and then use (MON). O

5.6. Positive and negative parts of f

For f € mX, we write f = f* — f—, where
f(s) := max(£(s),0), f~(s):=max(—f(s),0).

Then f+, f~ € (mE)*, and |f] = f+ + f~.
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5.7. Integrable functio‘n, LS, %, 1)
»For f € mX, we say that f is u-integrable, aﬂd write
- feLlNS,Z,p)
if
p(1fD) = p(fF) +u(f7) < oo,

and then we define

/ fdp = u(f) = p(F*) — u(F").

Note that, for f € £L1(S, I, u),
> - (O] = w(£1),

the familiar rule that the modulus of the integral is less than or equal to the
integral of the modulus.

We write £1(5,Z, u)* for the class of non-negative elements in £1(S, X, ).

5.8. Linearity
Fora,B € R and f,g9 € LS, I, u),
af + fg € LY(S,Z, 1)

and

plaf + Bg) = ap(f) + Bu(g)-

Proof. This is a totally routine consequence of the result in Section 5.5. []

5.9. Dominated-Convergence Theorem (DOM)

> Suppose that f,, f € mX, that f,(s) — f(s) for every s in S and that
the sequence (fn) is dominated by an element g of L1(S, X, u)*:

[fn(8)l < g(s), VseS,VneN,
where pu(g) < co. Then
fu = f in LNS, S, 1) that is, (| fa — f]) = O,

whence

p#(fn) = u(f)-

Command: Do Exercise E5.1 now.



..(5.11) Chapter 5: Integration 55

Proof. We have |f, — f| < 2g, where p(2¢) < 00, so by the reverse Fatou
Lemma 5.4(b),

lim sup (| fu — 1) < plimsup |fu — f1) = (0) = 0.
Since

1(fn) = p()] = 1u(Fn = )] < 1 = 1),

the theorem is proved.

5.10. Scheffé’s Lemma (SCHEFFE)

»(i)  Suppose that fo, f € LY(S,Z, u)*; in particular, f, and f are non-
negative. Suppose that f, — f (a.e.). Then

(| fu = f1) = 0 if and only if p(fn) — u(f)-
Proof. The ‘only if’ part is trivial.

Suppose now that

(2) p(fa) = u(f)-
Since (fn — f)~ < f, (DOM) shows that

(b) w((fa—f)")—0.
Next,

u((fn — f)+) =p(fa—Ffifa 2 f)
= p(fa) = u(f) —p(fn = fi fu < f)-
But
lu(fn = fifu <AL < |p((fa = £)7) = 0
so that (a) and (b) together imply that

(c) w(fa =) — 0.
Of course, (b) and (c) now yield the desired result. O

Here is the second part of Scheffé’s Lemma.
»(ii)  Suppose that fn, f € L}(S,Z, ) and that f, — f (a.e.). Then
i(1fa — 1) = 0 if and only if u(|fal) = u(If1)-

Exercise. Prove the ‘if’ part of (ii) by using Fatou’s Lemma to show that
u(fE) — p(f*), and then applying (i). Of course, the ‘only if’ part is
-trivial.

5.11. Remark on uniform integrability

The theory of uniform integrability, which we shall establish later for proba-
bility triples, gives better insight into the matter of convergence of integrals.
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5.12. The standard machine

What I call the standard machine is a much cruder alternative to the
Monotone-Class Theorem.

The idea is that to prove that a ‘linear’ result is true for all functions
h in a space such as £1(S, X, u),

e first, we show the result is true for the case when h is an indicator
function — which it normally is by definition;

e then, we use linearity to obtain the result for 4 in SF7;

next, we use (MON) to obtain the result for A € (mX)*, integrability
conditions on h usually being superfluous at this stage;

finally, we show, by writing h = ht — A~ and using linearity, that
the claimed result is true.

It seems to me that, when it works, it is easier to ‘watch the standard
machine work’ than to appeal to the monotone-class result, though there are
times when the greater subtlety of the Monotone-Class Theorem is essential.

5.13. Integrals over subsets

Recall that for f € (mX)*, we set, for A € T,

/A fdu =2 u(f; 4) = (L),

If we really want to integrate f over A, we should integrate the restriction
fla with respect to the measure p 4 (say) which is p restricted to the measure
space (A,X4), L4 denoting the o-algebra of subsets of 4 which belong to
Y. So we ought to prove that

(a) pa(fla) = u(f; A).
The standard machine does this. If f is the indicator of a set B in A, then

both sides of (a) are just u(A N B); etc. We discover that for f € mX, we
have fla € mX¥ 4; and then

fla € LY(A, 4, p4) if and only if f14 € L1(S, 5, p),

in which case (a) holds.
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5.14. The measure fu, f € (mX)*

Let f € (mE)*. For A € T, define

(=) (F1(A) 1= (F14) = p(f1a).

A trivial Exercise on the results of Section 5.5 and (MON) shows that
(b) (fun) is @ measure on (S, L).

For h € (mX)*, and A € £, we can conjecture that

(c) (R(fm))A) = (fu)(hl4) = u(fhla)-

If h is the indicator of a set in I, then (c) is immediate by definition. Our
standard machine produces (c), so that we have

(d) h(fu) = (hf)n-
Result (d) is often used in the following form:

(e) if f € (mX)t and h € (mX), then h € L1(S,Z, fu) if and only if
fh € LY(S,3, p) and then (fu)(h) = p(fh).

Proof. We need only prove this for £ > 0 in which case it merely says that
the measures at (d) agree on S. O

Terminology, and the Radon-Nikodym theorem

If A denotes the measure fu on (S, L), we say that A has density f relative
to u, and express this in symbols via

d\/dp = f.
We note that in this case, we have for F' € X:
(f) pu(F) = 0 implies that A(F") = 0;

so that only certain measures have density relative to u. The Radon-
Nikodym theorem (proved in Chapter 14) tells us that

(g) if p and X are o-finite measures on (S,X) such that (f) holds, then
A = fu for some f € (mX)*.



Chapter 6
Expectation

6.0. Introductory remarks

We work with a probability triple (Q, F,P), and write L" for LT(Q, F,P).
Recall that a random variable (RV) is an element of mF, that is an F-
measurable function from 2 to R.

Ezpectation is just the integral relative to P.

Jensen’s inequality, which makes critical use of the fact that P(Q) = 1, is
very useful and powerful: it implies the Schwarz, Holder, ... inequalities for
general (S, %, u). (See Section 6.13.)

We study the geometry of the space £2(2, F,P) in some detail, with a view
to several later applications.

6.1. Definition of expectation

For a random variable X € £! = L}(Q,F,P), we define the ezpectation
E(X) of X by

E(X) := /Q XdP = /Q X (w)P(dw).

We also define E(X) (< o) for X € (mF)*. In short, E(X) = P(X).

That our present definitions agree with those in terms of probability
density function (if it exists) etc. will be confirmed in Section 6.12.

6.2. Convergence theorems

Suppose that (X, ) is a sequence of RVs, that X is a RV, and that X, —» X

almost surely:

P(X, - X)=1

We rephrase the convergence theorems of Chapter 5 in our new notation:

58
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»»(MON) if 0 < Xp T X, then E(Xn) T E(X) < oo;
»»(FATOU) if X, > 0, then E(X) < Liminf E(X,);
»(DOM) if | X, (w)] £ Y(w) V(n,w), where E(Y) < oo, then

E(|1Xn - X[) =0,

30 that
E(X,) — E(X);

»(SCHEFFE) if E(|X.|) = E(|X]), then

E(IXn - XD — 0;

»»(BDD) if for some finite constant K, |Xp(w)| < K,V(n,w), then

>

E(|X. — X]) — 0.

The newly-added Bounded Convergence Theorem (BDD) is an imme-
diate consequence of (DOM), obtained by taking Y (w) = K, Vw; because
of the fact that P(Q) = 1, we have E(Y) < oo. It has a direct elementary
proof which we shall examine in Section 13.7; but you might well be able
to provide it now.

As has been mentioned previously, uniform integrability is the key con-
cept which gives a proper understanding of convergence theorems. We shall
study this, via the elementary (BDD) result, in Chapter 13.

6.3. The notation E(X;‘F)
For X € L! (or (mF)*) and F € F, we define
E(X;F) = [p X(w)P(dw) := E(XIF),

where, as ever,
Ip(w) = 1 ifweF,
F7=10 ifwg F

Of course, this tallies with the u(f; 4) notation of Chapter 5.

6.4. Markov’s inequality

Suppose that Z € mF and that g : R — [0, 00] is B-measurable and non-
decreasing. (We know that g(Z) =go Z € (mF)*.) Then

Eg(Z2) 2E(9(Z2);Z 2 ¢) 2 g(c)P(Z = c).
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Examples: for Z € (mF)*, cP(Z > c) < E(Z), (c > 0),

for X € £, cP(|X]|=¢) <E(X]) (¢>0).
» Considerable strength can often be obtained by choosing the optimum 8 for
cin

> P(Y > c) < e %E(efY), (6 >0, cé€R).

6.5. Sums of non-negative RVs

We collect together some useful results.

(a) If X € (mF)*t and E(X) < oo, then P(X < o0o0) = 1. This is obvious.
»(b) If (Zi) is a sequence in (mF)*t, then

EQ Zi) =) E(Z) < oo

This is an obvious consequence of linearity and (MON).

»(c) If (Zi) is a sequence in (mF)* such that > E(Zi) < oo, then
3" Zk < oo (as.) and so Zx — 0 (a.s.)

This is an immediate consequence of (a) and (b).

(d) The First Borel-Cantelli Lemma is a consequence of (c). For suppose
that (F%) is a sequence of events such that > P(Fi) < co. Take Zy = Ip,.
Then E(Zx) = P(F}) and, by (c),

> Ir, = number of events F} which occur
is a.s. finite.

6.6. Jensen’s inequality for convex functions

»A function ¢ : G — R, where G is an open subinterval of R, is called
convex on G if its graph lies below any of its chords: for z,y € G and
0<p=1-¢<1,

c(pz + qy) < pe(z) + ge(y).
It will be explained below that c is automatically continuous on G. If ¢ is
twice-differentiable on G, then c is convex if and only if ¢’ > 0.

»Important examples of convez functions: |z|,z%,e% (4 € R).
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THEOREM. Jensen’s inequality

Suppose that ¢ : G — R is a convez function on an open subinterval
G of R and that X is a random variable such that

E(|X]) < oo, P(X € G) =1, Ele(X)| < o0.

Then
Ec(X) 2 ¢(E(X)).

Proof. The fact that c is convex may be rewritten as follows: for v,v,w € G
with u < v < w, we have

Ay y < Ayw, where Ay o = f—(v—g————:z@

It is now clear (why?!) that c is continuous on G, and that for each v in G
the monotone limits

(D-c)(v) :=T li%n Auy,v, (D4c)(v) :=] liin Ay w

exist and satisfy (D_c)(v) < (D4c)(v). The functions D_c and D..c are
non-decreasing, and for every v in G, for any m in [(D-c)(v), (D+c)(v)] we

have
c(z) 2 m(z —v) + c(v), r€QG.

In particular, we have, almost surely, for y := E(X),

o(X) 2m(X —u) +c(p), me [(D-c)(u),(D+ec)(p)]

and Jensen’s inequality follows on taking expectations. ]
Remark. For later use, we shall need the obvious fact that

() fz) = :telg[(D—C)(Q)(z —q)+e(g)] = sgp(an:v +b.) (z€G)

for some sequences (a,) and (b,,) in R. (Recall that ¢ is continuous.)

6.7. Monotonicity of £L? norms

»»For 1 < p < oo, we say that X € LP = LP(Q,F,P) if

E(1X|?) < oo,
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and then we define
- 1
> I X1, := {E(JX|P)}*.
The monotonicity property referred to in the section title is the following:

»(a)if 1<p<r<ooandY € L7, then Y € L? and

1Yl < Y]l

» Proof. For n € N, define
Xn(w) := {|Y(w)| A n}?.

Then X, is bounded so that X,, and X,r,/p are both in £1. Taking ¢(z) =
z"/? on (0, 00), we conclude from Jensen’s inequality that

(EXn)"/? <E(X[/P) = E[([Y]| An)"] < E(JY]).

Now let n T oo and use (MON) to obtain the desired result. O

Note. The proof is marked with a » because it illustrates a simple but
effective use of truncation.

Vector-space property of L?
(b)  Since, for a,b € Rt, we have

(a + b)? < [2max(a,b)]? < 2P(a? + bP),
L? 13 obviously a vector space.

6.8. The Schwarz inequality
»(a) If X and Y are in L2, then XY € £, and

[E(XY)| S E(IXY]) < [ X]2AY [l2-

Remark. You will have seen many versions of this result and of its proof
before. We use truncation to make the argument rigorous.

Proof. By considering |X| and |Y| instead of X and Y, we can and do
restrict attention to the case when X >0, Y > 0.
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Write X, := X An, Y, :=Y An, so that X, and Y,, are bounded. For any
a,b € R,
0 < E[(aX, + bY,)?]

= a?E(X2) + 2abE(XnYa) + B'E(YD),

and since the quadratic in a/b (or b/q, or...) does not have two distinct real
roots,

{2E(X,Ya)}? <4E(X2)E(Y?) < 4E(XHE(Y?).
Now let n T oo using (MON). O

The following is an immediate consequence of (a):

(b) if X and Y are in L%, then so is X +Y, and we have the triangle law:

IX +Yll2 < 1 X1z + Y2

Remark. The Schwarz inequality is true for any measure space — see Sec-
tion 6.13, which gives the extensions of (a) and (b) to L?.

6.9. £?: Pythagoras, covariance, etc.

In this section, we take a brief look at the geometry of £2 and at its con-

nections with probabilistic concepts such as covariance, correlation, etc.

Covariance and variance

If X,Y € £?, then by the monotonicity of norms, X,Y € £!, so that we
may define

px :=E(X), upy:=EY).
Since the constant functions with values ux, uy are in £2, we see that

(a) X:=X-pux, Y:=Y—py
are in £2. By the Schwarz inequality, XY € £!, and so we may define
(b) Cov(X,Y) i= E(X¥) = E[(X — ux)(¥ — piy)]

The Schwarz inequality further justifies expanding out the product in the
final [ ] bracket to yield the alternative formula:

(c) Cov(X,Y) =E(XY) — uxuy.
As you know, the variance of X is defined by
(d)  Var(X) = E[(X - px)?] = E(X?) — i = Cov(X, X).
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Inner product, angle

For U,V € L2, we define the inner (or scalar) product
© U, V) = EOV),

and if ||U]|2 and ||V]|2 # 0, we define the cosine of the angle 8 between U
and V by

{U,V)
1UN2liVIl2

This has modulus at most 1 by the Schwarz inequality. This ties in with
the probabilistic idea of correlation:

(f) cosf =

(g) the correlation p of X and Y is cosa where o 13 the angle between X
and Y.

Orthogonality, Pythagoras theorem

£? has the same geometry as any inner-product space (but see ‘Quotient-
ing’ below). Thus the ‘cosine rule’ of elementary geometry holds, and the
Pythagoras theorem takes the form

(h) U+ VIIl2* = Ull" + [VII" if (U, V) = 0.

If (U,V) =0, we say that U and V are orthogonal or perpendicular, and
write U L V. In probabilistic language, (h) takes the form (with U,V
replaced by X,Y)

(i) Var(X +Y) = Var(X) + Var(Y) if Cov(X,Y)=0.

Generally, for X;, X,,..., X, € £2,

() Var(Xi+Xp+-++Xa) =Y Var(Xy) +2) ZKJ,COV(Xi,Xj)-
k

I have not marked results such as (i) and (j) with » because I am sure that
they are well known to you.

Parallelogram law

Note that by the bilinearity of (-,-),

X)) WH+VIR+|U -V =({U+V,U+V)+ (U -V, U - V)
=2||U|l2* +2|[V|2>.
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Quotienting (or lack of it!): L2
Our space £? does not quite satisfy the requirements for an inner product
space because the best we can say is that (see (5.2,b))

IlU]l2 = 0 if and only if U = 0 almost surely.

In functional analysis, we find an elegant solution by defining an equiv-
alence relation

U ~ V if and only if U = V almost surely

and define L? as ‘L2 quotiented out by this equivalence relation’. Of course,
one needs to check that if for 1 = 1,2, we have ¢; € R and U;, V; € £? with
U; ~V;, then

Uy + Uz ~ 1 Vi + 2V (U, Us) = (W, Va);

that if Uy —» U in £2 and V, ~ U, and V ~ U, then V,, = V in £2; etc.

As mentioned in ‘A Question of Terminology’, we normally do not do
this quotienting in probability theory. Although one might safely do so at
the moderately elementary level of this book, one could not do so at a more
advanced level. For a Brownian motion {B; : t € Rt}, the crucial property
that ¢ — By(w) is continuous would be meaningless if one replaced the true
function B; on 2 by an equivalence class.

6.10. Completeness of L? (1 < p < o)
Let p € [1, 00).

The following result (a) is important in functional analysis, and will
be crucial for us in the case when p = 2. It is instructive to prove it as an
exercise in our probabilistic way of thinking, and we now do so.

(a) If(X,) is a Cauchy sequence in LP in that

sup [ Xr = Xull, =0 (k— o)
r,s>k

then there ezists X in LP such that X, — X in LP:
[ Xr =Xl =0 (r — o).
Note. We already know that £? is a vector space. Property (a) is important

in showing that £? can be made into a Banach space L? by a quotienting
technique of the type mentioned at the end of the preceding section.
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Proof of (a). We show that X may be chosen to be an almost sure limit of
a subsequence (Xk,, ).

Choose a sequence (k, : n € N) with k, T oo such that
(s> k) = [Xo—X,|, <27
Then

E(I'an+1 - an l) = ”an+1 - Xku ”1 S

I‘Yk - Xku"? < 2-—n’

n41

so that
E Z | X by — Xka| < 00.

Hence it is almost surely true that the series

Z(X kn41 — Xk,) converges
(even absolutely!), so that

lim X, (w) exists for almost all w.

Define
X(w) := limsup Xj, (w), Vw.
Then X is F-measurable, and X;, — X, a.s.

Suppose that n € N and r > k,. Then, for N3¢ > n,
E(1Xr — Xi IP) = | X7 — Xi [[,” <2777,
so that on letting ¢t T 0o and using Fatou’s Lemma, we obtain
E(|X, — X|P) <2772,

Firstly, X, — X € LP?, so that X € LP. Secondly, we see that, indeed,
Xy — X in LP. i

Note. For an easy exercise on L? convergence, see £EA13.2.
)

6.11. Orthogonal projection

The result on completeness of £LP obtained in the previous section has a
number of important consequences for probability theory, and it is perhaps
as well to develop one of these while Section 6.10 is fresh in your mind.

I hope that you will allow me to present the following result on orthog-
onal projection as a piece of geometry for now, deferring discussion of its
central réle in the theory of conditional ezpectation until Chapter 9.

We write || - || for || - ||2 throughout this section.
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THEOREM

> Let K be a vector subspace of L2 which is complete in that whenever
(V) 13 a sequence in K which has the Cauchy property that

sup [[Ve= Vil >0 (k — oo),

ra>
then there exists a V in K such that
Vo =V]| -0 (n — o0).
Then given X in L2, there ezists Y in K such that

() IX = Y| = A:=if{||X - W| : W € K},

(ii) X-Y 12 VZeK.

Properties (1) and (i) of Y in K are equivalent and if Y shares either
property (i) or (ii) with Y, then

|V —Y||=0 (equivalently, Y =Y, as.).

Definition. The random variable Y in the theorem is called a version of
the orthogonal projection of X onto K. If Y is another version, thenY =Y,
a.s.

Proof. Choose a sequence (¥;) in K such that
| X — Y| — A.
By the parallelogram law (6.9,k),
IX = Y||* + | X = Ya||? = 2|X — 3(¥; + Ya)|I* + 2[|3(Yr - Ya)|I%.
But (Y +Y,) € K, so that || X — {(Y; +Y})||? > A% It is now obvious
that the sequence (Y},) has the Cauchy property so that there exists a Y in

K such that
Y. = Y| — 0.

Since (6.8,b) implies that || X —Y|| < | X = Yx| + ||¥Yn = Y|, it is clear that

IX - Y| = A,
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For any Z in K, we have Y +tZ € K for t € R, and so
IX —Y —¢Z|> 2 | X - Y%,

whence

_94(Z,X - Y) + 2] 2|2 > .

This can only be the case for all ¢ of small modulus if

(Z,X —Y)=0. O

Remark. The case to which we shall apply this theorem is when K has the
form £2(Q, G,P) for some sub-o-algebra G of F.
6.12. The ‘elementary formula’ for expectation

Back to earth!

Let X be a random variable. To avoid confusion between different L’s,
let us here write Ax on (R, B) for the law of X:

Ax(B) :=P(X € B).

LEMMA
> Suppose that h is a Borel measurable function from R to R. Then
h(X) € LY(Q,F,P) if and only if h € LY(R,B,Ax)
and then
(a) ER(X) = Ax(h) = / h(z)Ax (dz).
R

Proof. We simply feed everything into the standard machine.

Result (a) is the definition of Ax if h = Ig (B € B). Linearity then
shows that (a) is true if k is a simple function on (R, B). (MON) then implies
(a) for h a non-negative function, and linearity allows us to complete the
argument. O

Probability density function (pdf)

We say that X has a probability density function (pdf) fx if there exists a
Borel function fx : R — [0, c0] such that

(b) P(X €B) = /B fx(z)dz,  Be€B.
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Here we have written dz for what should be Leb(dz). In the language of
Section 5.12, result (b) says that Ax has density fx relative to Leb:

dA x
aLeb = 1%

The function fx is only defined almost everywhere: any function a.e. equal
to fx will also satisfy (b) ‘and conversely’.

The above lemma extends to
E(Jh(X)]) < oo if and only if [ |h(z)|fx(z)dz < oo

and then

ERCY) = [ h(a)fx(o)ds,

6.13. Holder from Jensen

The truncation technique used to prove the Schwarz inequality in Section
6.8 relied on the fact that P(2) < oo. However, the Schwarz inequality is
true for any measure space, as is the more general Holder inequality.

We conclude this chapter with a device (often useful) which yields the
Holder inequality for any (S, X, 1) from Jensen’s inequality for probability
triples.

Let (S, %, #) be a measure space. Suppose that
> p>landp!44¢7 =1
Write f € LP(S,Z, ) if f € m¥ and u(|f|P) < oo, and in that case define

I1£lp == {u(1£F17)} /2.

THEOREM
Suppose that f,g € LP(S,X,u), h € LI(S,Z,u). Then
»(a) (Holder’s inequality) fh € L1(S,Z, 1) and

lu(fR)l < u(lfRD) < NflpllRllgs

»(b) (Minkowski’s inequality)

I +9lls < 51l + llgll,-
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Proof of (a). We can obviously restrict attention to the case when
f,h >0and u(fP)> 0.
With the notation of Section 5.14, define

__ fru
Pi= p(fr)’

so that P is a probability measure on (S, X). Define

__JRr(s)/f(s)P1 if f(s) >0,
u(s) = {o( ) if f(s) = 0.

The fact that P(u)? < P(u?) now yields

#(IfR1) < Fll R s>03lla < N FlllRllg- =

Proof of (b). Using Holder’s inequality, we have

p(If +9l”) = p(FIf + 9P~ + ulgllf + gP71)
< Ifll4 +llgll»4,

where

A= |If + 9Pl = u(lf + gIP)*/9,

and (b) follows on rearranging. (The result is non-trivial only if f,g € L?,
and in that case, the finiteness of A follows from the vector-space property

of LP.) O



Chapter 7
An Easy Strong Law

7.1. ‘Independence means multiply’ - again!
THEOREM

> Suppose that X and Y are independent RVs, and that X and Y are
both in LY. Then XY € L' and

E(XY) = E(X)E(Y).
In particular, if X and Y are independent elements of L%, then

Cov(X,Y) =0 and Var(X +Y) = Var(X) + Var(Y).

Proof. Writing X = X+ — X~ etc., allows us to reduce the problem to the
case when X > 0 and Y > 0. This we do.

But then, if a{") is our familiar staircase function, then

oaN(X) =Y als, oNY)=) bls

where the sums are over finite parameter sets, and where for each ¢ and j,

A; (in 0(X)) is independent of B; (in o(Y")). Hence
Ela?(X)a"(Y)] =Y "> a:ib;P(4i n B,)
| =) > aib;P(4)P(B;) = E[(D(X)E[a(Y)].

Now let r T 0o and use (MON). (]

Remark. Note especially that if X and Y are independent then X € £!
and Y € £! imply that XY € £!. This is not necessarily true when X and

71
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Y are not independent, and we need the inequalities of Schwarz, Holder, etc.
It is important that independence obviates the need for such inequalities.

7.2. Strong Law — first version

The following result covers many cases of importance. You should note that
though it imposes a ‘finite 4" moment’ condition, it makes no assumption
about identical distributions for the (X, ) sequence. It is remarkable that
so fine a result has so simple a proof.

THEOREM

Suppose that Xy,X,... are independent random variables, and that
for some constant K in [0, c0),

E(Xx) =0, E(X;) <K, Vk.
Let S, =X1+Xo+---+ X,. Then
P(n"!'S, — 0) =1,
or again, Sp,/n — 0 (a.s.).
Proof. We have
E(Sp) = E[(X1 + Xp + -+ + Xa)!]
= E(; Xt+6> Zi<jX,?X}),
because, for distinct 7, 7,k and [,
E(X:iX}) =E(XiX?Xi) = E(X:X; X X)) = 0,
using independence plus the fact that E(X;) = 0. [Note that, for example,

the fact that E(X}) < oo implies that E(X?}) < 0o, by the ‘monotonicity of
LP norms’ result in Section 6.7. Thus X; and X? are in £1.]

We know from Section 6.7 that
[E(X)))? <E(X{) <K, Vi
Hence, using independence again, for i # j,

E(X?X?) = E(XP)E(X}) < K.
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Thus
E(S2) < nK + 3n(n — 1)K < 3Kn?,

and (see Section 6.5)
EZ:(.’:"',,/n)4 <3K Z n"? < oo,
so that Y~(Sn/n)? < o0, a.s., and

Sp/n— 0, as. O

Corollary. If the condition E(X)) = 0 in the theorem is replaced by
E(Xi) = p for some constant p, then the theorem holds with n=1S, — u
(a.s.) as its conclusion.

Proof. It is obviously a case of applying the theorem to the sequence (Y%),
where Y} := Xy — u. But we need to know that

(a) sup E(YY) < oo.

This is obvious from Minkowski’s inequality

Xk — pella < N1 Xklla + ]

(the constant function 1 on Q having £* norm |z|). But we can also prove
(a) immediately by the elementary inequality (6.7,b). O

The next topics indicate a different use of variance.

7.3. Chebyshev’s inequality
As you know this says that for ¢ > 0, and X € L2,

EP(X —pl > ¢) < Var(X),  po=E(X)
and it is obvious.
Example. Consider a sequence (X, ) of IID RVs with values in {0,1} with

p=P(X,=1)=1-P(X, =0). ’
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Then E(X,) = p and Var(X,) = p(1 — p) < . Thus (using Theorem 7.1)
Spi=X1+Xo+---+ X,
has expectation np and variance np(1 — p) < n/4, and we have
E(n™18,) =p, Var(n~!'S,)=n"?Var(S,) < 1/(4n).
Chebyshev’s inequality yields
P(Jn~'S, —p| > 6) £ 1/(4né*).

7.4. Weierstrass approximation theorem

If f is a continuous function on [0,1] and € > 0, then there exists a
polynomial B such that

sup |B(z) - f(2)| < e.
z€[0,1)

Proof. Let (Xx), Sn etc. be as in the Example in Section 7.3. You are well
aware that

P[S, = k] = (Z)pk(l —p)"* 0<k<n.

Hence
Bu(p) = Ef075w) = Y a0} ) pH(1 =
k=0

the ‘B’ being in deference to Bernstein.

Now f is bounded on [0,1], |f(y)| < K, Vy € [0,1]. Also, f is uniformly
continuous on [0,1]: for our given ¢ > 0, there exists § > 0 such that

(a) |z — y| < 6 implies that |f(z) — f(y)] < ie.
Now, for p € [0, 1],
|Bn(p) — f(p)| = |E{f(n7'Sa) = F(P)}I.

Let us write Y, := |f(n™1S,) — f(p)] and Z,, := |n~1S,, — p|- Then Z, < §
implies that Y, < i¢, and we have

1Bu(p) — £(p)| < E(Ya)
=E(Y,;Z, <6)+E(Y,;Z, > 6)
1eP(Z, < 8)+2KP(Z, > §)
le +2K/(4né%).
Earlier, we chose a fixed § at (a). We now choose n so that
2K/(4né?) < ie.
Then |Bn(p) — f(p)| <, for all p in [0,1]. O

Now do Exercise E7.1 on inverting Laplace transforms.

A IA



Chapter 8
Product Measure

8.0. Introduction and advice

One of this chapter’s main lessons of practical importance is that an ‘in-
terchange of order of integration’ result

/51 (‘/;;2 f(sl,sz)M(dsz))ﬂl(dsx) = /S2 (/Sl f(Sl,Sg)yl(dgl))u2(ds2)

is always valid (both sides possibly being infinite) if f > 0; and is
valid for ‘signed’ f (with both repeated integrals finite) provided
that one (then the other) of the integrals of absolute values:

[51 (/S2 lf(sl,sz)lﬂz(dsz))ﬂl(d.ﬂ) = ./S, (/91 |f(31,82)|ul(dsl))#z(d32)

is finite.

It is a good idea to read through the chapter to get the ideas, but you are
strongly recommended to postpone serious study of the contents until a later
stage. Except for the matter of infinite products, it is all a case of relentless
use of either the standard machine or the Monotone-Class Theorem to prove
intuitively obvious things made to look complicated by the notation. When
you do begin a serious study, it is important to appreciate when the more
subtle Monotone-Class Theorem has to be used instead of the standard
machine.

8.1. Product measurable structure, ¥; x X,

Let (51,%1) and (S2, X2) be measurable spaces. Let .S denote the Cartesian
product S := 57 %X S2. Fori = 1,2, let p; denote the ith coordinate map, so
that

p1(31,82) ‘= 81, P2(31,32) = 82.

75
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The fundamental definition of ¥ = £; X X; is as the o-algebra

»>(a) Z = a(p1,p2)-
Thus ¥ is generated by the sets of the form

p'l—l(Bl)-"'-—B] X S (B1 EE])
together with sets of the form
p;l(Bz) = S] X Bz (Bz € 22)

Generally, a product o-algebra is generated by Cartesian products in
which one factor is allowed to vary over the o-algebra corresponding to that
factor, and all other factors are whole spaces. In the case of our product of
two factors, we have

(b) (B] X 52) N (51 X Bz) = B1 X B2
and you can easily check that
(c) I ={B; xB;:B; €%}

is a w-system generating ¥ = X; x L,. A similar remark would apply for
a countable product [[X,, but you can see that, since we may only take
countable intersections in analogues of (b), products of uncountable families
of o-algebras cause problems. The fundamental definition analogous to (a)
still works.

LEMMA
(d)  Let H denote the class of functions f : S — R whick are in bX and

which are such that
for each sy in Sy, the map sy +— f(s1,52) 18 Lo-measurable on S,,

for each sy in Sa, the map sy +— f(s1,32) is £;-measurable on S;.

Then H = bX.

Proof. It is clear that if A € T, then I4 € H. Verification that H satisfies the
cc?nditions (i)-(iii) of the Monotone-Class Theorem 3.14 is straightforward.
Since ¥ = ¢(T), the result follows. 0
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8.2. Product measure, Fubini’s Theorem

We continue with the notation of the preceding Section. We suppose that
for : = 1,2, u; is a finite measure on (S;,3;). We know from the preceding
Section that for f € bX, we may define the integrals

I{(31)==/S f(s1,82)p2(ds2), 15(32)27-/; f(s1,82)p1(dsy).

LEMMA
Let H be the class of elements in bY such that the following property
holds:
I/(-) € bE; and IJ(-) € bE; and
[ s = [ Hsm(ds)
51 52
Then H = bX.

Proof. If A € Z, then, trivially, I4 € H. Verification of the conditions of
Monotone-Class Theorem 3.14 is straightforward. O

For F' € ¥ with indicator function f := If, we now define

WPy i= [ Homs) = [ Hlsuadse)

Fubini’s Theorem

The set function p i3 a measure on (S, %) called the product mea-
sure of uy and pz and we write p = yy X pp and

(S,Esli) = (S],Z],/Ll) X (521221ﬂ2)'
Moreover, u is the unique measure on (S, L) for which
(a) n(Ar X A2) = p1(Ar)p2(A42),  Ai € L

If f € (mX)*, then with the obvious definitions of I{,I{, we have

(b) Cu(f) = /S 1 (s1)a(dsy) = /S 1 (s2 ez (ds2),
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in [0,00]. If f € mXE and pu(|f]) < oo, then equation (a) is valid (with all
terms in R).

Proof. The fact that u is a measureis a consequence of linearity and (MON).
The fact that u is then uniquely specified by (a) is obvious from Uniqueness
Lemma 1.6 and the fact that o(Z) = X.

Result (b) is automatic for f =14, where A € . The Monotone-Class
Theorem shows that it is therefore valid for f € b¥, and in particular for
f in the SF* space for (S,X, u). (MON) then shows that it is valid for
f € (mX)*; and linearity shows that (b) is valid if u(]f|) < oo.

Extension

> All of Fubini’s Theorem will work if the (S;,Z;, ui) are o-finite mea-
sure spaces:

We have a unique measure y on (.5, ¥) satisfying (a), etc., etc. We can prove
this by breaking up o-finite spaces into countable unions of disjoint finite

blocks.

Warning

The o-finiteness condition cannot be dropped. The standard example is the
following. Fori = 1,2, take S; = [0,1] and £; = BJ[0, 1]. Let u; be Lebesgue
measure and let po just count the number of elements in a set. Let F be
the diagonal {(z,y) € S1 X S2 : z = y}. Then (check!) F € X, but

(s1)=1, I(s2)=0
and result (b) fails, stating that 1 = 0.

Something to think about

So, our insistence on beginning with bounded functions on products of fi-
nite measures was necessary. Perhaps it is worth emphasizing that in our
standard machine, things work because we can use indicator functions of
any set in our o-algebra, whereas when we can only use indicator functions
of sets in a m-system, we have to use the Monotone-Class Theorem. We
cannot approximate the set F' in the Warning example as

F =1lmF,,

where each F,, is a finite union of ‘rectangles’ A; x Az, each A4; being in
B[o,1].
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A simple application
Suppose that X is a non-negative random variable on (Q, F,P). Consider
the measure y := P x Leb on (2, F) x ([0, o), B[0, 00)). Let
A:={(w,z):0<z < X(w)}, h:=1I4.

Note that A is the ‘region under the graph of X’. Then

(W) =Xw), I(z)=P(X2=a2)
Thus
(c) W) =EX) = [ P(X 2 2)ds,

[0,00

dz denoting Leb(dr) as usual. Thus we have obtained one of the well-known
formulae for E(X') and also interpreted the integral E(X) as ‘area under the
graph of X°.

Note. It is perhaps worth remarking that the Monotone-Class Theorem,
the Fatou Lemma and the reverse Fatou Lemma for functions amount to
the corresponding results for sets applied to regions under graphs.

8.3. Joint laws, joint pdfs

Let X and Y be two random variables. The (joint) law Lx,y of the pair
(X,Y) is the map
Lx,y : B(R) x B(R) — [0, 1]

defined by
Lxy(T):=P[(X,Y)eT].

The system {(—o0,z] X (—00,y] : z,y € R} is a n-system which generates
B(R) x B(R). Hence L,y is completely determined by the joint distribution
Fx y of X and Y which is defined via

Fxy(z,y) :=P(X <Y <y).
We now know how to construct Lebesgue measure
p = Leb x Leb on (R, B(R))%.

We say that X and Y have joint probability density function (joint pdf)
fx,y on R% if for I € B(R) x B(R),

P[(X,Y) €T] = /F oy (2u(dz)
= [ [ @iy
RJR
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etc., etc., (Fubini’s Theorem being used in the last step(s)). Fubini’s The-
orem further shows that

fx(z) i= /R Fxv(z,y)dy

acts as a pdf for X (Section 6.12), etc., etc. You don’t need me to tell you
any more of this sort of thing.
8.4. Independence and product measure

Let X and Y be two random variables with laws Lx, Ly respectively and
distribution functions Fx, Fy respectively. Then the following three state-
ments are equivalent:

(1) X and Y are independent,
(ii) Lx,y = Lx x Ly;
(iil) Fx,y(z,y) = Fx(z)Fy(y);
moreover, if (X,Y) has ‘joint’ pdf fx y then each of (i)-(iii) is equivalent to
(iv) fx,v(z,y) = fx(z)fy(y) for Leb x Leb almost every (z,y).

You do not wish to know more about this either.

8.5. B(R)" = B(R")

Here again, things are nice and tidy provided we work with finite or count-
able products, but require different concepts (such as Baire o-algebras) if
we work with uncountable products.

B(R™) is constructed from the topological space R"®. Now, if p; : R* —
R is the ** coordinate map:

pi(z1,22,...,20) = zi,
then p; is continuous, and hence B(R")-measurable. Hence
B" :=: B(R)* =o(p; : 1 <1< n)C B(R™).

On the other hand, B(R") is generated by the open subsets of R®, and every
such open subset is a countable union of open ‘hypercubes’ of the form

IT (ai,)
1<k<n

and such products are in B(R)". Hence, B(R") = B(R)". O

In probability theory it is almost always product structures B™ which
feature rather than B(R"). See Section 8.8.
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8.6. The n-fold extension

So far in this chapter, we have studied the product measure space of two
measure spaces and how this relates to the study of two random variables.
You are more than able to ‘generalize’ ‘from two to n’ from your experi-
ence of similar things in other branches of mathematics. You should give
some thought to the associativity of the ‘product’ in product measure space,
something again familiar in analogous contexts.

8.7. Infinite products of probability triples

This topic is not a trivial extension of previous results. We concentrate on a
restricted context (though an important one) because it allows us to get the
main idea in a clear fashion; and extension to infinite products of arbitrary
probability triples is then a purely routine exercise.

Canonical model for a sequence of independent RVs

Let (A, : n € N) be a sequence of probability measures on (R,B). We
already know from the coin-tossing trickery of Section 4.6 that we can con-
struct a sequence (X, ) of independent RVs, X, having law A,. Here is a
more elegant and systematic way of doing this.

THEOREM
Let (A, : n € N) be a sequence of probability measures on (R, B).

Define
o= ][R

neEN

so that a typical element w of Q is a sequence (wy) in R. Define
Xn:Q2—-R, Xn(w) :=wpy,

and let F := o(X, : n € N). Then there ezists a unique probability
measure P on (Q, F) such that for r € N and By, B,,...,B, € B,

(a) p (H Bk) x[R] = T A«Bw-

1<k<r k>r 1<k<r

We write

(@,7,P) = ][ (R,B,A,).
neN

Then the sequence (X, : n € N) is a sequence of independent RVs
on (2,F,P), X, having law A,,.
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Remarks. (i) The uniqueness of P follows in the usual way from Lemma
1.6, because product sets of the form which appear on the left-hand side of
(2) form a m-system generating F.

(ii) We could rewrite (a) more neatly as

P(T] Bi) = J] A(Bs).

keN kEN

To see this, use the monotone-convergence property (1.10,b) of measures.

Proof of the theorem is deferred to the Appendix to Chapter 9.

8.8. Technical note on the existence of joint laws

Let (Q,F), (S1,Z1) and (S2,%2) be measurable spaces. For: = 1,2, let
X; : Q — S; be such that X,-"1 : X; — F. Define

S = 51 X 52, 3= 21 X 22, X(w) = (Xl(w),Xz(w)) € S.

Then (Exercise) X~ ! : ¥ — F, so that X is an (5, X)-valued random
variable, and if P is a probability measure on 2, we can talk about the law
p of X (equals the joint law of X; and X;) on (S,E): p =PoX~1 on L.

Suppose now that S; and S, are metrizable spaces and that ¥; = B(S;)
(i = 1,2). Then S is a metrizable space under the product topology. If S;
and Sz are separable, then ¥ = B(S), and there is no ‘conflict’. However,
if 51 and S, are not separable, then B(.S) may be strictly larger than ¥, X
need not be an (5, B(S))-valued random variable, and the joint law of X}
and X3 need not exist on (5, B(S)).

It is perhaps as well to be warned of such things. Note that the sepa-
rability of R was used in proving that B(R") C B™ in Section 8.5.



PART B: MARTINGALE THEORY

Chapter 9
Conditional Expectation

9.1. A motivating example

Suppose that (2, F,P) is a probability triple and that X and Z are random
variables,

X taking the distinct values z1,z2,...,2Zm,
Z taking the distinct values 2, 22,..., 2.

Elementary conditional probability:
P(X =2i|Z = z2j) :==P(X =245 Z = 2;)[P(Z = zj)
and elementary conditional expectation:
E(X|Z =2zj)=) =:P(X =2:|Z = z;)

are familiar to you. The random variable ¥ = E(X|Z), the conditional
expectation of X given Z, is defined as follows:

(a) if Z(w) = zj, then Y(w) := E(X|Z = z;) =: y; (say).

It proves to be very advantageous to look at this idea in a new way.
‘Reporting to us the value of Z(w)’ amounts to partitioning § into ‘Z-atoms’
on which Z is constant:

Q Z=21 Z“—‘Zz Z=Zn

The o-algebra G = 0(Z) generated by Z consists of sets {Z € B}, B € B,
and therefore consists precisely of the 2" possible unions of the n Z-atoms.
It is clear from (a) that Y is constant on Z-atoms, or, to put it better,

(b) Y is G-measurable.

83
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Next, since Y takes the constant value y; on the Z-atom {Z = z;j }, we have:

[ Y@= yp(z =)= Y P = ilZ = 5)P(2 = )
{Z=z} ;

2
=Y sP(X =252 =1z)= / X dP.
i {Z=2z;}

If we write Gj = {Z = z;}, this says E(Ylg;) = E(XIg; ). Since for every
G in G, I is a sum of Ig,’s, we have E(Yg) = E(XIg), or

(©) / YdP = / XdP, VG eG.
G G

Results (b) and (c) suggest the central definition of modern probability.

9.2. Fundamental Theorem and Definition (Kolmogorov, 1933)

> Let (2, F,P) be a triple, and X a random variable with E(|X|) < oo.
Let G be a sub-c-algebra of F. Then there erists a random variable
Y such that

(a) Y is G measurable,
(b) E(IY]) < oo,

(c)  for every set G in G (equivalently, for every set G in some
n-system which contains Q and generates G ), we have

/YdP=/XdP, VG € gG.
G G

Moreover, if Y is another RV with these properties then Y =Y, a.s.,
that is, P[Y = Y] = 1. 4 random variable Y with properties (a)-(c)
is called a version of the conditional expectation E(X|G) of X
given G, and we write Y = E(X|G), a.s.

Two versions agree a.s., and when one has become familiar with the
concept, one identifies different versions and speaks of the conditional ex-
pectation E(X|G). But you should think about the ‘a.s.” throughout this

course.

The theorem is proved in Section 9.5, except for the 7-system assertion
which you will find at Exercise E9.1.

»Notation. We often write E(X|Z) for E(X|0(Z)), E(X|Z1,2,,...) for
E(X|o(Z,,2,,...)), etc. That this is consistent with the elementary usage
is apparent from Section 9.6 .below.
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9.3. The intuitive meaning

An experiment has been performed. The only information available to you
regarding which sample point w has been chosen is the set of values Z(w)
for every G-measurable random variable Z. Then Y (w) = E(X|G)(w) is the
expected value of X (w) given this information. The ‘a.s.” ambiguity in the
definition is something one has to live with in general, but it is sometimes
possible to choose a canonical version of E(X|G).

Note that if G is the trivial o-algebra {§, 2} (which contains no infor-
mation), then E(X|G)(w) = E(X) for all w.

9.4. Conditional expectation as least-squares-best predictor

> If E(X?) < oo, then the conditional ezpectation Y = E(X|G) is
a version of the orthogonal projection (see Section 6.11) of X onto
£%(Q,G,P). Hence, Y is the least-squares-best G-measurable pre-
dictor of X: amongst all G-measurable functions (i.e. amongst all
predictors which can be computed from the available information), Y
minimazes

E[(Y — X)?].

No surprise then that conditional expectation (and the martingale the-
ory which develops it) is crucial in filtering and control — of space-ships, of
industrial processes, or whatever.

9.5. Proof of Theorem 9.2

The standard way to prove Theorem 9.2 (see Section 14.14) is via the Radon-
Nikodym theorem described in Section 5.14. However, Section 9.4 suggests a
much simpler approach, and this is what we now develop. We can then prove
the general Radon-Nikodym theorem by martingale theory. See Section
14.13.

First we prove the almost sure uniqueness of a version of E(X|G). Then
we prove the existence of E(X|G) when X € £2?; and finally, we prove the
existence in general.

Almost sure uniqueness of E(X|G)

Suppose that X € £! and that Y and Y are versions of E(X|G). Then
Y,Y € £Y(Q,G,P), and

E(Y -Y;G)=0, VGeg.
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Suppose that Y and Y are not almost surely equal. We may assume that
the labelling is such that P(Y > ¥) > 0. Since

(Y >V +n "} 1{Y >7),

we see that P(Y =V > n~1) > 0 for some n. But the set {Y — Y >n-1})
i1s in G, because Y and Y are G-measurable; and

EY -V;Y -V >n )>n"1P(Y =Y >n"1) >0,

a contradiction. Hence Y = Y, a.s. O

Existence of E(X|G) for X € L?

Suppose that X € £2 := L%(2, F,P). Let G be a sub-o-algebra of F, and
let X := LY(G) := L%(Q,G,P). By Section 6.10 applied to G rather than
F, we know that K is complete for the £2 norm. By Theorem 6.11 on
orthogonal projection we know that there exists Y in X = £%(G) such that

(a) E[(X - Y)’] = inf{E[(X - W)*]: W € L*(G)},

(b) (X —-Y,Z)=0, VZin L*G).

Now, if G € G, then Z :=1g € L%(G) and (b) states that
E(Y;G) =E(X;G).

Hence Y i3 a version of E(X |G), as required.

Existence of E(X]|G) for X € [!

By splitting X as X = X+ — X_, we see that it is enough to deal with the
case when X € (£!)*. So assume that X € (£1)*. We can now choose
bounded variables X, with 0 < X,, T X. Since each X, is in £2, we can
choose a version Y, of E(X,|G). We now need to establish that

(c) it is almost surely true that0 <Y, T.

We prove this in a moment. Given that (c) is true, we set
Y(w) = limsup Ya(w).
Then Y € mG, and Y, 1Y, a.s. But now (MON) allows us to deduce that
E(Y;G) = E(X;G) (GEeG)

from the corresponding result for Y, and X,,. O
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A positivity result
Property (c) follows once we prove that
(d) if U is a non-negative bounded RV, then
E(UIG) 20, as.
Proof of (d). Let W be a version of E(U|G). If P(W < 0) > 0, then for
some n, the set
G := {W < —n~!} in G has positive probability,

so that
0 < E(U;G) =E(W;G) < —n~'P(G) < 0.

This contradiction finishes the proof. (]

9.6. Agreement with traditional usage

The case of two RVs will suffice to illustrate things. So suppose that X and
Z are RVs which have a joint probability density function (pdf)

fx,z(z,z).
Then fz(z) = [4 fx,z(z,z)dz acts as a probability density function for Z.
Define the elementary conditional pdf fx |z of X given Z via

fx|z(z]2) == {gx,z(m,z)/fz(z) if 1J:Z(Z) # 0;
otherwise.
Let h be a Borel function on R such that

Elh(X)] =/R|h(x)|fx(:c)dx < 00,
where of course fx(z) = [ fx,z(z,2)dz gives a pdf for X. Set

o(z) = /R h(z) fx 2(z]2)da.

Then Y := ¢(Z) 1s a version of the conditional ezpectation of h(X) given
a(Z).

Proof. The typical element of ¢(Z) has the form {w : Z(w) € B}, where
B € B. Hence, we must show that

(a) L = E[W(X)I5(2)] = Elg(2)15(2)] =: R.
But -
L= //h(x)IB(z)fx,z(z,z)dzdz, R = /g(z)IB(z)fZ(z)dz,
and result (a) follows from Fubini’s Theorem. O

Some of the practice i3 given in Sections 15.6-15.9, which you can look
at now.



88 Chapter 9: Conditional Ezpectation (9.7)..

»9.7. Properties of conditional expectation: a list

These properties are proved in Section 9.8. All X’s satisfy E(|X]) < oo in
this list of properties. Of course, G and ‘H denote sub-o-algebras of . (The
use of ‘c’ to denote ‘conditional’ in (¢cMON), etc., is obvious.)

(a) IfY is any version of E(X|G) then E(Y') = E(X). (Very useful, this.)
(b) If X is G measurable, then E(X|G) = X, a.s.

(c) (Linearity) E(a1 X; + a2X3|G) = a,E(X1|G) + a2E(X:|G), a.s.
Clarification: if Y] is a version of E(X;|G) and Y3 is a version of E(X:|G),
then @Y1 + a2 Y3 is a version of E(a; X; + a2X2|G).

(d) (Positivity) If X > 0, then E(X|G) > 0, a.s.

(e) (cMON) If0< X, T X, then E(X,|G) T E(X]G), a.s.

(f) (cFATOU) If X, > 0, then E[liminf X,|G] < liminf E[X.|G], a.s.

(g) (cDOM) If [ X, (w)| £ V(w), Vn, EV < 00, and X,, — X, a.s., then
E(X.|G) — E(X|G), a.s.
(h) (cJENSEN) If ¢ : R — R is convex, and E|c(X)| < oo, then
Ele(X)IG] 2 c(E[X]G]), as.

Important corollary: ||[E(X|G)|l, < | X]|, for p > 1.

(i) (Tower Property) If H is a sub-o-algebra of G, then
E[E(X|G)|H] = E[X|H], a.s.
Note. We shorthand LHS to E[X|G|H] for tidiness.

(j) (‘Taking out what is known’) If Z is G-measurable and bounded,
then

(*) E[ZX|G] = ZE[X|G], as.
Ifp>1,p +¢ ' =1, X € LP(QF,P) and Z € £LI(R,G,P), then (*)

again holds. If X € (mF)*, Z € (mG)*, E(X) < 00 and E(ZX) < oo,
then (*) holds.

(k) (Rdle of independence) If ¥ is independent of o(a(X),G), then
E[X|o(G, H)] = E(X]|G), as.

In particular, if X is independent of H, then E(X|H) = E(X), a.s.
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9.8. Proofs of the properties in Section 9.7

Property (a) follows since E(Y;Q) = E(X;),  being an element of G.
Property (b) is immediate from the definition, as is Property (c) now that
its Clarification has been given.

Property (d) is not obvious, but the proof of (9.5,d) transfers immedi-
ately to our current situation.

Proof of (¢). If 0 < X, T X, then, by (d), if, for each n, Y, is a version of
E(X.|G), then (a.s.) 0 <Y, 1. Define Y :=limsupY,. Then Y € mG, and
Y, 1Y, a.s. Now use (MON) to deduce from

E(Y,;G) =E(X.;G), VGE€G,

that E(Y; G) = E(X;G), VG € G. (Of course we used a very similar argu-
ment in Section 9.5.) O

Proof of (f) and (g). You should check that the argument used to obtain
(FATOU) from (MON) in Section 5.4 and the argument used to obtain
(DOM) from (FATOU) in Section 5.9 both transfer without difficulty to
yield the conditional versions. Doing the careful derivation of (cFATOU)
from (¢cMON) and of (cDOM) from (cFATOU) is an essential exercise for
you. O

Proof of (h). From (6.6,a), there exists a countable sequence ((an,bn)) of
points in R? such that

c(z) = sup(asz +b,), = €R.

For each fixed n we deduce via (d) from ¢(X) > a,X + b, that, almost
surely,

(%) E[c(X)|G] > anE[X]|G] + bn.

By the usual appeal to countability, we can say that almost surely (**) holds
simultaneously for all n, whence, almost surely,

E[c(X)|G] = sup(anE[X|G] + bn) = c(E[X]G]). O]
Proof of corollary to (h). Let p > 1. Taking ¢(z) = |z|P, we see that

E(|X|?P|G) > [E(X|G)I?, as.
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Now take expectations, using property (a). O

Property (i) is virtually immediate from the definition of conditional
expectation.

Proof of (j). Linearity shows that we can assume that X > 0. Fix a version
Y of E(X]|G), and fix G in G. We must prove that
if Z is G-measurable and appropriate integrability conditions hold,
then

(¥**) E(ZX;G) = E(ZY;G).

We use the standard machine. If Z is the indicator of a set in G, then (***)
is true by definition of the conditional expectation Y. Linearity then shows

that (***) holds for Z € SF*(Q,G,P). Next, (MON) shows that (***)
is true for Z € (mG)* with the understanding that both sides might be
infinite.

All that is necessary to establish that property (j) in the table is correct
is to show that under each of the conditions given, E(|ZX|) < oo. This
is obvious if Z is bounded and X is in £!, and follows from the Holder
inequality if X € £LP and Z € £9 wherep > 1 and p~! + ¢! = 1. O

Proof of (k). We can assume that X > 0 (and E(X) < o). For G € G and
H € H, XIg and H are independent, so that by Theorem 7.1,

E(X; Gn H) = E[(XIG)IH] = E(XIG)P(H).

Now if ¥ = E(X|G) (a version of), then since Y is G-measurable, YIg is
independent of H so that

E[(YIe)Ix] = E(Y1G)P(H)

and we have

E[X;GNnH]=E[Y;Gn H].

Thus the measures
F— E(X; F), F - E(Y; F)

on o(G,H) of the same finite total mass agree on the 7-system of sets of the
form GNH (G € G,H € 'H), and hence agree everywhere on o(G, H). This
1s exactly what we had to prove. O
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9.9. Regular conditional probabilities and pdfs
For F € F, we have P(F) = E(Ir). For F € ¥ and G a sub-o-algebra of F,

we define P(F|G) to be a version of E(IF|G).

By linearity and (¢cMON), we can show that for a fized sequence (F,) of
disjoint elements of F, we have

(a) P(JF.l6) =) P(F.lg), (as)

Except in trivial cases, there are uncountably many sequences of disjoint
sets, so we cannot conclude from (a) that there exists a map

P(-,): Q@ xF — [0,1)
such that

(bl) for F € F, the function w — P(w, F') is a version of P(F|G);
(b2) for almost every w, the map

F s P(w, F)

18 a probability measure on F.

If such a map exists, it is called a regular conditional probability given G. It
is known that regular conditional probabilities exist under most conditions
encountered in practice, but they do not always exist. The matter is too
technical for a book at this level. See, for example, Parthasarathy (1967).

Important note. The elementary conditional pdf fx|z(z|z) of Section 9.6
is a proper — technically, regular - conditional pdf for X given Z in that
for every A in B,

w / fx|z(z|Z(w))dz is a version of P(X € A|Z).
A

Proof. Take h = 14 in Section 9.6. O

9.10. Conditioning under independence assumptions

Suppose that » € N and that X;,X,,...,X, are independent RVs, X
having law Ax. If h € bB" and we define (for ; € R)

(2) *(21) = E[h(z1, X2, X3,. .., X})],
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then
(b) Y*(X1) 1s a version of the conditional expectation

E[h(XlaX21 oo ’Xr)IXI]'

Two proofs of (b). We need only show that for B € B,
(c) E[A(X1,X2,..., X )I5(X1)] = E[v*(X1)Is(X1))-
We can do this via the Monotone-Class Theorem, the class H of h satisfying
(c) contains the indicator functions of elements in the 7-system of sets of
the form

By x By x...x B, (Bk € B),
etc., etc. Alternatively, we can appeal to the r-fold Fubini Theorem,; for (c)
says that

/ h(.’l})IB(.’Bl)(AI X A2 X... X Ar)(dz) = / ’}’h(:t] )IB(SL'I)AI(d.’El),
zERrT r1€ER
where

yh(zy) = / h(z1,y) (A2 X ... x A )(dy). O
yGRr—l

9.11. Use of symmetry: an example

Suppose that X, X,,... are IID RVs with the same distribution as X, where
E(|X]) < co. Let S, := X3 + X5 +--- + X,,, and define

g,, = U(Sn, Sn+1, .o .) = O'(Sn,Xn+1,Xn+2, .o .)‘
We wish to calculate
E(Xl Ign)a
for very good reasons, as we shall see in Chapter 14. Now 0(X 41, Xn+t2,...)
is independent of o(X;,S,) (which is a sub-o-algebra of o(X1,...,X,)).
Hence, by (9.7,k),
E(X1|Gn) = E(X1]|Sn).
But if A denotes the law of X, then, with s, denoting z; + z3 + -+ + .,
we have

E(Xl; Sn € B)
- / .. / 21A(dz1)A(dzs) .. . A(dzn)
s, EB
= E(X2; 5, € B) = --- =E(X,;Sn € B).
Hence, almost surely, .
E(X1[Sa) = -+ = E(XalS0)

=nTE(Xy + -+ + Xn|Sp) = n718,.



Chapter 10
Martingales

10.1. Filtered spaces
» As basic datum, we now take a filtered space (2, F,{F,},P). Here,
(2, F,P) is a probability triple as usual,

{Fn :n >0} is a filtration, that is, an increasing family of sub-

o-algebras of F:
FoCFH C...CF.

We define

Foo = a(Uf',.) CF.

Intuitive idea. The information about w in  available to us at (or, if you
prefer, ‘just after’) time n consists precisely of the values of Z(w) for all F,
measurable functions Z. Usually, {F,} is the natural filtration

fn =0’(W0,W1,...,Wn)

of some (stochastic) process W = (W, : n € Z%), and then the information
about w which we have at time n consists of the values.

Wu(w), W] (w), e ooy Wn(w).

10.2. Adapted process

»A process X = (X, : n > 0) is called adapted (to the filtration {F,}) if for
each n, X,, is F,-measurable.

Intuitive idea. If X is adapted, the value X, (w) is known to us at time n.
Usually, Fn = U(Wo, W],. “ey Wn) and Xn = fn(WO, Wl,. .oy Wn) for some
B"t1l_measurable function f, on R**+1,

93
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10.3. Martingale, supermartingale, submartingale
»A process X is called a martingale (relative to ({F,},P)) if
(i) X is adapted,
(i)  E(|Xal) < oo, Vn,
(i) E[Xn|Fa-1] = Xn-1, as. (n21).

A supermartingale (relative to ({F,},P)) is defined similarly, except that
(iii) is replaced by

E[Xn|Fa-1] £ Xn-1, as. (n > 1),
and a submartingale is defined with (iii) replaced by
E[Xn]fn_ﬂ 2 Xn—l, a.s. (n Z 1)

A supermartingale ‘decreases on average’; a submartingale ‘increases on
average'! [Supermartingale corresponds to superharmonic: a function f on
R™ is superharmonic if and only if for a Brownian motion B on R® | f(B)
is a local supermartingale relative to the natural filtration of B. Compare
Section 10.13.]

Note that X is a supermartingale if and only if —X is a submartingale,
and that X is a martingale if and only if it is both a supermartingale and
a submartingale. It is important to note that a process X for which X, €
£1(Q, Fo,P) is a martingale [respectively, supermartingale, submartingale]
if and only if the process X — Xy = (X, — Xp : n € Z%) has the same
property. So we can focus attention on processes which are null at 0.

> If X is for example a supermartingale, then the Tower Property of
CEs, (9.7)(i), shows that for m < n,

< Xn, as.

10.4. Some examples of martingales

As we shall see, it is very helpful to view all martingales, supermartingales
and submartingales in terms of gambling. But, of course, the enormous
importance of martingale theory derives from the fact that martingales crop
up in very many contexts. For example, diffusion theory, which used to
be studied via methods from Markov-process theory, from the theory of
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partial differential equations, etc., has been revolutionized by the martingale
approach.

Let us now look at some simple first examples, and mention an inter-
esting question (solved later) pertaining to each.

(a) Sums of independent zero-mean RVs. Let X;,X>,... be a sequence
of independent RVs with E(|X]) < oo, Vk, and

E(X:) =0, Vk.
Define (Sp := 0 and)

Sn = Xl +X2 ++Xn’
Fni=o(X1,Xoy s Xn),  For={0,9}.

Then for n > 1, we have (a.s.)

E(SalFa-1) © E(Snc1|Fact) + E(XnlFaci)
(lf—":k) Sn—l + E(Xn) = Sn—l-

The first (a.s.) equality is obvious from the linearity property (9.7,c). Since
Sn—1is Fn—1-measurable, we have E(S,—1|Fn-1) = Sn—1 (a-s.) by (9.7,b);
and since X, is independent of F,_;, we have E(X,|F,—1) = E(X,) (a.s.)
by (9.7,k). That must explain our notation!

Interesting question: when does lim S, exist (a.s.)? See Section 12.5.

(b) Products of non-negative independent RVs of mean 1. Let
X1,X2,... be a sequence of independent non-negative random variables
with

E(Xx)=1, Vk.

Define (My := 1, Fo := {0,Q} and)
M, =X X,...X,, Fri=0(X1,X2,...,Xn).
Then, for n > 1, we have (a.s.)
E(Mnl}-n—l) = E(M —Ianfn—l)(é')Mn—lE(Xn|fn-—l)
DM, EXn) = My,

so that M is a martingale.
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It should be remarked that such martingales are not at all artificial.

Interesting question. Because M is a non-negative martingale, Mo =
lim M,, exists (a.s.); this is part of the Martingale Convergence Theorem
of the next chapter. When can we say that E(My ) = 17 See Sections 14.12
and 14.17.

(c) Accumulating data about a random variable. Let {F,} be our
filtration, and let £ € L1(Q,F,P). Define M, := E({|F,) (‘some version
of’). By the Tower Property (9.7,i), we have (a.s.)

E(Mnlfn—l) = E(ﬂfnl}—n—l) = E(ﬂfn—l) = Mn_1.

Hence M is a martingale.

Interesting question. In this case, we shall be able to say that
Mn — Mm = E(lflfoo), a.s.,

because of Lévy’s Upward Theorem (Chapter 14). Now M, is the best
predictor of € given the information available to us at time n, and M, is the
best prediction of £ we can ever make. When can we say that § = E(¢|Fw),
a.s? The answer is not always obvious. See Section 15.8.

10.5. Fair and unfair games
Think now of

Xn — Xn_1 as your net winnings per unit stake in gamen (n > 1)

in a series of games, played at times n = 1,2,.... There is no game at time
0.

In the martingale case,
(a) E[Xna—Xn_1|Fa-1]=0, (game series is fair),
and in the supermartingale case,
(b) E[X,—Xn_1|Fa-1] <0, (game series is unfavourable to you).
Note that (a) [respectively (b)] gives a useful way of formulating the mar-
tingale [supermartingale] property of X.
10.6. Previsible process, gambling strategy
»We call a process C = (C, : n € N) previsible if
Chn is Fn_1 measurable (n > 1).
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Note that C has parameter set N rather than Z*: C, does not
exist.

Think of C, as your stake on game n. You have to decide on the value
of C, based on the history up to (and including) time n — 1. This is the
intuitive significance of the ‘previsible’ character of C. Your winnings on
game n are Cp(X, — X,—1) and your total winnings up to time n are

Y, = Z Cr(Xx — Xp—1) =: (C 0 X)p.

1<k<n
Note that (C e X)o = 0, and that
Yn - Y;x—l = Cn()(n - Xn—l)-

The expression C o X, the martingale transform of X by C, is the
discrete analogue of the stochastic integral [CdX. Stochastic-integral
theory is one of the greatest achievements of the modern theory of proba-
bility.

10.7. A fundamental principle: you can’t beat the system!

»(1) Let C be a bounded non-negative previsible process so that, for some
K in [0,00), |Cn(w)| < I for every n and every w. Let X be a super-
martingale [respectively martingale]. Then CeX is a supermartingale
[martingale] null at 0.

(i) If C is a bounded previsible process and X is a martingale, then
(C e X) is a martingale null at 0.

(iii) In (i) and (ii),the boundedness condition on C may be replaced by the
condition C, € L2,Yn, provided we also insist that X, € L2,Vn.

Proof of (1). Write Y for C @ X. Since C, is bounded non-negative and
Fn—1 measurable,

E[Yn - Yn—llfn—ll (—i-) CnE[Xn - )(n—llfn—ll S 01 [resp. =0]

Proofs of (ii) and (iii) are now cbvious. (Look again at (9.7,j).) O

10.8. Stopping time
AmapT:Q — {0,1,2,...;00} is called a stopping time if,
»>(a) {T<n}={w:T(w) <n} € Fn, Vn<oo,



98 Chapter 10: Martingales (10.8)..

equivalently,
(b) {T=n}={w:T(w)=n}€F, VYn<oo.

Note that T can be o.
Proof of the equivalence of (a) and (b). If T has property (a), then

{T=n}={T<n}\{T<n-1} € Fu

If T has property (b), then for k < n, {T =k} € Fx C F, and

{T <n}= U {T =k} € Fa.

0<k<n

Intuitive idea. T is a time when you can decide to stop playing our game.
Whether or not you stop immediately after the n*® game depends only on
the history up to (and including) time n : {T =n} € F,.

Example. Suppose that (4,) is an adapted process, and that B € B. Let
T =inf{n > 0: A, € B} = time of first entry of A into set B.

By convention, inf(f)) = oo, so that T = oo if A never enters set B. Obvi-
ously,

{T<n}=|J{A € B} e Fo,

k<n
so that T is a stopping time.
Example. Let L = sup{n : n < 10; A, € B}, sup(§) = 0. Convince
yourself that L is NOT a stopping time (unless A is freaky).
10.9. Stopped supermartingales are supermartingales
Let X be a supermartingale, and let T be a stopping time.

Suppose that you always bet 1 unit and quit playing at (immediately
after) time T. Then your ‘stake process’ is C(T), where, for n € N,

C'(lT) — I{nST}a SO C,(,T)(w) — { 1 ifn< T(w),

0 otherwise.

Your ‘winnings process’ is the process with value at time n equal to

(C(T) ® X)n = X1An — Xo-



..(10.9) Chapter 10: Martingales 99

If XT denotes the process X stopped at T:

XZ‘(w) = XT(w)/\n(w),
then
CMeX=XT-X,.

Now C(T) is clearly bounded (by 1) and non-negative. Moreover, C (T) is

)

previsible because C,(,T can only be 0 or 1 and, for n € N,

{0 =0} ={T<n-1} € Fa-1.

Result 10.7 now yields the following result.
THEOREM.

»(i) If X is a supermartingale and T 13 a stopping time, then the stopped
process XT = (Xpan : n € Zt) is a supermartingale, so that in
particular,

E(XTAn) S E(Xo), Vn.

»(ii)  If X is a martingale and T is a stopping time, then XT is a martin-
gale, so that in particular,

E(XrTAn) = E(Xp), Vn.

It is important to notice that this theorem imposes no extra integra-
bility conditions whatsoever (except of course for those implicit in the defi-
nition of supermartingale and martingale).

But be very careful! Let X be a simple random walk on Z¥, starting
at 0. Then X is a martingale. Let T be the stopping time:

T :=inf{n: X, =1}.
It is well known that P(T < co) = 1. (See Section 10.12 for a martingale

proof of this fact, and for a martingale calculation of the distribution of T'.)
However, even though

E(X7An) = E(Xy) for every n,

we have

1 =E(X71) # E(Xo) = 0.
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We very much want to know when we can say that
E(XT) = E(Xo)

for a martingale X. The following theorem gives some sufficient conditions.

10.10. Doob’s Optional-Stopping Theorem

»(a)  Let T be a stopping tsme. Let X be a supermartingale. Then X is
integrable and

E(XT) < E(Xo)
in each of the following situations:
(1) T is bounded (for some N in N, T(w) < N, Vw);

(ii) X 1s bounded (for some K in R, |X,(w)| < K for every n and
every w) and T 13 a.s. finite;

(iii) E(T) < oo, and, for some K in RT,

| Xa(w) = Xna1(w)] < K V(n,w).

(b)  If any of the conditions (i)-(iii) holds and X is a martingale, then

E(XT) = E(Xo).

Proof of (a). We know that X, is integrable, and
(*) E(X7An — Xo) <0.

For (i), we can take n = N. For (ii), we can let n — oo in (*) using (BDD).
For (iii), we have

TAn
[ XTAn — Xol = | ) (X& = Xi1)] S KT

k=1

and E(KT) < oo, so that (DOM) justifies letting n — oo in () to obtain
the answer we want. O

Proof of (b). Apply (a) to X and to (—X). O
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Corollary

»(c)  Suppose that M is a martingale, the increments My — M,y of which
are bounded by some constant Ky. Suppose that C is a previsible

process bounded by some constant Ky, and that T 13 a stopping time
such that E(T) < oco. Then

E(C ¢ M)r =0.

Proof of the following final part of the Optional-Stopping Theorem is
left as an Exercise. (It’s clear whose lemma is needed!)

(d) If X is a non-negative supermartingale, and T 13 a stopping time
which 18 a.s. finite, then

E(XT) < E(Xo).

10.11. Awaiting the almost inevitable

In order to be able to apply some of the results of the preceding Section,
we need ways of proving that (when true!) E(T) < oco. The following
announcement of the principle that ‘whatever always stands a reasonable
chance of happening will almost surely happen — sooner rather than later’is
often useful.

LEMMA

> Suppose that T is a stopping time such that for some N in N and
some € > 0, we have, for every n in N:

P(T <n+ N|F.)>¢, as.
Then E(T) < oo.

You will find the proof of this set as an exercise in Chapter E.

Note that if T is the first occasion by which the monkey in the ‘Tricky
exercise’ at the end of Section 4.9 first completes

ABRACADABRA,

then E(T) < co. You will find another exercise in Chapter E inviting you
to apply result (c) of the preceding Section to show that

E(T) = 26! + 26* + 26.

A large number of other Exercises are now accessible to you.
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10.12. Hitting times for simple random walk

Suppose that (X, : n € N) is a sequence of IID RVs, each X, having the
same distribution as X where

P(X=1)=P(X =-1)=1.

Define Sp :=0, S, := X7 + --- + X, and set
T :=inf{n: S, =1}.

Let
fn =0’(X1,...,Xn) = 0(501511"'157‘)'

Then the process S is adapted (to {Fn}), so that T is a stopping time. We
wish to calculate the distribution of T.

For € R, Ee®X = 1(e® + ¢7%) = cosh¥, so that
E[(sech8)e®X*] =1, Vn.
Example (10.4,b) shows that M? is a martingale, where
MY = (sech§)"e®n,
Since T is a stopping time, and M? is a martingale, we have

(a) EM?Z.,,. = E[(sech)T " exp(8STan)] =1, Vn.

> Now insist that § > 0.

Then, firstly, exp(8STan) is bounded by €, so MZ,  is bounded by
e’. Secondly, as n T oo, MY, — M¥ where the latter is defined to be 0 if
T = co. The Bounded Convergence Theorem allows us to let n — oo in (a)
to obtain

EMY =1 = E[(sech§)T ¢’

the term inside [-] on the right-hand side correctly being 0 if T' = co. Hence
(b) E[(sech8)T] =e=® for 6 > 0.

We now let 8 | 0. Then (sech8)T 1 1if T < oo, and (sech8)T 1 0if T = co.
Either (MON) or (BDD) yields

El{r<o} = 1= P(T < o0).
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> The above argument has been given carefully to show how to deal with
possibly infinite stopping times.

Put a = sechf in (b) to obtain
(c) E(aT) = Za"P(T =n)=e?=a"1-v1-0a?,
so that

m

PT=2m-1)= (-—1)’““(‘1’).

Intuitive proof of (c)

We have

(d) f(a): =E(aT) = 1E(aT|X; = 1) + iE(aT|X; = -1)

= ja + jaf(a)’.
The intuitive reason for the very last term is that time 1 has already elapsed
giving the a, and the time taken to go from —1 to 1 has the form T} + T,
where Ty (the time to go from —1 to 0) and T, (the time to go from 0 to
1) are independent, each with the same distribution as T'. It is not obvious

that ‘Ty and T3 are independent’, but it is not difficult to devise a proof:
the so-called Strong Markov Theorem would allow us to justify (d).

10.13. Non-negative superharmonic functions for Markov chains

Let E be a finite or countable set. Let P = (p;;) be a stochastic E x E
matrix, so that, for 7,5 € E, we have

pij 20, > pax=L1
kEE

Let u be a probability measure on E. We know from Section 4.8 that there
exists a triple (2, F, P#) (we now signify the dependence of P on u) carrying
a Markov chain Z = (Z,, : n € Z1) such that (4.8,a) holds. We write ‘a.s.,
P#’ to signify ‘almost surely relative to the P#-measure’.

Let Fo := 0(Z0o, Z1,...,2Z4,). It is easy to deduce from (4.8,a) that if we
write p(, j) instead of p;; when typographically convenient, then (a.s.,P#)

P*(Zat1 = j|Fn) = p(Za, 7).

Let h be a non-negative function on E and define the function Ph on E via

(Ph)(E) = Y p(i,5)h(3).
i
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Assume that our non-negative function k is finite and P-superharmonic in

that Ph < h on E. Then, (cMON) shows that, a.s., P#,

E*[A(Zn+1)|Fal = D P(Zn,)(5) = (PR)(Zn) < h(Za),
so that h(Z,) is a non-negative supermartingale (whatever be the initial
distribution pu).

Suppose that the chain Z is irreducible recurrent in that
fij = Pi(Tj <o0)=1, Vij€E,

where P? denotes P# when u is the unit mass (u; = 6;;) at ¢ (see ‘Note’
below) and

Tj:=inf{n:n>1;2Z, =j}.

Note that the infimum is over {n > 1}, so that f;; is the probability of a
return to ¢ if Z starts at :. Then, by Theorem 10.10(d), we see that if h is
non-negative and P-superharmonic, then, for any ¢: and j in E,

h(j) = E*h(Z1;) < E*h(Zo) = A(2),
so that h s constant on E.

Exercise. Explain (at first intuitively, and later with consideration of
rigour) why

fis = pifri +pi; 2 Y pirfij
k

k#j

and deduce that if every non-negative P-superharmonic function is constant,
then Z is irreducible recurrent. .

So we have proved that

our chain Z s trreducible and recurrent if and only if every non-
negative P-superharmonic function s constant.

This is a trivial first step in the links between probability and potential
theory.

Note. The perspicacious reader will have been upset by a lack of precision
in this section. I wished to convey what is interesting first.

Ounly the very enthusiastic should read the remainder of this section.
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The natural thing to do, given the one-step transition matrix P, is to
take the canonical model for the Markov chain Z obtained as follows. Let
& denote the o-algebra of all subsets of E and define

@,7):= [] (E,¢€).

nez+

In particular, a point w of §2 is a sequence
w = (wo,wi,-..)

of elements of E. For w in  and n in Z1, define
Za(w) :=w, € E.

Then, for each probability measure u on (E, £), there is a unique probability
measure P#* on (Q,F) such that for n € N and 7g,%1,...,tn € E, we have

(*) P*lw: Zo(w) =10, Z1(w) =i1,...,Zn(w) = in] = HicPioiy - - - Pincrin-

The uniqueness is trivial because w-sets of the form contained in [:] on
the left-hand side of (*), together with @, form a 7-system generating F.
Existence follows because we can take P# to be the P#-law of the non-
canonical process Z constructed in Section A4.3:

Pt = PHo 771,
Here, we regard Z as the map
Z:09-0
& = (20(®), Z1 (@), - --),
this map Z being F/F measurable in that
Z 1. F o F.

The canonical model thus obtained is very satisfying because the mea-
surable space (Q, F) carries all measures P# simultaneously.



Chapter 11
The Convergence Theorem

11.1. The picture that says it all

The top part of Figure 11.1 shows a sample path n — X,(w) for a process X
where X, — X,,—; represents your winnings per unit stake on game n. The
lower part of the picture illustrates your total-winnings process Y :=C e X
under the previsible strategy C described as follows:

Pick two numbers a and b with a < b.
REPEAT
Wait until X gets below a

Play unit stakes until X gets above b and stop playing
UNTIL FALSE (that is, forever!).

Black blobs signify where C' = 1; and open circles signify where C = 0.
Recall that C is not defined at time 0.

To be more formal (and to prove inductively that C is previsible), define

C1 :=I{xe<a};
and, for n > 2,

Cn = I{Cn-l=1}I{Xn-—le} + I{C"—1=D}I{X"—1<a}’

11.2. Upcrossings

The number Uy|a, b](w) of upcrossings of [a,b] made by n — X,(w)
by time N is defined to be the largest k in Z* such that we can find

0<s1<t1 <8< < - < <ty <N
with
XgWw)<a, Xyw)>b (1Li<k).

106
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Figure 11.1
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The fundamental inequality (recall that Yy(w) := 0)
»(D) Yn(w) 2 (b— a)Un|a,b](w) — [Xn(w) — o]

is obvious from the picture: every upcrossing of [a, b] increases the Y-value
by at least (b — a), while the [Xn(w) — a]~ overemphasizes the loss during
the last ‘interval of play’.

11.3. Doob’s Upcrossing Lemma

> Let X be a supermartingale. Let Un[a,b] be the number of upcross-
ings of [a,b] by ttme N. Then

(b - a)EUN[a, b] < E[(A’N - a)_].

Proof. The process C is previsible, bounded and > 0, and Y = C ¢ X.
Hence Y is a supermartingale, and E(Yy) < 0. The result now follows from
(11.2,D).

11.4. COROLLARY

> Let X be a supermartingale bounded in L' in that
sng(anl) < oo.
Let a,b € R with a < b. Then, with Us[a,b] :=1 limy Un/a, b],
(b— a)EU[a,b] < |a| + sup E(|X,|) < o0

so that
P(Uxla,b] = 00) = 0.

Proof. By (11.3), we have, for N € N,

(b — a)EUnN][a,b] < |a| + E(IXNI) < la| + sup E(Ian)-

Now let N T oo, using (MON). ‘ O
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11.5. Doob’s ‘Forward®’ Convergence Theorem
Let X be a supermartingale bounded in £! : supE(|X,|) < co.
n

Then, almost surely, X, := lim X,, exists and is finite. For
definiteness, we define Xoo(w) := limsup Xp(w), Vw, so that X
is Foo measurable and X, =1lim X,,, a.s.

Proof (Doob). Write (noting the use of [—oco, 00]):
A:={w:Xn(w) doesnot converge to a limit in [—o00,00]}
= {w : liminf X,,(w) < limsup X, (w)}
= U {w:liminf X,(w) < a < b <limsup X, (w)}
{a,bEQ:a<b}

=: U Aap (say).

But
Aap C {w: Usla, b)(w) = o0},

so that, by (11.4), P(A43) = 0. Since A is a countable union of sets Ag s,
we see that P(A) = 0, whence

Xoo :=lim X, ezists a.s. in [—00,00].

But Fatou’s Lemma shows that
E(|Xo!]) = E(liminf | X,]|) < liminf E(|X.]|)
< sup E(|X,]) < oo,
so that
P(X is finite) = 1. )

Note. There are other proofs for the discrete-parameter case. None of these
is as probabilistic, and none shares the central importance of this one for
the continuous-parameter case.

11.6. Warning

As we saw for the branching-process example, it need not be true that
X, — Xoo in L1,

11.7. Corollary

> > If X is a non-negative supermartingale, then X, := lim X,

exists almost surely.

Proof. X is obviously bounded in £!, since E(|X,|) = E(X,) < E(X,). O
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Chapter 12
Martingales bounded in £°

12.0. Introduction

When it works, one of the easiest ways of proving that a martingale M is
bounded in £! is to prove that it is bounded in £? in the sense that

(a) sup ||[My|l2 < oo, equivalently, supE(M?) < co.
n n

Boundedness in £? is often easy to check because of a Pythagorean formula
(proved in Section 12.1)

E(M2) = EQM2) + 3 El(Me — Micr)?)
k=1

The study of sums of independent random variables, a central topic
in the classical theory, will be seen to hinge on Theorem 12.2 below, both
parts of which have neat martingale proofs. We shall prove the Three-
Series Theorem, which says exactly when a sum of independent random
variables converges. We shall also prove the general Strong Law of Large
Numbers for IID RVs and Lévy’s extension of the Borel-Cantelli
Lemmas.

12.1. Martingales in £2?; orthogonality of increments

Let M = (M, : n > 0) be a martingale in £? in that each M, is in £? so
that E(M2) < oo, Vn. Then for s,t,u,v € Z1, with s <t < u < v, we know
that

E(M,|F.) =M, (as.),

so that M, — M, is orthogonal to L2(F,) (see Section 9.5) and in particular,
(a) (Mt - Ma, Mv - Mu) - 0.

110
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Hence the formula

n

My =M+ ) (M~ Mi_y)

k=1

expresses M, as the sum of orthogonal terms, and Pythagoras’s theorem
yields

(b) E(M}) = E(M5) + ) L E[(My = Mi—1)*).
k=1
THEOREM
> Let M be a martingale for which M, € L?, Vn. Then M is bounded
in L2 if and only if
(©) S E[(My — Myt ] < o0

and when this obtains,

M, — My almost surely and in L2,

Proof. It is obvious from (b) that condition (c) is equivalent to the statement
M is bounded in £2.

Suppose now that (c) holds. Then M is bounded in £?, and hence, by
the property of monotonicity of norms (Section 6.7), M is bounded in £!.
Doob’s Convergence Theorem 11.5 shows that M, := lim M,, exists almost
surely. The Pythagorean theorem implies that

n+r
(d) E[(Mnyr — Ma)*] = ) E[(My — My—y)*].

k=n+41

Letting 7 — oo and applying Fatou’s Lemma, we obtain

(e) E[(Moo — Ma 1< ) E[(Mk — Mi—1)?).
k>n+1

Hence

(f) ) li’r.n E[(My — J\In)z] =0,

so that M,, — M, in £2. Of course, (f) allows us to deduce from (d) that
(e) holds with equality.
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12.2. Sums of zero-mean independent variables in L2

THEOREM

> Suppose that (Xr : k € N) is a sequence of independent random
variables such that, for every k,

E(Xk) = 0, 0',2c 1= Va:(‘(Xk) < 00.
(a)  Then
(Z of < 00) implies that (Z X converges, a.s.).

(b)  If the variables (Xi) are bounded by some constant K in [0,00) in
that | X (w)| £ K, Vk, Vw, then

(Z Xy converges, a.s.) wmplies that (Z 0% < 00).
Note. Of course, the Kolmogorov 0-1 law implies that

P(3" Xk converges) = 0 or 1.

Notation. We define
fn = O(Xl,Xz,...,Xn), Aln I=X1 +X2++Xn,

(with Fo := {0, 2}, My := 0, by the usual conventions). We also define
An:=)Y of,  Nu:=M?- A4,
k=1

so that Ay := 0 and Ny := 0.
Proof of (a). We know from (10.4,a) that M is a martingale. Moreover
(*) E[(Mi — Mi—1)?] = E(X}) = of,

so that, from (12.1,b),

E(M2) =) of = An.
k=1

If 3 o0 < 00, then M is bounded in £2, so that lim M, exists a.s. O
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Proof of (b). We can strengthen () as follows: since Xj is independent of
Fk—1, we have, almost surely,

E[(Mk = My_1)?|Fr—i] = E[XE|Fi-1] = E(XF) = of.
A familiar argument now applies: since Mj_; is Fi—1 measurable,

o = E(ME|Fio1) — 2Mi_y E(Mi|Fr1) + ME_,
= E(M{|Fr—1) - M, (as.)

But this result states that
N 13 a martingale.
Now let ¢ € (0,00) and define
T :=inf{r:|M,| > c}.
We know that N7 is a martingale so that, for every n,
ENT = E[(MT)?] — EApan = 0.

But since |Mr — Mr_;| = |X7| < K if T is finite, we see that |[MT| < K+¢
for every n, whence

(*+) EAran < (K +¢)?, Vn.

However, since ) X, converges a.s., the partial sums of )  X; are a.s.
bounded, and it must be the case that for some ¢, P(T' = o0) > 0. It is now
clear from (x*) that Ay := ) 0} < oco. O

Remark. The proof of (b) showed that if (X},) is a sequence of independent
zero-mean RVs uniformly bounded by some constant K, then

(P{ partial sums of Y X are bounded } > 0) = (3" X converges a.s.)

Generalization. Sections 12.11-12.16 present the natural martingale form
of Theorem 12.2 with applications.

12.3. Random signs

Suppose that (a,) is a sequence of real numbers and that (¢, ) is a sequence

of IID RVs with
P(en = +1) = L.
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The results of Section 12.2 show that
Y enan converges (a.s.) if and only if 3 a2 < oo,

and that
Y enan (a.s.) oscillates infinitely if 3 aZ = oo.

You should think about how to clinch the latter statement.

12.4. A symmetrization technique: expanding the sample space

We need a stronger result than that provided by (12.2,b).

LEMMA

Suppose that (X,) is a sequence of independent random variables bounded
by a constant K in [0,00):

[Xn(w)] < K, Vn,Vw.
Then

(3" Xn converges, a.s.) = (3 E(X,) converges and Y Var(X,) < co0).

Proof. If each X, has mean zero, then of course, this would amount to
(12.2,b). There is a nice trick which replaces each X, by a ‘symmetrized
version’ Z of mean 0 in such a way as to preserve enough of the structure.

Let (Q,F,P,(X, : n € N)) be an exact copy of (,F,P,(X, : n € N)).
Define o
Q*, F*,P*) = (Q,F,P) x(Q,F,P)

and, for w* = (w,®) € Q*, define
Xa(w*) = Xn(w), Xa(w?):=Xa(@), Zp(w"):=X;w*)—Xa(w*).

We think of X as X, lifted to the larger ‘sample space’ (*, F*,P*). It is
clear (and may be proved by applying Uniqueness Lemma 1.6 in a familiar
way) that the combined family

(Xz:neN)U(X::neN)

is a family of independent random variables on (§2*, 7*,P*), with both X
and X having the same P*-distribution as the P-distribution of X,,:

P*o(X2) ' =PoX;! on (R, B), etc.
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Now we have

(a) (2% : n € N*) is a zero-mean sequence of independent random
variables on (Q*, F*,P*) such that |Z,(w*)| < 2K (Vn,Vw*) and

Var(Z}) = 202,

where o2 := Var(X,,).

Let
= {w € 2: Y X,(w) converges},

with G defined similarly. Then we are given that P(G) = P(G) =1, so that
P*(G x G) = 1. But ¥ Z*(w*) converges on G x G, so that

(b) P*(3}° Z% converges) = 1.

From (a) and (b) and (12.2,b), we conclude that

> ol < oo,
and now it follows from (12.2,a) that
(c) S [Xn — E(XR)] converges, a.s.,
the variables in this sum being zero-mean independent, with
E[{Xa — E(X,)}*] = o2,

Since (c) holds and Y~ X, converges (a.s.) by hypothesis, Y E(X,) con-
verges. 0

Note. Another proof of the lemma may be found in Section 18.6.

12.5. Kolmogorov’s Three-Series Theorem

Let (X,) be a sequence of independent random variables. Then > X,
converges almost surely if and only if for some (then for every)
K > 0, the following three properties hold:

() 2 P(1Xa] > K) < oo,
(i1) S E(XE) converges,

(i) Y Var(XK) < oo,
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uhere Xow) if |Xa(w) < K
rK . —_— n w 1 n w —_— ]
Xo (W) i= {o if | Xo(w)| > K.
Proof of “f’ part. Suppose that for some K > 0 properties (1)-(iii) hold.
Then
S P(X, # XE) =) P(Xal > K) < 00,
so that by (BC1)
P(X, = X} for all but finitely many n) = 1.

It is therefore clear that we nced only show that 3 XX converges almost
surely; and because of (ii), we need only prove that

Y YK converges, a.s., where Y} := X¥ — E(XK).

However, the sequence (Y,X : n € N) is a zero-mean sequence of independent
random variables with

E[(Y))?] = Var(X,[).
Because of (iii), the desired result now follows from (12.2,a). O

Proof of ‘only if’ part. Suppose that Y X, converges, a.s., and that K is
any constant in (0, c0). Since it is almost surely true that X,, — 0 whence

|Xa| > K for only finitely many n, (BC2) shows that (i) holds. Since (a.s.)
X, = XK for all but finitely many n, we know that

Y. XX converges, a.s.

Lemma 12.4 completes the proof. O

Results such as the Three-Series Theorem become powerful when used in
conjunction with Kronecker’s Lemma (Section 12.7).

12.6. Cesaro’s Lemma

Suppose that (b,) is a sequence of strictly positive real numbers with
b, T oo, and that (v,) 18 a convergent sequence of real numbers:
Un — Voo € R. Then

1 n
o E (bk — bk—1)vk = Voo (1 — 00).
™ k=1
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Here, by := 0.

Proof. Let € > 0. Choose N such that

Vi > Voo — € Whenever k > N.

Then,

lim 1nf——-— Z(b" — br_1)v

n—oo b,

> liminf { Z(bk — by l)vk + — by (voo — E)}

b

Since this is true for every € > 0, we have liminf > v; and since, by a

similar argument, im sup < v, the result follows. [

12.7. Kronecker’s Lemma

Again, let (b,) denote a sequence of strictly positive real numbers
with b, T oo. Let (x,) be a sequence of real numbers, and define

Spi=x1+22+--+7T

ne

Z In converges | = 2 ,0).
bn bﬂ.

Proof. Let un := )Y ) ,.(zk/bk), so that us := lim u, exists. Then

Then

Thus . .
Sn =Y bi(uk —ur—1) =bpun— ¥ (b — bx_1)ur-1.
k=1 k=1

Cesaro’s Lemma now shows that

Sn/bp = Uoo — U = 0. O
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12.8. A Strong Law under variance constraints
LEMMA

Let (W) be a sequence of independent random variables such that

Var(W,) < oo

n2

E(Wa) =0, Y
Then n™' 3 ¢, Wi — 0, as..

Proof. By Kronecker’s Lemma, it is enough to prove that > (W,/n) con-
verges, a.s. But this is immediate from Theorem 12.2(a). O

Note. We are now going to see that a truncation technique enables us to
obtain the general Strong Law for IID RVs from the above lemma.

12.9. Kolmogorov’s Truncation Lemma
Suppose that X1,X,,... are IID RVs each with the same distribution
as X, where E(]X]) < co. Set p:= E(X). Define

Y. := Xn ifIXnISn,
U100 i | Xe] > n.

Then
(i) E(Ya) — u;
(ii) P[Y, = X, eventually] = 1;
(i) Y n=?Var(Y,) < oo.
Proof of (i). Let

Z fp— X ile|_<.n7
"TT10 0 i |X|>n.

Then Z,, has the same distribution as Y, so that in particular, E(Z,) =
E(Y,). But, as n — oo, we have

Zn = X, |Z.| S1X],

so, by (DOM), E(Z,) — E(X) = u. tl
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Proof of (ii). We have
Y P(Yn #£Xa) =) P(IXa|>n)=) P(IX|>n)

[o.2]
=EY Iixpay=E ), 1<E(X]) <oo,
n=1 1<n<|X]|

so that by (BC1), result (ii) holds. O

Proof of (ii1). We have

5 Yerlla) (o EQ) s EWXBIXIS™) gy,

n n
n

where, for 0 < z < 00,

flzy= >, n7?<2/max(l,z2)

n>max(1,z)

We have used the fact that, for n > 1,
o2 _o(i__1).
n? ~ n(n+1) n n+l1

> n"Var(Yy) < 2E(1X]) < oo O

Hence

12.10. Kolmogorov’s Strong Law of Large Numbers (SLLN)
Let X,,Xa,... be IID RVs with E(|Xk]) < oo, Vk. Define

Spi=X1+X2 4+ + Xa.
Then, with p := E(X}), Vk,

n~1S, — u, almost surely.

Proof. Define Y, as in Lemma 12.9. By property (ii) of that lemma, we
need only show that

n~! E Yy - u, as.
k<n
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But

(a,) n! Z Y = n~?! Z E(YL) + n! Z Wk,

k<n k<n k<n

where Wy := Y; — E(Y)). But, the first term on the right-hand side of (a)
tends to u by (12.9,i) and Ceséaro’s Lemma; and the second almost surely
converges to 0 by Lemma 12.8. O

Notes. The Strong Law is philosophically satisfying in that it gives a pre-
cise formulation of E(X) as ‘the mean of a large number of independent
realizations of X’. We know from Exercise E4.6 that if E(|X|) = oo, then

limsup |Sp|/n =00, as..
So, we have arrived at the best possible result for the IID case.

Discussion of methods. Even though we have achieved a good result, it
has to be admitted that the truncation technique seems ‘ad hoc’: it does
not have the pure-mathematical elegance — the sense of rightness — which
the martingale proof and the proof by ergodic theory (the latter is not in
this book) both possess. However, each of the methods can be adapted to
cover situations which the others cannot tackle; and, in particular, classical
truncation arguments retain great tmportance.

Properly formulated, the argument which gave the result, Theorem 12.2, on
which all of this chapter has so far relied, can yield much more.

12.11. Doob decomposition

In the following theorem, the statement that ‘A is a previsible process null
at 0’ means of course that Ag =0 and A,, € mF,—1 (n € N).

THEOREM

»(a) Let (Xn:n €Z%) be an adapted process with X,, € L1,Vn. Then X
has a Doob decomposition

(D) X=Xo+M+A
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where M 13 a martingale null at 0, and A is a previsible process null at
0. Moreover, this decomposition s unique modulo indistinguishability
in the sense that if X = X + M + A is another such decomposition,
then 5

P(Mp = My, An = Ap,Vn) = 1.

> b X 13 a submartingale if and only if the process A 1s an incrcasing
g Y
Pprocess in the sense that

P(An S An+1,Vn) = 1.

Proof. If X has a Doob decomposition as at (D), then, since M is a mar-
tingale and A is previsible, we have, almost surely,

E(Xn — Xno1|Fno1) = E(My — Mu—1|Fno1) + E(An — Ap—i1|Fazi)

= 0 + (An - An-—l)-

Hence

(c) An =) E(Xi = Xk-1|Fr-1),  as,
k=1

and if we use (c) to define A, we obtain the required decomposition of X.
The ‘submartingale’ result (b) is now obvious. O

Remark. The Doob-Meyer decomposition, which expresses a sub-
martingale in continuous time as the sum of a local martingale and a pre-
visible increasing process, is a deep result which is the foundation stone for
stochastic-integral theory.

12.12. The angle-brackets process (M)

Let M be a martingale in £? and null at 0. Then the conditional form of
Jensen’s inequality shows that

(a) M2 is a submartingale.

Thus M has a Doob decomposition (essentially unique):

(b) M?2=N+A4,

where N is a martingale and A is a previsible increasing process, both N

and A being null at 0. Define Ao :=T lim A,, a.s.

Notation. The process A is often written (M).
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Since E(M2) = E(A,), we see that
(c) M is bounded in L? if and only if E(Ac) < 0o0.
It is important to note that

»(d) Ap— An_y = E(M2 = M2_||Fp_1) = E[(Mn — Mp_1)?|Fn_1)-

12.13. Relating convergence of M to finiteness of (M)

Again let M be a martingale in £2 and null at 0. Define A := (M). (More
strictly, let A be ‘a version of’ (M).)

THEOREM
»(a) lim M,(w) ezists for almost every w for which Ax(w) < 0o.
n
»(b)  Suppose that M has uniformly bounded increments in that for some
K in R,
|Mp(w) = Maoy (W) < K, Vn,Vw.

Then Aoo(w) < 00 for almost every w for which lim M, (w) ezists.

Remark. This is obviously an extension ~ and a very substantial one — of
Theorem 12.2.

Proof of (a). Because A is previsible, it is immediate that for every k € N,
S(k):=inf{n € Z% : Apy1 > k}

defines a stopping time S(k). Moreover, the stopped process AS(F) is previs-
tble because for B € B, and n € N,

{An/\s(k) € B} =FUF,,

where )
Fy:= | J{S(k)=r; A, € B} € Fo_y,
r=0
Fp:= {4, € BYN{S(k) <n—1}°€ Fo_;.
Since

(MS(k))2 _ AS(k) — (M2 _ A)S(k)

is a martingale, we now see that (M S(k)) = AS(¥), However, the process
AS(®) is bounded by k, so that by (12.12,c), M5®) is bounded in £2 and

(c) BLmM,as(x) exists almost surely.
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However,
(d) {Aoo < o0} = J{S(k) = o0}.
k
Result (a) now follows on combining (c) and (d). O

Proof of (b). Suppose that

P(Ax = 00, sup |[My| < 00) > 0.

Then for some ¢ > 0,
(e) P(T(c) = 00, Ao = 00) >0,
where T'(c) is the stopping time:

T(c) := inf{r : | M,| > c}.

Now,
E(]Mg’(c)/\n - AT(C)/\H) =0,

and MT(9) is bounded by ¢ + K. Thus
(f) EAT(C)An < (C + I{)za Vn.

But (MON) shows that (e) and (f) are incompatible. Result (b) follows. [J

Remark. In the proof of (a), we were able to use previsibility to make
the jump Agx) — As(x)—1 irrelevant. We could not do this for the jump
Mr(cy — Mp(c)—1 which is why we needed the assumption about bounded
increments.

12.14. A trivial ‘Strong Law’ for martingales in (2

Let M be a martingale in £2 and null at 0, and let A = (M). Since (1+A4)~!
is a bounded previsible process,

M — Mi_4 _
Wh 1= = ((1 1o M),
<k2< A, = (AT e M)

defines a martingale W. Moreover, since (1 + A,) is F,—1 measurable,

E[(Wn - Wn—l)zlfn—]] = (1 + An)—z(An - An-—l)
SQ+A4,-) =1+ 4,)7Y as.
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We see that (W) < 1, a.s., so that lim W, exists, a.s.. Kronecker’s Lemma
now shows that

»(a) M,/A, — 0as. on {Ax = 00}.

12.15. Lévy’s extension of the Borel-Cantelli Lemmas

THEOREM
Suppose that for n € N, E, € F,. Define

Zp 1= Z Ig, = number of Ex(k < n) which occur.
1<k<n

Define &k := P(E|Fk-1), and

Yn = Z fk-
1<k<n

Then, almost surely,
(2) (Yoo < 00) = (Zoo < 00),
(b) (Yoo =0) = (Zn/Yn — 1).
Remarks. (i) Since E&x = P(Ey), it follows that if > P(Ex) < oo, then
Yoo < 00, a.s. (BC1) therefore follows.

(ii) Let (£, : n € N) be a sequence of independent events associated
with some triple (2, F,P), and define F, = o(E;, E,,..., E,). Then & =
P(E4), a.s., and (BC2) follows from (b).

Proof. Let M be the martingale Z — Y, so that Z = M + Y is the Doob
decomposition of the submartingale Z. Then (you check!)

Api=(M)y =) &1 -&)<Ya, as.
k<n

If Yoo < oo, then Ao, < 0o and lim M,, exists, so that Z is finite. (We
are skipping ‘except for a null w-set’ statements now.)

If Yoo = 0o and A, < oo then lim M, exists and it is trivial that
ZnlYy — 1.

If Yoo = 00 and As = o0, then M, /A, — 0, so that, a fortiors,
M,/Y, —-0and Z,/Y, — 1. ]
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12.16. Comments

The last few sections have indicated just how powerful the use of (M) to
study M is likely to be. In the same way as one can obtain the conditional
version Theorem 12.15 of the Borel-Cantelli Lemmas, one can obtain con-
ditional versions of the Three-Series Theorem etc. But a whole new world
is opened up: see Neveu (1975), for example. In the continuous-time case,
things are much more striking still. See, for example, Rogers and Williams

(1987).




Chapter 13
Uniform Integrability

We have already seen a number of nice applications of martingale theory.
To derive the full benefit, we need something better than the Dominated-
Convergence Theorem. In particular, Theorem 13.7 gives a necessary and
sufficient condition for a sequence of RVs to converge on £!. The new con-
cept required is that of a uniformly integrable (UI) family of random
variables. This concept links perfectly with conditional ezpectations and
hence with martingales.

The appendix to this chapter contains a discussion of that topic loved by
examiners and others: modes of convergence. Our use of the Upcrossing
Lemma has meant that this topic does not feature large in the main text of

this book.

13.1. An ‘absolute continuity’ property
LEMMA

»(a)  Suppose that X € L} = L1(Q,F,P). Then, given € > 0, there exists
a § > 0 such that for F € F, P(F) < 6 smplies that E(|X|; F) <.

Proof. If the conclusion is false, then, for some ¢g > 0, we can find a
sequence (Fy) of elements of F such that

P(F,) <2™ and E(|X|;F,) > ¢o.

Let H := limsup F;,. Then (BC1) shows that P(H) = 0, but the ‘Reverse’
Fatou Lemma (5.4,b) shows that

E(]X|; H) > €o;

and we have arrived at the required contradiction. O

126
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Corollary
(b)  Suppose that X € L' and thate > 0. Then there ezists K in [0, 00)
such that

E(JX|;|X]| > K) <e.
Proof. Let 6 be as in Lemma (a). Since
KP(|X]| > K) < E(|X1),
we can choose K such that P(|X| > K) < é. O

13.2. Definition. UI family

> A class C of random variables is called uniformly integrable (UI)
if given € > 0, there ezists K in [0,00) such that

E(JX|;|X|>K)<e, VXeC.

We note that for such a class C, we have (with K relating to € = 1) for
every X € C,

E(1X]) = E(|X]; 1X| > K1) + E(IX]; | X| < K1)
<1+ K,

Thus, a UI family is bounded in L.
It is not true that a family bounded in £! is UL

Example. Take (Q,F,P) = ([0,1],B[0,1],Leb). Let
E, = (O,n"l), X, =nlg,.

Then E(|X,|) = 1, Vn, so that (X,) is bounded in £!. However, for any
K > 0, we have for n > K,

E(| Xnl; | Xn] > K) =nP(E,) =1,
so that (X, ) is not Ul Here, X, — 0, but E(X,,) / 0.

13.3. Two simple sufficient conditions for the UI property

>(a)  Suppose thatC is a class of random variables which is bounded in LP
for some p > 1; thus, for some A € [0, 00),

E(JX|P) < 4, VX eC.
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Then C 1s Ul

Proof. If v > K > 0, then v < K*~Pv? (obviously!). Hence, for K > 0 and
X € C, we have

E(IX|;|1X| > K) < K'"PE(|X|?; |X| > K) < K'"?A.

The result follows. O

(b)  Suppose that C is a class of random variables which is dominated by
an integrable non-negative variable Y:

IX(w)]| £ Y(w), VX €€ and E(Y) < oo.
Then C 1s UL
Note. It is precisely this which makes (DOM) work for our (2, F, P).
Proof. It is obvious that, for X > 0 and X € C,
E(1X]; |X] > K) <E(Y;Y > K),

and now it is only necessary to apply (13.1,b) to Y. O

13.4. UI property of conditional expectations

The mean reason that the Ul property fits in so well with martingale theory
is the following. See Exercise E13.3 for an important extension.

THEOREM
> Let X € LY. Then the class

{E(X]|G) : G a sub-o-algebra of F}
18 uniformly integrable.
Note. Because of the business of versions, a formal description of the class C
in question would be as follows: Y € C if and only if for some sub-o-algebra
G of F,Y is a version of E(X|G).
Proof. Let € > 0 be given. Choose § > 0 such that, for F' € F,

P(F) < 6 implies that E(|X|; F) < ¢.
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Choose K so that K—1E(|X|) < é.

Now let G be a sub-o-algebra of F and let Y be any version of E(X|G).
By Jensen's inequality,

(a) Y| < E(IX]]G), as.
Hence E(|Y|) < E(|X]) and
KP(lY| > K) < E([Y]) < E(|X]),

so that
P(Y| > K) < é.

But {|Y| > K} € G, so that, from (a) and the definition of conditional
expectation,

E(YE Y] 2 K) < E(XL Y] 2 K) <. O

Note. Now you can see why we needed the more subtle result (13.1,a), not
just the result (13.1,b) which has a simpler proof.

13.5. Convergence in probability

Let (X, ) be a sequence of random variables, and let X be a random variable.
We say that

> X, — X in probability
if for every ¢ > 0,

P(|Xn — X|>¢€) = 0as n — oo.
LEMMA
> If X,, = X almost surely, then

Xn — X in probability.

Proof. Suppose that X, — X almost surely and that ¢ > 0. Then by the
Reverse Fatou Lemma 2.6(b) for sets,

0 =P(|Xn — X| > ¢, 1.0.) = P(limsup{| X, — X| > ¢})
> limsup P(| X, — X| > ¢€),

and the result is proved. O
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Note. As already mentioned, a discussion of the relationships between var-
ious modes of convergence may be found in the appendix to this chapter.

13.6. Elementary proof of (BDD)

We restate the Bounded Convergence Theorem, but under the weaker hy-
pothesis of ‘convergence in probability’ rather than ‘almost sure conver-
gence’.

THEOREM (BDD)

Let (X,) be a sequence of RVs, and let X be a RV. Suppose that
Xn — X in probability and that for some K in [0,00), we have for
every n and w

X (w)] < K.

Then
E(|X. - X]|) — 0.

Proof. Let us check that P(|X| < K) = 1. Indeed, for k € N,
P(IX|>K+k™) <P(|X - X,|>k™1), Vn,
so that P(|X| > K + k~1) = 0. Thus

P(IX| > K) =P((J{IX| > K +£'}) =0.
k

Let € > 0 be given. Choose ng such that

. £
P X — X| >1e) < 3K when n > ny.

Then, for n > ny,

E(1Xn — X[) = E(1X, — X[; | X — X| >3¢) + E(|Xn — XJ;| X0 — X] <3¢)
<2KP(|X, - X| >le)+le <e.

The proof is finished. O

This proof shows (much as does that of the Weierstrass approximation
theorem) that convergence in probability is a natural concept.
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13.7. A necessary and sufficient condition for £! convergence
THEOREM

Let (X,) be a sequence in L, and let X € L. Then X, — X in
LY, equivalently E(|X, — X|) — 0, if and only if the following two
conditions are satisfied:

(i) Xn — X 1n probability,
(ii) the sequence (X,) s UL
/

Remarks. It is of course the ‘if’ part of the theorem which is useful. Since
the result is ‘best possible’, it must improve on (DOM) for our (R, F,P)
triple; and, of course, result 13.3(b) makes this explicit.

Proof of “if’ part. Suppose that conditions (i) and (ii) are satisfied. For
K € [0,00), define a function ¢k : R — [~ K, K] as follows:

K ifz>K,
oK(z) = {:c if |z| < K,
~K ifz<-K.

Let € > 0 be given. By the Ul property of the (X, ) sequence and (13.1,b),
we can choose K so that

, € €
Eflex(Xa) — Xal} < 5,¥5  Eflox(X) = X[} < £,

But, since |pk(z) — ¢k (y)] < |z — y|, we see that px(X,) — @x(X) in
probability; and by (BDD) in the form of the preceding section, we can
choose ng such that, for n > ny,

€
E{lox(Xa) = o (X} < 3
The triangle inequality therefore implies that, for n > ng,
E(| X, - X|) <e¢,

and the proof is complete. [

Proof of ‘only if’ part. Suppose that X, — X in £!. Let ¢ > 0 be given.
Choose N such that

n>N = E(X,-X|) <e/2



132 Chapter 13: Uniform Integrability (18.7).

By (13.1,a), we can choose § > 0 such that whenever P(F) < §, we have

E(|Xn|; F)<e¢ (1 <n < N),
E(|X]|; F) <e/2.

Since (X,) is bounded in £!, we can choose K such that

K~ 1supE(|X,]) < é.

Then for n > N, we have P(|X,| > K) < § and

E(|Xa]; [ Xn] > K)
S E(| X | Xal > K)+E(|X — X|) <e.

For n < N, we have P(|X,,| > K) < § and
E(|Xnl; | Xn| > K) < €.

Hence (Xy,) is a Ul family.

Since
eP(|Xn — X| > ¢) SE(|Xn — X|) = || Xn = X1,

it is clear that X, — X in probability. O



Chapter 14
UI Martingales

14.0. Introduction

The first part of this chapter examines what happens when uniform integra-
bility is combined with the martingale property. In addition to new results
such as Lévy’s ‘Upward’ and ‘Downward’ Theorems, we also obtain
new proofs of the Kolmogorov 0-1 Law and of the Strong Law of Large

Numbers.

The second part of the chapter (beginning at Section 14.6) is concerned
with Doob’s Submartingale Inequality. This result implies in particular
that for p > 1 (but not for p = 1) a martingale bounded in L? is dominated
by an element of £? and hence converges both almost surely and in £P. The
Submartingale Inequality is also used to prove Kakutani’s Theorem on
product-form martingales and, in an illustration of exponential bounds,
to prove a very special case of the Law of the Iterated Logarithm.

The Radon-Nikodym theorem is then proved, and its relevance to
likelihood ratio explained.

The topic of optional sampling, important for continuous-parameter
theory and in other contexts, is covered in the appendix to this chapter.

14.1. UI martingales

Let M be a UI martingale, so that M is a martingale relative to our set-up
(Q,F,{Fn},P) and (M, : n € Z%) is a Ul family.

Since M is Ul, M is bounded in £ (by (13.2)), and so M, :=lim M,
exists almost surely. By Theorem 13.7, it is also true that M, — M in
L

E(|M, — M|) — 0.
We now prove that M, = E(Mw|Fr), a.s. For F € F,, and r > n, the
martingale property yields

(%) E(M,; F) = E(M,; F).

188
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|E(M,; F) — E(Mw; F)| < E(IM, — My|; F)
< E(|M, — My)).

Hence, on letting r — oo in (%), we obtain
E(Moo; F) = E(My; F).
We have proved the following result.

THEOREM
> Let M be a Ul martingale. Then
My :=Uim M, ezists a.s. and in L1.

Moreover, for every n,

M, = E(Mw|F,), as.

The obvious extension to Ul supermartingales may be proved similarly.

14.2. Lévy’s ‘Upward’ Theorem
> Let £ € LY(Q,F,P), and define M, := E(£|Fn), a.s. Then M is a

Ul martingale and
Mp — 0= E({|Fx),

almost surely and in L1,

Proof. We know that M is a martingale because of the Tower Property.
We know from Theorem 13.4 that M is Ul. Hence M, := lim M,, exists
a.s. and in £!, and it remains only to prove that M, = 7, a.s., where

n= E(flfoo)

Without loss of generality, we may (and do) assume that £ > 0. Now
consider the measures Q; and Q2 on (2, Fo, ), where

Qi(F):=E(m;F), QF)=E(Mx;F), F € Feo.
If F € F,, then since E(n|F,) = E(£]F,) by the Tower Property,

E(n; F) = E(Ma; F) = E(Moo; F),
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the second equality having been proved in Section 14.1. Thus Q; and Q;
agree on the w-system (algebra!) | J Fn, and hence they agree on Feo.

Both 1 and M, are Fo, measurable; more strictly, M., may be taken
to be Fo measurable by defining My, := limsup M, for every w. Thus,

Fi={w:n>Mx} € Feo,
and since Q;(F) = Q2(F),
E(n — Moo;n > Mo) =0.

Hence P(n > Mu,) = 0, and similarly P(M. > ) = 0. O

14.3. Martingale proof of Kolmogorov’s 0-1 law
Recall the result.

THEOREM
Let X1,X,,... be a sequence of independent RVs. Define

T = 0(Xn41,Xnt2,...), T :=[ T

Then if F €T, P(F)=0 or 1.

Proof. Define F,, := 0(X;,X2,...,Xpn). Let F € T, and let n := Ip. Since
n € bF, Lévy’s Upward Theorem shows that

n=E(|Fe) =limE(n|F,), as.

However, for each n, n is 7,, measurable, and hence (see Remark below) is
independent of F,,. Hence by (9.7.k),

E(|Fn) =E(n) =P(F), as.

Hence n = P(F), a.s.; and since n only takes the values 0 and 1, the result
follows. 0

Remark. Of course, we have cheated to some extent in building parts of
the earlier proof into the martingale statements used in the proof just given.



>

136 Chapter 14: UI Martingales (14.4)..

14.4. Lévy’s ‘Downward’ Theorem

Suppose that (Q, F,P) is a probability triple, and that {G_, : n € N}
i3 a collection of sub-o-algebras of F such that

Gooo:=[19-5C " CG-(at1) EG-n S+ S G-
k

Let v € £LY(Q, F,P) and define

M_pn :=E(y]|G-n).

Then

M_ o :=lmM_, exists a.s. and in L}
and
(*) M_o =E(7|G-x), as.

Proof. The Upcrossing Lemma applied to the martingale
(My,Gr: =N <k < ~-1)

can be used exactly as in the proof of Doob’s Forward Convergence Theorem
to show that lim M_,, exists a.s. The uniform-integrability result, Theorem
13.4, shows that lim M_,, exists in £!.

That (*) holds (if you like with M_, := limsup M_,, € mG_) follows
by now-familiar reasoning: for G € G_oo C G,

E(y; G) = E(M_,; G),

and now let r T oo. O

14.5. Martingale proof of the Strong Law

Recall the result (but add £! convergence as bonus).

THEOREM

Let X1,X2,... be IID RVs, with E(|Xk|) < oo,Vk. Let p be the
common value of E(X,). Write

Sn :=-‘Y1+X2+°"+Xn.

Then n~1S, — u, a.s. and in L1,
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Proof. Define

Gn 1= 0(Sn, Snt1,Sni2,---),  Gmoo 1= [ |G

We know from Section 9.11 that
E(.X—l |g_,1) = n—lSn, a.s.

Hence L := limn~'S, exists a.s. and in £!. For definiteness, define L :=
limsupn~!S, for every w. Then for each £,

Xr41+ -+ Xiyn
n

L = limsup

so that L € m7; where 7y = 0(Xj41,Xx+2,...). By Kolmogorov’s 0-1 law,
P(L = c¢) =1 for some ¢ in R. But

c=E(L) =limE(r7'S,) = u. O

Exercise. Explain how we could have deduced £! convergence at (12.10).
Hint. Recall Schéffe’s Lemma 5.10, and think about how to use it.

Remarks. See Meyer (1966) for important extensions and applications
of the results given so far in this chapter. These extensions include: the
Hewitt-Savage 0-1 law, de Finetti’s theorem on exchangeable random
variables, the Choquet-Deny theorem on bounded harmonic functions
for random walks on groups.

14.6. Doob’s Submartingale Inequality
THEOREM

»(a) Let Z be a non-negative submartingale. Then, for ¢ > 0,

cP (sup Zy > c) <E (Zn;sup Zy > c) <E(Z,).
k<n k<n

Proof. Let F := {supy<, Zr > c}. Then F is a disjoint union

F=F,URU...UF,,
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where

Fo = {Zo _>__C},
Fr:={Zo<c}N{Zi<ec}N...N{Zx_y < c}N{Z; = c}.

Now, Fi € F, and Z > c on Fy. Hence,
E(Zn;Fk) > E(Zk;Fk) > CP(Fk).

Summing over k now yields the result. O

The main reason for the usefulness of the above theorem is the follow-

ing.
LEMMA
»(b)  If M is a martingale, c is a convez function, and E|c(My)| < oo, Vn,

then

c(M) is a submartingale.

Proof. Apply the conditional form of Jensen’s inequality in Table 9.7. [

Kolmogorov’s inequality

> Let (X, : n € N) be a sequence of independent zero-mean RVs in L2.
Define of := Var(Xy). Write

Spi=X1+--+Xn, V,:=Var(S,)= Za,zc.
k=1

Then, for ¢ > 0,
P (sup |Sk| > c) < V.

k<n

Proof. We know that if we set F,, = o(X1, X2,...,X5), then $=(5,) is a
martingale. Now apply the Submartingale Inequality to S2. . O

Note. Kolmogorov’s inequality was the key step in the original proofs of
Kolmogorov’s Three-Series Theorem and Strong Law.
14.7. Law of the Iterated Logarithm: special case

Let us see how the Submartingale Inequality may be used via so-called
ezponential bounds to prove a very special case of Kolmogorov’s Law of the
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Iterated Logarithm which is described in Section A4.1. (You would do well
to take a quick look at this proof even though it is not needed later.)
THEOREM
Let (X, : n € N) be IID RVs each with the standard normal N(0,1)
distribution of mean 0 and variance 1. Define

Sni=X1+X2+---+ Xa.

Then, almost surely,

Sn

= 1.
(2nloglogn)?

lim sup

Proof. Throughout the proof, we shall write
h(n) := (2nloglog n)%, n > 3.

(It will be understood that integers occurring in the proof are greater than
e, when this is necessary.)

Step 1: An ezponential bound. Define F,, := o(X;,X3,...,X,). Then S is
a martingale relative to {F,}. It is well known that for 8 € R, n € N,

Ee®Sh = 79" < co.
The function z ~ €%* is convex on R, so that
e?5n is a submartingale
and, by the Submartingale Inequality, we have, for 8 > 0,
> P (supks,, Si>2c)=P (supksn 95k > efe) < e U°E (eas,,) .

This is a type of exponential bound much used in modern probability theory.

In our special case, we have

—8c L1o2
- P(supSch)Sc €e2” ™,
k<n
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and for ¢ > 0, choosing the best 6, namely ¢/n, we obtain

(a) P (sup Sk > c) < e—1¢’/n,

k<n

Step 2: Obtaining an upper bound. Let I{ be a real number with K > 1.
(We are interested in cases when K is close to 1.) Choose ¢y := Kh(K™1).
Then

P ( sup Sk > cn) < exp(—c2/2K™) = (n — 1) ¥ (log K)™¥.
k<Kn

The First Borel-Cantelli Lemma therefore shows that, almost surely, for all
large n (all n > no(w)) we have for K*~! <k < K™,

St < sup Sk < cn = Kh(K™™Y) < Kh(k).
k<Kn

Hence, for K > 1,
limsuph(k)™1S: < K, as.
k

By taking a sequence of K-values converging down to 1, we obtain

limsuph(k)™'S; <1, as.
k

Step 3: Obtaining a lower bound. Let N be an integer with N > 1. (We are
interested in cases when N is very large.) Let € be a number in (0,1). (Of
course, € will be small in the cases which interest us.) Write S(r) for S,
etc., when typographically more convenient. For n € N, define the event

Fu = {S(N"*1) = S(N") > (1 — e)h(N™*! — N™)}.

Then (see Proposition 14.8(b) below),

P(Fa)=1-&(y) > (27) "3 (y +y~*) " exp(~y?/2),

where

y = (1 —¢e){2loglog(N"*! - N")}%.

Thus, ignoring ‘logarithmic terms’, P(F3,) is roughly (n log N)‘(l“)z so that
>-P(F,) = co. However, the events F,, (n € N) are clearly independent, so
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that (BC2) shows that, almost surely, infinitely many F, occur. Thus, for
infinitely many n,

S(N™1) > (1 — e)h(N™*! — N™) + S(N™).

But, by Step 2, S(N") > —2h(N") for all large n, so that for infinitely
many n, we have

S(N™1) > (1= e)h(N™! — N™) —2R(N™).
It now follows that
limksup h(k)~'Sk > limnsuph(N"“)_IS(N"“)
>(1—e)(1-N"NH}_an-}

(You should check that ‘the logarithmic terms do disappear’.) The rest is
obvious. O

\

14.8. A standard estimate on the normal distribution

We used part of the following result in the previous section.

Proposition

Suppose that X has the standard normal distribution, so that, for
z €R,

PX>2)=1-2()= [ wlu)dy

where .
e(y) == (27)? exp(—3y?).
Then, for x > 0,

(a) P(X > 2) < =7 (a),
(b) P(X >2) > (z+27") " p(a).

Proof. Let > 0. Since ¢'(y) = —yp(y),

o0

p(z) = /z N ye(y)dy 2 x /,,- ©(y)dy,

yielding (a).
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Since (¥~ (¥)) = —(1 + y~%)p(y),
(@) = [y ey <@+ [ e,

yielding (b). )

14.9. Remarks on exponential bounds; large-deviation theory

Obtaining exponential bounds is related to the very powerful theory of large
deviations — see Varadhan (1984), Deuschel and Stroock (1989) — which has
an ever-growing number of fields of application. See Ellis (1985).

You can study exponential bounds in the very specific context of mar-
tingales in Neveu (1975), Chow and Teicher (1978), Garsia (1973), etc.

Much of the literature is concerned with obtaining exponential bounds
which are in a sense best possible. However, ‘elementary’ results such as the
Azuma-Hoeffding inequality in Exercise E14.1 are very useful in numerous
applications. See for example the applications to combinatorics in Bollobas
(1987).

14.10. A consequence of Holder’s inequality

Look at the statement of Doob’s £? inequality in the next section in order
to see where we are going.

LEMMA
Suppose that X and Y are non-negative RVs such that

cP(X > ¢) SE(Y; X > ¢) for every ¢ > 0.

Then, forp>1 and p~! + ¢~ =1, we have

X1l < allY]l5.
Proof. We obviously have
(*) L :=/ pcP T IP(X > ¢)de _<_/ pc??E(Y; X > c¢)dc =: R.
c=0 c=0

Using Fubini’s Theorem with non-negative integrands, we obtain
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L= [ ([ tsam@n) i

— /ﬂ ( / :w) pcp—ldc) P(dw) = E(XP).

Exactly similarly, we find that
R = E(¢gX?7Y).
We apply Holder’s inequality to conclude that
(%) E(X?) < E(¢XP7'Y) < Y[, X"l

Suppose that ||Y]|, < oo, and suppose for now that || X||; < oo also. Then
since (p — 1)q = p, we have

X771, = E(XP),

so (+x) implies that || X ||, < ¢||Y||,. For general X, note that the hypothesis

remains true for X A n. Hence || X A nf|, < ¢||Y||, for all n, and the result

follows using (MON). O
o~

14.11. Doob’s L? inequality
THEOREM

»(a) Letp>1 and define g so thatp=+q~* = 1. Let Z be a non-negative
submartingale bounded in LP, and define (this is standard notation)

Z* .= sup Z.
kezZ+

Then Z* € LP, and indeed

(*) 1Z*llp < gsup || Z-[l,-

The submartingale Z is therefore dominated by the element Z* of
LP. Asn — 00, Zo :=1im Z,, ezists a.s. and in LP and

”Zoo“p = sx:p “Zr“p =T liin ”Zr“P'
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»(b)  If Z is of the form |M|, where M is a martingale bounded in L?, then
My := lim M,, ezists a.s. and in LP, and of course Zoo = |Mso],
a.s.

Proof. For n € I*, define Z; := supy<, Zk. From Doob’s Submartingale
Inequality 14.6(a) and Lemma 14.10 we see that

1Z:1lp < allZally < gsup (| Zr[lp-

Property (*) now follows from the Monotone-Convergence Theorem. Since
(—Z) is a supermartingale bounded in £?, and therefore in £!, we know
that Zo := lim Z,, exists a.s. However,

|Zn — Z|P < (2Z2*)P € LP,

so that (DOM) shows that Z, — Z in LP. Jensen’s inequality shows that
|Z:|lp is non-decreasing in r, and all the rest is straightforward. O

14.12. Kakutani’s theorem on ‘product’ martingales

Let X1,X,,... be independent non-negative RVs, each of mean 1.
Define My := 1, and, for n € N, let

M, =X1X,...X,.
Then M 13 a non-negative martingale, so that
My :=1lim M, exists a.s.

The following five statements are equivalent:

() E(Mx) =1, (i) M, — Mo, in L1 (iii) M is UL,
(iv) [T an > 0 where 0 < a, := E(X2?) < 1,

(v) (1 —an) < oo.

If one (then every one) of the above five statements fails to hold, then

P(Ms =0) = 1.

Remark. Something of the significance of this theorem is explained in
Section 14.17.
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Proof. That a, < 1 follows from Jensen’s inequality. That a, > 0 is
obvious.

First, suppose that statement (iv) holds. Then define
_ xix}  x} - A

a; az an %

Then N is a martingale for the same reason that M is. See (10.4,b). We

have ?
EN2 =1/(a1az...a,)* Sl/(]:[ak)2 < 00, CL \

’a“
so that N is bounded in £2. By Doob’s £2 inequality, h

(*) Na

E (sup|Mn|) <E (sup[anz) < 4supE|N?|) < oo,
n n n

{
so that M is dominated by M* := sup, |M,| € £!. Hence M is Ul and

properties (i)-(iii) hold.

Now consider the case when [[an = 0. Define N as at (x). Since N
is a non-negative martingale, im N,, exists a.s. But since [[an, = 0, we are
forced to conclude that Mo, = 0, a.s.

The equivalence of (iv) and (v) is known to us from (4.3). The theorem
is proved. O

14.13. The Radon-Nikodym theorem

Martingale theory yields an intuitive — and ‘constructive’ — proof of the
Radon-Nikodym theorem. We are guided by Meyer (1966).

We begin with a special case.

THEOREM

() Suppose that (U, F,P) i3 a probability triple in which F is separable
in that
F=o0(F,:n€N)

for some sequence (F,) of subsets of 2. Suppose that Q 1s a finite
measure on (2, F) which 1s absolutely continuous relative to P in that

(a) for F€F, P(F)=0= Q(F)=0.
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Then there exists X in L}(Q,F,P) such that Q@ = XP (see Section
5.14) in that

Q(F) = / XdP =E(X;F), VFeF.
F

The variable X is called a version of the Radon-Nikodym derivative
of Q relative to P on (Q, F). Two such versions agree a.s. We write

dQ
Fri X onF, as.

Remark. Most of the o-algebras we have encountered are separable. (The
o-algebra of Lebesgue-measurable subsets of [0,1] is not.)

Proof. With the method of Section 13.1(a) in mind, you can prove that
property (a) implies that

(b) given € > 0, there exists § > 0 such that, for F € F,

P(F)<é=Q(F)<e.

Next, define
Foi=0(F, Fy,...,F}).

Then for each n, F, consists of the 27(®) possible unions of ‘atoms’

An,1 gavey An’,.(n)

of Fn, an atom A of F, being an element of F,, such that § is the only
proper subset of A which is again an element of F,. (Each atom A will
have the form

HiNHyN...N H,,
where each H; is either F; or FF¥.)
Define a function X, : @ — [0,00) as follows: if w € A, &, then

o if P(Ank) =0,
Xn(w) == {Q(An,k)/P(An,k) if P(An,:) > 0.

Then X, € £}(Q, Fa,P) and

(c) E(Xn; F) = Q(F), VF€ Fa.



.(14.13) Chapter 14: UI Martingales 147

The variable X, is the obvious version of dQ/dP on (Q, Fy).

It is obvious from (c) that X = (X, : n € ZT) is a martingale relative
to the filtration (F, : n € Z1), and since this martingale is non-negative,

Xoo :=limX,, exists, a.s.
Let € > 0, choose § as at (a), and let I € (0,00) be such that
K~'Q(Q) < 6.
Then
P(X,>K)<K'E(X,)=K'Q(2) <,

so that
E(Xn;Xn>K)=Q(X, > K)<e.

The martingale X is therefore Ul, so that
X, —» X in L.
It now follows from (c) that the measures
F—E(X;F) and Fr Q(F)

agrce on the 7-system | JF,, so that they agree on F. All that remains is
the proof of uniqueness, which is now standard for us. O

Remark. The familiarity of all of the arguments in the above proof em-
phasizes the close link between the Radon-Nikodym and conditional expec-
tation which is made explicit in Section 14.14. Now for the next part of the
theorem ...

(I)  The assumption that F is separable can be dropped from Part I.

Once one has Part II, one can easily extend the result to the case when
P and Q are o-finite measures by partitioning Q into sets on which both are
finite.

Proving Part II of the theorem is a piece of ‘abstract nonsense’ based
on the fact that £! (or, more strictly, L) is a metric space, and in particular
on the réle of sequential convergence in metric spaces. You might well want
to take Part II for granted and skip the remainder of this section.

Let Sep be the class of all separable sub-o-algebras of 7. Part I shows
that for G € Sep, there exists Xg in £1(Q, G, P) such that

dQ/dP = Xg; equivalently, E(Xg; G) = Q(G),G € G.
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We are going to prove that there exists X in £!(Q, F,P) such that
(d) X¢g —= X in L!
in the sense that given € > 0, there exists X in Sep such that
if X C G € Sep, then || X¢g — X1 <e.
First, we note that it is enough to prove that
(e) (Xg : G € Sep) is Cauchy in £!

in the sense that given € > 0, there exists K in Sep such that if X C G; € Sep
for i = 1,2, then || Xg, — Xg, |1 <e.

Proof that (e) implies (d). Suppose that (e) holds. Choose K, € Sep such
that if K, C G; € Sep for ¢ = 1,2, then

”‘Yﬁ - XGzlll < 2_(n+1)'

Let H(n) = 0(K41,K2,...,K,). Then (see the proof of (6.10,a)) the limit
X :=lim Xy() exists a.s. and in £!, and indeed,

X = Xpmylla €277

Set X := lim sup Xy (n) for definiteness. For any G € Sep with G 2 H,, we
have

1Xe — Xn(ylls <27
Result (d) follows. ]

Proof of (e). If (e) is false, then (why?!) we can find ¢ > 0 and a sequence
K(0) CK(1) C... of elements of Sep such that

“XIC(n) - XK:(n+1)“1 > €gg, Vn.

However, it is easily seen that (Xx(,)) is a UI martingale relative to the fil-
tration (K(n)), so that Xx(,) convergesin £!. The contradiction establishes
that (e) is true. )

Proof of Part Il of the theorem. We need only show that for X as at (d)
and for F' € F, we have
E(X; F) = Q(F).



(14.15) Chapter 14: UI Martingales 149

Choose K such that for K C G € Sep, || Xg — X||: < €. Then (K, F) € Sep,
where o(K, F') is the smallest o-algebra extending K and including F’; and,
by a familiar argument,
[E(X; F) - Q(F)| = [E(X = Xo(x,F); F)
<X = Xowe,mlh <e.

The result follows. O

14.14. The Radon-Nikodym theorem and conditional expectation

Suppose that (2, F,P) is a probability triple, and that G is a sub-o-algebra
of F. Let X be a non-negative element of £1(2, F,P). Then

Q(X):=E(X;G), GeGg,

defines a finite measure Q on (2,G). Moreover, Q is clearly absolutely
continuous relative to P on G, so that, by the Radon-Nikodym theorem, (a
version... )
Y :=dQ/dP exists on (2,G).
Now Y is G-measurable, and
E(YY;G)=Q(G)=EX;G), GeGg.
Hence Y is a version of the conditional expectation of X given G:

Y = E(X|G), as.

Remark. The right context for appreciating the close inter-relations be-
tween martingale convergence, conditional expectation, the Radon-Nikodym
theorem, etc., is the geometry of Banach spaces.

14.15. Likelihood ratio, equivalent measures

Let P and Q be probability measures on (£2,F) such that Q is absolutely
continuous relative to P, so that a version X of dQ/dP on F exists. We
say that Y is (a version of) the likelihood ratio of Q given P. Then P is
absolutely continuous relative to Q if and only if P(X > 0) = 1, and then
X1 is a version of dP/dQ. When each of P and Q is absolutely continuous
relative to the other, then P and Q are said to be equivalent. Note that it
then makes sense to define

/\/deQ :=/X%dP=/(X—%)dQ’ FeF;
F F F

and we can hope for a fuller understanding of what Kakutani achieved....
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14.16. Likelihood ratio and conditional expectation

Let (Q2,F,P) be a probability triple, and let Q be a probability measure on
(Q, F) which is absolutely continuous relative to P with density X. Let G
be a sub-c-algebra of . What G-measurable function (modulo versions)
yields dQ/dP on G?7 Yes, of course, it is Y = E(X|G), for, yet again, with
E denoting P-expectation,

E(Y;G) =E(X;G) =Q(G) for G € G.
Hence, if {F,} is a filtration of (2, F), then the likelihood ratios
(*) (dQ/dP on F,) = E(X|F,)

form a UI martingale. (This is of course why the martingale proof of the
Radon-Nikodym theorem was bound to succeed!) Here and in the next two
sections, we are dropping the ‘a.s.” qualifications on such statements as (*):
we have outgrown them.

14.17. Kakutani’s Theorem revisited; consistency of LR test
Let Q = RN, X, (w) = wy, and define the o-algebras

F=0(Xr:keN), Fn=0o(Xr:1<k<n).

Suppose that for each n, f, and gn, are everywhere positive probability
density functions on R and let 7,(z) := gn(z)/fn(z). Let P [respectively, Q]
be the unique measure on (§2, F) which makes the variables X,, independent,
Xn having probability density function f, [respectively, g,]. Clearly, but
you should prove this,

M, :=dQ/dP =Y1Y,...Y, on Fy,

where Y, = r,(Xy). Note that the variables (Y, : n € N) are independent
under P and that each has P-mean 1. For any of a multitude of familiar
reasons, M is a martingale.

Now if Q is absolutely continuous relative to P on F with dQ/dP = ¢
on F, then M, = E({|F,), and M is UL Conversely, if M is U, then M,

exists (a.s., P) and

E(Mwo[Fn) = M,, Vn.
But then the probability measures
F— QF) and Fr E(Mx;F)

agree on the 7-system | JF, and so agree on F, so that My, = dQ/dP on

F. Thus Q is absolutely continuous relative to P on F if and only if M is
UL
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Kakutani’s Theorem therefore implies that Q is equivalent to P on F

if and only if
[TevhH =TI /R VF@en@)dz > 0,

equivalently if

(*) Z/R {\/f,,(m) - \/gn('f)}zdsc < 00;

and that then P is also absolutely continuous relative to Q.

Suppose now that the X,, are identically distributed independent vari-
ables under each of P and Q. Thus, for some probability density functions
f and g on R, we have f, = f and g, = g for all n. It is clear from (*) that
Q is equivalent to P if and only if f = g almost everywhere with respect to
Lebesgue measure, in which case @ = P. Moreover, Kakutani’s Theorem
also tells us that if Q # P, then M, — 0 (a.s., P) and this is exactly the
consistency of the Likelithood-Ratio Test in Statistics.

14.18. Note on Hardy spaces, etc. (prestissimo!)

We have seen in this chapter that for many purposes, the class of Ul mar-
tingales is a natural one. The appendix to this chapter, on the Optional-
Sampling Theorem, provides further evidence of this.

However, what we might wish to be true is not always true for Ul
martingales. For example, if M is a Ul martingale and C is a (uniformly)
bounded previsible process, then the martingale C e M need not be bounded
in £1. (Even so, C e M does converge a.s.!)

For many parts of the more advanced theory, one uses the ‘Hardy’ space
H} of martingales M null at 0 for which one (then each) of the following
equivalent conditions holds:

(a) M*:=sup|M,|eLl?,

(b)  [M]Z € L, where [M], := "_ (Mi — Mi_1)?
and [M]eo =1 lim M,.

By a special case of a celebrated Burkholder-Davis-Gundy theorem,
there exist absolute constants ¢,,Cp (1 < p < 00) such that

(c) MLl < IM* |, < ClIMIL], (1< p < o).

The space H} is obviously sandwiched between the union of the spaces
of martingales bounded in £? (p > 1) and the space of Ul martingales. Its
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identification as the right intermediate space has proved very important. Its
name derives from its important links with complex analysis.

Proof of the B-D-G inequality or of the equivalence of (a) and (b) is
too difficult to give here. But we can take a very quick look at the relevance
of (b) to the C' ¢ M problem. First, (b) makes it clear that

(d) if M € H} and C is a bounded previsible process, then C o M € Hj,

and we shall now see that, in a sense, this is ‘best possible’.

Suppose that we have a martingale A null at 0 and a (bounded) previs-
ible process ¢ = (ex : k € N) where the e; are IID RVs with P(ex = £1) = §,
and where € and M are independent. We want to show that

(e) M € H; if (as well as only if) € M is bounded in £*.
We run into no difficulties of ‘regularity’ if we condition on M:
El( o M)l = EE{|(¢ o M)allo(M)} > 3™ FE((M]]).

And where did the last inequality appear from? Let (ax : k € N) be a

sequence of real numbers. Think of ay as My — Mi_; when M is known.
Define

Xy = arer, Wpi=Xi1+4--- +Xﬂ, Un = E(Wz) = Zai

k=1

Then (see Section 7.2)
EW) = (X +05TXIX]) = T ab 405 Tall,
1< 3 1<y

so that, certainly, E(W}) < 3v2Z. On combining this fact with Holder’s
inequality in the form
vn = E(W2) < [|W3||5||W3|[s = (E|W.[)E(W?)3

we obtain the special case of Khinchine’s inequality we need:
E(IWa]) 2 3702, O
For more on the topics in this section, see Chow and Teicher (1978),

Dellacherie and Meyer (1980), Doob (1981), Durrett (1984). The first of
these is accessible to the reader of this book; the others are more advanced.



Chapter 15
Applications

15.0. Introduction — please read!

The purpose of this chapter is to give some indication of some of the ways
in which the theory which we have developed can be applied to real-world
problems. We consider only very simple examples, but at a lively pace!

In Sections 15.1-15.2, we discuss a trivial case of a celebrated result
from mathematical economics, the Black-Scholes option-pricing for-
mula. The formula was developed for a continuous-parameter (diffusion)
model for stock prices; see, for example, Karatzas and Schreve (1988). We
present an obvious discretization which also has many treatments in the
literature. What needs to be emphasized is that in the discrete case, the
result has nothing to do with probability, which is why the answer is com-
pletely independent of the underlying probability measure. The use of the
‘martingale measure’ P in Section 15.2 is nothing other than a device for
ezpressing some simple algebra/combinatorics. But in the diffusion set-
ting, where the algebra and combinatorics are no longer meaningful, the
martingale-representation theorem and Cameron-Martin-Girsanov change-
of-measure theorem provide the essential language. I think that this justifies
my giving a ‘martingale’ treatment of something which needs only junior-
school algebra.

Sections 15.3-15.5 indicate the further development of the martingale
formulation of optimality in stochastic control, at which Exercise
E10.2 gave a first look. We consider just one ‘fun’ example, the ‘ Mabinogion
sheep problem’; but it is an example which illustrates rather well several
techniques which may be effectively utilized in other contexts.

In Sections 15.6-15.9, we look at some simple problems of filtering:
estimating in real-time processes of which only noisy observations can be
made. This topic has important applications in engineering (look at the
IEEE journals!), in medicine, and in economics. I hope that you will look

158
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further into this topic and into the important subject which develops when
filtering is combined with stochastic-control theory. See, for example, Davis
and Vintner (1985) and Whittle (1990).

Sections 15.10-15.12 consist of first reflections on the problems we en-
counter when we try to extend the martingale concept.

15.1. A trivial martingale-representation result

Let S denote the two-point set {—1,1}, let £ denote the set of all subsets
of S, let p € (0,1), and let x4 be the probability measure on (5, ) with

p({1}) =p=1-p({-1}).
Let N € N. Define (2, F,P) = (S5, Z, p)V so that a typical element of Q is
w = (wy,wz,...,wN), wi € {—1,1}.

Define ¢ : @ — R by ex(w) := wi, so that (e1,€2,...,en) are IID RVs each
with law g. For 0 < n < N, define

n

Zp = Z(ek - 2p+1),
k=1
fn = O(ZO,ZI,...,Zn) = 0(61,62,-..,6«”).
Note that E(ex) = 1.p + (—1)(1 — p) = 2p — 1. We see that
(a) Z=(Z,:0<n<N)

18 a martingale (relative to ({F, : 0 <n < N}, P)).
LEMMA

If M = (M, :0<n < N)is a martingale (relative to ({Fn, : 0 < n <
N},P)), then there ezists a unique previsible process H such that

M =My,+ H e Z, that 1s, M,, = M, + 22;_1 Hk(Zk — Zk—-l)-

Remark. Since 7o = {0,9Q}, M, is constant on © and has to be the
common value of the E(M,,).

Proof. We simply construct H explicitly. Because M, is F, measurable,

Mu(w) = fo(e1(w),...,enw)) = falwi,... yWn)
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for some function f,, : {—1,1}" — R.'Since M is a martingale, we have

0=E(M, — M,_1|Fn-1)(w)
= pfn(wl,. .o ,wn_l,l) +(1 —p)fn(LU1,.. . ,wn_l,—l)

— fam1(wi,. .oy wn-1).
Hence the expressions
(b1) Jn(wi,. .. ywno1,1) = faca(wi, ..., wn—1)
2(1-p)
and
(b2) fa—1(wiy ..o ywno1) = falwi, ... ,wn-1,—1)

2p

are equal; and if we define Hn(w) to be their common value, then H is
clearly previsible, and simple algebra verifies that M = M, + H o Z, as
required. You check that H is unique. O

15.2. Option pricing; discrete Black-Scholes formula

Consider an economy in which there are two ‘securities’: bonds of fixed
interest rate r, and stock, the value of which fluctuates randomly. Let N be
a fixed element of N. We suppose that values of units of stock and of bond
units change abruptly at times 1,2,...,N. Forn =0,1,...,N, we write

B, = (1 + r)"By for the value of 1 bond unit throughout the open
time interval (n,n + 1),

Sn for the value of 1 unit of stock throughout the open time interval
(n,n +1).

You start just after time 0 with a fortune of value z made up of Ay units
of stock and V4 of bond, so that

AoSo + VoBy = z.

Between times 0 and 1 you invest this in stocks and bonds, so that just
before time 1, you have A; units of stock and V; of bond so that

AISO + ‘/;[Bo = T.

So, (A1, V1) represents the portfolio you have as your ‘stake on the first
game’.
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Just after time n — 1 (where n > 1) you have A,_; units of stock and V,,_4
units of bond with value

Xn—] = An—ISn—l + Vn—-lBﬂ—l'

By trading stock for bonds or conversely, you rearrange your portfolio be-
tween times n — 1 and n so that just before time n, your fortune (still of
value X,,_1 because we assume transaction costs to be zero) is described by

Xno1 = AnSna1 +VaBaoy (n2>1).
Your fortune just after time n is given by
(a) Xn=AnS2+VaB, (n>0)
and your change in fortune satisfies
(b) Xn—Xno1 = An(Sn — Sn-1) + Va(Bn — B,—1).

Now,

Bn - Bn—l = TBn,

and

Sn — Sn—l = R,S -1,

where R, is the random ‘rate of interest of stock at time n’. We may now
rewrite (b) as

Xn —Xpoy = rXn-1+ AnSn—l(Rn - 7'),

so that if we set

(c) Yo=(01+r)""X,,
then
(d) Yo =Yoo =(1+7)""YA4,85, (R, —r).

Note that (c) shows Y, to be the discounted value of your fortune at time
n, so that the evolution (d) is of primary interest.

Let ,F,e4(1<n < N), Zo(0 <n < N) and Fa(0<n<N)beasin
Section 15.1. Note that no probability measure has been introduced.

We build a model in which each R, takes only values a,b in (-1, ),
where

a<r<b,
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by setting
a+b b—a

(e) R, = 5 +——¢n.
But then
(f) Ry—r=40b-a)(en—2p+1)=4(b—a)(Zn — Zn-1),
where we now choose

r—a
(g) p L b _ a‘

Note that (d) and (f) together display ¥ as a ‘stochastic integral’ relative
to Z.

A European option is a contract made just after time 0 which will allow
you to buy 1 unit of stock just after time N at a price K; K is the so-called
striking price. If you have made such a contract, then just after time N,
you will exercise the option if Sy > K and will not if Sy < K. Thus, the
value at time N of such a contract is (Sy — K)t. What should you pay for
the option at time 07

Black and Scholes provide an answer to this question which is based on
the concept of a hedging strategy.

A hedging strategy with initial value z for the described option 1s
a portfolio management scheme {(4,,V,) : 1 < n < N} where the processes
A and V are previsible relative to {F,}, and where, with X satisfying (a)
and (b), we have for every w,

(h1) Xo(w) = =,
(h2) Xn(w)>0(0<n<N),
(h3) Xn(w) = (Sn(w) — K)*.

Anyone employing a hedging strategy will by appropriate portfolio man-
agement, and without going bankrupt, exactly duplicate the value of the
option at time V.

Note. Though Black and Scholes insist that X,(w) > 0, Vn, Vw, they (and
we) do not insist that the processes A and V be positive. A negative value of
V for some n amounts to borrowing at the fixed interest rate r. A negative
value of A corresponds to ‘short-selling’ stock, but after you have read the
theorem, this may not worry you!
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THEOREM
A hedging strategy with initial value x exists if and only if

z=u1x9:=E [(1 +7)" NSy - K)*],

where E is the ezpectation for the measure P of Section 15.1 with p
as at (g). There is a unique hedging strategy with initial value o,
and it tnvolves no short-selling: A 1s never negative.

On the basis of this result, it is claimed that ¢y is the unique fair price at
time 0 of the option.

Proof. In the definition of hedging strategy, there is nowhere any mention
of an underlying probability measure. Because however of the ‘for every w’
requirement, we should consider only measures on  for which each point
w has positive mass. Of course, P is such a measure.

Suppose now that a hedging strategy with initial value = exists, and
let A,V,X,Y denote the associated processes. From (d) and (f),

Y=Yy+Fe2Z
where F' is the previsible process with
Fo=1+r)"(rV4,5,_,.

Of course, F' is bounded because there are only finitely many (n,w) combi-
nations. Thus Y is a martingale under the P measure, since Z is; and since
Yo =z and Yy = (1 + )"V (S,. — K)* by (c) and the definition of hedging
strategy, we obtain

T = Tyg.

(We did not use the property that X > 0.)
Now consider things afresh and define

Yo:=E(1+r)™N(Sn - K)¥|F,).

Then Y is a martingale, and by combining (f) with the martingale-represent-
ation result in Section 15.1, we see that for some unique previsible process

A, (d) holds. Define
Xn:=Q+7r)"Y%, V,:=(X,—AnSn)/Bn.
Then (a) and (b) hold. Since

Xo =z and Xy =(S~v — K)*,
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the only thing which remains is to prove that A is never negative. Because
of the explicit formula (15.1,b1), this reduces to showing that

E [(Sn = K)*|Sa-1,5n = (1 + b)Sn-1]
> E [(Sn — K)*|Sn-1,52 = (1 + @)Su-1] ;

and this is intuitively obvious and may be proved by a simple computation
on binomial coeflicients.

15.3. The Mabinogion sheep problem

In the Tale of Peredur ap Efrawg in the very early Welsh folk tales, The
Mabinogion (see Jones and Jones (1949)), there is a magical flock of sheep,
some black, some white. We sacrifice poetry for precision in specifying
its behaviour. At each of times 1,2,3,... a sheep (chosen randomly from
the entire flock, independently of previous events) bleats; if this bleating
sheep is white, one black sheep (if any remain) instantly becomes white; if
the bleating sheep is black, then one white sheep (if any remain) instantly
becomes black. No births or deaths occur.

The controlled system

Suppose now that the system can be controlled in that just after time 0
and just after every magical transition time 1,2,..., any number of white
sheep may be removed from the system. (White sheep may be removed on

numerous occasions.) The object is to maximize the expected final number
of black sheep.

Consider the following example of a policy:

Policy A: at each time of decision, do nothing if there are more
black sheep than white sheep or if no black sheep remain; otherwise,
immediately reduce the white population to one less than the black
population.

The value function V for Policy A is the function
, V:Zt xZ% —[0,00),

where for w,b € 7%, V(w,b) denotes the expected final number of black
sheep if one adopts Policy A and if there are w white and b black sheep at
time 0. Then V is uniquely specified by the fact that, for w,b € Z,

(al) V(0,b) = b;
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(a2) V(w,b) = V(w — 1,b) whenever w 2 b and w > 0;

(a3) V(w,b) = V(v +1,0-1) + ;U—%I;V(w — 1,5+ 1) whenever w < b,
b> 0 and w > 0.

It is almost tautological that if W, and B,, denote the numbers of white

and black sheep at time n, then, if we adopt Policy A, then, whatever the
initial values of Wy and By,

(b) V(W,, B,) is a martingale
relative to the natural filtration of {(Wy,,By) : n > 0}.

(c) LEMMA
The following statements are true for w,b € Z7:
(cl) V(w,b) > V(w — 1,b) whenever w > 0,

(c2) V(w,b) > 25V (w+1,0- 1)+ 25 V(w - 1,6+ 1)
whenever w > 0 and b > 0.

Let us suppose that this Lemma is true. (It is proved in the next Section.)
Then, for any policy whatsoever,

(d) V(Wh,, B,) is a supermartingale.

The fact that V(W,, B,) converges means that the system must a.s. end up
in an absorbing state in which sheep are of one colour. But then V(W Boo)
is just the final number of black sheep (by definition of V'). Since V(W,, B,)
is a non-negative supermartingale, we have for deterministic Wy, By,

EV(We, Bs) < V(Wo, By).

Hence, whatever the initial position, the expected final number of black
sheep under any policy is no more than the expected final number of black
sheep if Policy A is used. Thus

Policy A is optimal.
In Section 15.5, we prove the following result:
V(k,k)—(2k+ § —V7k) = 0as k — co.
Thus if we start with 10000 black sheep and 10000 white sheep, we finish
up with (about) 19824 black sheep on average (over many ‘runs’).

Of course, the above argument worked because we had correctly guessed
the optimal policy to begin with. In this subject area, one often has to make
good guesses. Then one usually has to work rather hard to clinch results
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which correspond in more general situations to Lemma (c) and statement
(d). You might find it quite an amusing exercise to prove these results for
our special problem now, before reading on.

For a problem in economics which utilizes analogous ideas, see Davis

and Norman (1990).

15.4. Proof of Lemma 15.3(c)

It will be convenient to define
(a) vk = V(k, k).
Everything hinges on the following results: for 1 < ¢ < k,

e 2k -1
(bl) V(k—c,k+ c) = v + (2k — vk)2‘(2""2) Z ( . ),

=t ~ 7

(b2) V(k+1—c,k+c)

v )L ()

I

=k
which simply reflect (15.3,a3) together with the ‘boundary conditions’

V(k k) =uvk, V(0,2k)=2k,
() V(k+1,k)=ve, V(0,2k+1)=2k+1.

Now, from (15.3,a2),
vkpr = V(k+1,k+1)=V(k, k+1),

and hence, from (b2) with ¢ = 1, we find that

1—px 2py;
d v = vk + 2k 4+ 1),
(d) SR T 1+Pk( )

where pi is the chance of obtaining k heads and k tails in 2k tosses of a fair
coin:

(e) pi = 277 (2k’°).

Result (d) is the key to proving things by induction.
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Proof of result (15.3,c1). From (15.3,a2), result (15.3,c1) is automatically
true when w > b. Hence, we need only establish the result when w < b.
Now if w < b and w + b is odd, then

(w,b) =(k+1—-c,k+¢c)

for some ¢ with 1 < ¢ < k. But formulae (b) show that it is enough to show
that for 1 <a <k,

1/2k\) "} 2k
— e 22k—l t
(2k +1 ”‘){ +2(k)} (k+a~1)

2k -1
> (Ok — —(2k—2) .
> (2k — vg)2 (k ta— 1),

(a0 /()= (220 (),

we nced only establish the case when a = 1:

and since

‘)
(2k 4+ 1 — v)27@F=1(1 4 py)~! (“:)

2k -1
> (2k — vy )2~ (26-2)
— ( 'Uk) k b

which reduces to

(f) vk > 2k — pit.

But property (f) follows by induction from (d) using only the fact that
Pk 18 decreasing in k.

Proof for the case when b+ w is even may be achieved similarly.

Proof of result (15.3,c2). Because of (15.3,a3), the result (15.3,c2) is au-
tomatically true when w < b, so we need only establish it when w > b.
In analogy with the reduction of the ‘general a’ case to the ‘boundary case
a = 1’ in the proof of (15.3,c1), it is easily shown that it is sufficient to prove

(15.3,c2) for the case when (w,b) = (k+ 1,k + 1) for some k. Formulae (b)
reduce this problem to showing that

{1 + (2k + l)pk}vk < 2k(2k + l)pk,
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and this follows by induction from (d) using only the fact that

(2k 4 1)pi 13 increasing in k. O

15.5. Proof of result (15.3,d)

Define
ag 1= v — 2k — (pk)"] — 1im.

Then, from (15.4,d),
ar+1 = (1 — pr)ak + prck,
where

2pi _Pk—Pk+1 T
= y Ci 1= -2 7
14 px 2pipk+1 4

%

Stirling’s formula shows that ¢y — 0 as k — 0o, so that given € > 0, we can

find N so that
lekl <e  for k> N.

Induction shows that for k > N,
lokg1] < (1= pr)(A = pi-1) ... (1 = pn)lan| + e

But, since Y px = oo, we have [J(1 — px) = 0, and it is now clear that
limsup |ak+1]| < €, so that ax — 0.

Because of the accurate version of Stirling’s formula:

n! = (27rn)% (P—)n /M 0<§=06(n)<1,
e

we have
pil = (k)% {1 +0 (%)} ,
so that .
'Uk—'(2k+z'-— V7l’k) —*0,
as required. O

We now take a quick look at filtering. The central idea combines Bayes’
formula with a recursive property which is now illustrated by two examples.
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15.6. Recursive nature of conditional probabilities

Example. Suppose that A, B, C and D are events (elements of F) each
with a strictly positive probability. Let us write (for example) ABC for
AN BNC. Let us also introduce the notation

Ca(B) :=P(B|A) = P(AB)/P(A)

for conditional probabilities. The ‘recursive property’ in which we are in-
terested is exemplified by

Cap(CD) _

CABC(D) = CAB(D'C) = m s

‘if we want to find the conditional probability of D given that A, B and C
have occurred, we can assume that both 4 and B have occurred and find
the Cap probability of D given C". ]

Example. Suppose the X, Y, Z and T are RVs such that (X,Y,Z,T) has
a strictly positive joint pdf fx y,zr on R*: for B € B4,

P{(X,Y,Z,T)EB}=//// Ix,v,zr(z,y, 2 t)drdydzdt.
B

Then, of course, (X,Y, Z) has joint pdf fx y z on R3, where

fX,Y,Z(ﬂf,y,z)=/fx,y,z,T($,y,z,t)dt.
R

The formula

x,v,zr(z,y,z2,1
Frixrz(tle,y,z) =1 (z,y,21)
fxv,z(z,y,2)

defines a (‘regular’) conditional pdf of T given X,Y, Z: for B € B, we have,
with all dependence on w indicated,

P(T € B|X,Y, Z)(w) = E(Is(T)|X, Y, Z)(w)
- /B Frixy, 21X (@), Y (), Z(w))dt.
Similarly,

fx,y,zr(z,y,2,t)
fx,v(z,y)

frzix,y(t, z|z,y) =
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The recurrence property is exemplified by

fr.zix,y
frixyz=(1z)yy:=—"F——- 0
| ( I)p\,y fz1x.y

15.7. Bayes’ formula for bivariate normal distributions

With a now-clear notation, we have for RVs X, Y with strictly positive joint
pdf fx,y on RZ,

fxy(z,y) _ fx(x)fv|x(y|$).

(*) fXIY(xly) = fy(y) - fy(y)
Thus
(**) Ixy(zly) < fx(z)fy|x(ylz),

the ‘constant of proportionality’ depending on y but being determined by
the fact that

/ fxy(z,y)dz = 1.
R

The meaning of the following Lemma is clarified within its proof.

LEMMA

>(a) Suppose that p,a,b € R, that U,W € (0,00) and that X andY are

RVs such that
L(X) = N(u, V),

Cx(Y) = N(a + bX, W).

Then
CY(X) = N(Xv V))

where the number V € (0,00) and the RV X are determined as
follows:

a—

1 1 b §~ﬁ+b(Y——a)
Vv U W’ V U w

Proof. The absolute distribution of X is N(y,U), so that

fx(z) = 2rU)~} exp {_(””_;ﬁ“)_?} .
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The conditional pdf of Y given X is the density of N(a + bX, W), so that

1 —a — bz)?
frix(ylz) = (2nW)~2 exp{—-(y 2Wb ) }

Hence, from (**),

(z—p)? (y—a—bz)?
2U 2w
= a) - T

log fx|y(zly) = a1(y) —

where 1/V = 1/U+b*/W and £/V = p/U +b(y—a)/V. The result follows.
L] .

COROLLARY
(b)  With the notation of the Lemma, we have

IX — X} = E{(X - X)*} = V.

Proof. Since Cy(X) = N(X, V'), we even have

E{(X-X)?*Y}=V, as. O

15.8. Noisy observation of a single random variable

Let X, n1,n2,... be independent RVs, with
L(X) = N(0,0%), L(n)=N(0,1).
Let (cn) be a sequence of positive real numbers, and let
Yi=X+4cm, Fo=oh,Ys...,Y,).
We regard each Yy as a noisy observation of X. We know that
M, = E(X|Fn) = My := E(X|Fo) a.s. and in £2.

One interesting question mentioned at (10.4,c) is:
when 13 it true that Mo, = X a.s.?, or again,

18 X a.3. equal to an Fo-measurable RV?
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Let us write C,, to signify ‘regular conditional law’ given Y;7,Y3,...,Y5,.
We have
CO(X) = N(0,0’z).

Suppose that it 1s true that
Cn-1(X) = N(Xpn-1,Va-1)

where X,_, is a linear function of Y,Y,,...,Y,—1 and V,,_; a constant in
(0, 00). Then, since Y;, = X 4 ¢p7n, we have

Crn—1(Ya|X) = N(X,c2).
From the Lemma 15.7(a) on bivariate normals with
w = Xn—l,U =Va_1,a=0,=1,W = Cfu

we have

Cn—l (xYlYn) == N(Xn, Vn),

where

_1_ 1 1 Xﬂ . Xn—] Yn

V.  Vinta V.o v, ta-

But the recursive property indicated in Section 15.6 shows that

Ca(X) = Caa (X[Ya).
We have now proved by induction that

Ca(X) = N(X,,V,), Vn.

Now, of course,
M, =X, and E{(X —M,)?*}="V,.

However,

Va={0"2+ ic;2}"l.

k=1

Our martingale M is £2 bounded and so converges in £2. We now see that

Mo =X as. if and only if 3 ¢c;? = o0 .
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15.9. The Kalman-Bucy filter

The method of calculation used in the preceding three sections allows im-
mediate derivation of the famous Kalman-Bucy filter.

Let A, H, C, K and g be real constants. Suppose that Xy, Yy, €1,¢€2,...,
71,72, .- are independent RVs with

L(ex) = L(n) = N(0,1), L(Xo) = N(m,0?),Y, = 0.

The true state of a system at time n is supposed given by X,,, where

(dynamics)
Xn —Xnp-1 = A-Xn—l + Hen + g.

However the process X cannot be observed directly: we can only observe
the process Y, where

(observation)
Yo —Yao1 =CXn+ Kna.

Just as in Section 15.8, we make the induction hypothesis that
cn—l (Xn—l) = N(Xn—l, Vn—] ),

where C,_; signifies regular conditional law given Y;,Y>,...,Y,—;. Since
Xn=aX,-1+ g9+ He,, where

a:=1+4 A4,

we have

Cn—l(Xn) = N(a-)z’n—l + g,azvn—l + Hz)
Also, since Y, = Y,_1 + CX,, + K7,, we have

Cn-1(Yn|Xpn) = N(Yn_1 + CX,, K?).
Apply the bivariate-normal Lemma 15.7(a) to find that

Cn(X2) = Cne1(Xn|Ya) = N(Xn, V),

where
1 1 C?
KB1 — =
( ) Vo a?V,_y+ H? + K2’
Xn aXn—l +g C(Yn"y —l)
KB2 = n
( ) Va a?V,_, + H? + K2 )
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Equation (KB1) shows that V,, = f(V5—1). Examination of the rectan-

gular hyperbola which is the graph of f shows that V,, — V,, the positive
root of V = f(V).

If one wishes to give a rigorous treatment of the K-B filter in continuous
time, one is forced to use martingale and stochastic-integral techniques. See,
for example, Rogers and Williams (1987) and references to filtering and
control mentioned there. For more on the discrete-time situation, which is
very important in practice, and for how filtering does link with stochastic
control, see Davis and Vintner (1985) or Whittle (1990).

15.10. Harnesses entangled

The martingale concept is well adapted to processes evolving in time be-
cause (discrete) time naturally belongs to the ordered space Zt. The ques-
tion arises: does the martingale property transfer in some natural way to
processes parametrized by (say) 297

Let me first explain a difficulty described in Williams (1973) that arises
with models in Z (d = 1) and in Z2, though we do not study the latter here.

Suppose that (X, : n € Z) is a process such that each X,, € £! and
that (‘almost surely’ qualifications will be dropped)

(a) E(X.]|Xn :m#n)={Xn-14+ Xn41), Vn
For m € Z, define
Om=0(Xy :k<m), Hm=o0(X,:r>m)

The Tower Property shows that for a,b in Z+ with a < b, we have for
a<r<hb,.

E(X,|Ga, Hp) = E(X | X, : 1 # 5|Ga, Hs)
= %E(Xr—l IguyHb) + %E(XT-H IGGaHl’)’

so that r — E(X,|G,.,Hs) is the linear interpolation

b—r r—a
X,
b—a +b—-a

Xbs.

E(Xf“ga’ Hb) -

Hence, for n € Z and u € N, we have, a.s.,

Xn—u UXn-H
u+1 u+t+1

E(Xn |Gn—u,Hn+1) =
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Now, the o-algebras 0(Gn—u,Hnt1) decrease as u T oo. Because of
Warning 4.12, we had better not claim that they decrease to 0(G—oo, Hn+1)-
Anyway, by the Downward Theorem, we see that the random variable

L :=limy| - oo( X4 /u) exists (a.s.)

and

E(Xnl[)o(Gn—usHns1)) = Xng1 — L.
Hence, by the Tower Property,

(b) E(anLaHn+l) = Xat1— L
whence we have a reversed-martingale property:

E(Xn — nL|L,'H,,+1) = —Xn-}-] — (n + 1)L
A further application of the Downward Theorem shows that

(c) A = limg100(Xn — nL) exists (a.s.)
Hence

L = lim (X, /u).
uloo

By using the arguments which led to (b) in the reversed-time sense, we
now obtain

(d) E(Xnt+1|L,Gn) = Xn + L.
From (b) and (d) and the Tower Property,
E(Xn + L| Xnt1) = Xny1,
E(Xpn41|Xn+L)=X, + L.

Exercise E9.2 shows that X,4; = X, + L. Hence (almost surely)
Xn=nL+A, Vnel,

so that (almost) all sample paths of X are straight lines!

Hammersley (1966) suggested that any analogue of (a) should be called
a harness property and that the type of result just obtained conveys the idea
that every low-dimensional harness is a straitjacket!
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15.11. Harnesses unravelled, 1

The reason that (15.10,a) rules out interesting models is that it is expressed
in terms of the idea that each X, should be a random variable. What one

should say is that
Xn:2—-R

but then require only that differences
(X, —X,:r,s€)
be RVs (that is, be F-measurable), and that for n,k € Z with k # n,
E(Xp — Xi|Xm — Xi :m#n) = (X1 — Xi) + $1(Xng1 — Xi).

I call this a difference harness in Williams (1973).

Easy exercise. Suppose that (Y, : n € Z) are IID RVs in L!. Let X, be
any function on Q. Define

X . X0+Z;:=1Yk 1fn20,
T Xo — Yheny: Y ifn <O

Thus, X, — Xn—1 = Y,, Vn. Prove that X is a difference harness.

15.12. Harnesses unravelled, 2

In dimension d > 3, we do not need to use the ‘difference-process’ unravelling
described in the preceding section. For d > 3, there is a non-trivial model,
related both to Gibbs states in statistical mechanics and to quantum fields,
such that each X,(n € Z%) is a RV and, for n € Z¢,

E(Xn|Xm :meZ\ {n}) = (2d)7" D Xntu,
ueU

where U is the set of the 2d unit vectors in Z¢. See Williams (1973).

In addition to a fascinating etymological treatise on the terms ‘martin-
gale’ and ‘harness’, Hammersley (1966) contains many important ideas on
harnesses, anticipating later work on stochastic partial differential equations.
Many interesting unsolved problems on various kinds of harness remain.



PART C: CHARACTERISTIC FUNCTIONS

Chapter 16
Basic Properties of CF's

Part C is merely the briefest account of the first stages of characteristic
function theory. This theory is something very different in spirit from the
work in Part B. Part B was about the sample paths of processes. Character-
istic function theory is on the one hand part of Fourier-integral theory, and
it is proper that it finds its way into that marvellous recent book, Korner
(1988); see also the magical Dym and McKean (1972). On the other hand,
characteristic functions do have an essential role in both probability and
statistics, and I must include these few pages on them. For full treatment,
see Chow and Teicher (1978) or Lukacs (1970).

Exercises indicate the analogous Laplace-transform method, and de-
velop in full the method of moments for distributions on [0,1].

16.1. Definition

The characteristic function (CF) ¢ = px of a random variable X is defined
to be the map
p:R—-C

(important:the domain is R not C) defined by
> ¢(0) := E(e'%*) = E cos(6X) + iEsin(6X).

Let F' := Fx be the distribution function of X, and let u := ux denote the
law of X. Then

0(0) = [ *dF@) = [ uan)

so that ¢ is the Fourier transform of u, or the Fourier-Stieltjes transform

of F'. (We do not use the factor (271')—% which is sometimes used in Fourier
theory.) We often write ¢ or ¢, for .

172
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16.2. Elementary properties
Let ¢ = px for a RV X. Then
»(a) ¢(0) =1 (obviously);
>b)  lp(6)] < 1,6
»(c) 6~ ¢(0) is continuous on R;
@ ¢x)6) = px (), ¥,
(€)  vax+5(8) = e*®px(al).
You can easily prove these properties. (Use (BDD) to establish (c).)

Note on differentiability (or lack of 1t). Standard analysis (see Theorem
A16.1) implies that if n € N and E(|X]|") < oo, then we may formally
differentiate p(0) = Ee'®X n times to obtain

P(M(8) = E[(iX)"e'X].
In particular, p("(0) = i"E(X™). However, it is possible for ¢’(0) to exist
when E(|X|) = co.
We shall see shortly that ¢ can be the ‘tent-function’

w(0) =(1- |9|)I[—1,1](9)

so that ¢ need not be differentiable everywhere, and ¢ can be 0 outside
[~1,1].
16.3. Some uses of characteristic functions
Amongst uses of CF's are the following;:
o to prove the Central Limit Theorem (CLT) and analogues,
e to calculate distributions of limit RVs,
e to prove the ‘only if’ part of the Three-Series Theorem,

e to obtain estimates on tail probabilities via saddle-point approxima-
tion,

e to prove such results as
if X and Y are independent, and X + Y has a normal distribution,
then both X and Y have normal distributions.

Only the first three of these uses are discussed in this book.
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16.4. Three key results
(2) If X and Y are independent RVs, then

px+v(0) = px(0)py(0), V0.

Proof. This is just ‘independence means multiply’ again:

EeiO(X—l—Y) — EeiﬂXeiOY — Ee‘”er‘”Y. O

(b) F may be reconstructed from .
See Section 16.6 for a precise statement.

(c) ‘Weak’ convergence of distribution functions corresponds ezactly to con-
vergence of the corresponding CFs.

See Section 18.1 for a precise statement.

The way in which these results are used in the proof of the Central Limit
Theorem is as follows. Suppose that X,, X5,... are IID RVs each with mean
0 and variance 1. From (a) and (16.2,e), we see that if S, := X3 + - + X,

then
Eexp(i6Sn/v/7) = ¢ x(0/v/A)™.

We shall obtain rigorous estimates which show that
n 1 2 " 1 2
ex(0/v/n)* =11- -2-9 /n+o(1/n) ——»exp(—-—2—9 ), V.

Since 6 + exp(—36?) is the CF of the standard normal distribution (as we
shall see shortly), it now follows from (b) and (c) that

the distribution of S, /\/n converges weakly to the distribution func-
tion ® of the standard normal distribution N(0,1).

In this case, this simply means that

P(Sn/v/n < 2) — &(z), z €R.

16.5. Atoms

In regard to both (16.4,b) and (16.4,c), tidiness of results can be threatened
by the presence of atoms.
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If P(X = ¢) > 0, then the law p of X is said to have an atom at ¢, and
the distribution function F' of X has a discontinuity at c:

p({e}) = F(e) = F(e—) = P(X = ¢).

Now p can have at most n atoms of mass at least 1/n, so that the number
of atoms of u 1s at most countable.

It therefore follows that given ¢ € R, there exists a sequence (y,) of
reals with y, |  such that every y, is a non-atom of u (equivalently a point
of continuity of F); and then, by right-continuity of F, F(y,) | F(z).

16.6. Lévy’s Inversion Formula

This theorem puts the fact that F' may be reconstructed from ¢ in very
explicit form. (Check that the theorem does imply that if F' and G are
distribution functions such that ¢ = ¢ on R, then F' = G.)

THEOREM

Let ¢ be the CF of a RV X which has law u and distribution function
F. Then, fora < b,

) 1 T e—ifa _ o—ifb
® s [0

= Su({a}) + u(a,b) + Zu({B))
= %[F(b) + F(b-)) — %[F(a) + F(a—)).

Moreover, if [o]p(0)|d0 < oo, then X has continuous probability
density function f, and

1 .
b — —i0z .
(b) f@) = 5= [ o= o(0)as
The ‘duality’ between (b) and the result

(<) o(0) = [ e f(z)do

can be exploited as we shall see.

The proof of the theorem may be omitted on a first reading.
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Proof of the theorem. For u,v € R with u < v,
(d) e —e| < |v - ul,

either from a picture or since

v ) v . v
/ie"dtlg/ |ie"|dt=/ 1dt.
u u u

Let a,b € R, with a < b. Fubini’s Theorem allows us to say that, for
0<T< oo,

1 [T e—ifa _ o—ifb
(e) or J_p 10

1 [T —iba _ o—ib »
= — 7 u(dz) ) do
[ (femen)

1 T e:'0(1:—a) _ ciﬂ(r—b)
_%L{[—T 7 dé » p(de)

provided we show that

1 T
T =0 {/

However, inequality (d) shows that Cr < (b — a)T'/7, so that (e) is valid.

(0)do

eiO(z—a) _ Ci0(ar:—b)
10

dG} p(dr) < oo.

Next, we can exploit the evenness of the cosine function and the oddness
of the sine function to obtain

1 T eif(z—a) _ oi0(z-b)

(f) el =3 de
_ sgn(z — a)S(|z — a|T) — sgn(z — b)S(|z — b|T)
= - :
where, as usual,
1 if z >0,
sgn(z) 1= { 0 ifz=0,
-1 ifz <0,

and

S(UY = /OU Siz“’ e (U>0).
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Even though the Lebesgue integral f;° z~! sinz dz does not exist, because

o) . + %) . -
/ (sma:) dr — / (sma:) dz = oo,
0 T 0 T

we have (see Exercise E16.1)

. ™

The expression (f) is bounded simultaneously in z and T for our fixed a and
b; and, as T T oo, the expression (f) converges to

Oifr<aorz>b,
ffr=aorz=0b,
lifa<z<b

The Bounded Convergence Theorem now yields result (a).

Suppose now that [ [2(8)|d@ < co. We can then let T' T oo in result
(a) and use (DOM) to obtain

e-—iﬂa _ e—i@
(® FH) - Fla) = o [ £ ’ o(6)d5,

27

provided that F' is continuous at a and b. However, (DOM) shows that the

right-hand side of (g) is continuous in a and b and (why?!) we can conclude
that F' has no atoms and that (g) holds for all a and b with a < b.

We now have

F(b) — F(a) _ _}_ e~i0a _ g—ibb

() b—a 2 Jg i0(b—a) (6)df.
But, by (d), , "
c__~—¢ <1.
b(b—a) |~

Hence, the assumption that [ |¢(6)|df < oo allows us to use (DOM) to let
b — ain (h) to obtain

F'(a) = f(a) := T‘Z}‘l-r-'/ne"w“cp(O)dG,

and, finally, f is continuous by (DOM). O
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16.7. A table

Distribution pdf Support CF
1.|N(p,0?) -gylé-;exp {-—%‘;—Z} R |exp(ipf — 10%6?%)
2.1U[0, 1] 1 [0,1) e =1
3.1U[-1,1] 1 [1,1] sin 6
4. | Double %e"m R 1_‘_10,

exponential
5. | Cauchy ?(T-li-?’T R e—16l
6. | Triangular 1—|z| [-1,1] 2 (=5 f)

7 [ Anon — R | (1= 10)i1(0)

The two lines 4 and 5 illustrate the duality between (16.6,b) and (16.6,c),
as do the two lines 6 and 7. Hints on verifying the table are given in the
exercises on this chapter.



Chapter 17
Weak Convergence

In this chapter, we consider the appropriate concept of ‘convergence’ for
probability measures on (R, B). The terminology ‘weak convergence’ is un-
fortunate: the concept is closer to ‘weak®’ than to ‘weak’ convergence in
the senses used by functional analysts. ‘Narrow convergence’ is the official
pure-mathematical term. However, probabilists seem determined to use
‘weak convergence’ in their sense, and, reluctantly, I follow them here.

We are studying the special case of weak convergence on a Polish (com-
plete, separable, metric) space S when S = R; and we unashamedly use
special features of R. For the general theory, see Billingsley (1968) or
Parthasarathy (1967) - or, for a superb acount of its current scope, Ethier
and Kurtz (1986).

Notation. We write
Prob(R)

for the space of probability measures on R, and
Co(R)
for the space of bounded continuous functions on R.

17.1. The ‘elegant’ definition

Let (un : n € N) be a sequence in Prob(R) and let u € Prob(R). We say
that u, converges weakly to u if (and only if)

(a) pn(h) — p(h),  Vh € Cy(R),
and then write
(b) fin 5

179
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We know that elements of Prob(R) correspond to distribution functions
via the correspondence

p — F, where F(z) = p(—o00,z].
Weak convergence of distribution functions is defined in the obvious way:

(c) F, 5 F ifandonlyif u,-> p.

We are generally interested in the case when F,, = Fx_, that is when
F, is the distribution function for some random variable X,,. Then, by
(6.12), we have, for h € Cy(R),

in(h) = /R h(z)dFa(z) = ER(X.).

Note that the statement F, — F is meaningful even if the X,,’s are defined
on different probability spaces.

However, if X,, (n € N) and X are RVs on the same triple (2, F,P),
then

(d) (Xn = X, as.) = (Fx, 5 Fx),
and indeed,
(e) (Xn = X in prob) = (Fx, Bt Fx),

Proof of (d). Suppose that X, — X, a.s., and that y, is the law of X,, and
p is the law of X. Then, for k € C;(R), we have h(X,) — h(X), a.s., and,
by (BDD), :

pin(h) = E(Xa) = E(X) = p(h). O

Exercise. Prove (e).

17.2. A ‘practical’ formulation

Example. Atoms are a nuisance. Suppose that X, = %‘-, X = 0. Let pn

be the law of X, so that u, is the unit mass at —'1;, and let u be the law of
X. Then, for h € Cy(R),

pin(R) = h(n™") = h(0) = u(h),

so that u, - u. However,

Fo(0) =0 A F(0) = 1. O
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LEMMA
(a)  Let (F,) be a sequence of DFs on R, and let F be a DF on R. Then

F, 5 F if and only if
im F,,(z) = F(z)

for every non-atom (that is, every point of continuity) x of F.

Proof of ‘only if’ part. Suppose that F, = F. Let r € R, and let § > 0.
Define h € Cy(R) via

1 ify <z,
h(y)::—-{l—&"l(y-—x) fr<y<z+§,
0 ify>z+46.
Then pn(h) — u(h). Now,
Fu(e) < pn(h) and u(h) < F(z +96),

so that
limsup F,,(z) < F(z + 6).

However, F' is right-continuous, so we may let § | 0 to obtain

(b) limsup F,,(z) < F(z), Vz € R.

In similar fashion, working with y — h(y + §), we find that for ¢ € R and
6 >0,
liminf F,,(z—) > F(x — §),

so that
(c) | liminf Fy(z—) > F(z—), Vz € R.
Inequalities (b) and (c¢) refine the desired result. O

In the next section, we obtain the ‘if’ part as a consequence of a nice
representation.
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17.3. Skorokhod representation
THEOREM

Suppose that (Fy : n € N) 13 a sequence of DFs on R, that F' is a DF
on R and that F,(z) — F(z) at every point x of continuity of F.

Then there exzists a probability triple (2, F,P) carrying a sequence
(X.) of RVs and also a RV X such that

F,=Fx,, F=Fy,

and
X, =X a.s.

This is a kind of ‘converse’ to (17.1,d).

Proof. We simply use the construction in Section 3.12. Thus, take
(Q, F,P) = ([0,1],B]0,1], Leb),

define
XHw) :=inf{z: F(z) > w},

X~ (w) :=inf{z: F(z) > w},

and define X}, X7 similarly. We know from Section 3.12 that X+ and X~
have DF F and that P(X* = X~) =1.

Fix w. Let z be a non-atom of F' with z > X*(w). Then F(z) > w, and
hence, for large n, F,(z) > w, so that X} (w) < z. So imsup, X} (w) < =.
But (since non-atoms are dense), we can choose z | X*(w). Hence ’

limsup X} (w) < Xt (w),
and, by similar arguments,
liminf X, (w) > X~ (w).

Since X7 < X} and P(X*+ = X~) = 1, the result follows. O

17.4. Sequential compactness for Prob(R)

There is a problem in working with the non-compact space R. Let u, be
the unit mass at n. No subsequence of (u.) converges weakly in Prob(R),

but pn — fleo in Prob(ﬁ), where oo is the unit mass at co. Here R is the
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compact metrizable space [—o0,00], the definition of Prob(R) is obvious,
and {, = f1oo in Prob(R) means that

pn(h) = poo(h), Vh € C(ﬁ)

(We do not need the subscript ‘0> on C(R) because elements of C'(R) are
bounded.) It is important to keep remembering that while functions in
C(R) tend to limits at 400 and —oo, functions in C(R) need not. The
space C(R) is separable (it has a countable dense subset) while the space

Cb(R) 1s not.

Let me briefly describe how one should think of the next topic. Here I
assume some functional analysis, but from the next paragraph (not the next
section) on, I resort to elementary bare-hands treatment. By the Riesz rep-
resentation theorem, the dual space C'(R)* of C(R) is the space of bounded
signed measures on (R, B(R)). The weak* topology of C(R)* is metrizable
(because C(R) is separable), and under this topology the unit ball of C'(R)*
is compact and contains Prob(R) as a closed subset. The weak* topology
of Prob(R) is ezactly the probabilists’ weak topology, so

(a)  Prob(R) is a compact metrizable space under our probabilists’ weak
topology.

The bare-hands substitute for result (a) is the following.
LEMMA (Helly-Bray)

(b)  Let (F,) be any sequence of distribution functions on R. Then there
ezist a right-continuous non-decreasing function F on R such that
0 < F <1 and a subsequence (n;) such that

(*) li'm Fp.(z) = F(z) at every point of continuity F.

Proof. We make an obvious use of ‘the diagonal principle’.

Take a countable dense set C of R and label it:
C = {c1,c2,c3,...}.

Since (Fn(c1) : n € N) is a bounded sequence, it contains a convergent
subsequence (Fy(1,y(c1)):

Faqjy(e1) — H(er) (say)  asj — oo.
In some subsequence of this subsequence, we shall have

Fo@,j)(c2) = H(cz)  asj — oo;
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and so on. If we put n; = n(¢,1), then we shall have:
H(c) :=lim Fy,(c) exists for every c in C.
Obviously, 0 < H < 1, and H is non-decreasing on C. For z € R, define

F(z):= lﬁn H(e),

the ‘]|’ signifying that ¢ decreases strictly to = through C. (In particular,
F(c) need not equal H(c) for cin C.)

Our function F is right-continuous, as you can check. By the ‘limsu-
pery’ of Sections 17.2 and 17.3, you can also check for yourself that (*)
holds: I wouldn’t dream of depriving you of that pleasure. [

17.5. Tightness
Of course, the function F in the Helly-Bray Lemma 17.4(b) need not be a

distribution function. It will be a distribution if and only if

lim F =0 i F = 1.
Jim_F()=0, lim F(z)
Definition

> A sequence (Fy) of distribution functions is called tight if, given
€ > 0, there exists K > 0 such that

pn[-K, K] = F(K)— F(~K=)> 1 —c¢.

You can see the idea: ‘tightness stops mass being pushed out to 400 or

—00’.

LEMMA
Suppose that F,, 1s a sequence of DFs.
(a) IfF, 5 F for some DF F, then (Fn) is tight.

(b)  If (Fn) s tight, then there ezists a subsequence (Fy;) and a DF F
such that F,, 5 F.

This is a really easy limsupery exercise.



Chapter 18
The Central Limit Theorem

The Central Limit Theorem (CLT) is one of the great results of mathemat-
ics. Here we derive it as a corollary of Lévy’s Convergence Theorem
which says that weak convergence of DFs corresponds ezactly to pointwise
convergence of CFs.

18.1. Lévy’s Convergence Theorem

Let (Fy.) be a sequence of DFs, and let ¢, denote the CF of Fy,.
Suppose that

g(0) :=limp,(0) exists for all § € R,

and that
g(-) 13 continuous at 0.

Then g = pp for some distribution function F, and

F. 5 F.

Proof. Assume for the moment that
(a)  the sequence (Fy) is tight.

Then, by the Helly-Bray result 17.5(b), we can find a subsequence (Fy,)
and a DF F such that
F., > F.

But then, for 8 € R, we have

eny () — or(0) (¢ns : OF of Fr,)

(take h(z) = €*%%). Thus g = pp.

185
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Now we argue by contradiction. Suppose that (Fy,) does not converge
weakly to F. Then, for some point z of continuity of F, we can find a
subsequence which we shall denote by (F,) and an > 0 such that

(*) |Fa(z) = F(z)| 20,  Vn.

But (F},) is tight, so that we can find a subsequence F,; and a DF F such
that

~

Fo, S F.

But then $n; — ¢, so that ¢ = ¢ = g = pr. Since a CF determines the

corresponding DF uniquely, we see that F = F, so that, in particular, z is
a non-atom of F' and

(%) I*:',,j(a:) — F(z) = F(z).
The contradiction between (*) and (**) clinches the result. O

We must now prove (a).

Proof of tightness of (Fy,). Let € > 0 be given. Since the expression

on(0) + ¢a(—6) = / 2 cos(0z)dFy(z)
R
is real, it follows that g(8) + g(—#6) is real (and obviously bounded above by
2).

Since g 18 continuous at 0 and equal to 1 at 0, we can choose § > 0
such that

[1—-g(0)] < ie when 6] <é.
We now have

)
0<57 [ (2= g0) - o(-0))a0 < 3.

Since g = lim ¢,,, the Bounded Convergence Theorem for the finite interval
[0, 6] shows that there exists ng in N such that for n > ny,

)
57 [ {2 0n(®) — pa(-0)}db <.
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However,

)
N N

=671 /: {/R (1 — e'") an(:c)} dé
_—_/R{(s-l /_66 (1-6"“)d9} dFyu(z),

the interchange of order of integration being justified by the fact that since
|1 — e*%2] < 2, ‘the integral of the absolute value’ is clearly finite. We now
have, for n > ny,

522/ (1—S‘n5"’)dF,,22/ (1—_1—-) dF,(z)
R bz |z]>26-1 |éz]

> / dF, = pa{z : |z] > 2671}
|z|>26-1

and it is now evident that the sequence (Fy) is tight. O

If you now re-read Section 16.4, you will realize that the next task is to
obtain ‘Taylor’ estimates on characteristic functions.

18.2. o and O notation
Recall that

f(t)=0(g(t)) as t—L

means that

1irtrf£1plf(t)/g(t)l < o0
and that

£(t) = o(g(t) as t—L

means that

f(t)/g(t) =0 as t— L.
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18.3. Some important estimates

For n =0,1,2,... and z real, define the ‘remainder’

iz - zx)k
Rn(l‘) =€ - Z (_k—'—
k=0

Then
x
Ro(z) =€* —1= / ie'Vdy,
0
and from these two expressions we see that
|Ro(z)| < min(2, |z]).
Since

Rn(.'l)) = ‘/oz iRn—l(y)dya

we obtain by induction:

) 2|xln |x|n+1
R.(x) < min .
| n( )l - ! ( n! ’ (n -+ 1)'

Suppose now that X is a zero-mean RV in £2:
E(X)=0, o?:=Var(X) < co.

Then, with ¢ denoting ¢ x, we have

>(a) lp(6) — (1 — 30%6%)] = |[ER2(8X)| < E|R2(6X)|
2 811X [
<6 E(m?/\——ﬁ—-).

The final term within E(-) is dominated by the integrable RV |X|? and tend
to 0 as § — 0. Hence, by (DOM), we have

»»(b) 0(0) =1—1026? +0(6%) as 6 — 0.

Next, for |z| < &, and with principal values for logs,

* (~w) /1 tdt
log(1 —z= S dw=—2% | —
og(l+2z2)—=z A 1+wdw 2 Ay

and since |1 + tz| > } we have

> (c) log(1+2) — 2| < |27,  |s| <&
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18.4. The Central Limit Theorem
> Let (X)) be an IID sequence, each X, distributed as X where

E(X)=0, o%:=Var(X) < oo.
Define Sy, := X1 + -+ + X,, and set

Sn
o\/n’

Then, for x € R, we have, as n — o0,

G, :=

x

P(Gn < 2) - &(z) = \/_ [ exp(—1u)a.

Proof. Fiz 6 in R. Then, using (18.3,b),

06, (0) = ¢s, (;—-31) = (——%)ﬂ
3% (@)

the ‘o’ now referring to the situation when n — co. But now, using (18.3,¢),
we have, as n — oo,

2 2
logva, (9)—nlog{1—%-9—+o(0 )}

n

162 92 1
=n{-= hal — 262,
{3 e (R)) -3

Hence ¢g,(0) — exp(—316?), and since 8 +— exp(—16?) is the CF of the
normal distribution, the result follows from Theorem 18.1. 0

18.5. Example

Let us look at a simple example which shows how the method may be
adapted to deal with a sequence of independent but non-IID RVs.

With the Record Problem E4.3 in mind, suppose that on some (2, F, P),
E,,E,,... are independent events with P(E,) = 1/n. Define

Nyp=1Ig, +---+1Ig,,
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the ‘number of records by time n’ in the record context. Then

E(Nn) = Z % =logn + v +0o(1), (v is Euler’s constant)

k<n
1 1 2
Var(N,) = Z z (1 - -l-c-) =logn + vy — %— + o(1).
k<n
Let
° o . No—logn
" Vlogn

so that E(G,) — 0, Var(G,) — 1. Then, for fixed 6 in R,

G, (8) = exp(—if\/logn)pn, ( \/ngﬁ) :

But

PN (t) = I;ISOX.(t = liI {1——+-e }

We see that as n — oo, and with ¢ := 8//logn,

. - 1,
vc, () = —i8+/logn + Zlog{l + z (e - 1)}

k=1

= —i10+/logn + Zlog {1 + % [it — %ﬁ +o(t2)]}

= —if\/logn + Z (zt e +0(t2)) +0 ( 7?2)

k=1
= —1f+/logn + (it - §t2 +o(t2)) [logn + O(1)] + t20(1)

- _%92 +o(1) — —%02.

Hence P(G, < z) — ®(z), z €RR. O
See Hall and Heyde (1980) for some very general limit theorems.

18.6. CF proof of Lemma 12.4

Lemma 12.4 gave us the ‘only if’ part of the Three-Series Theorem 12.5. Its
statement was as follows.
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LEMMA

Suppose that (X,) 1s a sequence of independent random variables bounded
by a constant K in [0,00):
| Xn(w)| < K, Vn,Vw.
Then
(3° Xa converges, a.s.) = (3. E(X,) converges and ) _ Var(X,) < o).

The proof given in Section 12.4 was rather sophisticated.

Proof using characteristic functions. First, note that, as a consequence of
estimate (18.3,a), if Z is a RV such that for some constant Kj,

|1Z| < K1, E(Z)=0, o?:=Var(Z)< oo,
then for |8 < K; ', we have
P2(8)] < 1- 50%6 + 310P Ko E(2?)
1 1

1
<1 =020 4+ 25202 =1 — ~o292
<1 20 + 60 1 30

< exp (—%0202) .

Now take Z, := X,, — E(X,). Then
E(Z,) =0, Var(Z,)= Var(X,),
lp2.(6)] = |exp{—i6E(Xn)}px, ()] = lpx.(0)l,
and |Z,| < 2K.

If 3 Var(X,) = oo, then, for § < (2K)~!, we shall have, for 0 < |§] <
(2K)7,

1
[T lex.(® =[] lez.(8)] < exp {“592 Zvar(Xk)} = 0.
However, if )~ X converges a.s. to S, then, by (DOM),
I1 #x.(8) = Eexp(i65.) - ¢s(6),
k<n
and ¢ s(6) is continuous in 8 with ps(f) = 1. We have a contradiction.

Hence ) Var(X,) = Y Var(Z,) < oo, and, since E(Z,) = 0, Theorem
12.2(a) shows that

E Zn, converges a.s.
Hence

Z E(Xn) = Z{Xn —Zn}

converges a.s., and since it is a deterministic sum, it converges! This last
part of the argument was used in Section 12.4. O
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Chapter A1
Appendix to Chapter 1

A1l.1. A non-measurable subset A of S!.

In the spirit of Banach and Tarski, although, of course, this relatively trivial
example pre-dates theirs, we use the Axiom of Choice to show that

(a) S'= 4,
9€Q

where the A, are disjoint sets, each of which may be obtained from any of
the others by rotation. If the set A = A has a ‘length’ then it is intuitively
clear that result (a) would force

2m = oo X length (A),

an impossibility.

To construct the family (A4, : ¢ € Q), proceed as follows. Regard S? as
{e*? : 8 € R} inside C. Define an equivalence relation ~ on S' by writing
z ~ w if there exist a and § in R such that

z=¢€% w=eP a-peq.

Use the Axiom of Choice to produce a set A which has precisely one repre-
sentative of each equivalence class. Define

Ay =e9A = {e92: 2z € A}.

Then the family (4, : ¢ € Q) has the desired properties. (Obviously, Q
could be replaced by Z throughout the above argument.)

We do not bring this example to its fully rigorous conclusion. The
remainder of this appendix is fully rigorous.
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—

We now set out to prove Uniqueness Lemma 1.6.
A1l.2. d-systems.

Let S be a set, and let D be a collection of subsets of 5. Then D is called
a d-system (on S) if

(a) SeD,
(b) i A,Be€Dand AC B then B\A € D,
(¢) ifA,€eDand A, 1 A, then A€ D.
Recall that A, T A means: A, C Ap,41(Vn) and | J A, = A.
(d) Proposition. A collection T of subsets of S is a o-algebra if and
only if ¥ 1s both a w-system and a d-system.
Proof. The ‘only if’ part is trivial, so we prove only the ‘if’ part.
Suppose that ¥ is both a r-system and a d-system, and that E, F' and
E.(n € N) € . Then E¢:= S\E € I, and
EUF =S\(E°NF° el

Hence G, := EhU...UE, € ¥ and, since Gn T | J Ex, we see that | JEx € L.

Finally, )
N Ex = (UE;) €. O

Definition of d(C). Suppose that C is a class of subsets of S. We define
d(C) to be the intersection of all d-systems which contain C. Obviously, d(C)
is a d-system, the smallest d-system which contains C. It is also obvious that

d(C) C o (C).

A1l.3. Dynkin’s Lemma

> If T 1s a w-system, then
d(T) = o(Z).

Thus any d-system which contains a w-system contains the
o-algebra generated by that r-system.

Proof. Because of Proposition A1.2(d), we need only prove that d(Z) is a
w-system.
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Step 1: Let Dy :={B € d(Z): BNC € d(I), VC € I}. Because I is a -
system, Dy D I. It is easily checked that D; inherits the d-system structure
from d(Z). [For, clearly, S € D;. Next, if By, B, € D; and B, C B,, then,
for Cin Z,

(Bz\Bl) NC = (Bg N C)\(Bl N C),

and, since B,NC € d(I), ByNC € d(Z) and d(Z) is a d-system, we see that
(B,\B1)N C € d(T), so that Bo\B, € Dy. Finally, if B, € Di(n € N) and
B, 1 B, then for C € T,

(B.NC)1(BNC)

so that BN C € d(Z) and B € D,.] We have shown that D, is a d-system
which contains Z, so that (since D; C d(Z) by its definition) D; = d(I).

Step 2: Let Dy :={A € d(T): BNA€d(I), VB € d(I)}. Step 1 showed
that D, contains Z. But, just as in Step 1, we can prove that D, inherits
the d-system structure from d(Z) and that therefore D, = d(Z). But the
fact that D, = d(T) says that d(Z) is a w-system. O

A1l.4. Proof of Uniqueness Lemma 1.6
Recall what the crucial Lemma 1.6 stated:

Let S be a set. Let T be a w-system on S, and let ¥ := o(Z). Suppose
that py and py are measures on (S, L) such that p; (S) = p2(S) <00
and p1 = pe onZ. Then (

M1 =pg on L.

Proof. Let
D={Fe€X:m(F)=pAF)}.

Then D is a d-system on S. [Indeed, the fact that § € D is given. If
A, B € D, then

(*) p1(B\A) = p1(B) — p1(A) = p2(B) — p2(A) = p2(B\4),
so that B\A € D. Finally, if F;, € D and F, T F, then by Lemma 1.10(a),
pa(F) =T im g (Fp) =T lim pa(Fn) = pa(F),

so that F' € D]
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Since D is a d-system and D O Z by hypothesis, Dynkin’s Lemma shows
that D D 0(Z) = Z, and the result follows. O

Notes. You should check that no circular argument is entailed by the use of
Lemma 1.10 (this is obvious).

The reason for the insistence on finiteness in the condition u;(S) =
p2(S) < oo is that we do not wish to try to claim at (*) that

o0 — 00 = 00 — OQ.

Indeed the Lemma 1.6 is false if ‘< 0o’ is omitted — see Section A1.10 below.

We now aim to prove Carathéodory’s Theorem 1.7.

A1l.5. A-sets: ‘algebra’ case
LEMMA
Let Go be an algebra of subsets of S and let

A: Gy — [0, 00]

with A(0) = 0. Call an element L of Go a A-set if L ‘splits every
element of Gy properly’:

MLNG)+MIENG) = NG), YG € Go.

Then the class Lo of A-sets is an algebra, and X\ is finitely additive
on Lo. Moreover, for disjoint L1,Lq,...,L, € Lo and G in Gy,

A (O(Lk n G)) - i/\(Lk nG).
k=1 k=1

Proof. Step 1: Let L; and L, be A-sets, and let L = L; N L,. We wish to
prove that L is a A-set.

Now L°N Ly = Ly N L§ and L° N L§ = LS. Hence, since Ly is a A-set,
we have, for any G in Gy,

MLENG) = MLz NLENG) + MLEN G)
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and, of course

MISNG) + A(L2 NG) = \G).

Since L; is a A-set,
ML NLINGY+ AMLNG) = AL NG).
On adding the three equations just obtained, we see that
MLENG)Y+ MLNG)=XNG), VG E G,
so that L is indeed a \-set.

Step 2: Since, trivially, S is a A-set, and the complement of a A-set is a
A-set, it now follows that £y is an algebra.

Step 3: If Ly and L, are disjoint A-sets and G € Gy, then
(LiUL)NLy = Ly, (L1 UL)NLS = Ly,
so, since Ly 1s a A-set,
M(IL1UL)NG) = AML1NG)+ ANL2 NG).

The proof is now easily completed. ]

A1.6. Outer measures

Let G be a o-algebra of subsets of S. A map
A:G — [0,00]

is called an outer measure on (S, g)if
(a)  A0)=0;
(b)  Ais increasing: for G1,G2 € G with G; C G,

A(G1) £ A(G?);

(c)  Ais countably subadditive: if (Gy) is any sequence of elements of G,

then
A (U Gk) <D O MGw).
k k



[
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A1.7. Carathéodory’s Lemma.

> Let )\ be an outer measure on the measurable space (S,G). Then the
A-sets in G form a o-algebra £ on which \ 13 countably additive, so
that (S,L,)\) is a measure space.

Proof. Because of Lemma A1.5, we need only show that if (L) is a disjoint
sequence of sets in £, then L :=|JL; € £ and
k

(a) ML) = > MLg).
k

By the subadditive property of A, for G € G, we have

(b) MG) S AMLNG)+ ML NG).

Now let My :=J,<,, Lx. Lemma A1.5 shows that My, € £, so that
MG) = MM, N G) + AMMENG).

However, M& D L°, so that

(c) MG) 2 MM, NnG)+ AL N G).

Lemma A1.5 now allows us to rewrite (c) as

AMG) 2 Y MIeNG)+ ML NG,

k<n
so that
(d) AG) =D MLenG) + ML°NG)
> ,\IEL NG)+ AML°NG),
using the countably subadditive property of A in the last step. On comparing

(d) with (b), we see that equality must hold throughout (d) and (b), so that
L € £; and then on taking G = L we obtain result (a). O



198 Chapter Al: Appendiz to Chapter 1 (A1.8)..

A1.8. Proof of Carathéodory’s Theorem.
Recall that we need to prove the following.
Let S be a set, let Ty be an algebra on S, and let

5 = o(Zo).

If po 1s a countably additive map pp : Lo — [0,00], then there ezists
a measure g on (S, L) such that

M= po on .

Proof. Step 1: Let G be the o-algebra of all subsets of S. For G € G, define

MG) :=inf Y _ po(Fn),

where the infimum is taken over all sequences (F},) in £y with G C | F;.
We now prove that
(a) A is an outer measure on (S,G).

The facts that A(Q) = 0 and A i3 increasing are obvious. Suppose that (Gy)
is a sequence in G, such that each A(G,) is finite. Let ¢ > 0 be given. For
each n, choose a sequence (Fy x : k € N) of elements of £y such that

Go ClUFup, D mo(Fax) < MGn)+e27™
k k

Then G := |JGrn C YU Fr,k, so that
n k

MG)S Y ) uo(Fap) < D AGn) +e.
n k n

Since € is arbitrary, we have proved result (a).

Step 2: By Carathéodory’s Lemma A1.7, A is a measure on (S, £), where £
is the o-algebra of A-sets in G. All we need show is that

(b)) Lo CL, and A= pg on Lo;

for then ¥ := o(3¢) C £ and we can define y to be the restriction of A to
(S, ).
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Step §: Proof that A = po on Xy.

Let F € £y. Then, clearly, A\(F) < uo(F). Now suppose that F' C
U, Fn, where F, € . As usual, we can define a sequence (E,) of disjoint

sets: .
Ey:=F, E,=F,n (U Fk)
k<n

such that E, C F, and |JEn =J Fn 2 F. Then

po(F) = o (UF N En)) = 37 o(F N Ea)

by using the countable additivity of pg on 3o. Hence

po(F) £ no(En) < ) po(Fa),
so that A(F) > po(F). Step 3 is complete.

Step 4: Proof that £y C L. Let E € ¥y and G € G. Then there exists a
sequence (F},) in g such that G C |J,, Fan, and

> uo(Fa) S MG) +e.

Now, by definition of A,

Y no(Fa) =Y po(ENFa) + > po(E° N Fy)
>MENG)+ AE°NG),
since ENG C J(EN F,) and E°NG C |Y(E® N F,). Thus, since ¢ is

arbitrary,

MG) > MENG) + MENG).

However, since A is subadditive,
MG) S MENG)+ A(E°NG).

We see that E is indeed a \-set. Ol
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A1.9. Proof of the existence of Lebesgue measure on ((0, 1], B(0, 1]).

Recall the set-up in Section 1.8. Let S = (0, 1]. For F' C S, say that FF €
if F may be written as a finite union

(*) F = (a1,b]U...U(ar, b

where r e N, 0 < a; <b <...<a, <b <1. Then (as you should
convince yourself) £y is an algebra on (0,1] and

Y= 0(20) = B(O, 1]

(We write B(0,1] rather than B((0,1]).) For F as at (*), let
po(F) =) (bx — ax).

k<r

Of course, a set F' may have different expressions as a finite disjoint union
of the form (*): for example,

(0,1] = (0, 3] U (3,1].

However, it is easily seen that y is well defined on £ and that pg is finitely
additive on Xo. While this is obvious from a picture, you might (or might
not) wish to consider how to make the intuitive argument into a formal
proof.

The key thing is to prove that po ts countably additive on £y. So,
suppose that (F}) is a sequence of disjoint elements of £y with union F in
¥o. We know that if G, = |Jz—, Fk, then

#0(Gn) =) po(Fi) and Gn1F.

k=1

To prove that g is countably additive it is enough to show that po(G,) T
po(F), for then

o(F) =1 lim po(G) =1 Him >~ uo(Fe) = 37 po(Fi)-
k=1

Let H, = F\G,. Then H, € £y and H, | §. We need only prove that

po(Hy) L 0;
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for then
#o(Gn) = po(F) — po(Hn) T po(F).

It is clear that an alternative (and final!) rewording of what we need to
show is the following:

(a)  if (Hn) is a decreasing sequence of elements of £y such that for some
>0,
ﬂO(Hn) ..>_ 25, vna

then ﬂHk # 0.
k

Proof of (a). It is obvious from the definition of £, that, for each k£ € N,
we can choose Ji € £ such that, with J; denoting the closure of Ji,

Jy C Hy and p(H\Jr) < €27k,

But then (recall that H, |)

o (Hn\ N Jk) < po (U (Hk\Jk)) <Y et <

k<n k<n k<n

Hence, since po(Hp) > 2¢, Vn, we see that for every n,

Ho (n Jk) > €,
k<n

and hence (), <, Jk is non-empty. A fortiori then, for every n,

K, := ﬂ Ji is non-empty.
k<n

That
(b) (JJx#9  (whence "\ Hx # 0)

now follows from the Heine-Borel theorem: for if (b) is false, then ((J)® :
k € N) gives a covering of [0,1] by open sets with no finite subcovering.
Alternatively, we can argue directly as follows. For each n, choose a point
5 in the non-empty set K,. Since each z, belongs to the compact set J,
we can find a subsequence (ng) and a point = of J; such that z,, — z.

However, for each k, z,, € Ji for all but finitely many g, and since Ji is
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compact, it follows that z € Ji. Hence = € N, Ji, and property (b) holds.
O

Since o is countably additive on £y and 10(0, 1] < oo, it follows that uo
has a unique extension to a measure p on ((0, 1], B(0,1]). This is Lebesgue
measure Leb on ((0, 1], 8(0, 1]).

The po-sets form a o-algebra strictly larger than B(0, 1], namely the
o-algebra of Lebesgue measurable subsets of (0,1]. See Section Al.11.

A1.10. Example of non-uniqueness of extension

With (S, ) as in Section A1.9, suppose that for F € Xy,

® W= i

The Carathéodory extension of v, will be obtained as the obvious extension
of (a) to . However, another extension ¢ is given by

D(F) = number of elements in F.

Al.11. Completion of a measure space

In fact (apart from an ‘aside’ on the Riemann integral), we do not need
completions in this book.

Suppose that (S, X, u) is a measure space. Define a class A of subsets
of S as follows:

N e N if and only if 3Z € T such that N C Z and u(Z) = 0.

It is sometimes philosophically satisfying to be able to make precise the idea
that ‘N in AV is y-measurable and u(N) = 0’. This is done as follows. For
any subset F' of S, write

FeXx*

if 3E,G € ¥ such that E C F C G and u(G \ E) = 0. It is very easy to
show that £* is a o-algebra on S and indeed that £* = o(Z, V). With
obvious notation we define for F € T*,

w*(F) = w(E) = u(G),

it being easy to check that u* is well defined. Moreover, it is no problem to
prove that (S, Z*, u*) is a measure space, the completion of (S, Z, p).
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For parts of advanced probability, it is essential to complete the basic
probability triple (2, F,P). In other parts of probability, when (for exam-
ple) S is topological, ¥ = B(S), and we wish to consider several different
measures on (S, ), it is meaningless to insist on completion.

If we begin with ([0,1],B[0,1], Leb), then B[0,1]* is the o-algebra of
what are called Lebesgue-measurable sets of [0,1]. Then, for example, a
function f : [0,1] — [0,1] is Lebesgue-measurable if the inverse image of
every Borel set is Lebesgue-measurable: it need not be true that the inverse
image of a Lebesgue-measurable set is Lebesgue-measurable.

Al.12. The Baire category theorem
In Section 1.11, we studied a subset H of S := [0, 1] such that

(i) H =[Gk for a sequence (Gi) of open subsets of .5,
k

(ii) H 2V, where V=Qn8S.
If H were countable: H = {h, : r € N}, then we would have

(2) s=HuHE ={rHuJ6D)
expressing S as a countable union

(b) S=|JF.

of closed sets where no F,, contains an open interval. [Since V C G; for
every k, G§ C V¢ so that G§ contains only irrational points in S.]

However, the Baire category theorem states that

if a complete metric space S may be written as a union of a countable

sequence of closed sets:
S=|JF.

then some F,, contains an open ball.
Thus the set H must be uncountable.
The Baire category theorem has fundamental applications in functional

analysis, and some striking applications to probability too!

Proof of the Baire category theorem. Assume for the purposes of contradic-
tion that no F,, contains an open ball. Since F¥ is a non-empty open subset
of S, we can find r; in § and €; > 0 such that

B(z1,€1) C FY,
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B(z;,¢&1) denoting the open ball of radius £; centred at z;. Now F; contains
no open ball, so that the open set

U2 = B(m1,2‘151) N F2c
is non-empty, and we can find z; in U; and €2 > 0 such that
B(.’L‘z,&'z) C Uz, Eq < 2-181.

Inductively, choose a sequence (z,) in S and (€,) in (0, 00) so that we have
Ent+1 < 2_16,, and

B(xn+1$5n+l) - Un+1 = B(l‘n, 2—-]511) N F::-{-]

Since d(Zn,Tn4+1) < 27 1€,, it is obvious from the triangle law that (z,) is
Cauchy, so that = := lim z,, exists, and that

z €[ ) B(zn,en) S ) FS

contradicting the fact that | JF, = S. 0
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A3.1. Proof of the Monotone-Class Theorem 3.14
Recall the statement of the theorem.

Let H be a class of bounded functions from a set S into R satisfying
the following conditions:

(i) H is a vector space over R;
(i1) the constant function 1 is an element of H;

(i11) 3f (fn) i3 a sequence of non-negative functions in H such that

fn T f where f i3 a bounded function on S, then f € H.

Then if H contains the indicator function of every set in some 7-
system I, then M contains every bounded o(I)-measuradle function

on S.

Proof. Let D be the class of sets F in S such that Ir € H. It is immediate
from (i) - (iii) that D is a d-system. Since D contains the w-system I, D
contains o(T).

Suppose that f is a 0(Z)-measurable function such that for some K in
N,
0<f(s) <K, VseS.
For n € N, define
K2an
fa(s) =D 127" p(n,0),
1=0
where
A(n,2) == {s:227" < f(s) < (¢ +1)27"}.
Since f is 0(Z)-measurable, every A(n,z) € o(Z), so that I4(, ;) € H. Since
H is a vector space, every f, € H. But 0 < f, T f, so that f € H.

205
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If f € bo(Z), we may write f = f¥ — f~, where f = max(f,0)
and f~ = max(—f,0). Then f*,f~ € bo(Z) and f*,f~ > 0, so that
ft, f~ € H by what we established above. O

A3.2. Discussion of generated o-algebras

This is one of those situations in which it is actually easier to understand
things in a more formal abstract setting. So, suppose that

Q and S are sets, and that Y :  — S;
¥ is a o-algebra on S:
X:Q—>R.

Because Y ~1 preserves all set operations,
Y-!S:= {Y-'B: Be X}

is a o-algebra on 2, and because it is tautologically the smallest o-algebra
Y on 2 such that Y is )/ measurable (in that Y=1 : & — ), we call it
o(Y):

o(Y)=Y"1%.

LEMMA
(a) X i3 o(Y)-measurable if and only of

X =f(Y)
where f is a E-measurable function from S to R.

Note. The ‘if’ part is just the Composition Lemma

Proof of ‘only if’ part. It is enough to prove that
(b) X € bo(Y) if and only if 3f € b such that X = f(Y).

(Otherwise, consider arc tan X, for example.)

Though we certainly do not need the Monotone-Class Theorem to prove
(b), we may as well use it.

So define H to be the class of all bounded functions X on § such that
X = f(Y) for some f € bX. Taking T = o(Y), note that if F € T then
F =Y 1B for some B in ¥, so that

Ip(w) =15(Y(w)),



.(A3.2) Chapter AS: Appendiz to Chapter § 207

so that Ir € H. That H is a vector space containing constants is obvious.

Finally, suppose that (X,) is a sequence of elements of H such that,
for some positive real constant K,

0<X.TX<K.

For each n, X, = fn(Y') for some f, in bX. Define f := limsup fn, so that
f € bE. Then X = f(Y). O

One has to be very careful about what Lemma (a) means in practice.

To be sure, result (3.13,b) is the special case when (S5, %) = (R, B).

Discussion of (3.13,c). Suppose that Yz : @ —» R for 1 < k < n. We may
define amap Y : 2 — R" via

Y(w) := (Y1(w),...,Yo(w)) € R™.

The problem mentioned at (3.13,d) and in the Warning following it shows
up here because, before we can apply Lemma (a) to prove (3.13,c), we need
to prove that

o(Y1,...,Yn):=a(Y7'B(R): 1 < k < n) =Y 1B(R") =: o(Y).
[This amounts to proving that the product o-algebra [], <<, B(R) is the
same as B(R™). See Section 8.5.] Now Y} = yx0Y, where 7 is the (continu-
ous, hence Borel) ‘k** coordinate’ map on R™, so that Y} is o(Y)-measurable.

On the other hand, every open subset of R™ is a countable union of open
rectangles G; X -+ X G, where each G} is a subinterval of R, and since

{Y €Gix--xGa}=[{Yi € Gk} € a(Y1,...,Y2),

things do work out. ]

You can already see why we are in an appendix, and why we skip
discussion of (3.13,d).
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This appendix gives the statement of Strassen’s Law of the Iterated Loga-
rithm. Section A4.3 treats the completely different topic of constructing a
rigorous model for a Markov chain.

A4.1. Kolmogorov’s Law of the Iterated Logarithm
THEOREM

Let X1,X2,... be IID RVs each with mean 0 and variance 1.
Let S, = X1+ Xo+ -+ X,. Then, almost surely,

lim sup Sn =+1, liminf Sn

= —1.
V2nloglogn

V2nloglogn B

This result already gives very precise behaviour on the big values of partial
sums. See Section 14.7 for proof in the case when the X’s are normally
distributed.

A4.2. Strassen’s Law of the Iterated Logarithm
Strassen’s Law is a staggering extension of Kolmogorov’s result.

Let (X,) and (S,) be as in the previous section. For each w, let the
map t — S¢(w) on [0,00) be the linear interpolation of the map n +— S,(w)
on Z1, so that

St(w) ;== (t = n)Spt1(w) + (n+ 1 —1)Sp(w), t € [n,n+1).
With Kolmogorov’s result in mind, define

Sm(w)
Vv2nloglogn’

208

Za(t,w) =

t € [0,1],
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so that t — Z,(t,w) on [0,1] is a rescaled version of the random walk S run
up to time n. Say that a function t — f(t,w) is in the set K(w) of limiting
shapes of the path associated with w if there is a sequence n;(w), n2(w),. ..
in N such that

Za(t,w) — f(t,w) uniformly in t € [0, 1].

Now let A consist of those functions f in C[0,1] which can be written
in the Lebesgue-integral form

f) = /oth(s)ds where /: h(s)*ds < 1.

Strassen’s Theorem
P[K(w) = K] =1.

Thus, (almost) all paths have the same limiting shapes. Khinchine’s law
follows from Strassen’s precisely because (Exercise!)

sup{f(1):fe K} =1, inf{f(1):fe K}=-1.

However, the only element of K for which f(1) = 1 is the function f(t) =t,
so the big values of S occur when the whole path (when rescaled) looks like
a line of slope 1.

Almost every path will, in its Z rescaling, look infinitely often like the
function t and infinitely often like the function —t; etc., etc.

References. For a highly-motivated classical proof of Strassen’s Law, see
Freedman (1971). For a proof for Brownian motion based on the powerful
theory of large deviations, see Stroock (1984).

A4.3. A model for a Markov chain

Let E be a countable set; let u be a probability measure on (E,£), where
£ denotes the set of all subsets of E; and let P denote a stochastic £ X E
matrix as in Section 4.8.

Complicating the notation somewhat for reasons we shall discover later,
we wish to construct a probability triple ({2, F,P#) carrying an E-valued
stochastic process (Z,:n € Z7%) such that for n € Zt and i9,¢1,...,tn € E,
we have

PH(Zo =i0}-..3Zn = in) = MioPioiy - - - Pin—1in-
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The trick is to make (2, F,P#) carry independent E-valued variables
(Zo;Y(i,n):i € E;n e N)
Zo having law p and such that
PH(Y(iyn) = j) = p(i, i), (i,j €E).

We can obviously do this via the construction in Section 4.6.

For & € Q and n € N, define
Zn(@) = V(Znos (@), m);

and that’s it!
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Appendix to Chapter 5

Our task is to prove the Monotone-Convergence Theorem 5.3. We need an
elementary preliminary result.
A5.1. Doubly monotone arrays

Proposition. Let
(¥ :reN,neN)

be an array of numbers in [0, 00] which is doubly monotone:
for fized r, ys,r) T asn 1 so0 that y(") :=T lim yﬁ,*) ezists;
n

for fizedn, y) 1 asr 1 so that yy :=1 limyl" ezists.
r

Then
y(oo) :=T lim y(r) =T limy, =! Yoo.

.

Proof. The result is almost trivial. By replacing each (yﬁf)) by arc tan yf,r),
we can assume that the y() are uniformly bounded.

Let € > 0 be given. Choose ngy such that y,, > yoo — 3. Then choose

ro such that y{"® > Yn, — s€. Then

y(o) > () > y{ro) >y, — e,

so that y(>) > y... Similarly, yoo > y(°). O

A5.2. The key use of Lemma 1.10(a)

This is where the fundamental monotonicity property of measures is used.
Please re-read Section 5.1 at this stage.
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LEMMA
(a)  Suppose that A € ¥ and that
h, € SF* and h,1Ila.
Then po(ha) T u(4).
Proof. From (5.1,e), po(hn) < p(A), so we need only prove that
liminf po(ha) > p(4).

Let € > 0, and define A, := {s € A: ho(s) > 1 —¢€}. Then 4, T A so that,
by Lemma 1.10(a), p#(An) T u(A). But '

(1-¢e)la, <h,
so that, by (5.1,e), (1 — e)u(An) < po(hn). Hence
liminf jro(ka) > (1~ )(A).
Since this is true for every € > 0, the result follows. O

LEMMA
(b)  Suppose that f € SFt and that

9n ESF+ and gn Tf
Then po(gn) T po(f)-

Proof. We can write f as a finite sum f = > axl4, where the sets A are
disjoint and each ay > 0. Then

aI:lIAkgﬂ T1a, (n T 00),

and the result follows from Lemma (a). O

A5.3. ‘Uniqueness of integral’

LEMMA

(a)  Suppose that f € (mE)*t and that we have two sequences (f(7) and
(frn) of elements of SF such that

U1 fatf

Then
1 lim po(f)) =1 lim po(f)-
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Proof. Let f7 := f() A f.. Thenasr T oo, fi” 1 fa, and as n T oo,
fr(;r) 1 f("). Hence, by Lemma A5.2(b),

po(F7) T po(fa) as r 1 oo,
uo(£87) 1 o(fM) as n 1 co.

The result now follows from Proposition A5.1. O

Recall from Section 5.2 that for f € (mX)*, we define
p(f) := sup{po(h) : h € SF*;h < f} < co.

By definition of u( f), we may choose a sequence h,, in SF* such that h, < f
and po(ha) T u(f). Let us also choose a sequence (g ) of elements of SF*
such that g, T f. (We can do this via the ‘staircase function’ in Section

5.3.) Now let
n = max(gn, h1,h2,..., hn).

Then fp, € SF+9 fa < f, and since fn > gn, fn T f. Since f, < f,
po(fn) < n(f), and since fp, > h,, we see that

to(fn) T u(f).

On combining this fact with Lemma (a), we obtain the next result. (Lemma
(a) ‘changes our particular sequence to any sequence’.)

LEMMA
(b)  Let f € (mX)* and let (f,) be any sequence in SFY such that f, T f.

Then
u(fn) = po(fr) T u(f)-

A5.4. Proof of the Monotone-Convergence Theorem

Recall the statement:
Let (fn) be a sequence of elements of (mX)* such that f, T f. Then

p(fn) T u(f)-

Proof. Let o{") denote the r*! staircase function defined in Section 5.3. Now
set f,(,r) = a("(fn), fO) = a(M(f). Since o™ is left-continuous, f,(f) A
as n T oco. Since a{™(z) T z, Vz, fi” 1 fa as r T co. By Lemma A5.2(b),
u(F37) 1 u(f(0) as n 1 oo; and by Lemma A5.3(b), u(f<7) 1 u(fa) as
r T co. We also know from Lemma A5.3(b) that u(f(") 1 u(f). The result
now follows from Proposition A5.1. C
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Appendix to Chapter 9

This chapter is solely devoted to the proof of the ‘infinite-product’ Theorem
8.6. It may be read after Section 9.10. It is probably something which a keen
student who has read all previous appendices should study with a tutor.

A9.1. Infinite products: setting things up
Let (A, :€ N) be a sequence of probability measures on (R, B). Let

Q:=HR,

nEN

so that a typical element w of §2 is a sequence w = (w,, : n € N) of elements
of R. Define X, (w) := wpy, and set

Fni=0(X1,X2,...,X2n).

The typical element F, of F,, has the form

(a) F,=G.x ][R, G.e ][ B

k>n 1<k<n

Fubini’s Theorem shows that on the algebra (NOT o-algebra)
F~=JFn

we may unambiguously use (a) to define a map P~ : = — [0, 1] via

(b) P=(F) = (As X - X Aa)(Ga),

and that P~ is finitely additive on the algebra F~.

However, for each fixed n,
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() (Q,Fn,P7) is a bona fide probability triple which may be identified
with [ <i<n(R,B,Ax) via (a) and (b). Moreover, X1,X2,...,Xn are
independent RVs on (Q, Fn,P7).

We want to prove that
(d) P~ is countably additive on F~

(obviously with the intention of using Carathéodory’s Theorem 1.7). Now
we know from our proof of the existence of Lebesgue measure (see (A1.9,a))
that it is enough to show that

(e) if (H,) is a sequence of sets in F~ such that H, D Hy41,Vr, and if for
some e >0, P~(H,) > ¢ for everyr, then (\H, # 0.

A9.2. Proof of (A9.1,¢e)
Step 1: For every r, there is some n(r) such that H, € F,(,) and so

Iy, (W) = ho(wy,wa,...,wp()) for some h, € pB™",
Recall that X(w) = wi, and look again at Section A3.2.
Step 2: We have
(a0) E"h(X1,X2,...,X5(n) 2> €, Vr,

because the left-hand side of (a0) is exactly P~(H,). If we work within the
probability triple (Q, Fn(r),P~), then we know from Section 9.10 that

7T(w) T gr(wl) = E_hr(wl,X2aX3a cee ’Xn(r))
is an explicit version of the conditional expectation of Iy, given F; , and
e <P7(H,;) =E"(v,) = Aa(gr)-
Now, 0 < ¢, <1, so that

e < A1(gr) 1A {gr > €27} + 27 A {g{V) <271}
< Ar{gr>e271} 4271,
Thus
A{gr > €271} > 27 e,
Step 3: However, since H, 2 H,y;, we have (working within (Q, Fp,,P ™)
where both H, and H,4; are in F,,)

gr(wl) > gr+1(w1), for every w; in R.
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Working on (R, B,A;) we have
Ai{gr > €271} > 271, Vr,

and
gr | so that {g, > €271} |;

and by Lemma 1.10(b) on the continuity from above of measures, we have
Ay {wy : gr(w1) > €271, Vr} > 271,
Hence, there exists wy (say) in R such that

(al) E™h (w], X2,..., X5(n) 2 €2~ Vr.

Step 4: We now repeat Steps 2 and 3 applied to the situation in which
(X1,X2,...) isreplaced by (X2,X3,...),

h, is replaced by h,(w]), where

(hr(wi))(w2,ws,...) ;= hp(w],we,ws,...).
We find that there exists w3 in R such that
(a2) E™he(wy, w3, X3,..., Xnr) > 272, Vr.

Proceeding inductively, we obtain a sequence
w* = (w} :n €N)
with the property that
E7h(w],w3,- - wn(ry) 2 €27 vy,

However,
he(wi, w3, -« swi(ny) = Iu, (W*),

and can only be 0 or 1. The only conclusion is that w* € H,.,Vr; and it was
exactly the existence of such an w* which we had to prove. ]
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Appendix to Chapter 13

This chapter is devoted to comments on modes of convergence, regarded
by many as good for the souls of students, and certainly easy to set exami-
nation questions on.

A13.1. Modes of convergence: definitions

Let (X, : n € N) be a sequence of RVs and let X be a RV, all carried by
our triple (2, F,P). Let us collect together definitions known to us.

Almost sure convergence

We say that X, — X almost surely if
P(X, - X)=1.

Convergence in probability
We say that X,, — X in probability if, for every ¢ > 0,

P(|Xpn —X|>€¢) >0 as n — oo.
L? convergence (p > 1)
We say that X,, — X in £? if each X, isin £? and X € £LP and

|Xn— X, =0 as n — 09,

equivalently,
E(| X, - X|?)—0 as n — oo.
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A13.2. Modes of convergence: relationships
Let me state the facts.

Convergence in probability is the weakest of the above forms of convergence.
Thus

(a) (Xn — X, a.s.) = (X — X in prob)
(b) for p > 1,

(Xn —» X in LP) = (X, — X in prob).

No other implication between any two of our three forms of convergence is
valid. But, of course, forr > p > 1,

(¢)(Xpn =X in L") = (X, — X in LP).

If we know that ‘convergence in probability is happening quickly’ in that
(d) S P(|Xn —X|>¢€) <00, Ve>0,
n

then (BC1) allows us to conclude that X, — X, a.s.

The fact that property (d) implies a.s. convergence is used in proving
the following result:

(e) X, — X in probability if and only if every subsequence of (X,) contains
a further subsequence along which we have almost sure convergence to X.

The only other useful result 1s that

(f) forp 2 1, Xn — X in LP if and only if the following two statements
hold:

(i) Xn — X in probability,

(i1) the family (|Xn|P:n2>1) is UL

There is only one way to gain an understanding of the above facts, and
that is to prove them yourself. The exercises under EA13 provide guidance
if you need it.
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Appendix to Chapter 14

We work with a filtered space (Q, F, {Fn:n € Z1},P).

This chapter introduces the o-algebra Fr, where T is a stopping time.
The idea is that Fr represents the information available to our observer
at (or, if you prefer, immediately after) time T. The Optional-Sampling
Theorem says that if X is a uniformly integrable supermartingale and S
and T are stopping times with § < T, then we have the natural extension
of the supermartingale property:

E(Xr|Fs) £ Xs, as.

Al4.1. The o-algebra Fr, T a stopping time
Recall that a map T:Q — Z+ U {oco} is called a stopping time if

{T <n}e€Fn, neltu{c},

equivalently if
{T =n}eF,, neZ*U{oo}

In each of the above statements, the ‘n = oo’ case follows automatically
from the validity of the result for every n in Z.

Let T be a stopping time. Then, for F C Q, we say that F' € Fr if
> FN{T <n}€eF, nelZltrU{oo},

equivalently if
FN{T=n}eF,, neZ"U{o}.

Then Fr=F, f T = n; Fr = Foo if T = 00; and Fr C Foo for every T.
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You can easily check that Fr is a o-algebra. You can also check that
if S is another stopping time, then

FsaT € Fr C Fsvr.
Hint. If F € Fsar, then

FN{T=n}= ] FN{SAT =k}. O

k<n

Another detail that needs to be checked is that if X is an adapted
process and T is a stopping time, then X1 € mFp. Here, X is assumed
defined in some way such that X, is Fo measurable.

Proof. For B € B,

A14.2. A special case of OST
LEMMA

Let X be a supermartingale. Let T be a stopping time such that, for
some N in N, T(w) < N, Vw. Then X1 € LY(Q, Fr,P) and

E(Xn~n lf'_r) < Xr.

Proof. Let F € Fp. Then
E(Xn;F) = ) E(Xn; FN{T =n})
n<N

< Y E(Xa; FN{T =n}) = E(X1; F).
n<N

(Of course, the fact that [X7| < |X1|+---+|X x| guarantees the result that
E(|X7]) < 00.) O

A14.3. Doob’s Optional-Sampling Theorem for UI martingales
> Let M be a UI martingale. Then, for any stopping time T,

E(Mu|Fr) = My, as.
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Corollary 1 (a new Optional-Stopping Theorem!)

If M is a UI martingale, and T is a stopping time, then E(|MT|) < 0o
and E(Myp) = E(M,).

Corollary 2

If M is a UI martingale and S and T are stopping times with S < T,
then
E(Mr|Fs) = Ms, a.s.

Proof of theorem. By Theorem 14.1 and Lemma A14.2, we have, for k € N,
E(Mo|Fi) = My, as., E(Mi|Frar) = Mrak, as.

Hence, by the Tower Property,

(*) E(Moo|Frax) = MTaAk, a.s.

If F € Fr, then (check!) FN{T <k} € Frak, so that, by (*),

(%*%) E(Moo; FN{T < k}) = E(M7ak; FN{T < k}) = E(M7; FN{T < k}).

We can (and do) restrict attention to the case when M,, > 0, whence
M, = E(Mu|Fpn) > 0 for all n. Then, on letting k T oo in (**) and using
(MON), we obtain

E(Mo; FN{T < 00}) = E(M7; FN {T < o0}).
However, the fact that
E(Moo; FN{T = o0}) = E(M7; F N {T = o0}).
is tautological. Hence E(Mu; F) = E(MT; F). O

Corollary 2 now follows from the Tower Property, and Corollary 1 fol-
lows from Corollary 2!

Al4.4. The result for UI submartingales
A Ul submartingale X has Doob decomposition

X=X+ M+ A.,
where (Exercise: explain why!) E(Ax) < o0 and M is UL Hence, if T is

a stopping time, then, almost surely, _
E(Xw|Fr) = Xo + E(Ms|F7) + E(Aco|FT)
= Xo + Mt + E(A|FT)
> Xo + Mr + E(A7|F7)
= X7.
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Appendix to Chapter 16

A16.1. Differentiation under the integral sign

Before stating our theorem on this topic, let us examine the type of applica-
tion we need in Section 16.3. Suppose that X is a RV such that E(|X|) < oo
and that h(t,z) = izxe'**. (We can treat the real and imaginary parts of
h separately.) Note that if [a,d] is a subinterval of R, then the variables
{h(t,X) : t € [a,b]} are dominated by |X|, and so are UL In the theorem,
we shall have

EH(t, X) = ox(t) — px(a), t € [a,b),
and we can conclude that ¢’y (%) exists and equals Eh(?, X).

THEOREM
Let X be a RV carried by (2, F,P).
Suppose that a,b € R with a < b, and that

h:la,b)) xR—R

has the properties:
(1) t — h(t,z) is continuous in t for every z in R,
(ii)) = v h(t,z) 1s B-measurable for every t in [a, b,
(iii) the variables {h(t,X) :t € [a,b]} are UL
Then
(a) ¢t EA(t,X) i3 continuous on [a,b),
(b)  h is Bla,b] x B-measurable,
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(c) < H(t,z):= fat h(s,z)ds for a <t <b, then for t € (a,b),

%EH(t,X) exists and equals ER(t, X).

Proof of (). Since we need only consider the ‘sequential case ¢, — t’, result
(a) follows immediately from Theorem 13.7. 0O

Proof of (b). Define &, :=2~"(b — a), D,, := (a + 6Z*) N [a, b],

Ta(t) :=inf{7 € Dy : 7 > t}, t € [a,b],
ha(t, z) := h(7a(2), z), t €a,b], z €R.

Then, for B € B,

h(B) = | ([r,7 +8)N[a,b) x {z : h(7, ) € BY}),
TED,

so that h, is Bla, b] x B-measurable. Since h, — h on [a,b] x R, result (b)
follows. 0O

Proof of (c). For T C [a,8] x R, define
oT) := {(t,w) € [a,}] x Q : (¢, X(w)) € T}.
T = A x C where A € Ba,b] and C € B, then
a(l) = A x (X7'C) € Bla,}b] x F.

It is now clear that the class of I" for which a(T) is an element of Bla,b] x F
is a o-algebra containing Bla, b] x B. The point of all this is that
(*) (t,w) — h(t,X(w)) is B x F- measurable

since for B € B, {(t,w) : h(t,X(w)) € B} is a(h™!B). (Yes, I know, we
could have obtained (*) more directly using the h,’s, but it is good to have
other methods.) Since the family {h(¢,X) : ¢ > 0} is U, it is bounded in
L, whence

/bElh(t,X)ldt < oo

Fubini’s Theorem now implies that, for a <t < b,

/t Eh(s, X)ds = E/t h(s,X)ds = EH(t, X),

a

and part (c) now follows. _ O



Chapter E
Exercises

Starred exercises are more tricky. The first number in an exercise gives a
rough indication of which chapter it depends on. ‘G’ stands for ‘a bit of
gumption is all that’s necessary’. A number of exercises may also be found
in the main text. Some are repeated here. We begin with an

Antidote to measure-theoretic material - just for fun, though the point
that probability 1s more than mere measure theory needs hammering home.

EG.1. Two points are chosen at random on a line AB, each point being
chosen according to the uniform distribution on AB, and the choices being
made independently of each other. The line AB may now be regarded as
divided into three parts. What is the probability that they may be made
into a triangle?

EG.2. Planet X is a ball with centre O. Three spaceships A, B and C
land at random on its surface, their positions being independent and each
uniformly distributed on the surface. Spaceships A and B can communicate
directly by radio if {AOB < 90°. Show that the probability that they
can keep in touch (with, for example, A communicating with B via C if
necessary) is (w + 2)/(4).

EG.3. Let G be the free group with two generators a and b. Start at time
0 with the unit element 1, the empty word. At each second multiply the
current word on the right by one of the four elements a,a™1,5,5~1, choosing
each with probability 1/4 (independently of previous choices). The choices

a,a,b,a”t,a,b7t a"!,a,b

at times 1 to 9 will produce the reduced word aab of length 3 at time 9.
Prove that the probability that the reduced word 1 ever occurs at a positive
time is 1/3, and explain why it is intuitively clear that (almost surely)

(length of reduced word at time n)/n — 1.
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EG.4.* (Continuation) Suppose now that the elements a,a™?,b,b™! are
chosen instead with respective probabilities a, a, 3,3, where a > 0,8 >
0,a + B = %. Prove that the conditional probability that the reduced word
1 ever occurs at a positive time, given that the element a is chosen at time
1, is the unique root z = r(a) (say) in (0,1) of the equation

3z + (8 —4a )2’ + 2 +1=0.

As time goes on, (it is almost surely true that) more and more of the reduced
word becomes fixed, so that a final word is built up. If in the final word,
the symbols a and a~! are both replaced by A and the symbols b and b™?
are both replaced by B, show that the sequence of A’s and B’s obtained is
a Markov chain on {4, B} with (for example)

s = a(l —z)
a(l —z)+26(1 —y)’

where y = r(f). What is the (almost sure) limiting proportion of occurrence
of the symbol a in the final word? (Note. This result was used by Professor
Lyons of Edinburgh to solve a long-standing problem in potential theory on
Riemannian manifolds.)

Algebras, etc.

E1.1. ‘Probability’ for subsets of N

Let V' C N. Say that V has (Cesaro) density v(V') and write V' € CES if
t(V n{1,2,8,...,n})

n

v(V) :=lim

exists. Give an example of sets V! and V; in CES for which V; NV, ¢ CES.
Thus, CES is not an algebra.

Independence

E4.1. Let (2, F,P) be a probability triple. Let Z;, Z2 and Z3 be three
w-systems on  such that, for k = 1,2, 3,

IkgfandQEIk.
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Prove that if
P(I, NnI;N1I3) =P(L)P(I:)P(I3)

whenever Iy € I; (k = 1,2,3), then 0(Z;),0(Z;),0(Z3) are independent.
Why did we require that 2 € Zy?

E4.2. Let s > 1, and define {(s) := ) nn"’, as usual. Let X and Y be
independent N-valued random variables with

P(X =n)=P(Y =n)=n"*/{(s).

Prove that the events (Ep : p prime) , where E, = {X is divisible by p},
are independent. Explain Euler’s formula

1/¢(s) = [[(1 = 1/p")

P

probabilistically. Prove that
P(no square other than 1 divides X) = 1/{(2s).
Let H be the highest common factor of X and Y. Prove that

P(H = n) = n"22/((2s).

E4.3. Let X7, X>,... be independent random variables with the same con-
tinuous distribution function. Let Ey := 2, and, for n > 2, let

E,:={X, > Xn,Vm < n} = {a ‘Record’ occurs at time n}.

Convince yourself and your tutor that the events E;, Es, ... are independent,
with P(E,) = 1/n.

Borel-Cantelli Lemmas

E4.4. Suppose that a coin with probability p of heads is tossed repeatedly.
Let A be the event that a sequence of k (or more) consecutive heads occurs
amongst tosses numbered 2%,2% 4 1,2F 4+ 2 ... 2k+1 _ 1, Prove that

: 1 ifp>1,
F'(Ak,1.o.)={0 ;f;I;Z%.

Hint. Let E; be the event that there are k consecutive heads beginning at

toss numbered 2% 4(:—1)k. Now make a simple use of the inclusion-exclusion
formulae (Lemma 1.9).
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E4.5. Prove that if G is a random variable with the normal N(0,1) distri-
bution, then, for £ > 0,

e 2

P(G>z)= \/—iz'n'./ e~y <

V27

Let X;,Xs,... be a sequence of independent N(0,1) variables. Prove that,
with probability 1, L < 1, where

L :=limsup(X,/v/2logn).
(Harder. Prove that P(L = 1) = 1.) [Hint. See Section 14.8.]
Let Sp := X; + X2 + -+ + X,. Recall that S,/\/n has the N(0,1)

distribution. Prove that

P(|Sn| < 2y/nlogn, ev) = 1.

Note that this implies the Strong Law: P(S,/n — 0) = 1.
Remark. The Law of the Iterated Logarithm states that
P (lim su Sn = 1) =1
P V2nloglogn T

Do not attempt to prove this now! See Section 14.7.

E4.6. Converse to SLLN
Let Z be a non-negative RV. Let Y be the integer part of Z. Show that
Y = Z Liz>nys
neN
and deduce that
(%) Y PZ>n]<E(Z)<1+ Y P[Z>n]
neN neN

Let (X,) be a sequence of IID RVs (independent, identically distributed
random variables) with E(|X,,|) = oo, Vn. Prove that

ZP[X,,I >kn]=oco (k€N) and limsup pinl = 00, a.s.

Deduce that if S, = X7 + X3 +--- + X,,, then
|Snl

n

lim sup =00, a.s.
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E4.7. What’s fair about a fair game?
Let X1, X>,... be independent RVs such that

Y. - n? —1 with probability n~?2
R U | with probability 1 —n~2,

Prove that E(X,,) = 0, Vn, but that if S, = X; + X2 + --- + X, then
Sn

2, -1, as.
n

E4.8*. Blackwell’s test of imagination

This exercise assumes that you are familiar with continuous-parameter Markov
chains with two states.

For eachn € N, let X(® = {X(")(t) : t > 0} be a Markov chain with
state-space the two-point set {0,1} with Q-matrix

(n) — { "@n Qn
Q ( bn —bn)  ansba >0,
and transition function P(*)(t) = exp(tQ(™). Show that, for every t,

PSO() 2 ba/(an +ba), PIP(E) < an/(an + ba).

The processes (X(™) : n € N) are independent and X (")(0) = 0 for every n.
Each X (") has right-continuous paths.

Suppose that Y an = oo and Y an/b, < co.
Prove that if ¢ is a fixed time then

(*) P{X™)(¢) = 1 for infinitely many n} = 0.

Use Weierstrass’s M-test to show that 3 log p(()g) () is uniformly convergent
on [0, 1], and deduce that

P{X(™)(t) =0 for ALLn} -1 ast]O.
Prove that
P{X()(s) = 0,Vs < t,V¥n} =0 for every t > 0

and discuss with your tutor why it is almost surely true that
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(¥*) within every non-empty time interval, infinitely many of the X ()
chains jump.

Now imagine the whole behaviour.

Notes. Almost surely, the process X = (X (™) spends almost all its time
in the countable subset of {0,1}™ consisting of sequences with only finitely
many 1’s. This follows from (*) and Fubini’s Theorem 8.2. However, 1t
is a.s. true that X visits uncountable points of {0,1}N during every non-
empty time interval. This follows from (**) and the Baire category theorem
A1.12. By using much deeper techniques, one can show that for certain
choices of (a,) and (b, ), X will almost certainly visit every point of {0,1}™
uncountably often within a finite time.

Tail o-algebras

E4.9. Let Y,,Y;,Y2,... be independent random variables with
P(Y,=4+1)=P(Y,=-1)=14%, Vn.
For n € N, define
X, =Y"h...Y,.
Prove that the variables Xy, X5, ... are independent. Define

Y:i=0M,Y2,...), Tp:=o0(X,:r>n)

Prove that

L:=(oTa) #o (y,ﬂT,,) =:R.

n

Hint. Prove that Yy € m£ and that Yj is independent of R.
E4.10. Star Trek, 2

See E10.11, which you can do now.

Dominated-Convergence Theorem

E5.1. Let S :=[0,1], ¥ := B(S), p := Leb. Define f,, := nlg1/n). Prove
that f.(s) — 0 for every s in S, but that u(f,) = 1 for every n. Draw a
picture of g := sup,, | fn|, and show that g & L1(S, %, p).
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Inclusion-Exclusion Formulae

E5.2. Prove the inclusion-exclusion formulae and inequalities of Section 1.9
by considering integrals of indicator functions.

The Strong Law

E7.1. Inverting Laplace transforms

Let f be a bounded continuous function on [0, 00). The Laplace transform
of f is the function L on (0, co) defined by

L(A) := /:o e~ f(z)dz.

Let X,;,X>,... be independent RVs each with the exponential distribution
of rate A, so P[X > z] = e™**, E(X) = 1, Var(X) = 5. Show that

ArL(n=D(X)
(n _ 1)! - Ef(Sn),

where S, = X1+ X2+ -+ Xy, and L(®~1V denotes the (n—1)** derivative
of L. Prove that f may be recovered from L as follows: for y > 0,

nL(n-l)(n/y)
(n— 1)

(-1

fly) = 'l‘iTrglo(_]_)n——l (n/y)

E7.2. The uniform distribution on the sphere S*~! C R

As usual, write S®~! = {z € R™ : |z] = 1}. You may assume that there is a
unique probability measure ¥™~! on (S""I,B(S"“l)) such that ¥"~1(4) =
v"~1(H A) for every orthogonal n X n matrix H and every A4 in B(S™™?!).

Prove that if X is a vector in R,, the components of which are inde-
pendent N(0,1) variables, then for every orthogonal n x n matrix H, the
vector HX has the same property. Deduce that X/|X| has law "1,

Let Z1,Z3,... be independent N(0,1) variables and define
R, = (Zf+Z22+...+Zﬁ)%.

Prove that R,//n — 1, a.s.

Combine these ideas to prove a rather striking fact which relates the
normal distribution to the ‘infinite-dimensional’ sphere and which is impor-
tant both for Brownian motion and for Fock-space constructions in quantum
mechanics:
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If, for each n, (Yl("), Yz(n), ... ,Y,f")) is a point chosen on S™~! according
to the distribution ™!, then

1 z 2
lim P(\/EYI(") <z)=9%(z)= \/_—é—:/ eV /12dy,
n—oo T J-oo

lim P(VrY™ < z1; VaY ™ < z3) = &(z1)®(z2).

Hint. P(Y{™ < u) = P(X,/Rn <u).

Conditional Expectation

E9.1. Prove that if G is a sub-o-algebra of F and if X € £1(Q2, F,P) and
if Y € £Y(Q,G,P) and

(*) E(X;G) =E(Y;G)
for every G in a m-system which contains € and generates G, then (*) holds

for every G in G.
E9.2. Suppose that X,Y € £1(Q, F,P) and that

E(X|]Y)=Y, as, EY|X)=X, as.

Prove that P(X =Y) = 1.
Hint. Consider E(X —Y;X > ¢, Y <)+ E(X -Y;X <¢,Y < o).

Martingales
E10.1. Pdlya’s urn

At time 0, an urn contains 1 black ball and 1 white ball. At each time
1,2,3,..., a ball is chosen at random from the urn and is replaced together
with a new ball of the same colour. Just after time n, there are therefore
n + 2 balls in the urn, of which B,, + 1 are black, where B,, is the number
of black balls chosen by time n.

Let M, = (Bn+1)/(n+2), the proportion of black balls in the urn just
after time n. Prove that (relative to a natural filtration which you should
specify) M is a martingale.

Prove that P(B, = k) = (n+1)7! for 0 < k¥ < n. What is the
distribution of ©, where © := lim M, ?
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Prove that for 0 < § < 1,

6 .__ (n + 1)' By n—-B,
Nu= gt 10

defines a martingale N9, (Continued at E10.8.)

E10.2. Martingale formulation of Bellman’s Optimality Principle

Your winnings per unit stake on game n are €,, where the ¢, are IID RVs
with

Plen =+1)=p,P(en =—-1)=4¢q, where }<p=1—-¢<1.

Your stake C,, on game n must lie between 0 and Z,_;, where Z,_; is
your fortune at time n — 1. Your object 1s to maximize the expected ‘inter-
est rate’ Elog(Zn/Zo), where N is a given integer representing the length
of the game, and Zj, your fortune at time 0, is a given constant. Let
Fn = o(€1,...,En) be your ‘history’ up to time n. Show that if C is any
(previsible) strategy, then log Z, —na is a supermartingale, where a denotes
the ‘entropy’

a = plogp+ glogg +log?2,

so that Elog(Zn/Z¢) < Na, but that, for a certain strategy, log Z, — na is
a martingale. What is the best strategy?

E10.3. Stopping times

Suppose that § and T are stopping times (relative to (2, F, {F,})). Prove
that SAT (:= min(S,T)), SV T'(:= max(S,T)) and S + T are stopping

times.

E10.4. Let S and T be stopping times with S < T. Define the process
1(s,7) with parameter set N via

1 if S(w) <n < T(w),

0 otherwise.

1sm(n,w) = {

Prove that 1(s 1y is previsible, and deduce that if X is a supermartingale,
then

E(XT/\n) < E(XS/\n)a vn.
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E10.5. ‘What always stands a reasonable chance of happening will (almost
surely) happen - sooner rather than later.’

Suppose that T is a stopping time such that for some N € N and some
e > 0, we have, for every n:

P(T <n+ N|F,) >e, as.

Prove by induction using P(T' > kN) = P(T > kN;T > (k — 1)N) that for
k=1,2,3,...
P(T > kN) < (1-¢)*.

Show that E(T") < oo.

E10.6. ABRACADABRA

At each of times 1,2,3,..., a monkey types a capital letter at random, the
sequence of letters typed forming an IID sequence of RVs each chosen uni-
formly from amongst the 26 possible capital letters.

Just before each timen = 1,2,..., a new gambler arrives on the scene.
He bets § 1 that
the n'h letter will be A.

If he loses, he leaves. If he wins, he receives § 26 all of which he bets on the
event that
the (n + 1) letter will be B.

If he loses, he leaves. If he wins, he bets his whole current fortune of $ 262
that
the (n + 2)' letter will be R

and so on through the ABRACADABRA sequence. Let T be the first
time by which the monkey has produced the consecutive sequence ABRA-

CADABRA. Explain why martingale theory makes it intuitively obvious
that ‘
E(T) = 26" + 26* + 26

and use result 10.10(c) to prove this. (See Ross (1983) for other such appli-
cations.)

E10.7. Gambler’s Ruin
Suppose that X3, X,,... are IID RVs with

PIX=41]=p, P[X=-1]=q, where 0<p=1—-g<]1,
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and p # ¢q. Suppose that a and b are integers with 0 < a < b. Define
Sp=a+X1+--+X,, T:=inf{n:S5,=0 or S,=>0b}.

Let F = o(X1,...,Xn) (Fo = {0,9}). Explain why T satisfies the condi-
tions in Question E10.5. Prove that

M, :=(%)S~ and Np = Sp—n(p—q)

define martingales A and N. Deduce the values of P(ST = 0) and E(S7).

E10.8. Bayes’ urn

A random number O is chosen uniformly between 0 and 1, and a coin with
probability © of heads is minted. The coin is tossed repeatedly. Let B,
be the number of heads in n tosses. Prove that (B,) has exactly the same
probabilistic structure as the (B, ) sequence in (E10.1) on Polya’s urn. Prove
that N? is a regular conditional pdf of © given By, Ba, ..., By.

(Continued at E18.5.)

E10.9. Show that if X is a non-negative supermartingale and T is a stop-
ping time, then
E(XT;T < 00) < E(X)p).

(Hint. Recall Fatou’s Lemma.) Deduce that cP(sup X, > ¢) < E(X)).

E10.10%*. The ‘Star-ship Enterprise’ Problem

The control system on the star-ship Enterprise has gone wonky. All that
one can do is to set a distance to be travelled. The spaceship will then move
that distance in a randomly chosen direction, then stop. The object is to
get into the Solar System, a ball of radius r. Initially, the Enterprise is at
a distance Ro(> r) from the Sun.

Let R, be the distance from Sun to Enterprise after n ‘space-hops’. Use
Gauss’s theorems on potentials due to spherically-symmetric charge distri-
butions to show that whatever strategy is adopted, 1/R, is a supermartin-
gale, and that for any strategy which always sets a distance no greater than
that from Sun to Enterprise, 1/R, is a martingale. Use (E10.9) to show
that

P[Enterprise gets into Solar System] < r/Rj.

For each ¢ > 0, you can choose a strategy which makes this probability
greater than (r/Rp) — e. What kind of strategy will this be?
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E10.11*. Star Trek, 2. ‘Captain’s Log ...

Mr Spock and Chief Engineer Scott have modified the control system so
that the Enterprise is confined to move for ever in a fixed plane passing
through the Sun. However, the next ‘hop-length’ is now automatically set
to be the current distance to the Sun (‘next’ and ‘current’ being updated
in the obvious way). Spock is muttering something about logarithms and
random walks, but I wonder whether it is (almost) certain that we will get
into the Solar System sometime ...’

Hint. Let X, := log R,—log R,—;. Provethat X;, X»,...1s anIID sequence
of variables each of mean 0 and finite variance o? (say), where o > 0. let

Sni=X1+Xo4+---+ X,
Prove that if a is a fixed positive number, then
P[i?.fs" = —o0] > P[S, £ —ao+/n,i.0]
> limsup P[S, € —ao+y/n] = &(—a) > 0.

(Use the Central Limit Theorem.) Prove that the event {inf, S, = —o0} is
in the tail o-algebra of the (X, ) sequence.

E12.1. Branching Process

A branching process Z = {Z,:n > 0} is constructed in the usual way. Thus,
a family {X,(c"): n,k > 1} of IID Z*-valued random variables is supposed

given. We define Zy: = 1 and then define recursively:
. y(n+1) (n+1)
Zn+1.—X1 +"'+in (nZO).

Assume that if X denotes any one of the X ,(C"), then
pr=E(X)<oo and 0<% = Var(X) < oo.

Prove that M,:= Z,/u" defines a martingale M relative to the filtration
Fn = O'(Zo, Ziy..., Zn). Show that

and deduce that M is bounded in £? if and only if 4 > 1. Show that when

p>1,
‘ Var(Moo) = o {u(pe — 1)} 1.
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E12.2. Use of Kronecker’s Lemma

Let Ei,E2,... be independent events with P(E,) = 1/n. Let ¥; = Ig,.
Prove that Y (Yi — %) /log k converges a.s., and use Kronecker’s Lemma
to deduce that N

logn

— 1, a.s,

where N,,: = Y7 + -+ + Y. An interesting application is to E4.3, when N,
becomes the number of records by time n.

E12.3. Star Trek, 3

Prove that if the strategy in E10.11 is (in the obvious sense) employed -
and for ever — in R3® rather than in R?, then

ZR;z < 00, a.s.,

where R, is the distance from the Enterprise to the Sun at time n.

Note. It should be obvious which result plays the key réle here, but you
should try to make your argument fully rigorous.

Uniform Integrability

E13.1. Prove that a clas C of RVs is Ul if and only if both of the following
conditions (i) and (ii) hold:
(i) C is bounded in £, so that A := sup{E(]X|): X € C} < oo,
(ii) for every € > 0, 36 > 0 such that if F € F, P(F) < § and X € C,
then E(|X|; F) < e.

Hint for 9f’. For X € C, P(|X|> K)< KA.

Hint for ‘only if . E(|X|; F) < E(|X];|X]| > K) + KP(F).

E13.2. Prove that if C and D are Ul classes of RVs, and if we define
C+D:={X+Y:X€Cl,Y €D},

then C + D is UL. Hint. One way to prove this is to use E13.1.

E13.3. Let C be a UI family of RVs. Say that Y € D if for some X € C
and some sub-o-algebra G of F, we have Y = E(X|G), a.s. Prove that D is
Ul

E14.1. Hunt’s Lemma

Suppose that (X,,) is a sequence of RVs such that X: = lim X,, exists a.s.
and that (X,) is dominated by ¥ in (£!)™:

| Xn(w)] £ Y(w), V(n,w), and E(Y) < occ.
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Let {F,} be any filtration. Prove that
E(Xn|Fn) = E(X|Fx) as.

Hint. Let Zn:= sup,>,, |Xr — X|. Prove that Z,, — 0 a.s. and in L.
Prove that for n > m, we have, almost surely,

|E(Xn|Fn) —E(X|Foo) | < [E(X|Fn) —E(X|Foo) | + E(Zim|Fn)-

E14.2. Azuma-Hoeflding Inequality

(a) Show that if Y is a RV with values in [—c,c] and with E(Y") = 0, then,
for 8 € R,

Ee®Y < coshfc < exp (%9%2) .

(b) Prove that if M is a martingale null at 0 such that for some sequence
(cn : m € N) of positive constants,

IMn - Mn—ll S Cn, Vn,

then, for z > 0,

1 n
PlsupM; >z ) <ex ——.1:2/E 2.
(ksg = ) a P (2 k=1 k)

Hint for (a). Let f(z):= exp(6z), z € [—¢,c]. Then, since f is convex,

[

Y fe).

c—y
fy) £ TC—f(“C)+ 5

Hint for (b). See the proof of (14.7,a).

Characteristic Functions

E16.1. Prove that T
lim r lsinzdz = /2
TTOO 0

by integrating [ z7lei*dz around the contour formed by the ‘upper’ semi-
circles of radii € and T and the intervals [—T, —¢] and [e, T].

E16.2. Prove that if Z has the U[—1,1] distribution, then

¢ 2(8) = (sin 6)/9,
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and prove that there do not exist IID RVs X and Y such that

X -Y ~U[-1,1].

E16.3. Suppose that X has the Cauchy distribution, and let § > 0. By

integrating ¢'%7/(1 + 2z2?) around the semicircle formed by [—R, R] together

with the ‘upper’ semicircle centre 0 of radius R, prove that ¢ x(8) = e~%.

Show that ¢ x(8) = e~ !4l for all §. Prove that if X;,X>,... X, are IID RVs
each with the standard Cauchy distribution, then (X; + --- + X, )/n also
has the standard Cauchy distribution.

E16.4. Suppose that X has the standard normal N(0,1) distribution. Let
6 > 0. Consider f(27r)"% exp(—122?)dz around the rectangular contour

(-R—-10) > (R—-10) > R— (—R) — (—R —16),
and prove that ¢ x(0) = exp(—16?).

E16.5. Prove that if ¢ is the characteristic function of a RV X, then ¢ is

non-negative defintte in that for complex ¢;,¢2,...,c, andreal 6y, 0,,...,8,,
Z Z CjEkLp(gJ' - 9/;) > 0.
J k
(Hint. Express LHS as the expectation of ... .) Bochner’s Theorem

says that ¢ is a characteristic function if and only if p(0) = 1, ¢ is contin-
uous, and ¢ is non-negative definite! (It is of course understood that here
¢ : R — C.) E18.6 gives a simpler result in the same spirit.

E16.6. (a) Let (2,F,P) = ([0,1],B][0,1],Leb). What is the distribution
of the RV Z, where Z(w) := 2w — 1?7 Let w = )} 27"R,(w) be the binary
expansion of w. Let

Uw) = Z 27"Qn(w), where Qu(w)=2R,(w)—1.

odd n

Find a random variable V independent of U such that U and V are identi-
cally distributed and U + 4V is uniformly distributed on [-1, 1].

(b) Now suppose that (on some probability triple) X and Y are IID RVs
such that
X + 3Y  is uniformly distributed on [-1,1].
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Let ¢ be the CF of X. Calculate ¢(8)/p(16). Show that the distribution of
X must be the same as that of U in part (a), and deduce that there exists
a set F' € B[—1,1] such that Leb(F) =0 and P(X € F) =1.

E18.1. (a) Suppose that A > 0 and that (for n > A)F, is the DF associ-
ated with the Binomial distribution B(n,A/n). Prove (using CF's) that F,,
converges weakly to F' where F' is the DF of the Poisson distribution with
parameter .

(b) Suppose that X;,X,,... are IID RVs each with the density function
(1 — cosz)/mz? on R. Prove that for z € R,

mnP(th&+~~+XnSx

n—oco n

) =14 r~Yarc tanz,

T T

where arctan € (-3, 7).

E18.2. Prove the Weak Law of Large Numbers in the following form.
Suppose that X;,X,,... are IID RVs, each with the same distribution as
X. Suppose that X € £! and that E(X) = u. Prove by the use of CFs that
the distribution of

Ani=n"Y X1+ + Xn)

converges weakly to the unit mass at u. Deduce that
A, — p in probability.
Of course, SLLN implies this Weak Law.

Weak Convergence for Prob[0, 1]
E18.3. Let X and Y be RVs taking values in [0,1]. Suppose that
E(X*)=E(Y%), k=0,1,2,....
Prove that
(i) Ep(X) = Ep(Y") for every polynomial p,
(ii)) Ef(X) = Ef(Y) for every continuous function f on [0,1],
(iii) P(X £ z) =P(Y < y) for every z in [0,1].
Hint for (ii). Use the Weierstrass Theorem 7.4.

E18.4. Suppose that (F},) is a sequence of DFs with

Fo(r) =0for z <0, Fu(l)=1, for every n.
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Suppose that

(%) mg :=lim [ z*dF, exists for k =0,1,2,... .
" o,1]

Use the Helly-Bray Lemma and E18.3 to show that F,, = F, where F is
characterized by f[o,l] zFdF = my, VE.
E18.5. Improving on E18.3: A Moment Inversion Formula

Let F be a distribution with F(0—) = 0 and F(1) = 1. Let p be the
associated law, and define

my :=/ ¥ dF(z).
[0,1]
Define
Q=1[0,1]x[0,1]N, F=BxBN, P=uxLebV,
O(w) =wo, Hi(w) = Ijo,uwe)(wk)-

This models the situation in which © is chosen with law u, a coin with
probability © of heads is then minted, and tossed at times 1,2,... . See
E10.8. The RV H; is 1 if the kP toss produces heads, 0 otherwise. Define

Spi=Hi+Hy+---+ Hp.
By the Strong Law and Fubini’s Theorem,
Sp/n — O, as.
Define a map D on the space of real sequences (a, : n € Z1) by setting
Da = (ap — @p4+1: 1 € Z+).
Prove that
) RIOEDY (3 )@imy: o)

at every point = of continuity of F.

E18.6* Moment Problem

Prove that if (my : k € Z1) is a sequence of numbers in [0,1], then there
exists a RV X with values in [0,1] such that E(X*) = m; if and only if
mo = 1 and
(D"m), > 0 (r,s,€ Z%).
Hint. Define Fy, via E18.5(*), and then verify that E18.4(x) holds. You can
show that the moments my , of F, satisfy
Mpo =1, Mmu1=m1, mup2=mz+n"(m;—msy), etc.

You discover the algebral!
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Weak Convergence for Prob[0, co0)
E18.7. Using Laplace transforms instead of CF's
Suppose that F and G are DFs on R such that F(0—) = G(0—) = 0, and
/ e A dF(z) = / e~ **dG(z), VA > 0.
[0,00)

[0,00)

Note that the integral on LHS has a contribution F(0) from {0}. Prove
that F = G. [Hint. One could derive this from the idea in E7.1. However,
it is easier to use E18.3, because we know that if X has DF F and Y has
DF G, then

El(e™®)" ] =E[(e™)"], n=0,1,2,...]

Suppose that (F,) is a sequence of distribution functions on R each
with F,(0—) = 0 and such that

L()) = lim / e dF,(z)

exists for A > 0 and that L is continuous at 0. Prove that F, is tight and
that
Fn 5 F where [ e *2dF(z) = L()), VA > 0.

Modes of convergence

EA13.1. (a) Prove that (X, — X, a.s.) = (X, — X in prob).

Hint. See Section 13.5. *

(b) Prove that (X, — X in prob) # (X, — X, a.s.).

Hint. Let X, =1g,, where Eq, E,,... are independent events.

(c) Prove that if ) P(|X, — X| > €) < 00, Ve > 0, then X, —» X, a.s.
Hint. Show that the set {w : X, (w) /4 X(w)} may be written

U {w: |Xa(w) — X(w)|] > k7! for infinitely many n}.
keN

(d) Suppose that X,, — X in probability. Prove that there is a subsequence
(X, ) of (X,) such that X,,, — X, a.s.

Hint. Combine (c¢) with the ‘diagonal principle’.
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(e) Deduce from (a) and (d) that X, — X in probability if and only if every
subsequence of (X, ) contains a further subsequence which converges a.s. to

X.

EA13.2. Recall that if £ is a random variable with the standard normal
N(0,1) distribution, then

Eer = exp(1A?).

Suppose that £1,£2,... are IID RVs each with the N(0,1) distribution. Let
Sn =3 1—1 &k, let a,b € R, and define

Xn =exp(aSp — bn).

Prove that

(X, —0,as.) & (b>0)
but that for r > 1,

(Xn = 0in L") & (r < 2b/a?).
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Index

(Recall that there is a Guide to Notation on pages xiv-xv.)

ABRACADABRA (4.9, E10.6).

adapted process (10.2): Doob decomposition (12.11).

o-algebra (1.1).

algebra of sets (1.1).

almost everywhere = a.e. (1.5); almost surely = a.s. (2.4).
atoms: of o-algebra (9.1, 14.13); of distribution function (16.5).
Azuma-Hoeflding inequality (E14.2).

Baire category theorem (A1.12).
Banach-Tarski paradox (1.0).

Bayes’ formula (15.7-15.9).

Bellman Optimality Principle (E10.2, 15.3).
Black-Scholes option-pricing formula (15.2).
Blackwell’s Markov chain (E4.8).

Bochner’s Theorem (E16.5)

Borel-Cantelli Lemmas: First = BC1 (2.7); Second = BC2 (4.3); Lévy’s
extension of (12.15).

Bounded Convergence Theorem = BDD (6.2, 13.6).
branching process (Chapter 0, E12.1).
Burkholder-Davis-Gundy inequality (14.18).
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Carathéodory’s Lemma (A1.7).

Carathéodory’s Theorem: statement (1.7); proof (A1.8).
Central Limit Theorem (18.4).

Cesaro’s Lemma (12.6).

characteristic functions: definition (16.1); inversion formula (16.6); conver-
gence theorem (18.1).

Chebyshev’s inequality (7.3).

coin tossing (3.7).

conditional expectation (Chapter 9): properties (9.7).
conditional probability (9.9).

consistency of Likelihood-Ratio Test (14.17).
contraction property of conditional expectation (9.7,h).
convergence in probability (13.5, A13.2).

convergence theorems for integrals: MON (5.3); Fatou (5.4); DOM (5.9);
BDD (6.2, 13.6); for UI RVs (13.7).

convergence theorems for martingales: Main (11.5); for Ul case (14.1);
Upward (14.2); Downward (14.4).

d-system (Al.2).

differentiation under integral sign (A16.1).

distribution function for RV (3.10-3.11).

Dominated Convergence Theorem = DOM (5.9); conditional (9.7,g).

J.L. DOOB’s Convergence Theorem (11.5); Decomposition (12.11); L? in-
equality (14.11); Optional Sampling Theorem (A14.3-14.4); Optional
Stopping Theorem (10.10, A14.3); Submartingale Inequality (14.6);
Upcrossing Lemma (11.2) — and much else!

Downward Theorem (14.4).
Dynkin’s Lemma (A1.3).

events (Chapter 2): independent (4.1).
expectation (6.1): conditional (Chapter 9).

‘extension of measures’: uniqueness (1.6); existence (1.7).
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extinction probability (0.4).

fair game (10.5): unfavourable (E4.7).

Fatou Lemmas: for sets (2.6,b), 2.7,c); for functions (5.4); conditional ver-
sion (9.7,f).

filtered space, filtration (10.1).
filtering (15.6-15.9).
finite and o-finite measures (1.5).

Forward Convergence Theorem for supermartingales (11.5).

Fubini’s Theorem (8.2).

gambler’s ruin (E10.7).
gambling strategy (10.6).

Hardy space H} (14.18).
hafnesses (15.10-15.12).
hedging strategy (15.2).
Helly-Bray Lemma (17.4).
hitting times (10.12).
Hoeffding’s inequality (E14.2).
Holder’s inequality (6.13).
Hunt’s Lemma (E14.1).

independence: definitions (4.1); 7-system criterion (4.2); and conditioning

(9.7,k, 9.10).
independence and product measure (8.4).

inequalities: Azuma-Hoeffding (E14.2); Burkholder-Davis-Gundy (14.18);
Chebyshev (7.3); Doob’s £P (14.11); Holder (6.13); Jensen (6.6),
and in conditional form (9.7,h); Khinchine — see (14.8); Kolmogorov
(14.6); Markov (6.4); Minkowski (6.14); Schwarz (6.8).

infinite products of probability measures (8.7, Chapter A9); Kakutani’s
Theorem on (14.12, 14.17).

integration (Chapter 5).
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Jensen’s inequality (6.6); conditional form (9.7,h).

Kakutani’s Theorem on likelihood ratios (14.12, 14.17).
Kalman-Bucy filter (15.6-15.9).

A.N. KOLMOGOROV’s Definition of Conditional Expectation (9.2); In-
equality (14.6); Law of the Iterated Logarithm (A4.1, 14.7); Strong
Law of Large Numbers (12.10, 14.5); Three-Series Theorem (12.5);
Truncation Lemma (12.9); Zero-One (0-1) Law (4.11, 14.3).

Kronecker’s Lemma (12.7).

Laplace transforms: inversion (E7.1); and weak convergence (E18.7).
law of random variable (3.9): joint laws (8.3).

least-squares-best predictor (9.4).

Lebesgue integral (Chapter 5).

Lebesgue measure = Leb (1.8, A1.9).

Lebesgue spaces LP, L? (6.10).

P.LEVY’s Convergence Theorem for CFs (18.1); Downward Theorem for
martingales (14.4); Extension of Borel-Cantelli Lemmas (12.15); In-

version formula for CFs (16.6); Upward Theorem for martingales
(14.2).

Likelihood-Ratio Test, consistency of (14.17).

Mabinogion sheep (15.3-15.5).
Markov chain (4.8, 10.13).
Markov’s inequality (6.4).

martingale (Chapters 10-15!): definition (10.3); Convergence Theorem
(11.5); Optional-Stopping Theorem (10.9-10.10, A14.3); Optional-
Sampling Theorem (Chapter A14).

martingale transform (10.6)
measurable function (3.1).
measurable space (1.1).
measure space (1.4).
Minkowski’s inequality (6.14).
Moment Problem (E18.6).
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monkey typing Shakespeare (4.9).

Monotone-Class Theorem (3.14, A1.3).

Monotone-Convergence Theorem: for sets (1.10); for functions (5.3, Chap
ter AD); conditional version (9.7,e).

narrow convergence — see weak convergence.

option pricing (15.2).

Optional-Sampling Theorem (Chapter Al4).

Optional-Stopping Theorems (10.9-10.10, A14.3).

optional time — see stopping time (10.8).

orthogonal projection (6.11): and conditional expectation (9.4-9.5).

outer measures (A1.6).

m-system (1.6): Uniqueness Lemmas (1.6, 4.2).
Pélya’s urn (E10.1, E10.8).

previsible (= predictable) process (10.6).

probability density function = pdf (6.12); joint (8.3).
probability measure (1.5).

probability triple (2.1).

product measures (Chapter 8).

Pythagoras’s Theorem (6.9).

Radon-Nikodym theorem (5.14, 14.13-14.14).

random signs (12.3).

random walk: hitting times (10.12, E10.7); on free group (EG.3-EG.4).
Record Problem (E4.3, E12.2, 18.5).

regular conditional probability (9.9).

Riemann integral (5.3).

sample path (4.8)
sample point (2.1)
sample space (2.1)



Index ' 251

Schwarz inequality (6.8).

Star Trek problems (E10.10, E10.11, E12.3).
stopped process (10.9).

stopping times (10.8); associated o-algebras (A14.1).
Strassen’s Law of the Iterated Logarithm (A4.2).
Strong Laws (7.2, 12.10, 12.14, 14.5).

submartingales and supermartingales: definitions (10.3); convergence
theorem (11.5); optional stopping (10.9-10.10); optional sampling
(Al4.4).

superharmonic functions for Markov chains (10.13).
symmetrization technique (12.4).
d-system (A1.2); w-system (1.6).

tail o-algebra (4.10-4.12, 14.3).
Tchebycheff: = Chebyshev (7.3).
Three-Series Theorem (12.5).
tightness (17.5).

Tower Property (9.7,1).

Truncation Lemma (12.9).

uniform integrability (Chapter 13).
Upcrossing Lemma (11.1-11.2).

Uniqueness Lemma (1.6).

weak convergence (Chapter 17): and characteristic functions (18.1); and
moments (E18.3-18.4); and Laplace transforms (E18.7).

Weierstrass approximation theorem (7.4).

Zero-one law = 0-1 law (4.11, 14.3).



