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Emmanuel Gobet

Abstract I give a pedagogical introduction to Brownian motion, stochastic calculus
introduced by Itô in the fifties, following the elementary (at least not too technical)
approach by Föllmer [Seminar on Probability, XV (Univ. Strasbourg, Strasbourg,
1979/1980) (French), pp. 143–150. Springer, Berlin, 1981]. Based on this, I develop
the connection with linear and semi-linear parabolic PDEs. Then, I provide and
analyze some Monte Carlo methods to approximate the solution to these PDEs. This
course is aimed at master students, Ph.D. students and researchers interesting in the
connection of stochastic processes with PDEs and their numerical counterpart. The
reader is supposed to be familiar with basic concepts of probability (say first chap-
ters of the book Probability essentials by Jacod and Protter [Probability Essentials,
2nd edn. Springer, Berlin, 2003]), but no a priori knowledge on martingales and
stochastic processes is required.

1 The Brownian Motion and Related Processes

1.1 A Brief History of Brownian Motion

Historically, the Brownian motion (BM in short) is associated with the analysis of
motions which time evolution is so disordered that it seems difficult to forecast their
evolution, even in a very short time interval. It plays a central role in the theory of
random processes, because in many theoretical and applied problems, the Brownian
motion (or the diffusion processes that are built from Brownian motion) provides
simple limit models on which many calculations can be made.
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In 1827, the English botanist Robert Brown (1773–1858) first described the
erratic motion of fine organic particles in suspension in a gas or a fluid. At the
nineteenth century, after him, several physicists had admitted that this motion is
very irregular and does not seem to admit a tangent; thus one could not speak of his
speed, nor apply the laws of mechanics to him! In 1900 [4], Louis Bachelier (1870–
1946) introduced the Brownian motion to model the dynamics of the stock prices,
but his approach then is forgotten until the sixties. . . His Ph.D. thesis, Théorie de la
spéculation, is the starting point of modern finance.

But Physics is the field at the beginning of the twentieth century which is at
the origin of great interest for this process. In 1905, Albert Einstein (1879–1955)
built a probabilistic model to describe the motion of a diffusive particle: he found
that the law of the particle position at the time t , given the initial state x, admits
a density which satisfies the heat equation, and actually it is Gaussian. Its theory
is then quickly confirmed by experimental measurements of satisfactory diffusion
constants. The same year as Einstein, a discrete version of the Brownian motion is
proposed by the Polish physicist Smoluchowski using random walks.

In 1923, Norbert Wiener (1894–1964) built rigorously the random function that
is called Brownian motion; he established in particular that the trajectories are
continuous. By 1930, while following an idea of Paul Langevin, Ornstein and
Uhlenbeck studied the Gaussian random function which bears their name and which
seems to be the stationary or mean-reverting equivalent model associated to the
Brownian motion.

It is the beginning of a very active theoretical research in Mathematics. Paul
Lévy (1886–1971) discovered then, with other mathematicians, many properties of
the Brownian motion [55] and introduced a first form of the stochastic differential
equations, the study of which is later systematized by K. Itô (1915–2008). His work
is gathered in a famous treaty published in 1948 [44] which is usually referred to as
Itô stochastic calculus.

But History knows sometimes incredible bounces. Indeed in 2000, the French
Academy of Science opened a manuscript remained sealed since 1940 pertaining to
the young mathematician Doeblin (1915–1940), a French telegraphist died during
the German offensive. Doeblin was already known for his remarkable achievements
in the theory of probability due to his works on the stable laws and the Markov
processes. This sealed manuscript gathered in fact his recent research, written
between November 1939 and February 1940: it was actually related to his discovery
(before Itô) of the stochastic differential equations and their relations with the
Kolmogorov partial differential equations. Perhaps the Itô stochastic calculus could
have been called Doeblin stochastic calculus. . .

1.2 The Brownian Motion and Its Paths

In the following, we study the basic properties of the Brownian motion and its paths.
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1.2.1 Definition and Existence

The very erratic path which is a specific feature of the Brownian motion is in general
associated with the observation that the phenomenon, although very disordered, has
a certain time homogeneity, i.e. the origin date does not have importance to describe
the time evolution. These properties underly the next definition.

Definition 1 (of Standard Brownian Motion). A standard Brownian motion is a
random process fWt I t � 0g with continuous paths, such that

• W0 D 0.
• The time increment Wt � Ws with 0 � s < t has the Gaussian law,1 with zero

mean and variance equal .t � s/.
• For any 0 D t0 < t1 < t2 : : : :: < tn; the increments fWtiC1

�Wti I 0 � i � n� 1g
are independent2 random variables.

There are important remarks following from the definition.

1. The state Wt of the system at time t is distributed as a Gaussian r.v. with mean 0
and variance t (increasing as time gets larger). Its probability density is

P.Wt 2 Œx; x C dx�/ D g.t; x/dx D 1p
2�t

exp.�x2=2t/dx: (1)

2. With probability 95%, we have jWt j � 1:96
p
t (see Fig. 1) for a given time t .

However, it may occur that W goes out this confidence interval.
3. The random variable Wt , as the sum of its increments, can be decomposed as a

sum of independent Gaussian r.v.: this property serves as a basis from the further
stochastic calculus.

Theorem 1. The Brownian motion exists!

Proof. There are different constructive ways to prove the existence of Brownian
motion. Here, we use a Fourier based approach (proposed by Wiener), showing
that W can be represented as a superposition of Gaussian signals. Also, we use a

1A Gaussian random variable X (see [46]) with mean � and variance �2 > 0 (often denoted by
N .�; �2/) is the r.v. with density

g�;�2 .x/ D 1

�
p
2�

expŒ� .x � �/2

2�2
�; x 2 R:

If �2 D 0, X D � with probability 1. Moreover, for any u 2 R, E.euX/ D eu�C 1
2 u2�2 .

2Two random variables X1 and X2 are independent if and only if E.f .X1/g.X2// D
E.f .X1//E.g.X2// for any bounded functions f and g. This extends similarly to a vector.
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Fig. 1 Simulation of a
Brownian motion with the
95 %-confidence interval
curves f˙.t / D ˙2pt

equivalent characterization of Brownian motion as a Gaussian process3 with zero
mean and covariance function Cov.Wt ;Ws/ D min.s; t/ D s ^ t .

Let .Gm/m�0 be a sequence of independent Gaussian r.v. with zero mean and unit
variance and set

Wt D tp
�
G0 C

r
2

�

X
m�1

sin.mt/

m
Gm:

We now show that W is a Brownian motion on Œ0; ��; then it is enough to
concatenate and sum up such independent processes to get finally a Brownian
motion defined on R

C. We sketch the proof of our statement onW . First, the series
is a.s.4 convergent since this is a Cauchy sequence in L2: indeed, thanks to the
independence of the Gaussian random variables, we have

k
X

m1�m�m2

sin.mt/

m
Gmk2L2 D

X
m1�m�m2

sin2.mt/

m2
�
X
m1�m

1

m2
�!

m1!C1 0:

3.X1; : : : ; Xn/ is a Gaussian vector if and only if for any .�i /1�i�n 2 R
n,
Pn

iD1 �iXi has a
Gaussian distribution. Independent Gaussian random variables form a Gaussian vector. A process
.Xt /t is Gaussian if .Xt1 ; : : : ; Xtn / is a Gaussian vector for any times .t1; : : : ; tn/ and any n. A
Gaussian process is characterized by its meanm.t/ D E.Xt / and its covariance functionK.s; t/ D
Cov.Xs; Xt /.
4We recall that “an event A occurs a.s.” (almost surely) if P.! W ! 2 A/ D 1 or equivalently if
fw W w … Ag is a set of zero probability measure.
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Fig. 2 Arithmetic Brownian
motion with different drift
parameters

The partial sum has a Gaussian distribution, thus the a.s. limit5 too. The same
argument gives that W is a Gaussian process. It has zero mean and its covariance is
the limit of the covariance of partial sums: thus

Cov.Wt ;Ws/ D ts

�
C 2

�

X
m�1

sin.mt/

m

sin.ms/

m
:

The above series is equal to min.s; t/ for .s; t/ 2 Œ0; ��2, by a standard computation
of the Fourier coefficients of the function t 2 Œ��; �� 7! min.s; t/ (for s fixed). The
proof of continuity ofW is based on the uniform convergence of the function series
along some appropriate subsequences, which we do not detail (see [45, pp. 21–22]).

ut
In many applications, it is useful to consider non standard Brownian motion.

Definition 2 (of Arithmetic Brownian Motion). An arithmetic Brownian motion
(ABM in short) is a random process fXt I t � 0g whereXt D x0 C bt C �Wt and

• W is a standard Brownian motion.
• x0 2 R is the starting value of X .
• b 2 R is the drift parameter.
• � 2 R is the diffusion parameter.

Usually, � can be taken non-negative due to the symmetry of Brownian motion
(see Proposition 1). X is still a Gaussian process, which position Xt at time t is
distributed as N .x0 C bt; �2t/ (Fig. 2).

5Here, we use the following standard result: let .Xn/n�1 be a sequence of random variables, each
having the Gaussian distribution with mean �n and variance �2n . If the distribution ofXn converges,
then .�n; �2n/ converge to .�; �2/, and the limit distribution is Gaussian with mean � and variance
�2. We recall that if Xn converges a.s., then it also converges in distribution.
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1.2.2 First Easy Properties of the Brownian Path

Proposition 1. Let fWt I t 2 R
Cg a standard Brownian motion.

i) SYMMETRY PROPERTY: f�Wt I t 2 R
Cg is a standard Brownian motion.

ii) SCALING PROPERTY: for any c > 0, fW c
t I t 2 R

Cg is a standard Brownian
motion where

W c
t D c�1Wc2t : (2)

iii) TIME REVERSAL: for any fixed T , OW T
t D WT � WT�t defines a standard

Brownian motion on Œ0; T �.
iv) TIME INVERSION: f OWt D tW1=t ; t > 0; OW0 D 0g is a standard Brownian

motion.

The scaling property is important and illustrates the fractal feature of Brownian
motion path: " times Wt behaves like a Brownian motion at time "2t .

Proof. It is a direct verification of the Brownian motion definition, related to
independent, stationary and Gaussian increments. The continuity is also easy to
verify, except for the case iv) at time 0. For this, we use that lim

t!0C
tW1=t D

lim
s!C1

Ws
s

D 0, see Proposition 7. ut

1.3 Time-Shift Invariance and Markov Property

Previously, we have studied simple spatial transformation of Brownian motion. We
now consider time-shifts, by first considering deterministic shifts.

Proposition 2 (Invariance by a Deterministic Time-Shift). The Brownian
Motion shifted by h � 0, given by f NW h

t D WtCh � WhI t 2 R
Cg, is another

Brownian motion, independent of the Brownian Motion stopped at h, fWsI s � hg.

In other words, fWtCh D WhC NW h
t I t 2 R

Cg is a Brownian motion starting fromWh.
The above property is associated to the weak Markov property which states (possibly
applicable to other processes) that the distribution ofW after h conditionally on the
past up to time h depends only on the present value Wh.

Proof. The Gaussian property of NW h is clear.
The independent increments of W induce those of NW h.
It remains to show the independence w.r.t. the past up to h, i.e. the sigma-

field generated by fWsI s � hg, or equivalently w.r.t. the sigma-field generated
by fWs1; : : : WsN g for any 0 � s1 � � � � � sN � h. The independence of
increments of W ensures that . NW h

t1
; NW h

t2
� NW h

t1
; � � � ; NW h

tk
� NW h

tk�1
/ D .Wt1Ch �

Wh; � � � ;WtkCh � Wtk�1Ch/ is independent of .Ws1 ;Ws2 � Ws1; � � � ;Wsj � Wsj�1 /.
Then . NW h

t1
; NW h

t2
; � � � ; NW h

tk
/ is independent of fWsI s � hg. ut
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As a consequence, we can derive a nice symmetry result making the connection
between the maximum of Brownian motion monitored along a finite time grid t0 D
0 < t1 < � � � < tN D T and that of WT only.

Proposition 3. For any y � 0, we have

PŒsup
i�N

Wti � y� � 2PŒWT � y� D PŒjWT j � y�: (3)

Proof. The equality at the r.h.s. comes from the symmetric distribution ofWT . Now
we show the inequality on the left. Denote by t�y the first time tj when W reaches
the level y. Notice that fsupi�N Wti � yg D ft�y � T g and ft�y D tj g D fWti <

y;8i < j;Wtj � yg. For each j < N , the symmetry of Brownian increments gives

PŒWT �Wtj � 0� D 1
2
. Since the shifted Brownian motion . NW tj

t D NWtjCt � Wtj W
t 2 R

C/ is independent of .Ws W s � tj /, we have

1
2 PŒ sup

i�N
Wti � y� D 1

2
PŒt�y � T � D 1

2

NX
jD0

PŒt�y D tj �

D 1

2
PŒWti < y;8i < N;WT � y�C

N�1X
jD0

PŒWti < y;8i < j;Wtj � y�PŒWT �Wtj � 0�

D 1

2
PŒWti < y;8i < N;WT � y�C

N�1X
jD0

PŒWti < y;8i < j;Wtj � y;WT �Wtj � 0�

� PŒWti < y;8i < N;WT � y�C
N�1X
jD0

PŒWti < y;8i < j;Wtj � y;WT � y�

D PŒt�y � T;WT � y� D PŒWT � y�:

At the two last lines, we have used fWtj � y;WT �Wtj � 0g � fWtj � y;WT � yg
and fWT � yg � ft�y � T g. ut
Taking a grid with time step T=N with N ! C1, we have supi�N Wti "
sup0�t�T Wti . Then, we can pass to the limit (up to some probabilistic convergence
technicalities) in the inequality (3) to get

PŒ sup
0�t�T

Wt � y� � PŒjWT j � y�: (4)

Actually, the inequality (4) is an equality: it is proved later in Proposition 5.
Now, our aim is to extend Proposition 2 to the case of stochastic time-shifts h.

Without extra assumption on h, the result is false in general: a counter-example is
the last passage time of W at zero before the time 1 (L D supft � 1 W Wt D 0g),
which does not satisfy the property. Indeed, since .WsCL � Ws/s�0 do not vanish
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a.s. at short time (due to the definition of L), the marginal distribution can not be
Gaussian and the time-shifted process can not be a Brownian motion.

The right class for extension is the class of stopping times, defined as follows.

Definition 3 (Stopping Time). A stopping time is non-negative random variable
U (taking possibly the value C1), such that for any t � 0, the event fU � tg
depends only on the Brownian motion values fWsI s � tg.

The stopping time is discrete if it takes only a countable set of values
.u1; � � � ; un; � � � /.
In other words, it suffices to observe the Brownian motion until time t to know
whether or not the event fU � tg occurs. Of course, deterministic times are stopping
times. A more interesting example is the first hitting time of a level y > 0

Ty D infft > 0IWt � ygI

it is a stopping time, since fTy � tg D f9s � t;Ws D yg owing to the continuity of
W . Observe that the counter-example of last passage time L is not a stopping time.

Proposition 4. Let U be a stopping time. On the event fU < C1g, the Brownian
motion shifted by U � 0, i.e. f NW U

t D WtCU �WU I t 2 R
Cg, is a Brownian motion

independent of fWt I t � U g.

This result is usually referred to as the strong Markov property.

Proof. We show that for any 0 � t1 < � � � < tk , any 0 � s1 < � � � < sl , any
.x1; � � � ; xk/ and any measurable sets .B1; � � � ; Bl�1/, we have

P. NW U
t1
< x1; � � � ; NW U

tk
< xk;Ws1 2 B1; � � � ;Wsl�1 2 Bl�1; sl � U < C1/

D P.W 0
t1
< x1; � � � ;W 0

tk
< xk/P.Ws1 2 B1; � � � ;Wsl�1 2 Bl�1; sl � U < C1/; (5)

where W 0 is a Brownian motion independent of W . We begin with the easier case
where U is a discrete stopping time valued in .un/n�1: then

P. NW U
t1
< x1; � � � ; NW U

tk
< xk;Ws1 2 B1; � � � ;Wsl�1 2 Bl�1; sl � U < C1/

D
X
n

P. NW U
t1
< x1; � � �; NW U

tk
< xk;Ws1 2 B1; � � � ;Wsl�1 2 Bl�1; sl � U;U D un/

D
X
n

P. NW un
t1 < x1; � � �; NW un

tk
< xk;Ws1 2 B1; � � � ;Wsl�1 2 Bl�1; sl � U;U D un/

D
X
n

P.W 0
t1
< x1; � � �;W 0

tk
< xk/P.Ws1 2 B1; � � � ;Wsl�1 2 Bl�1; sl � U;U D un/

D P.W 0
t1
< x1; � � � ;W 0

tk
< xk/P.Ws1 2 B1; � � � ;Wsl�1 2 Bl�1; sl � U < C1/
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Fig. 3 Brownian motion

.WTyCt D NW Ty
t C y W t 2

R
C/ starting from y and its

symmetric path

applying at the last equality but one the time-shift invariance with deterministic
shift un. For the general case for U , we apply the result to the discrete stopping time
Un D ŒnU�C1

n
, and then pass to the limit using the continuity of W . ut

1.4 Maximum, Behavior at Infinity, Path Regularity

We apply the strong Markov property to identify the law of the Brownian motion
maximum.

Proposition 5 (Symmetry Principle). For any y � 0 and any x � y, we have

PŒsup
t�T

Wt � yIWT � x� D PŒWT � 2y � x�; (6)

PŒsup
t�T

Wt � y� D PŒjWT j � y� D 2

Z C1
y

p
T

e� 1
2 x

2

p
2�

dx: (7)

Proof. Denote by Ty D infft > 0 W Wt � yg and C1 if the set is empty. Observe
that Ty is a stopping time and that fsupt�T Wt � yIWT � xg D fTy � T IWT �
xg. By Proposition 4, on fTy � T g, .WTyCt D NW Ty

t C y W t 2 R
C/ is a Brownian

motion starting from y, independent of .Ws W s � Ty/. By symmetry (see Fig. 3),
the events fTy � T;WT < xg and fTy � T;WT > 2y�xg has the same probability.
But for x � y, we have fTy � T;WT > 2y � xg D fWT > 2y � xg and the first
result is proved.

For the second result, take y D x and write PŒsupt�T Wt � y� D PŒsupt�T Wt �
y;WT > y�CPŒsupt�T Wt � y;WT � y� D PŒWT > y�CPŒWT � y� D 2P.WT �
y/ D P.jWT j � y/. ut
As a consequence of the identification of the law of the maximum up to a fixed time,
we prove that the range of Brownian motion becomes R at time goes to infinity.
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Proposition 6. With probability 1, we have

lim sup
t!C1

Wt D C1; lim inf
t!C1Wt D �1:

Proof. For T � 0, set MT D supt�T Wt . As T " C1, it defines a sequence of
increasing r.v., thus converging a.s. to a limit r.v.M1. Applying twice the monotone
convergence theorem, we obtain

PŒM1 D C1� D lim
y"C1

PŒM1 > y� D lim
y"C1

�
lim

T"C1
PŒMT > y�

�

D lim
y"C1

. lim
T"C1

PŒjWT j � y�
� D 1

using (7). This proves that lim sup
t!C1

Wt D C1 a.s. and a symmetry argument gives

the liminf. ut
However, the increasing rate of W is sublinear as time goes to infinity.

Proposition 7. With probability 1, we have

lim
t!C1

Wt

t
D 0:

Proof. The strong law of large numbers yields that Wn
n

D 1
n

Pn
iD1.Wi � Wi�1/

converges a.s. to E.W1/ D 0. The announced result is thus proved along the
sequence of integers. To fill the gaps between integers, set QMn D supn<t�nC1.Wt �
Wn/ and QM 0

n D supn<t�nC1.Wn �Wt/: due to Proposition 5, QMn and QM 0
n have the

same distribution as jW1j. Then, the Chebyshev inequality writes

P.j QMnj C j QM 0
nj � n3=4/ � 2

E.j QMnj2/C E.j QM 0
nj2/

n3=2
D 4n�3=2;

implying that
P

n�0 P.j QMnj C j QMnj � n3=4/ < C1. Thus, by Borel–Cantelli’s

lemma, we obtain that with probability 1, for n large enough j QMnj C j QM 0
nj < n3=4,

i.e. QMn

n
and

QM 0
n

n
both converge a.s. to 0. ut

By time inversion, OWt D tW1=t is another Brownian motion: the OW -growth in
infinite time gives an estimate onW at 0, which writes

C1 D lim sup
t!C1

j OWt j D lim sup
s!0C

jWs �W0j
s

which shows that W is not differentiable at time 0. By time-shift invariance, this
is also true at any given time t . The careful reader may notice that the set of full
probability measure depends on t and it is unclear at this stage if a single full set is
available for any t , i.e. if
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P.9t0 such that t 7! Wt is differentiable at t0/ D 0:

Actually, the above result holds true and it is due to Paley–Wiener–Zygmund (1933).
The following result is of comparable nature: we claim that a.s. there does not exist
any interval on which W is monotone.

Proposition 8 (Nowhere Monotonicity). We have

P.t 7! Wt is monotone on an interval/ D 0:

Proof. Define M "
s;t D f! W u 7! Wu.!/ is increasing on the interval�s; t Œg and M #

s;t

similarly. Observe that

M D ft 7! Wt is monotone on the intervalg D
[

s;t2Q;0�s<t
.M

"
s;t [M #

s;t /;

and since this is a countable union, it is enough to show P.M
"
s;t / D P.M

#
s;t / D 0

to conclude P.M/ � P
s;t2Q;0�s<t ŒP.M

"
s;t / C P.M

#
s;t /� D 0. For fixed n, set ti D

s C i.t � s/=n, then

P.M
"
s;t / � P.WtiC1

�Wti � 0; 0 � i < n/ D
n�1Y
iD0

P.WtiC1
�Wti � 0/ D 1

2n
;

leveraging the symmetric distribution of the increments. Taking now n large gives
P.M

"
s;t / D 0. We argue similarly for P.M #

s;t / D 0. ut
In view of this lack of smoothness, it seems impossible to define differential calculus
along the paths of Brownian motion. However, as it will be further developed,
Brownian motion paths enjoy a nice property of finite quadratic variations, which
serves to build an appropriate stochastic calculus.

There are much more to tell about the properties of Brownian motion. We
mention few extra properties without proof:

• HOLDER REGULARITY: for any � 2 .0; 1
2
/ and any deterministic T > 0, there

exists a a.s. finite r.v. C�;T such that

8 0 � s; t � T; jWt �Wsj � C�;T jt � sj�:

• LAW OF ITERATED LOGARITHM: setting h.t/ D p
2t log log t�1, we have

lim sup
t#0

Wt

h.t/
D 1 a.s. and lim inf

t#0
Wt

h.t/
D �1 a.s.
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• ZEROS OF BROWNIAN MOTION: the set � D ft � 0 W Wt D 0g of the zeros
of W is closed, unbounded, with null Lebesgue measure and it has no isolated
points.

1.5 The Random Walk Approximation

Another algorithmic way to build a Brownian motion consists in rescaling a random
walk. This is very simple and very useful for numerics: it leads to the so-called tree
methods and it has some connections with finite differences in PDEs.

Consider a sequence .Xi /i of independent random variables with Rademacher
distribution: P.Xi D ˙1/ D 1

2
. Then

Sn D
nX
iD1

Xi

defines a random walk on Z. Like Brownian motion, it is a process with stationary
independent increments, but it is not Gaussian. Actually Sn has a binomial
distribution:

P.Sn D �nC 2k/ D P.k rises/ D 2�n
�
n

k

�
:

A direct computation shows that E.Sn/ D 0 and Var.Sn/ D n. When we rescale
the walk and we let n go towards infinity, we observe however that due the Central
Limit Theorem, the distribution of Snp

n
converges to the Gaussian law with zero mean

and unit variance. The fact that it is equal to the law of W1 is not a coincidence,
since it can be justified that the full trajectory of the suitably rescaled random walk
converges towards that of a Brownian motion, see Fig. 4. This result is known as
Donsker theorem, see for instance [12] for a proof.

Proposition 9. Define .Y nt /t as the piecewise constant process

Y nt D 1p
n

bntcX
iD1

Xi : (8)

The distribution of the process .Y nt /t converges to that of a Brownian motion .Wt /t
as n ! C1, i.e. for any continuous functional

lim
n!1E.˚.Y nt W t � 1// D E.˚.Wt W t � 1//:
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Fig. 4 The random walk rescaled in time and space. From left to right: the process Y n for n D
50;100;200. The pieces of path with same color are built with the same Xi

The last result gives a simple way to evaluate numerically expectations of function-
als of Brownian motion. It is the principle of the so-called binomial tree methods.

Link with Finite Difference Scheme. The random walk can be interpreted as a
explicit FD scheme for the heat equation. We anticipate a bit on the following where
the connection between Brownian motion and heat equation will be more detailed.

For t D i
n

(i 2 f0; : : : ; ng) and x 2 R, set

un.t; x/ D E

�
f
�
x C Y ni

n

��
:

The independence of .Xi/i gives

un
� i
n
; x
� D E

�
f .x C Y ni�1

n

C Xip
n
/
�

D 1

2
un
� i � 1

n
; x C 1p

n

�C 1

2
un
� i � 1

n
; x � 1p

n

�
;

un
�
i
n
; x
� � un

�
i�1
n
; x
�

1
n

D 1

2

un
�
i�1
n
; x C 1p

n

� � 2un
�
i�1
n
; x
�C un

�
i�1
n
; x � 1p

n

�
�
1p
n

�2 :

Thus, un related to the expectation of the random walk can be read as an explicit FD
scheme of the heat equation @tu.t; x/ D 1

2
@2xxu.t; x/ and u.0; x/ D f .x/, with time

step 1
n

and space step 1p
n

.

1.6 Other Stochastic Processes

We present other one-dimensional processes, with continuous trajectories, which
derive from the Brownian motion.
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1. Geometric Brownian motion: this model is popular in finance to model stocks
and other assets by a positive process.

2. Ornstein–Uhlenbeck process: it has important applications in physics, mechan-
ics, economy and finance to model stochastic phenomena exhibiting mean-
reverting features (like spring endowed with random forces, interest-rates or
inflation, . . . ).

3. Stochastic differential equations: it gives the more general framework.

1.6.1 Geometric Brownian Motion

Definition 4. A Geometric Brownian Motion (GBM in short) with deterministic
initial value S0 > 0, drift coefficient � and diffusion coefficient � , is a process
.St /t�0 defined by

St D S0e
.�� 1

2 �
2/tC�Wt ; (9)

where fWt I t � 0g is a standard Brownian motion.

As the argument in the exponential has a Gaussian distribution, the random variable
St (with t fixed) is known as Lognormal.

This is a process with continuous trajectories, which takes strictly positive values.
The Geometric Brownian motion is often used as a model of asset price (see
Samuelson [65]): this choice is justified on the one hand, by the positivity of S
and on the other hand, by the simple Gaussian properties of its returns:

• The returns log.St / � log.Ss/ are Gaussian with mean .� � 1
2
�2/.t � s/ and

variance �2.t � s/.

• For all 0 < t1 < t2 : : : :: < tn; the relative increments f StiC1

Sti
I 0 � i � n � 1g are

independent.

The assumption of Gaussian returns is not valid in practice but this model still serves
as a proxy for more sophisticated models.

Naming � the drift parameter may be surprising at first sight since it appears in
the deterministic component as .�� 1

2
�2/t . Actually, a computation of expectation

gives easily

E.St / D S0e
.�� 1

2 �
2/t
E.e�Wt / D S0e

.�� 1
2 �

2/t e
1
2 �

2t D S0e
�t :

The above equality gives the interpretation to � as a mean drift term: � D
1
t

logŒE.St /=S0�.
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1.6.2 Ornstein–Uhlenbeck Process

Let us return to physics and to the Brownian motion by Einstein in 1905. In order
to propose a more adequate modeling of the phenomenon of particles diffusion, we
introduce the process of Ornstein–Uhlenbeck and its principal properties.

So far we have built the Brownian motion like a model for a microscopic particle
in suspension in a liquid subjected to thermal agitation. An important criticism
made with this modeling concerns the assumption that displacement increments are
independent and they do not take into account the effects of the particle speed due
to particle inertia.

Let us denote by m the particle mass and by PX.t/ its speed. Owing to Newton’s
second law, the momentum changem PX.tCı.t//�m PX.t/ is equal to the resistance
�k PX.t/ıt of the medium during time ıt , plus the momentum change due to
molecular shocks, that we assume to be with stationary independent increments
and thus associated with a Brownian motion. The process thus modeled is called
sometimes the physical Brownian motion. The equation for the increments becomes

mıŒ PX.t/� D �k PX.t/ıt Cm�ıWt :

Trajectories of the Brownian motion being not differentiable, the equation has to be
read in an integral form

m PX.t/ D m PX.0/�
Z t

0

k PX.s/ds Cm�Wt :

PX.t/ is thus solution of the linear stochastic differential equation (known as
Langevin equation)

Vt D v0 � a
Z t

0

Vsds C �Wt

where a D k
m

. If a D 0, we recover an arithmetic Brownian motion and to avoid
this trivial reduction, we assume a ¤ 0 in the sequel. However, the existence of
solution is not clear since W is not differentiable. To overcome this difficulty, set
Zt D Vt � �Wt : that leads to the new equation

Zt D v0 � a

Z t

0

.Zs C �Ws/ds;

which is now a linear ordinary differential equation that can be solved path by path.
The variation of parameter method gives the representation of the unique solution
of this equation like
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Fig. 5 Ornstein–Uhlenbeck
paths with V0 D 1, a D 2 and
� D 0:1

Zt D v0e
�at � �

Z t

0

ae�a.t�s/Wsds:

The initial solution is thus

Vt D v0e
�at C �Wt � �

Z t

0

ae�a.t�s/Wsds: (10)

Using stochastic calculus, we will derive later (see Sect. 3.3) another convenient
representation of V as follows:

Vt D v0e
�at C �

Z t

0

e�a.t�s/dWs (11)

using a stochastic integral not yet defined. From (10), assuming that v0 is determin-
istic, we can show the following properties (see also Sect. 3.3).

• For a given t , Vt has a Gaussian distribution: indeed, as the limit of a Riemann
sum, it is the a.s. limit of a Gaussian r.v., see footnote 5 page 111.

• More generally, V is a Gaussian process.
• Its mean is v0e�a t , its covariance function Cov.Vt ; Vs/ D e�a.t�s/ �2

2a
.1 � e�2as/

for t > s.

Observe that for a > 0, the Gaussian distribution of Vt converges to N .0; �
2

2a
/ as

t ! C1: it does not depend anymore on v0 and illustrates the mean-reverting
feature of this model, see Fig. 5.
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1.6.3 Stochastic Differential Equations and Euler Approximations

The previous example gives the generic form of a Stochastic Differential Equation,
that generalizes the usual Ordinary Differential Equations x0

t D b.xt / or in integral
form xt D x0 C R t

0 b.xs/ds.

Definition 5. Let b; � W x 2 R 7! R be two functions, respectively the drift and
the diffusion coefficient. A Stochastic Differential Equation (SDE in short) with
parameter .b; �/ and initial value x is a stochastic process .Xt /t�0 solution of

Xt D x C
Z t

0

b.Xs/ds C
Z t

0

�.Xs/dWs; t � 0;

where .Wt /t is a standard Brownian motion.

A slightly more general definition (not considered here) could include the case of
time-dependent coefficients b.t; x/ and �.t; x/, the subsequent analysis would be
quite similar. In the definition above, we use a stochastic integral

R t
0
: : : dWs which

has not yet been defined: it will be explained in the next section. For the moment,
the reader needs to know that in the simplest case where � is constant, we simply
have

R t
0
�.Xs/dWs D �Wt . The previous examples fit this setting:

• The arithmetic Brownian motion corresponds to b.x/ D b et �.x/ D � .
• The Ornstein–Uhlenbeck process corresponds to b.x/ D �ax et �.x/ D � .

Taking � to be non constant allows for more general situations and more flexible
models. Instead of discussing now the important issues of existence and uniqueness
to such SDE, we rather consider natural approximations of them, namely the Euler
scheme (which is the direct extension of Euler scheme for ODEs).

Definition 6. Let .b; �/ be given drift and diffusion coefficients. The Euler scheme
associated to the SDE with coefficients .b; �/, initial value x and time step h, is
defined by

(
Xh
0 D x;

Xh
t D Xh

ih C b.Xh
ih/.t � ih/C �.Xh

ih/.Wt �Wih/; i � 0; t 2 .ih; .i C 1/h�:

(12)

In other words, Xh is a piecewise arithmetic Brownian motion with coefficients on
the interval .ih; .i C 1/h� computed according to the functions .b; �/ evaluated at
Xh

ih. In general, the law ofXh
t is not known analytically: at most, we can give explicit

representations using an induction of the time-step. On the other hand, as it will be
seen further, the random simulation of Xh at time .ih/i�0 is easily performed by
simulating the independent Brownian increments .W.iC1/h �Wih/. The accuracy of
the approximation of X by Xh is expected to get improved as h goes to 0.

Complementary References. See [48, 57, 63].
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2 Feynman–Kac Representations of PDE Solutions

Our purpose in this section is to make the connection between the expectations of
functionals of Brownian motion and the solution of second order linear parabolic
partial differential equations (PDE in short): this leads to the well-known Feynman–
Kac representations. We extend this point of view to other simple processes
introduced before.

2.1 The Heat Equations

2.1.1 Heat Equation in the Whole Space

Let us return to the law of x CWt , the Gaussian density of which is

g.t; x; y/ WD g.t; y � x/ D 1p
2�t

exp.�.y � x/2=2t/;

often called in this context the fundamental solution of the heat equation. One of the
key properties is the property of convolution

g.t C s; x; y/ D
Z
R

g.t; x; z/g.s; z; y/dz (13)

which says in an analytical language that x C WtCs is the sum of the independent
Gaussian variables xCWt andWtCs�Wt . A direct calculation on the density shows
that the Gaussian density is solution to the heat equation w.r.t. the two variables x
and y

(
g0
t .t; x; y/ D 1

2
g00

yy.t; x; y/;

g0
t .t; x; y/ D 1

2
g00

xx.t; x; y/:
(14)

This property is extended to a large class of functions built from the Brownian
motion.

Theorem 2 (Heat Equation with Cauchy Initial Boundary Condition). Let f
be a bounded6 measurable function. Consider the function

u.t; x; f / D EŒf .x CWt/� D
Z
R

g.t; x; y/f .y/dy W

6This growth condition can be relaxed into jf .x/j � C exp
�

jxj2

2˛

�
for any x, for some positive

constants C and ˛: in that case, the smoothness of the function u is satisfied for t < ˛ only.
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the function u is infinitely continuously differentiable in space and time for t > 0

and solves the heat equation

u0
t .t; x; f / D 1

2
u00

xx.t; x; f /; u.0; x; f / D f .x/: (15)

Equation (15) is the heat equation with initial boundary condition (Cauchy problem,
see [22]).

Proof. Standard Gaussian estimates allow to differentiate u w.r.t. t or x by
differentiating under the integral sign: then, we have

u0
t .t; x; f / D

Z
R

g0
t .t; x; y/f .y/dy D

Z
R

1

2
g00

xx.t; x; y/f .y/dy D 1

2
u00

xx.t; x; f /:

ut
When the function considered is regular, another formulation can be given to this
relation, which will play a significant role in the following.

Proposition 10. If f is of class C 2
b (bounded and twice continuously differentiable

with bounded derivatives),7 we have

u0
t .t; x; f / D u.t; x;

1

2
f 00

xx/;

or equivalently using a probabilistic viewpoint

EŒf .x CWt/� D f .x/C
Z t

0

E
�1
2
f 00

xx.x CWs/
�
ds: (16)

Proof. Write u.t; x; f / D EŒf .x C Wt/� D R
R
g.t; 0; y/f .x C y/dy DR

R
g.t; x; z/f .z/dz and differentiate under the integral sign: it gives

u00
xx.t; x; f / D

Z
R

g.t; 0; y/f 00
xx.x C y/dy D u.t; x; f 00

xx/ D
Z
R

g00
xx.t; x; z/f .z/dz;

u0
t .t; x; f / D

Z
R

g0
t .t; x; z/f .z/dz D 1

2

Z
R

g00
xx.t; x; z/f .z/dz D 1

2
u.t; x; f 00

xx/;

using at the first line two integration by parts and at the second line the heat equation
satisfied by g. Then the probabilistic representation (16) easily follows:

7Here again, the boundedness could be relaxed to some exponential growth.
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EŒf .x CWt/�� f .x/ D u.t; x; f / � u.0; x; f / D
Z t

0

u0
t .s; x; f /ds

D
Z t

0

u.s; x;
1

2
f 00

xx/ds D
Z t

0

E
�1
2
f 00

xx.x CWs/
�
ds:

ut

2.1.2 Heat Equation in an Interval

We now extend the previous results in two directions: first, we allow the function
f to also depend smoothly on time and second, the final time t is replaced by a
stopping timeU . The first extension is straightforward and we state it without proof.

Proposition 11. Let f be a function of class C 1;2
b (bounded, once continuously

differentiable in time, twice in space, with bounded derivatives): we have

EŒf .t; x CWt/� D f .0; x/C
Z t

0

EŒf 0
t .s; x CWs/C 1

2
f 00

xx.s; x CWs/�ds

D f .0; x/C E

�Z t

0

.f 0
t .s; x CWs/C 1

2
f 00

xx.s; x CWs//ds

	
:

(17)

The second equality readily follows from Fubini’s theorem to invert E and time
integral: this second form is more suitable for an extension to stochastic times t .

Theorem 3. Let f be a function of class C 1;2
b , we have

EŒf .U; x CWU/� D f .0; x/C E

�Z U

0

.f 0
t .s; x CWs/C 1

2
f 00

xx.s; x CWs//ds

	

(18)

for any bounded8 stopping time U .

The above identity between expectations is far to be obvious to establish by hand
since the law of U is quite general and an analytical computation is out of reach.
This level of generality on U is quite interesting for applications: it provides a
powerful tool to determine the distribution of hitting times, to show how often
multidimensional Brownian motion visits a given point or a given set. Regarding

8Meaning that for a deterministic positive constant C , P.U � C/ D 1.
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this lecture, it gives a key tool to derive probabilistic representations of heat equation
with Dirichlet boundary conditions.

Proof. Let us start by giving alternatives of the relation (17). We observe that it
could have been written with a random initial conditionX0, like for instance

EŒ1A0f .t; X0 CWt/�

D E

�
1A0f .0;X0/C 1A0

Z t

0

.f 0
t .s; X0 CWs/C 1

2
f 00

xx.s; X0 CWs//ds

	
;

with W independent of X0 and where the event A0 depends on X0. Similarly, using
the time-shifted Brownian motion f NW u

t D WtCu �WuI t 2 R
Cg that is independent

of the initial condition x CWu (Proposition 2), it leads to

EŒ1Auf .t C u; x CWu C NW u
t /� D E

�
1Auf .u; x CWu/C

1Au

Z t

0

.f 0
t .u C s; x CWu C NW u

s /C 1

2
f 00

xx.u C s; x CWu C NW u
s //ds

	

for any event Au depending only of the values fWs W s � ug, or equivalently

EŒ1Auf .t C u; x CWtCu/� D E

�
1Auf .u; x CWu/

C1Au

Z tCu

u
.f 0
t .s; x CWs/C 1

2
f 00

xx.s; x CWs//ds

	
:

Set Mt D f .t; x C Wt/ � f .0; x/ � R t
0 .f

0
t .s; x C Ws/C 1

2
f 00

xx.s; x CWs//ds: our
aim is to prove E.MU / D 0. Observe that the preliminary computation has shown
that

E.1Au.MtCu �Mu// D 0 (19)

for t � 0. In particular, taking Au D ˝ we obtain that the expectation E.Mt / is
constant9 w.r.t. t .

Now, consider first that U is a discrete stopping time valued in f0 D u0 < u1 <
� � � < un D T g: then

E.MU / D
n�1X
kD0

E.MU^ukC1
�MU^uk / D

n�1X
kD0

E.1U>uk .MukC1
�Muk // D 0

9Actually, (19) proves that M is a martingale and the result to be proved is related to the optional
sampling theorem.
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by applying (19) since fU � ukg does depend only of fWs W s � ukg (by definition
of a stopping time). ut

Second, for a general stopping time (bounded by T ), we take Un D ŒnU�C1
n

which
is a stopping time converging to U : since .Mt/0�t�T is bounded and continuous,
the dominated convergence theorem gives 0 D E.MUn/ �!

n!1 E.MU /. ut
As a consequence, we now make explicit the solutions of the heat equa-

tion in an interval and with initial condition: it is a partial generalization10 of
Theorem 2, which characterized them in the whole space. The introduction of (non-
homogeneous) boundary conditions of Dirichlet type is connected to the passage
time of the Brownian motion.

Corollary 1 (Heat Equation with Cauchy–Dirichlet Boundary Condition).
Consider the PDE

8̂̂
<
ˆ̂:

u0
t .t; x/ D 1

2
u00

xx.t; x/; for t > 0 and x 2�a; bŒ,
u.0; x/ D f .0; x/ for t D 0 and x 2 Œa; b�;
u.t; x/ D f .t; x/ for x D a or b, with t � 0:

If a solution u of class C1;2
b .Œ0; T � � Œa; b�/ exists, then it is given by

u.t; x/ D EŒf .t � U; x CWU /�

where U D Ta ^ Tb ^ t (using the previous notation for the first passage time Ty at
the level y for the Brownian motion starting at x, i.e. .x CWt/t�0).

Proof. First, extend smoothly the function u outside the interval Œa; b� in order to
apply previous results. The way to extend is unimportant since u and its derivatives
are only evaluated inside Œa; b�. Clearly U is a bounded (by t) stopping time. Apply
now the equality (18) to the function .s; y/ 7! u.t � s; y/ D v.s; y/ of class
C
1;2
b .Œ0; t � � R/, satisfying v0

s.s; y/ C 1
2
v00

yy.s; y/ D 0 for .s; y/ 2 Œ0; t � � Œa; b�.
We obtain

EŒv.U; xCWU /� D v.0; x/CE

�Z U

0

.v0
s.s; x CWs/C 1

2
v00

yy.s; x CWs//ds

	
D v.0; x/;

since for s � U , .s; x C Ws/ 2 Œ0; t � � Œa; b�. To conclude, we easily check that
v.0; x/ D u.t; x/ and v.U; x CWU/ D f .t � U; x CWU /. ut

10Indeed, the result gives uniqueness and not the existence.
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2.1.3 A Probabilistic Algorithm to Solve the Heat Equation

To illustrate our purpose, we consider a toy example regarding the numerical
evaluation of u.t; x/ D E.f .xCWt // using random simulations, in order to discuss
main ideas underlying to Monte Carlo methods. Actually, the arguments below
apply also to u.t; x/ D EŒf .t � U; x C WU /� with U D Ta ^ Tb ^ t , although
there are some extra significant issues in the simulation of .U;WU /.

For the notational simplicity, denote by X the random variable inside the
expectation to compute, that is X D f .xCWt/ in our toy example. As a difference
with a PDE method (based on finite differences or finite elements), a standard Monte
Carlo method provides an approximation of u.t; x/ at a given point .t; x/, without
evaluating the values at other points. Actually, this fact holds because the PDE u is
linear; in Sect. 5 related to non-linear PDEs, the situation is different.

The Monte Carlo method is able to provide a convergent, tractable approximation
of u.t; x/, with a priori error bounds, under two conditions.

1. An arbitrary large number of independent realizations of X can be generated
(denote them by .Xi/i�1): in our toy example, this is straightforward since it
requires only the simulation ofWt which is distributed as a Gaussian r.v. N .0; t/

and then we have to computeX D f .xCWt/. The independence of simulations
is achieved by using a good generator of random numbers, like the excellent
Mersenne Twister11 generator.

2. Additionally, X which is already integrable (EjX j < C1) is assumed to be
square integrable: Var.X/ < C1.

Then, by the law of large numbers, we have

XM D 1

M

MX
iD1

Xi �!
M!C1 E.X/I (20)

hence the empirical mean of simulations of X provides a convergent approximation
of the expectation E.X/. As a difference with PDE methods where some stability
conditions may be required (like the Courant–Friedrichs–Lewy condition), the
above Monte Carlo method does not require any extra condition to converge: it is
unconditionally convergent. The extra moment condition is used to define a priori
error bounds on the statistical error: the approximation error is controlled by means
of the Central Limit Theorem

lim
M!C1P

 s
M

Var.X/

�
XM � E.X/

� 2 Œa; b�
!

D P.G 2 Œa; b�/;

11http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html.

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
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where G is a centered unit variance Gaussian r.v. Observe that the error bounds are
stochastic: we can not do better than arguing that with probability P.G 2 Œa; b�/,
the unknown expectation (asymptotically as M ! C1) belongs to the interval

"
XM � b

r
Var.X/

M
;XM � a

r
Var.X/

M

#
:

This is known as a confidence interval at level P.G 2 Œa; b�/. The larger a and b,
the larger the confidence interval, the higher the confidence probability.

To obtain a fully explicit confidence interval, one may replace Var.X/ by its
estimator using the same simulations:

Var.X/ D E.X2/� .E.X//2 � M

M � 1

 
1

M

MX
iD1
X2
i �X2

M

!
WD �2M :

The factor M=.M � 1/ plays the role of unbiasing12 the value Var.X/, although
it is not a big deal for M large (M � 100). Anyway, we can prove that the above
conditional intervals are asymptotically unchanged by taking the empirical variance
�2M instead of Var.X/. Gathering these different results and seeking a symmetric
confidence interval �a D b D 1:96 and P.G 2 Œa; b�/ � 95%, we obtain the
following: with probability 95 %, approximatively for M large enough, we have

E.X/ 2
�
XM � 1:96 �Mp

M
;XM C 1:96

�Mp
M

	
: (21)

The symmetric confidence interval at level 99% is given by �a D b D 2:58. Since
a Monte Carlo method provides random evaluations of E.X/, different program
runs will give different results (as a difference with a deterministic method which
systematically has the same output) which seems uncomfortable: that is why it is
important to produce a confidence interval. This is also very powerful and useful to
have at hand a numerical method able to state that the error is at most of xxx with
high probability.

The confidence interval depends on

• The confidence level P.G 2 Œa; b�/, chosen by the user.
• The number of simulations: improving the accuracy by a factor 2 requires 4 times

more simulations.
• The variance Var.X/ or its estimator �2M , which depends on the problem to

handle (and not much on M as soon as M is large). This variance can be very
different from one problem to another: on Fig. 6, see the width of confidence
intervals for two similar computations. There exist variance reduction techniques

12Indeed, we can show that E.�2M / D Var.X/.
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Fig. 6 Monte Carlo computations of E.eG=10/ D e
1
2

1
102 � 1:005 on the left and E.e2G/ D e

1
2 2

2 �
7:389 on the right, whereG is a Gaussian r.v. with zero mean and unit variance. The empirical mean
and the symmetric 95 %-confidence intervals are plotted w.r.t. the number of simulations

able to significantly reduce this factor in order to provide thinner confidence
intervals while maintaining the same computational cost.

Another advantage of such a Monte Carlo algorithm is the simplicity of code,
consisting of one loop on the number of simulations; within this loop, the empirical
variance should be simultaneously computed. However, the simulation procedure of
X can be delicate in some situations, see Sect. 4.

At last, we focus our discussion on the impact of the dimension of the underlying
PDE, which has been equal to 1 so far. Consider now a state variable in R

d (d � 1/

and a heat equation with Cauchy initial condition in dimension d ; (15) becomes

u0
t .t; x; f / D 1

2
	u.t; x; f /; u.0; x; f / D f .x/; t > 0; x 2 R

d ; (22)

where 	 D Pd
iD1 @2xi xi stands for the Laplacian in R

d . Using similar arguments as
in dimension 1, we check that

u.t; x; f / D
Z
Rd

1

.2�t/d=2
exp.�jy � xj2=2t/f .y/dy D EŒf .x CWt/�

where W D

0
B@
W1

:::

Wd

1
CA is a d -dimensional Brownian motion, i.e. each Wi is a one-

dimensional Brownian motion and the d components are independent (Fig. 7).

• The Monte Carlo computation of u.t; x/ is then achieved using independent
simulations of X D f .x C Wt/: the accuracy is then of order 1=

p
N and the

computational effort is N � d . Thus, the dimension has a very low effect on the
complexity of the algorithm.
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Fig. 7 Brownian motion in dimension 2 and 3

• As a comparison with a PDE discretization scheme, to achieve an accuracy
of order 1=N , we essentially13 need N points in each spatial direction and it
follows that the resulting linear system to invert is of size Nd : thus, without
going into full details, it is clear that the computational cost to achieve a given
accuracy depends much on the dimension d . And the situation becomes less and
less favourable as the dimension increases. Also, the memory required to run a
PDE algorithm increases exponentially with the dimension, as a difference with
a Monte Carlo approach.

It is commonly admitted that a PDE approach is more suitable and efficient
in dimension 1 and 2, whereas a Monte Carlo procedure is more adapted for
higher dimensions. On the other hand, a PDE-based method computes a global
approximation of u (at any point .t; x/), while a Monte Carlo scheme gives a
pointwise approximation only. The probabilistic approach can be directly used for
Parallel Computing, each processor being in charge of a bunch of simulations at a
given point .t; x/.

2.2 PDE Associated to Other Processes

We extend the Feynman–Kac representation for the Brownian motion to the
Arithmetic Brownian Motion and the Ornstein–Uhlenbeck process.

13In fact, it generally depends on the regularity of u.
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2.2.1 Arithmetic Brownian Motion

First consider the Arithmetic Brownian motion defined by fXx
t D xCbtC�Wt ; t �

0g. The distribution ofXt is Gaussian with mean xCbt and variance �2t : we assume
in the following that � ¤ 0 which ensures that its density exists and is given by

gb;�2 .t; x; y/ D 1p
2��2t

exp � .y � x � bt/2

2�2t
D g.�2t; x C bt; y/

D g.�2t; x; y � bt/:

Denote by LABM
b;�2

the second order operator

LABM
b;�2

D 1

2
�2@2xx C b@x ; (23)

also called infinitesimal generator14 of X . A direct computation using the heat
equation for g.t; x; y/ gives

@tgb;�2 .t; x; y/ D 1

2
�2g00

xx.�
2t; xCbt; y/Cbg0

x.�
2t; xCbt; y/ D LABM

b;�2
gb;�2 .t; x; y/:

Hence, multiplying by f .y/ and integrating over y 2 R, we obtain the following
representation that generalizes Theorem 2.

Theorem 4. Let f be a bounded measurable function. The function

ub;�2.t; x; f / D EŒf .Xx
t /� D

Z
R

gb;�2 .t; x; y/f .y/dy (24)

solves

(
u0
t .t; x; f / D LABM

b;�2
u.t; x; f / D 1

2
�2u00

xx.t; x; f /C bu0
x.t; x; f /;

u.0; x; f / D f .x/:
(25)

The extension of Propositions 10 and 11 follows the arguments used for the BM
case.

Proposition 12. If f 2 C 1;2
b and U is a bounded stopping time (including

deterministic time), then

14This labeling comes from the infinitesimal decomposition of E.f .Xt // as time is small,
@tE.f .Xt //jtD0 D LABM

b;�2
f .x/, see Proposition 12.
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EŒf .U;Xx
U /� D f .0; x/C E

� Z U

0

ŒLABM
b;�2
f .s; Xx

s /C f 0
t .s; X

x
s /�ds

�
:

Theorem 4 gives the Feynman–Kac representation of the Cauchy problem written
w.r.t. the second order operator LABM

b;�2
. When Dirichlet boundary conditions are

added, Corollary 1 extends as follows, using Proposition 12.

Corollary 2. Assume the existence of a solution u of class C1;2
b .Œ0; T � � Œa; b�/ to

the PDE
8̂̂
<
ˆ̂:

u0
t .t; x; f / D LABM

b;�2
u.t; x; f /; for t > 0 and x 2�a; bŒ,

u.0; x; f / D f .0; x/ for t D 0 and x 2 Œa; b�;
u.t; x; f / D f .t; x/ for x D a or b, with t � 0:

Then it is given by

u.t; x/ D EŒf .t � Ux;Xx
Ux /�

where Ux D inffs > 0 W Xx
s …�a; bŒg ^ t is the first exit time from the interval �a; bŒ

by the process Xx before t .

As for the standard heat equation, this representation naturally leads to a proba-
bilistic algorithm to compute the PDE solution, by empirical mean of independent
simulation of f .t � Ux;Xx

Ux /.

2.2.2 Ornstein–Uhlenbeck Process

Now consider the process solution to V x
t D x�a R t

0
V x
s dsC�Wt : we emphasize in

our notation the dependence w.r.t. the initial value V0 D x. We define an appropriate
second order operator

LOU
a;�2

g.t; x/ D 1

2
�2g00

xx.t; x/ � axg0
x.t; x/

which plays the role of the infinitesimal generator for the Ornstein–Uhlenbeck
process. We recall that the Gaussian distribution of V x

t has mean xe�a t and variance
�2

2a
.1� e�2at/, the density of which at y (assuming � ¤ 0 for the existence) is

p.t; x; y/ D g.vt ; xe�at; y/:

Using the heat equation satisfied by g, we easily derive that

p0
t .t; x; y/ D 1

2
�2p00

xx.t; x; y/ � axp0
x.t; x; y/ D LOU

a;�2
p.t; x; y/;
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from which we deduce the PDE satisfied by u.t; x; f / D EŒf .V x
t /�. Incorporating

Dirichlet boundary conditions is similar to the previous cases. We state the related
results without extra details.

Theorem 5. Let f be a bounded measurable function. The function

u.t; x; f / D EŒf .V x
t /� D

Z
R

p.t; x; y/f .y/dy

solves

(
u0
t .t; x; f / D LOU

a;�2
u.t; x; f /;

u.0; x; f / D f .x/:

Proposition 13. If f 2 C 1;2
b and U is a bounded stopping time, then

EŒf .U; V x
U /� D f .0; x/C E

� Z U

0

ŒLOU
a;�2

f .s; V x
s /C f 0

t .s; V
x
s /�ds

�
:

Corollary 3. Assume the existence of a solution u of class C1;2
b .Œ0; T � � Œa; b�/ to

the PDE
8̂̂
<
ˆ̂:

u0
t .t; x; f / D LOU

a;�2
u.t; x; f /; for t > 0 and x 2�a; bŒ,

u.0; x; f / D f .0; x/ for t D 0 and x 2 Œa; b�;
u.t; x; f / D f .t; x/ for x D a or b, with t � 0:

Then u is given by

u.t; x/ D EŒf .t � Ux; V x
Ux /�

where Ux D inffs > 0 W V x
s …�a; bŒg ^ t .

2.2.3 A Natural Conjecture for Stochastic Differential Equations

The previous examples serve as a preparation for more general results, relating the
dynamics of a process and its Feynman–Kac representation. DenoteXx the solution
(whenever it exists) to the Stochastic Differential Equation

Xx
t D x C

Z t

0

b.Xx
s /ds C

Z t

0

�.Xx
s /dWs; t � 0:

In view of the results in simpler models, we announce the following facts.
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1. Set LX
b;�2
g D 1

2
�2.x/g00

xx C b.x/g0
x .

2. u.t; x/ D E.f .Xx
t // solves

u0
t .t; x/ D LX

b;�2
u.t; x/; u.0; x/ D f .x/:

3. If f 2 C 1;2
b and U is a bounded stopping time, then

EŒf .U;Xx
U /� D f .0; x/C E

� Z U

0

ŒLX
b;�2
f .s; Xx

s /C f 0
t .s; X

x
s /�ds

�
:

4. If u of class C1;2
b .Œ0; T � � Œa; b�/ solves the PDE

8̂
<̂
ˆ̂:

u0
t .t; x/ D LX

b;�2
u.t; x/; for t > 0 and x 2�a; bŒ,

u.0; x/ D f .0; x/ for t D 0 and x 2 Œa; b�;
u.t; x/ D f .t; x/ for x D a or b, with t � 0;

then it is given by u.t; x/ D EŒf .t � Ux;Xx
Ux /� where Ux D inffs > 0 W Xx

s …
�a; bŒg ^ t .

The above result could be extended to PDE with a space variable in R
d (d � 1)

by considering a R
d -valued SDE: it would be achieved by replacing W by a d -

dimensional standard Brownian motion, by having a drift coefficient b W Rd 7! R
d

and a diffusion coefficient � W Rd 7! R
d ˝R

d , a reward function f W Œ0; T ��R
d 7!

R, by replacing the interval Œa; b� by a domainD in R
d and defining Ux as the first

exit time by Xx from that domain. Then the operator L would be a linear parabolic
second order operator of the form

LX
b;��>g D 1

2

dX
i;jD1

Œ��>�i;j .x/@2xi xj g C
dX
iD1

bi .x/@xi g;

where > denotes the transpose. We could also add a zero-order term in LX
b;��> , by

considering a discounting factor for f ; we do not develop further this extension.
The next section provides stochastic calculus tools, that allow to show the validity

of these Feynman–Kac type results, under some appropriate smoothness and growth
assumptions on b; �; f . To allow non smooth f or Dirichlet boundary conditions,
we may additionally assume a non-degeneracy condition on LX

b;��> (like ellipticity

condition j��>.x/j � 1
c

for some c > 0).

Complementary References. See [1, 15, 20, 22, 23, 48].
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3 The Itô Formula

One achievement of Itô’s formula is to go from an infinitesimal time-decomposition
in expectation like

EŒf .t; x CWt/� � f .0; x/ D
Z t

0

EŒf 0
t .s; x CWs/C 1

2
f 00

xx.s; x CWs/�ds

(see (17)) to a pathwise infinitesimal time-decomposition of

f .t; x CWt/ � f .0; x/:

Since Brownian motion paths are not differentiable, it is hopeless to apply standard
differential calculus based on usual first order Taylor formula. Instead of this, we
go up to the second order, taking advantage of the fact that W has a finite quadratic
variation. The approach presented below is taken from the nice paper Calcul d’Itô
sans probabilité by Föllmer [19], which does not lead to the most general and
deepest approach but it has the advantage of light technicalities and straightforward
arguments compared to the usual tough arguments using L2-spaces and isometry
(see for instance [48] or [63] among others).

3.1 Quadratic Variation

3.1.1 Notations and Definitions

Brownian increments in a small interval Œt; t C h� are centered Gaussian r.v. with
variance h, which thus behave like

p
h. The total variation does not exist, because

the trajectories are not differentiable, but the quadratic variation has interesting
properties.

To avoid convergence technicalities, we consider particular time subdivisions.

Definition 7 (Dyadic Subdivision of Order n). Let n be an integer. The subdivi-
sion of RC defined by Dn D ft0 < � � � < ti < � � � g where ti D i2�n is called the
dyadic subdivision of order n. The subdivision step is ın D 2�n:

Definition 8 (Quadratic Variation). The quadratic variation of a Brownian
motionW associated with the dyadic subdivision of order n is defined, for t � 0, by

V n
t D

X
ti�t
.WtiC1

�Wti /
2: (26)
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3.1.2 Convergence

Then there is the following remarkable result.

Proposition 14 (Pointwise Convergence). With probability 1, we have

lim
n!1V n

t D t

for any t 2 R
C.

Had W been differentiable, the limit of V n would be equal to 0.

Proof. First let us show the a.s. convergence for a fixed time t , and denote by
n.t/ the index of the dyadic subdivision of order n such that tn.t/ � t < tn.t/C1:
Then observe that V n

t � t D Pn.t/
jD0 Zj C .tn.t/C1 � t/ where Zj D .WtjC1

�
Wtj /

2 � .tjC1 � tj /. The term tn.t/C1 � t converges to 0 as the subdivision step
shrinks to 0. The random variables Zj are independent, centered, square integrable
(since the Gaussian law ofWtjC1

�Wtj has finite fourth moments): additionally, the
scaling property of Proposition 1 ensures that E.Z2

j / D C2.tjC1� tj /2 for a positive
constant C2. Thus

E

0
@ n.t/X
jD0

Zj

1
A
2

D
n.t/X
jD0

E

�
Z2
j

�
D

n.t/X
jD0

C2.tjC1 � tj /2 � C2.T C 1/ın:

This proves the L2-convergence of
Pn.t/

jD0 Zj towards 0.

Moreover we obtain
P

n�1 E
�Pn.t/

jD0 Zj
�2

< 1, i.e. the random series
P

n�1
�Pn.t/

jD0 Zj
�2

has a finite expectation, whence a.s. finite and consequently its

general term converges a.s. to 0. This shows that for any fixed t , V n
t ! t except on

a negligible set Nt .
We now extend the result to any time: first the set N D [t2QCNt is still

negligible because the union of negligible sets is taken on a countable family. For
an arbitrary t , take two monotone sequences of rational numbers rp " t and sp # t
as p ! C1. Since t 7! V n

t is increasing for fixed n, we deduce, for any ! … N

rp D lim
n!1V n

rp
.!/ � lim inf

n!1 V n
t .!/ � lim sup

n!1
V n
t .!/ � lim

n!1V n
sp
.!/ D sp:

Passing to the limit in p gives the result. ut
As a consequence, we obtain the formula giving the infinitesimal decomposition

of W 2
t .

Proposition 15 (A First Itô Formula). Let W be a standard Brownian motion.
With probability 1, we have for any t � 0
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W 2
t D 2

Z t

0

WsdWs C t (27)

where the stochastic integral
R t
0
WsdWs is the a.s. limit of

P
ti�t Wti .WtiC1

� Wti /,
along the dyadic subdivision.

For usual C1-function f .t/, we have f 2.t/ � f 2.0/ D 2
R t
0
f .s/df .s/: the extra

term t in (27) is intrinsically related to Brownian motion paths.

Proof. Adopting once again the notation with n.t/, we have

W 2
t D W 2

t �W 2
tn.t/C1

C
X
ti�t
.W 2

tiC1
�W 2

ti
/

D W 2
t �W 2

tn.t/C1
C
X
ti�t
.WtiC1

�Wti /
2 C 2

X
ti�t

Wti .WtiC1
�Wti /:

The first term at the r.h.s. tends towards 0 by continuity of the Brownian paths. The
second term is equal to V n

t and converges towards t . Consequently, the third term at
the right-hand side must converge a.s. towards a term that we call stochastic integral
and that we denote by 2

R t
0
WsdWs . ut

The random function V n
t , as a function of t , is increasing and can be associated

to the cumulative distribution function of the positive discrete measure

X
i�0
.WtiC1

�Wti /
2ıti .:/ D �n.:/

satisfying �n.f / D P
i�0 f .ti /.WtiC1

�Wti /
2.

The convergence of cumulative distribution function of �n.:/ (Proposition 14)
can then be extended to integrals of continuous functions (possibly random as well).
It is the purpose of the following result which is of deterministic nature.

Proposition 16 (Convergence as a Positive Measure). For any continuous func-
tion f , with probability 1 we have

lim
n!1

X
ti�t

f .ti /.WtiC1
�Wti /

2 D
Z t

0

f .s/ds

for any t � 0.

The proof is standard: the result first holds for functions of the form f .s/ D
1�r1;r2�.s/, then for piecewise constant functions, at last for continuous functions by
simple approximations.
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3.2 The Itô Formula for Brownian Motion

Differential calculus extends to other functions than x ! x2. To the usual classical
formula with functions that are smooth in time, a term should be added, due to the
non-zero quadratic variation.

Theorem 6 (Itô Formula). Let f 2 C 1;2.RC �R;R/. Then with probability 1, we
have t � 0

f .t; x CWt/ D f .0; x/C
Z t

0

f 0
x .s; x CWs/ dWs

C
Z t

0

f 0
t .s; x CWs/ ds C 1

2

Z t

0

f 00
xx.s; x CWs/ ds: (28)

The term It .f / D R t
0
f 0
x .s; xCWs/dWs is called the stochastic integral of f 0

x.s; xC
Ws/ w.r.t. W and it is the a.s. limit of

I n
t .f;W / D

X
ti�t

f 0
x .ti ; x CWti /.WtiC1

�Wti /

taken along the dyadic subdivision of order n.

The reader should compare the equality (28) with (17) to see that, under the extra
assumptions that f is bounded with bounded derivatives, we have proved that the
stochastic integral It .f / is centered:

E.

Z t

0

f 0
x .s; x CWs/ dWs/ D 0: (29)

This explains how we can expect to go from (28) to (17):

1. Apply Itô formula.
2. Take expectation.
3. Prove that the stochastic integral is centered.

This is an interesting alternative proof to the property satisfied by the Gaussian
kernel, which is difficult to extend to more general (non Gaussian) process.

Proof. As before, let us introduce the index n.t/ such that tn.t/ � t < tn.t/C1; then
we can write

f .t ; x CWt/ D f .0; x/C Œf .t; x CWt/� f .tn.t/C1; x CWtn.t/C1
/�

C
X
ti�t
Œf .tiC1; x CWtiC1

/ � f .ti ; x CWtiC1
/�

C
X
ti�t
Œf .ti ; x CWtiC1

/� f .ti ; x CWti /�:
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• The second term of the r.h.s. Œf .t; x CWt/� f .tn.t/C1; x CWtn.t/C1
/� converges

to 0 by continuity of f .t; x CWt/.
• The third term is analyzed by means of the first order Taylor formula:

f .tiC1; x CWtiC1
/ � f .ti ; x CWtiC1

/ D f 0
t .
i ; x CWtiC1

/.tiC1 � ti /

for 
i 2�ti ; tiC1Œ. The uniform continuity of .Ws/0�s�tC1 ensures that
supi jf 0

t .
i ; x C WtiC1
/ � f 0

t .ti ; x CWti /j ! 0: thus limn!1
P

ti�t f
0
t .
i ; x C

WtiC1
/.tiC1 � ti / equals to

lim
n!1

X
ti�t

f 0
t .ti ; x CWti /.tiC1 � ti / D

Z t

0

f 0
t .s; x CWs/ds:

• A second order Taylor formula allows to write the fourth term: f .ti ; xCWtiC1
/�

f .ti ; x CWti / equals

f 0
x.ti ; x CWti /.WtiC1

�Wti /C 1

2
f 00

xx.ti ; x C �i /.WtiC1
�Wti /

2

where �i 2 .Wti ;WtiC1
/. Similarly to before, supi jf 00

xx.ti ; x C �i / � f 00
xx.ti ; x C

Wti /j D �n ! 0 and it leads to

ˇ̌̌X
ti�t
.f 00

xx.ti ; x C �i /� f 00
xx.ti ; x CWti //.WtiC1

�Wti /
2
ˇ̌̌

� �nV
n
t ;

lim
n!1

X
ti�t

f 00
xx.ti ; x CWti /.WtiC1

�Wti /
2 D

Z t

0

f 00
xx.s; x CWs/ds;

by applying Proposition 16.

Observe that in spite of the non-differentiability of W ,
X
ti�t

f 0
x.ti ; x CWti /.WtiC1

�
Wti / is necessarily convergent as a difference of convergent terms. ut

Interestingly, we obtain a representation of the random variable f .x CWt/ as a
stochastic integral, in terms of the derivatives of solution u to the heat equation

u0
t .t; x/ D 1

2
u00

xx.t; x/; u.0; x/ D f .x/:

Corollary 4. Assume that u 2 C 1;2
b .Œ0; T � � R/. We have

f .x CWT / D u.T; x/C
Z T

0

u0
x.T � s; x CWs/dWs: (30)
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Proof. Apply the Itô formula to v.t; x/ D u.T � t; x/ (which satisfies v0
t .t; x/ C

1
2
v00

xx.t; x/ D 0) at time T . This gives f .x C WT / D u.0; x C WT / D u.T; x/ CR T
0

u0
x.T � s; x CWs/dWs . ut

This representation formula leads to important remarks.

• If the above stochastic integral has zero expectation (as for the examples
presented before), taking the expectation shows that

u.T; x/ D E.f .x CWT //;

recovering the Feynman–Kac representation of Theorem 2.
• Then, the above representation writes, setting  D f .x CWT /,

 D E./C
Z T

0

hsdWs:

Actually, a similar stochastic integral representation theorem holds in a larger
generality on the form of  , since any bounded15 functional of .Wt /0�t� T can
be represented as its expectation plus a stochastic integral: the process h is not
tractable in general, whereas here it is explicitly related to the derivative of u
along the Brownian path.

• Assume u 2 C 1;2
b .Œ0; T � � R/ imposes that f 2 C 2

b .R/ which is too strong
for many applications: however, the assumptions on u can be relaxed to handle
bounded measurable function f , because the heat equation is immediately
smoothing out the initial condition. The proof of this extension involves extra
stochastic calculus technicalities that we do not develop.

3.3 Wiener Integral

In general, it is not possible to make explicit the law of the stochastic integralR t
0
f 0
x.s; x C Ws/dWs, except in a situation where f 0

x .s; x/ D h.s/ is independent
of x and square integrable. In that case,

R t
0
h.s/dWs is distributed as a Gaussian r.v.

The resulting stochastic integral is called Wiener integral. We sum up its important
properties.

Proposition 17 (Wiener Integral and Integration by Parts). Let f W Œ0; T � 7! R

be a continuously differentiable function, with bounded derivatives on Œ0; T �.

1. With probability 1, for any t 2 Œ0; T � we have

15Integrability is the right assumption.
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Z t

0

f .s/dWs D f .t/Wt �
Z t

0

Wsf
0.s/ds: (31)

2. The process fR t
0
f .s/dWs I t 2 Œ0; T �g is a continuous Gaussian process, with

zero mean and with a covariance function

Cov.
Z t

0

f .u/dWu;

Z s

0

f .u/dWu/ D
Z s^t

0

f 2.u/du: (32)

3. For another function g satisfying the same assumptions, we have

Cov.
Z t

0

f .u/dWu;

Z s

0

g.u/dWu/ D
Z s^t

0

f .u/g.u/du: (33)

Proof. The first item is a direct application of Theorem 6 to the function .t; x/ 7!
f .t/x.

For any coefficients .˛i /1�i�N and times .Ti /1�i�N ,
PN

iD1 ˛i
R Ti
0
f .u/dWu

is a Gaussian r.v. since it can written as a limit of Gaussian r.v. of the formP
j ˇj .WtjC1

� Wtj /: thus, fR t
0
f .s/dWs I t 2 Œ0; T �g is a Gaussian process. Its

continuity is obvious in view of (31). Its expectation is the limit of the expectation
of
P

ti�t f .ti /ŒWtiC1
� Wti �, thus equal to 0. The covariance is the limit of the

covariance

Cov.
X
ti�t

f .ti /ŒWtiC1
�Wti �;

X
ti�s

f .ti /ŒWtiC1
�Wti �/

D
X

ti�t;tj�s
f .ti /f .tj /Cov.WtiC1

�Wti ;WtiC1
�Wti /

D
X

ti�t;tj�s
f .ti /f .tj /ıi;j .tiC1 � ti / �!

n!C1

Z s^t

0

f 2.u/du:

The second item is proved. The last item is proved similarly. ut
As a consequence, going back to the Ornstein–Uhlenbeck process (Sect. 1.6.2), we
can complete the proof of its representation (11) using a stochastic integral, starting
from (10). For this apply the result below to the function f .s/ D e�a.t�s/ (t fixed):
it gives

R t
0
e�a.t�s/dWs D Wt � a

R t
0
e�a.t�s/Wsds. It leads to

Vt D v0e
�at C �

Z t

0

e�a.t�s/dWs: (34)

Then the Gaussian property from Proposition 17 gives that the variance of Vt is
equal to �2

R t
0
e�2a.t�s/ds D �2

2a
.1 � e�2at/.
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3.4 Itô Formula for Other Processes

The reader should have noticed that the central property for the proof of Theorem 6
is that the Brownian motion has a finite quadratic variation. Thus, the Itô formula
can directly be extended to processes X which enjoy the same property.

3.4.1 The One-Dimensional Case

In this paragraph, we first consider scalar processes. The multidimensional exten-
sion is made afterwards.

Definition 9 (Quadratic Variation of a Process). A continuous process X has a
finite quadratic variation if for any t � 0, the limit

V n
t D

X
ti�t
.XtiC1

� Xti /
2 (35)

along the dyadic subdivision of order n, exists a.s. and is finite. We denote this limit
by hXit and it is usually called the bracket of X at time t .

If X D W is a Brownian motion, we have hXit D t . More generally, it is easy to
check that hXi is increasing and continuous. We associate to it a positive measure
and this extends Proposition 16 to X .

Proposition 18. For any continuous function f , with probability 1 for any t � 0

we have

lim
n!1

X
ti�t

f .ti /.XtiC1
� Xti /

2 D
Z t

0

f .s/dhXis:

Theorem 6 becomes

Theorem 7 (Itô Formula for X ). Let f 2 C 1;2.RC � R;R/ and X be with finite
quadratic variation. With probability 1, for any t � 0 we have

f .t; Xt / D f .0;X0/C
Z t

0

f 0
x .s; Xs/ dXs C

Z t

0

f 0
t .s; Xs/ ds

C1

2

Z t

0

f 00
xx.s; Xs/ dhXis; (36)

where
R t
0
f 0
x.s; Xs/dXs is the stochastic integral of f 0

x .s; Xs/ w.r.t. X and it is the
a.s. limit of

P
ti�t f

0
x.ti ; Xti /.XtiC1

� Xti / along dyadic subdivision of order n.
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Often, the Itô formula is written formally under a differential form

df .t; Xt/ D f 0
x.t; Xt / dXt C f 0

t .t; Xt / dt C 1

2
f 00

xx.t; Xt / dhXit :

We now provide hand-made tools to compute the bracket of X in practice.

Proposition 19 (Computation of the Bracket). Let A and M two continuous
processes such that A has a finite variation16 and M has a finite quadratic
variation:

1. hAit D 0.
2. If Xt D x CMt , then hXit D hM it .
3. If Xt D �Mt , then hXit D �2hM it .
4. If Xt D Mt C At , then hXit D hM it .
5. If Xt D f .At ;Mt / with f 2 C1, then hXit D R t

0 Œf
0
m.As;Ms/�

2dhM is.
The proof is easy and it uses deterministic arguments based on the definition of hXi,
we skip it. Item (5) shows that the class of processes with finite quadratic variation
is stable by smooth composition. The following examples are important.

Example 1 (Arithmetic Brownian Motion). (Xt D x C bt C �Wt ): we have

hXit D h�W it D �2hW it D �2t:

Itô’s formula becomes

df .t; Xt/ D .f 0
t .t; Xt /C f 0

x .t; Xt/b C 1

2
f 00

xx.t; Xt /�
2/dt C f 0

x.t; Xt /�dWt

WD .f 0
t .t; Xt /C LABM

b;�2
f .t; Xt//dt C f 0

x.t; Xt /�dWt: (37)

An important example is associated to f .x/ D exp.x/:

dŒexp.Xt /� D exp.Xt/.b C 1

2
�2/dt C exp.Xt/�dWt : (38)

Example 2 (Geometric Brownian Motion). (St D S0e
.�� 1

2 �
2/tC�Wt ): we have

hSit D
Z t

0

�2S2s ds:

From (38), we obtain a linear equation for the dynamics of S ,

16That is the sum of
P

ti�t jAtiC1
� Ati j exists and is finite, for instance A is continuously

differentiable.
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dSt D St�dt C St�dWt

also written dSt
St

D �dt C �dWt putting an emphasize of the financial interpretation
as returns. The Itô formula writes

df .t; St / D .f 0
t .t; St /C f 0

x.t; St /St�C 1

2
f 00

xx.t; St /S
2
t �

2/dt C f 0
x .t; St /�StdWt

WD .f 0
t .t; St /C LGBM

�;�2
f .t; St //dt C f 0

x .t; St /�StdWt: (39)

Example 3 (Ornstein–Uhlenbeck Process). (Vt D v0 � a
R t
0
Vsds C �Wt ): we have

hV it D �2t:

The Itô formula follows

df .t; Vt / D .f 0
t .t; Vt / � af 0

x .t; Vt /Vt C 1

2
�2f 00

xx.t; Vt //dt C f 0
x.t; Vt /�dWt

WD .f 0
t .t; Vt /CLOU

a;�2
f .t; Vt //dt C f 0

x.t; Vt /�dWt : (40)

Example 4 (Euler Scheme Defined in (12)). (Xh
t D Xh

ih C b.Xh
ih/.t � ih/ C

�.Xh
ih/.Wt �Wih/ for i � 0; t 2 .ih; .iC1/h�). SinceXh is an arithmetic Brownian

motion on each interval .ih; .i C 1/h�, we easily obtain

hXhit D
Z t

0

�2.'.s/; Xh
'.s//ds

where '.t/ D ih for t 2 .ih; .i C 1/h�. The Itô formula writes

df .t; Xh
t / D .f 0

t .t; X
h
t /C b.Xh

'.t//f
0
x.t; X

h
t /C 1

2
�2.Xh

'.t//f
00

xx.t; X
h
t //dt

Cf 0
x .t; X

h
t /�.X

h
'.t//dWt: (41)

3.4.2 The Multidimensional Case

We briefly expose the situation when X D .X1; : : : ; Xd / takes values in R
d . The

main novelty consists in considering the cross quadratic variation defined by the
limit (assuming its existence, along dyadic subdivision) of

hXk;Xlint D
X
ti�t
.Xk;tiC1

�Xk;ti /.Xl;tiC1
�Xl;ti / �!

n!C1 hXk;Xlit : (42)

We list basic properties.
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Properties 8

1. SYMMETRY: hXk;Xlit D hXl;Xkit .
2. USUAL BRACKET: hXk;Xkit D hXkit .
3. POLARIZATION: hXk;Xlit D 1

4
.hXk CXlit � hXk � Xlit / :

4. h�; �it is bilinear.
5. For any continuous function f , we have

lim
n!1

X
ti�t

f .ti /.Xk;tiC1
�Xk;ti /.Xl;tiC1

� Xl;ti / D
Z t

0

f .s/dhXk;Xlis:

6. Let X1;t D f .A1;t ;M1;t / and X2;t D g.A2;t ;M2;t /, where the variation (resp.
quadratic variation) of A D .A1; A2/ (resp. M D .M1;M2/) is finite, and let f
and g be two C 1-functions: we have

hX1;X2it D
Z t

0

f 0
m.A1;s;M1;s/g

0
m.A2;s ;M2;s/dhM1;M2is:

In particular, hA1 CM1;A2 CM2it D hM1;M2it .
7. Let W1 andW2 be two independent Brownian motions: then

hW1;W2it D 0:

Proof. The statements (1)–(6) are easy to check from the definition or using
previous arguments. The statement (7) is important and we give details: use the
polarization identity

hW1;W2it D 1

4
.hW1 CW2it � hW1 �W2it / :

We observe that both 1p
2
.W1 CW2/ and 1p

2
.W1 �W2/ are Brownian motions, since

each one is a continuous Gaussian process with the right covariance function. Thus,
h 1p

2
.W1 CW2/it D h 1p

2
.W1 �W2/it D t and the result follows. ut

The Itô formula naturally extends to this setting.

Theorem 9 (Multidimensional Itô Formula). Let f 2 C 1;2.RC � R
d ;R/ and X

be a continuous d -dimensional process with finite quadratic variation. Then, with
probability 1, for any t � 0 we have

f .t; Xt / D f .0;X0/C
dX
kD1

Z t

0

f 0
xk
.s; Xs/ dXk;s

C
Z t

0

f 0
t .s; Xs/ ds C 1

2

dX
k;lD1

Z t

0

f 00
xk ;xl

.s; Xs/ dhXk;Xl is

where the sum of stochastic integrals are defined as before.
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In particular, the integration by parts formula writes

X1;tX2;t D X1;0X2;0 C
Z t

0

X1;sdX2;s C
Z t

0

X2;sdX1;s C hX1;X2it :

For two independent Brownian motions, we recover the usual deterministic formula
(because hW1;W2it D 0), but in general, formulas are different because of the
quadratic variation.

3.5 More Properties on Stochastic Integrals

So far, we have defined some specific stochastic integrals, those appearing in
deriving a Itô formula and which have the form

Z t

0

f 0
x .s; Xs/dXs D lim

n!C1
X
ti�t

f 0
x .ti ; Xti /.XtiC1

� Xti /; (43)

the limit being taken along dyadic subdivision. Also, we have proved that if f has
bounded derivatives andX D W is a Brownian motion, the above stochastic integral
must have zero-expectation [see equality (29)]. Moreover, we also have established
that in the case of deterministic integrand (Wiener integral), the second moment of
the stochastic integral is explicit and given by

E.

Z t

0

hsdWs/
2 D

Z t

0

h2sds:

The aim of this paragraph is to provide extensions of the above properties on the
two first moments to more general integrands, under some suitable boundedness or
integrability conditions.

3.5.1 Heuristic Arguments

In view of the previous construction, there is a natural candidate to be the stochastic
integral

R t
0 hsdWs . When h is piecewise constant process (called simple process),

that is hs D hti if s 2 Œti ; tiC1� for a given deterministic time grid .ti /i , we set

Z t

0

hsdWs D
X
ti�t

hti .Wt^tiC1
�Wti /; (44)

Without extra assumptions on the stochasticity of h, it is not clear why its
expectation equals 0. This property should come from the centered Brownian
incrementsWt^tiC1

�Wti and their independence to hti so that
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E.

Z t

0

hsdWs/ D
X
ti�t

E.hti /E.Wt^tiC1
�Wti / D 0:

To validate this computation, we shall assume that ht depends only the Brownian
Motion W before t and it is integrable. To go to the second moment, assume
additionally that h is square integrable: then

Ej
Z t

0

hsdWs j2

D 2
X

ti <tj�t

E.hti htj .Wt^tiC1
�Wti //E.Wt^tjC1

�Wtj /C
X
ti�t

E.h2ti /EjWt^tiC1
�Wti j2

D
X
ti�t

E.h2ti /.t ^ tiC1 � ti / D E.

Z t

0

h2sds/: (45)

This equality should be read as an isometry property (usually referred to as Itô
isometry), on which we can rely an extension of the stochastic integral of simple
process to more general process. At this point, we should need to enter into
measurability considerations to describe what “ht depends only the Brownian
Motion W before t” means at the most general level. It goes far beyond this
introductory lecture: for the exposure of the general theory, see for instance [48]
or [63].

For most of the examples considered in this lecture, we can restrict to very good
integrands, in the sense that a integrand h is very good if

1. .ht /t is continuous or piecewise continuous (as for simple processes).
2. For a given t , ht is a continuous functional of .Ws W s � t/.
3. It is square integrable in time and !: E.

R t
0 h

2
sds/ < C1 for any t .

This setting ensures that we can define stochastic integrals for very good integrands
as the L2-limit of stochastic integrals for simple integrands: indeed, a Cauchy
sequence .hn/n in L2.dt ˝ dP/ gives a Cauchy sequence .

R t
0
hn;sdWs/n in L2.P/

due to the isometry (45).

3.5.2 General Results

We collect here all the stochastic integration results needed in this lecture.

Theorem 10. Let h be a very good integrand. Then the stochastic integral
R t
0
hsdWs

is such that

1. It is the L2 limit of
P

ti�t hti .Wt^tiC1
� Wti / along time subdivision which time

step goes to 0.
2. It is centered: E.

R t
0
hsdWs/ D 0.
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3. It is square integrable: Ej R t
0
hsdWsj2 D E.

R t
0
h2sds/.

4. For two very good integrands h1 and h2, we have

E

h
.

Z t

0

h1;sdWs/.

Z t

0

h2;sdWs/
i

D E.

Z t

0

h1;sh2;sds/:

Beyond the t-by-t construction, actually the full theory gives a construction for any
t simultaneously, proving additionally time continuity property, general centering
property (martingale property), tight Lp-estimates on the value at time t and
the extrema until time t (Burkholder–Davis–Gundy inequalities) and so on. . . For
multidimensionalW and h, the construction should be understood componentwise.
Another fruitful extension is to allow t to be a bounded stopping time, similarly to
the discussion we have made in the proof of Theorem 3.

Another interesting part in the theory is devoted to the existence and uniqueness
of solution to Stochastic Differential Equations (also known as diffusion processes).
The easiest setting is to assume globally Lipschitz coefficients17: it is similar to the
ODE framework, and the proof is also based on the Picard fixed-point argument. We
state the results without proof.

Theorem 11. Let W be a d -dimensional standard Brownian motion.
Assume that the functions b W Rd 7! R

d and � W Rd 7! R
d ˝ R

d are globally
Lipschitz. Then, for any initial condition x 2 R

d , there exists a unique18 continuous
solution .Xx

t /t�0 valued in R
d which satisfies

Xx
t D x C

Z t

0

b.Xx
s /ds C

Z t

0

�.Xx
s /dWs; (46)

with sup0�t�T EjXx
t j2 < C1 for any given T 2 R

C.
The continuous process Xx has a finite quadratic variation given by

hXx
k ;X

x
l it D

Z t

0

Œ��>�k;l .Xx
s /ds; 1 � k; l � d: (47)

Observe that this general result includes all the model considered before, such as
Arithmetic and Geometric Brownian Motion, Ornstein–Uhlenbeck processes, here
stated in a possibly multidimensional framework.

Complementary References. See [48, 63].

17Leading to the notion of strong solution; the case of non-smooth coefficients is much more
delicate and related to weak solutions, see [67].
18Up to a set of zero probability measure.
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4 Monte Carlo Resolutions of Linear PDEs Related to SDEs

Probabilistic methods to solve PDEs have become very popular during the two
last decades. They are usually not competitive compared to deterministic methods
in low dimension, but for higher dimension they provide very good alternative
schemes. In the sequel, we give a brief introduction to the topics, relying on the
material presented in the previous sections. We start with linear parabolic PDEs,
with Cauchy–Dirichlet boundary conditions. Next section is devoted to semi-linear
PDEs.

4.1 Second Order Linear Parabolic PDEs with Cauchy Initial
Condition

4.1.1 Feynman–Kac Formulas

We start with a verification Theorem generalizing Theorems 2, 4, 5 to the case of
general SDEs. We incorporate a source term g.

Theorem 12. Under the assumptions of Theorem 11, let Xx be the solution (46)
starting from x 2 R

d and set

LX
b;��> D 1

2

dX
i;jD1

Œ��>�i;j .x/@2xi xj C
dX
iD1

bi .x/@xi :

Assume there is a solution u 2 C 1;2
b .RC � R

d ;R/ to the PDE

(
u0
t .t; x/ D LX

b;��> u.t; x/C g.x/;

u.0; x/ D f .x/
(48)

for two given functions f; g W Rd ! R. Then u is given by

u.t; x/ D EŒf .Xx
t /C

Z t

0

g.Xx
s /ds�: (49)

Proof. Let t be fixed. We apply the general Itô formula (Theorem 9) to the process
Xx and to the function v W .s; y/ 7! u.t � s; y/: it gives

dv.s; Xx
s / D �

v0
s.s; X

x
s /CLX

b;��> v.s; Xx
s /
�
ds CDv.s; Xx

s /�.X
x
s /dWs (50)

D �g.Xx
s /ds CDv.s; Xx

s /�.X
x
s /dWs (51)
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where Dv WD .@x1v; : : : ; @xd v/. Observe that the integrand hs D Dv.s; Xx
s /�.X

x
s /

is very good, since v has bounded derivatives, � has a linear growth, and Xs
has bounded second moments, locally uniformly in s: thus, the stochastic integralR t
0

Dv.s; Xx
s /�.X

x
s /dWs has zero expectation. Hence, applying the above decompo-

sition between s D 0 and s D t and taking the expectation, it gives

E.f .Xx
t // D E.v.t; Xx

t // D v.0; x/�E.

Z t

0

g.Xx
s /ds/ D u.t; x/�E.

Z t

0

g.Xx
s /ds/:

We are done. ut
Smoothness assumptions on u are satisfied in f; g are smooth enough. If not, and
if a uniform ellipticity condition is met on ��>, the fundamental solution of the
PDE is smoothing the data and the result can be extended. However, the derivatives
blow up as time goes to 0, and more technicalities are necessary to justify the same
stochastic calculus computations. The fundamental solution p.t; x; y/ has a simple
probabilistic interpretation: it is the density ofXx

t at y. Indeed, identify EŒf .Xx
t /CR t

0
g.Xx

s /ds� with

u.t; x/ D
Z
Rd
p.t; x; y/f .y/dy C

Z t

0

Z
Rd
p.s; x; y/g.y/dy ds:

4.1.2 Monte Carlo Schemes

Since u.t; x/ is represented as an expectation, it allows the use of a Monte Carlo
method to numerically compute the solution. The difficulty is that in general,X can
not be simulated perfectly accurately, only an approximation on a finite time-grid
can be simply and efficiently produced. Namely we use the Euler scheme with time
step h D t=N :

(
X
x;h
0 D x;

Xx;h
s D X

x;h
ih C b.X

x;h
ih /.s � ih/C �.X

x;h
ih /.Ws �Wih/; i � 0; s 2 .ih; .i C 1/h�:

(52)

Observe that to get Xx;h
t , we do not need to sample the continuous path of Xx;h (as

difficult as having a continuous path of a Brownian motion): in fact, we only need to
computeXx;h

ih iteratively for i D 0 to i D N . Each time iteration requires to sample
d new independent Gaussian incrementsWk;.iC1/h�Wk;ih, centered with variance h:
it is straightforward. The computational cost is essentially equal to C.d/N where
the constant depends on the dimension (coming from d -dimensional vector and
matrix computations).

As an approximation of the expectation of E .f; g;Xx/ D f .Xx
t /C

R t
0
g.Xx

s /ds,
we take the expectation
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E .f; g;Xx;h/ D f .X
x;h
Nh /C

N�1X
iD0

g.X
x;h
ih /h; (53)

a random variable of which we sample M independent copies, that are denoted by
fE .f; g;Xx;h;m/ W 1 � m � M g. Then, the Monte Carlo approximation, based on
this sample of M Euler schemes with time step h, is

1

M

MX
mD1

E .f; g;Xx;h;m/ D u.t; x/ C 1

M

MX
mD1

E .f; g;Xx;h;m/� E.E .f; g;Xx;h//

„ ƒ‚ …
statistical error Err:stat:.h;M/

CE.E .f; g;Xx;h// � u.t; x/„ ƒ‚ …
discretization error Err:disc:.h/

: (54)

The first error contribution is due to the sample of finite size: the larger M , the
better the accuracy. As mentioned in Sect. 2.1.3, once renormalized by

p
M , this

error is still random and its distribution is closed to the Gaussian distribution with
zero mean and variance Var.E .f; g;Xx;h//: the latter still depends on h but very
little, since it is expected to be close to Var.E .f; g;Xx//.

The second error contribution is related to the time discretization effect: the
smaller the time h, the better the accuracy. In the sequel (Sect. 4.1.3), we theoreti-
cally estimate this error in terms of h, and proves that it is of order h (even equivalent
to) under some reasonable and fairly general assumptions.

What Is the Optimal Tuning of h ! 0 and M ! C1? An easy complexity
analysis shows that the computational effort is Ce D C.d/Mh�1. Observe that the
rate does not depend on the dimension d , as a difference with a PDE method, but
on the other hand, the solution is computed only at single point .t; x/. The squared
quadratic error is equal to

ŒErr2.h;M/�2 WD E

h 1
M

MX
mD1

E .f; g;Xx;h;m/� u.t; x/
i2

D Var.E .f; g;Xx;h//

M
C
h
E.E .f; g;Xx;h//� u.t; x/

i2
:

Only the first factor Var.E .f; g;Xx;h// can be estimated with the same sample, for
M large, and it depends little of h. Say that the second term is equivalent to .Ch/2

as h ! 0, with C ¤ 0. Then, three asymptotic situations occur:

1. If M 	 h�2, the statistical error becomes negligible and 1
M

PM
mD1 E .f; g;

Xx;h;m/ � u.t; x/ 
 Ch. The computational effort is Ce 	 h�3 and thus
Err2.h;M/ 	 C�1=3

e . Deriving a confidence interval as in Sect. 2.1.3 is
meaningless, we face with the discretization error only.
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2. If M � h�2, the discretization error becomes negligible and the distribution

of
p
M
�
1
M

PM
mD1 E .f; g;Xx;h;m/� u.t; x/

�
converges to that a Gaussian r.v.

centered with variance Var.E .f; g;Xx// (that can be asymptotically computed
using theM - sample). Thus, we can derive confidence intervals: setting �2h;M the
empirical variance of E .f; g;Xx;h/, with probability 95 % we have

u.t; x/2
h 1
M

MX
mD1

E .f; g;Xx;h;m/�1:96�h;Mp
M
;
1

M

MX
mD1

E .f; g;Xx;h;m/C1:96�h;Mp
M

i
:

Regarding the computational effort, we haveCe 	 M3=2 and thus Err2.h;M/ 	
C

�1=3
e .

3. If M 
 ch�2, both statistical and discretization errors have the same magnitude
and one can still derive a asymptotic confidence interval, but it is no more
centered (as in M � h�2) and unfortunately, the bias is not easily estimated
on the fly. The problem is that the bias is of same magnitude as the size of the
confidence interval, thus it reduces the interest of having such a priori statistical
error estimate. Here, Err2.h;M/ D O.C�1=3

e /.

Summing up by considering the ability of having or not on-line error estimates and
by optimizing the final accuracy w.r.t. the computational effort, the second case
M D h�2C" (for a small " > 0) may be the most attractive since it achieves (almost)
the best accuracy w.r.t. the computational effort and gives a centered confidence
interval (and therefore tractable and meaningful error bounds).

4.1.3 Convergence of the Euler Scheme

An important issue is to analyze the impact of time discretization of SDE. This
dates back to the end of eighties, see [68] among others. The result below gives a
mathematical justification of the use of the Euler scheme as an approximation for
the distribution of the SDE.

Theorem 13. Assume that b and � are C 2
b , letXx be the solution (46) starting from

x 2 R
d and let Xh;x be its Euler scheme defined in (52). Assume that u.t; x/ D

EŒf .Xx
t /C R t

0
g.Xx

s /ds� is a C 2;4
b .Œ0; T � � R

d ;R/-function solution of the PDE of
Theorem 12. Then,

E

h
f .X

x;h
Nh /C

N�1X
iD0

g.X
x;h
ih /h

i
� E

h
f .Xx

t /C
Z t

0

g.Xx
s /ds

i
D O.h/:

Proof. Denote by Err:disc:.h/ the above discretization error. As in Theorem 12, we
use the function v W .s; y/ 7! u.t � s; y/ (for a fixed t) and we apply the Itô formula
to Xh;x (Theorem 9): it gives (setting Dv WD .@x1v; : : : ; @xd v/)
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dv.s; Xh;x
s / D

h
v0
s.s; X

h;x
s /C 1

2

dX
i;jD1

Œ��>�i;j .Xh;x
'.s//@

2
xi xj

v.s; Xh;x
s /

C
dX
iD1

bi .X
h;x
'.s//@xi v.s; X

h;x
s /

i
ds CDv.s; Xh;x

s /�.X
h;x
'.s//dWs:

D
h1
2

dX
i;jD1

�
Œ��>�i;j .Xh;x

'.s// � Œ��>�i;j .Xh;x
s /

�
@2xi xj v.s; Xh;x

s /

C
dX
iD1

�
bi .X

h;x
'.s//� bi .X

h;x
s /

�
@xi v.s; X

h;x
s /� g.Xh;x

s /
i
ds

CDv.s; Xh;x
s /�.Xh;x

'.s//dWs

where at the second equality, we have used the PDE solved by v at .s; Xx
s /. Then, by

taking the expectation (it removes the stochastic integral term because the integrand
is very good), we obtain

Err:disc:.h/ D E

h
v.Nh; Xx;h

Nh /C
NX
iD1

hg.Xx;h
ih /

i
� v.0; x/

D E

�Z t

0

h1
2

dX
i;jD1

�
Œ��>�i;j .Xh;x

'.s/

��Œ��>�i;j .Xh;x
s /

�
@2xi xj v.s; Xh;x

s /
i
ds
�

CE

� Z t

0

h dX
iD1

�
bi .X

h;x
'.s//� bi.X

h;x
s /

�
@xi v.s; X

h;x
s /

�
ds
�

CE

� Z t

0

�
g.Xh;x

'.s//� g.Xh;x
s /

�
ds
�
:

The global error is represented as a summation of local errors. For instance, let
us estimate the first term related to ��>: apply once again the Itô formula on the
interval Œkh; s� � Œkh; .k C 1/h� and to the function .s; y/ 7! �

Œ��>�i;j .Xh;x
'.s/

� �
Œ��>�i;j .y/

�
@2xi xj v.s; y/. It gives raise to a time integral between kh D '.s/ and s

and a stochastic integral that vanishes in expectation. Proceed similarly for the other
contributions with b and g. Finally we obtain a representation formula of the form

Err:disc:.h/ D
X

˛W0�j˛j�4
E

� Z t

0

Z s

'.s/

@j˛j
x v.r; Xh;x

r /l˛
�
X
h;x
'.r/; X

h;x
r

�
drds

�

where the summation is made on differentiation multi-indices of length smaller than
4, where l˛ are functions depending on b; �; g and their derivatives up to order 2,
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and where l˛ has at most a linear growth w.r.t its two variables. Taking advantage of
the boundedness of the derivatives of v, we easily complete the proof.

Observe that, by strengthening the assumptions and by going a bit further in the
analysis, we could establish an expansion w.r.t. h. ut
The previous assumption on u implies that f 2 C 4

b and g 2 C 2
b , which is too

strong in practice. The extension to non smooth f is much more difficult and
we have to take advantage of the smoothness coming from the non-degenerate
distribution of X or Xh. We may follow the same types of computations, mixing
PDE techniques and stochastic arguments, see [6]. But this is a pure stochastic
analysis approach (Malliavin calculus) which provides the extension under the
minimal non-degeneracy assumption (i.e. only stated at the initial point x), see [38].
We state the result without proofs.

Theorem 14. Assume that b and � are C1
b , let Xx be the solution (46) starting

from x 2 R
d and let Xh;x be its Euler scheme defined in (52). Assume additionally

that ��>.x/ is invertible. Then, for any bounded measurable function f , we have

E

h
f .Xx;h

t /
i

� E

h
f .Xx

t /
i

D O.h/:

In the same reference [38], the result is also proved for hypoelliptic system, where
the hypoellipticity holds only at the starting point x. On the other hand, without
such a degeneracy condition and for non smooth f (like Heaviside function), the
convergence may fail.

The case of coefficients b and � with low regularity or exploding behavior is still
an active fields of research.

4.1.4 Sensitivities

If in addition we are interested by computing derivatives of u.t; x/ w.r.t. x or other
model parameters, this is still possible using Monte Carlo simulations. For the sake
of simplicity, in our discussion we focus on the gradient of u w.r.t. x. Essentially,
two approaches are known.

Resimulation Method. The derivative is approximated using the finite difference
method

@xi u.t; x/ � u.t; x C "ei /� u.t; x � "ei/

2"

where ei D .0; : : : ; 0; 1
i th
; 0; : : : /, and " is small. Then, each value function is

approximated by its Monte Carlo approximation given in (54). However, we have
to be careful in generating the Euler scheme starting from x C "ei and x � "ei : its
sampling should use the same Brownian motion increments, that is



Stochastic Calculus, Monte Carlo Methods for PDEs 157

@xi u.t; x/ � 1

M

MX
mD1

E .f; g;XxC"ei ;h;m/ � E .f; g;Xx�"ei ;h;m/
2"

: (55)

Indeed, for an infinite sample (M D C1), it does not have any impact on the
statistical error whether or not we use the same driving noise, but for finite M , this
trick likely maintains a smaller statistical error. Furthermore, the optimal choice of
h, M and " is an important issue, but here results are different according to the
regularity of f and g, we do not go into details.

Likelihood Method. To avoid the latter problems of selecting the appropriate value
of the finite difference parameter ", we may prefer another Monte Carlo estimator
of @xi u.t; x/, which consists in appropriately weighting the output. When g equals
0, it takes the following form

@xi u.t; x/ � 1

M

MX
mD1

f .Xx;h;m
t /Hx;h;m

t (56)

where Hx;h;m
t is simultaneously generated with the Euler scheme and does not

depend on f . The advantage of this approach is to avoid the possibly delicate choice
of the perturbation parameter " and it is valid for any function f : thus, it may reduce
much the computational time, if many sensitivities are required for the same model.
On the other hand, the confidence interval may be larger than that of the resimulation
method.

We now provide the formula for the weight H (known as Bismut–Elworthy–Li
formula). It uses the tangent process, which is the (well-defined, see [52]) derivative
of x 7! Xx

t w.r.t. x and which solves

DXxt WD Y xt D Id C
Z t

0

Db.Xx
s / Y

x
s ds C

dX
jD1

Z t

0

D�j .X
x
s / Y

x
s dWj;s (57)

where �j is the j -th column of the matrix � .

Theorem 15. Assume that b and � are C 2
b -functions, that u 2 C 1;2.Œ0; T ��R

d ;R/

solves the PDE (48), and that � is invertible with a uniformly bounded inverse ��1.
We have

Du.t; x/ D E

 
f .Xx

t /

t

�Z t

0

Œ��1.Xx
s /Y

x
s �

>dWs

	>!
:

Proof. First, we recall the decomposition (51) obtained from Itô formula, using
v.s; y/ D u.t � s; y/:

(
v.r; Xx

r / D v.0; x/C R r
0

Dv.s; Xx
s /�.X

x
s /dWs; 80 � r � t;

f .Xx
t / D v.t; Xx

t /:
(58)
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Second, taking expectation, it gives v.0; x/ D u.t; x/ D E.v.r; Xx
r // for any r 2

Œ0; T �. By differentiating w.r.t. x, we obtain a nice relation letting the expectation
constant in time (actually deeply related to martingale property):

Dv.0; x/ D E.Dv.r; Xx
r /Y

x
r /; 80 � r � t:

Thus, we deduce

Du.t; x/ D Dv.0; x/ D E



1

t

Z t

0
Dv.s;Xxs /Y

x
s ds

�

D E

 
1

t

�Z t

0
Dv.s; Xxs /�.X

x
s /dWs

	 �Z t

0
Œ��1.Xxs /Y xs �>dWs

	>!

D E

 
v.t; Xxt /� v.0; x/

t

�Z t

0

Œ��1.Xxs /Y xs �>dWs

	>!

D E

 
f .Xxt /

t

�Z t

0
Œ��1.Xxs /Y xs �>dWs

	>!

using Theorem 10 at the second and fourth equality, (58) at the third one. ut
In view of the above assumptions of u, implicitly the function f is smooth. However,
under the current ellipticity condition, u is still smooth even if f is not; since the
formula does depend on f and not on its derivatives, it is standard to extend the
formula to any bounded function f (without any regularity assumption).

The Monte Carlo evaluation of Du.t; x/ easily follows by independently sam-

pling f .Xxt /

t

hR t
0 Œ�

�1.Xx
s /Y

x
s �

>dWs

i>
and taking the empirical mean. The exact

simulation is not possible and once again, we may use an Euler-type scheme, with
time step h:

• The dimension-augmented Stochastic Differential Equation .Xx; Y x/ is approx-
imated using the Euler scheme.

• We use a simple-approximation of the stochastic integral

Z t

0

Œ��1.Xx
s /Y

x
s �

>dWs D
N�1X
iD0

Œ��1.Xx;h
ih /Y

x;h
ih �>.W.iC1/h �Wih/:

The analysis of discretization error is more intricate than for E.f .Xx;h
t /� f .Xx

t //:
nevertheless, the error is still of magnitude h (the convergence order is 1 w.r.t. h, as
proved in [38]).

Theorem 16. Under the setting of Theorem 14, for any bounded measurable
function f , we have
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E

 
f .X

x;h
t /

t

N�1X
iD0

h
Œ��1.Xx;h

ih /Y
x;h

ih �>.W.iC1/h �Wih/
i>
!

� Du.t; x/ D O.h/:

4.1.5 Other Theoretical Estimates in Small Time

The representation formula of Theorem 15 is the starting point for getting accurate
probabilistic estimates on the derivatives of the underlying PDE as time is small, in
terms of the fractional smoothness of f .Xx

t / which is related to the decay of

kf .Xx
t /� E.f .X

y
t�s//jyDXxs kL2 as s ! t:

The derivatives are measured in weighted L2-norms and surprisingly, the above
results are equivalence results [36]; we are not aware of such results using PDE
arguments.

Theorem 17. Under the setting19 of Theorem 14, let t be fixed, for 0 < � � 1 and
a bounded f , the following assertions are equivalent:

i) For some c � 0, Ejf .Xx
t /� E.f .X

y
t�s//jyDXxs j2 � c.t � s/� for 0 � s � t .

ii) For some c � 0, EjDu.t � s; Xx
s /j2 � c

.t�s/1�� for 0 � s < t .

iii) For some c � 0,
R s
0
EjD2u.t � r; Xx

r /j2dr � c

.t�s/1�� for 0 � s < t .

If 0 < � < 1, it is also equivalent to:

iv) For some c � 0, EjD2u.t � s; Xx
s /j2 � c

.t�s/2�� for 0 � s < t .

Theorem 18. Under the setting of Theorem 14, let t be fixed, for 0 < � < 1 and a
bounded f , the following assertions are equivalent:

i)
R t
0
.t � s/���1

Ejf .Xx
t /� E.f .X

y
t�s//jyDXxs j2ds < C1.

ii)
R t
0
.t � s/��EjDu.t � s; Xx

s /j2ds < C1.
iii)

R t
0
.t � s/1��EjD2u.t � s; Xx

s /j2ds < C1.

4.2 The Case of Dirichlet Boundary Conditions and Stopped
Processes

4.2.1 Feynman–Kac Formula

In view of Corollary 1, the natural extension of Theorem 12 in the case of Dirichlet
boundary condition is the following. We state the result without source term to
simplify. The proof is similar and we skip it.

19To simplify the exposure.
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Theorem 19. Let D be a bounded domain of Rd . Under the setting of Theorem 12,
assume there is a solution u 2 C 1;2

b .Œ0; T � �D;R/ to the PDE

8̂
<̂
ˆ̂:

u0
t .t; x/ D LX

b;��> u.t; x/; for .t; x/ 2�0;C1Œ�D;
u.0; x/ D f .0; x/; for x 2 D;
u.t; x/ D f .t; x/; for .t; x/ 2 R

C � @D;
(59)

for a given function f W RC �D ! R. Then u is given by

u.t; x/ D EŒf .t � 
x ^ t; Xx

x^t /� (60)

for x 2 D, where 
x D inffs > 0 W Xx
s … Dg is the first exit time from D by X .

4.2.2 Monte Carlo Simulations

Performing a Monte Carlo algorithm in this context is less easy since we have to
additionally simulate the exit time of X . A simple approach consists in discretizing
X using the Euler scheme with time step h, and then taking for the exit time


x;h D inffih > 0 W Xx;h
ih … Dg:

It does not require any further computations than those needed to generate
.X

x;h
ih ; 0 � i � N/. But, the discretization error worsens much since it becomes

of magnitude
p
h. Actually, even if the values of .Xx;h

ih ; 0 � i � N/ are generated
without error (like in Brownian motion case or other simple processes), the
convergence order is still 1

2
w.r.t. h [27]. The deterioration of the discretization

error really comes from the high irregularity of Brownian motion paths (and SDE
paths): even if two successive pointsXx;h

ih and Xx;h
.iC1/h are close to the boundary but

inside the domain, a discrete monitoring scheme does not detect the exit while a
continuous Brownian motion-like path would likely exit from the domain between
ih and .i C 1/h. Moreover, it gives a systematic (in mean) underestimation of
the true exit time. To overcome this lack of accuracy, there are several improved
schemes.

• The Brownian bridge technique consists in simulating the exit time of local
arithmetic Brownian motion [corresponding to the local dynamics of Euler
scheme, see (12)]. For simple domain like half-space, the procedure is explicit
and tractable, this is related the explicit knowledge of the distribution of the
Brownian maximum, see Proposition 5. For smooth domain, we can approximate
locally the domain by half-spaces. This improvement allows to recover the order
1 for the convergence, see [27, 28]. For non smooth domains (including corners
for instance) and general SDEs, providing an accurate scheme and performing
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its error analysis is still an open issue; for heuristics and numerical experiments,
see [29] for instance.

• The boundary shifting method consists in shrinking the domain to compensate
the systematic bias in the simulation of the discrete exit time. Very remarkably,
there is a universal elementary rule to make the domain smaller:

locally at a point y close to the boundary, move the boundary inwards by a quantity
proportional to c0

p
h times the norm of the diffusion coefficient in the normal direction.

The constant c0 is equal to the mean of the asymptotic overshoot of the
Gaussian random walk as the ladder height goes to infinity: it can be expressed
using the zeta function

c0 D � �. 1
2
/p

2�
D 0:5826 : : : :

This procedure strictly improves the order 1
2

of the discrete procedure, but it is
still an open question whether the convergence order is 1, although numerical
experiments corroborates this fact.

The result is stated as follows, see [37].

Theorem 20. Assume that the domain D is bounded and has a C 3-boundary, that
b; � are C 2

b and f 2 C 1;2
b . Let n.y/ be the unit inward normal vector to the

boundary @D at the closest20 point to y on the boundary. Set

O
x;h D inf
˚
ih > 0 W Xx;h

ih … D or d.Xx;h
ih ; @D/ � c0

p
h
ˇ̌
n>�

ˇ̌
.X

x;h
ih /

�
:

Then, we have

EŒf .t � O
x;h ^ t; Xx
O
x;h^t /� � EŒf .t � 
x ^ t; Xx


x^t /� D o.
p
h/:

Observe that this improvement is very cheap regarding the computational cost. It can
be extended (regarding to the numerical scheme and its mathematical analysis) to a
source term, to time-dependent domain and to stationary problems (elliptic PDE).

Complementary References. See [2, 13, 26, 49, 53, 64] for general references. For
reflected processes and Neumann boundary conditions, see [10, 28]. For variance
reduction techniques, see [34,47,58]. For domain decomposition, see [35,62]. This
list is not exhaustive.

20Uniquely defined if y is close to the boundary.
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5 Backward Stochastic Differential Equations
and Semi-linear PDEs

The link between PDEs and stochastic processes have been developed since several
decades and more recently, say in the last 20 years, researchers have paid attention
to the probabilistic interpretation of non-linear PDEs, and in particular semi-
linear PDEs. These PDEs are connected to non-linear processes, called Backward
Stochastic Differential Equations (BSDE in short). In this section, we define these
equations, firstly introduced by Pardoux and Peng [60], and give their connection
with PDEs. Finally, we present a Monte Carlo algorithm to simulate them, using
empirical regressions: it has the advantage to suit well the case of multidimensional
problems, with a great generality on the type of semi-linearity.

These equations have many fruitful applications in stochastic control theory and
mathematical finance, where they usually provide elegant proofs to characterize the
solution to optimal investment problems for instance; for the related applications,
we refer to reader to [17, 18]. Regarding the semi-linear PDE point of view, the
applications are reaction-diffusion equations in chemistry [24], evolution of species
in population biology [51,66], Hodgkin–Huxley model in neuroscience [43], Allen–
Cahn equation for phase transition in physics. . . see the introductive course [30] and
references therein. For other non-linear equations with connections with stochastic
processes, see the aforementioned reference.

5.1 Existence of BSDE and Feynman–Kac Formula

5.1.1 Heuristics

As a difference with a Stochastic Differential Equation defined by (46) where the
initial condition is given and the dynamics is imposed, a Backward SDE is defined
through a random terminal condition � at a fixed terminal T and a dynamics
imposed by a driver g. It takes the form

Yt D � C
Z T

t

g.s; Ys; Zs/ds �
Z T

t

ZsdWs (61)

where we write the integrals between t and T to emphasize the backward point of
view: � should be thought as a stochastic target to reach at time T . A solution to (61)
is the couple .Y;Z/: without extra conditions, the problem has an infinite number of
solutions and thus is ill-posed. For instance, if g � 0 and � D f .WT /: taking c 2 R,
a solution isZt D c and Yt D �C c.WT �Wt/, thus uniqueness fails. In addition to
integrability properties (appropriate L2-spaces) that we do not detail, an important
condition is that the solution does not anticipate the future of Brownian motion, i.e.
the solution Yt depends on the Brownian Motion W up to t , and similarly to Z: we
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informally say that the solution is adapted toW . In a stochastic control problem, this
adaptedness constraint is natural since it states that the value function or the decision
can not be made in advance to the flow of information given by W . Observe that
in the uniqueness counter-example, Y is not adapted to W since Yt depends on the
Brownian motion on Œ0; T � and not only on Œ0; t �.

Taking the conditional expectation in (61) gives

Yt D E

�
� C

Z T

t

g.s; Ys; Zs/ds
ˇ̌
Ws W s � t

�
; (62)

because the stochastic integral (built with Brownian increments after t) is centered
conditionally on the Brownian motion up to time t . Of course, this rule is fully
justified by the stochastic calculus theory. Since Yt in (62) is adapted toW , it should
be the right solution (if unique); then, Z serves as a control to make the equation
(61) valid (with Y adapted).

5.1.2 Feynman–Kac Formula

The connection with PDE is possible when the terminal condition is a function of
a (forward) SDE: this case is called Markovian BSDE. Additionally, the driver may
depend also on this SDE as g.s;Xs; Ys; Zs/ for a deterministic function g. We now
proceed by a verification theorem. To allow a more natural presentation as backward
system, we choose to write the semi-linear PDE with a terminal condition at time T
instead of an initial condition at time 0.

Theorem 21. Let T > 0 be given. Under the assumptions of Theorem 11, letXx be
the solution (46) starting from x 2 R

d , assume there is a solution v 2 C 1;2
b .Œ0; T ��

R
d ;R/ to the semi-linear PDE

(
v0
t .t; x/C LX

b;��> v.t; x/C g.t; x; v.t; x/;Dv.t; .x/�.x// D 0;

v.T; x/ D f .x/;
(63)

for two given functions f W Rd ! R and g W Œ0; T � � R
d � R � .R ˝ R

d / ! R.
Then, Y xt D v.t; Xx

t / and Zx
t D ŒDv ��.t; Xx

t / solves the BSDE

Y xt D f .Xx
T /C

Z T

t

g.s; Xx
s ; Y

x
s ; Z

x
s /ds �

Z T

t

Zx
s dWs: (64)

Proof. The Itô formula (50) applied to v and Xx gives

dv.s; Xx
s / D �

v0
s.s; X

x
s /C LX

b;��> v.s; Xx
s /
�
ds C Dv.s; Xx

s /�.X
x
s /dWs

D �g.s;Xx
s ; v.s; X

x
s /; ŒDv ��.s; Xx

s //ds C Dv.s; Xx
s /�.X

x
s /dWs;
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which writes between s D t and s D T :

v.T;Xx
T / D v.t; Xx

t / �
Z T

t

g.s; Xx
s ; v.s; X

x
s /; ŒDv ��.s; Xx

s //ds

C
Z T

t

Dv.s; Xx
s /�.X

x
s /dWs:

Since v.T; :/ D f .:/, we complete the proof by identification. ut
In particular, at time 0 where Xx

0 D x, we obtain Y x0 D v.0; x/ and in view of (62),
it gives a Feynman–Kac representation to v:

v.0; x/ D E

�
f .Xx

T /C
Z T

t

g.s; Xx
s ; Y

x
s ; Z

x
s /ds

�
: (65)

As in case of linear PDEs, the assumption of uniform smoothness on v up to T
is too strong to include the case of non-smooth terminal function f . But with an
extra ellipticity condition, as for the heat equation, the solution becomes smooth
immediately away from T (see [21]) and a similar verification could be checked
under milder conditions.

The above Backward SDE (64) is coupled to a Forward SDE, but the latter is
not coupled to the BSDE. Another interesting extension is to allow the coupling in
both directions by having the coefficients of X dependent on v, i.e. b.x/ and �.x/
become functions of x; v.t; x/;Dv.t; .x/. The resulting process is called a Forward
Backward Stochastic Differential Equations and is related to Quasi-Linear PDEs,
where the operator LX

b;��> also depends on v and Dv, see [56].

5.1.3 Other Existence Results Without PDE Framework

So far, only Markovian BSDEs are presented but from the probabilistic point of
view, the Markovian structure is not required to define a solution: what is really
crucial is the ability to represent a random variable built from .Ws W s � T /

as a stochastic integral w.r.t. the Brownian motion. This point has been discussed
in Corollary 4. Then, in the simple case where g is Lipschitz w.r.t. y; z, .Y;Z/
are built by means of an usual fixed point procedure in suitable L2-norms and
of this stochastic integral representation. We now state a more general existence
and uniqueness result for BSDE, which is valid without any underlying (finite-
dimensional) semi-linear PDE, we omit the proof.

Theorem 22. Let T > 0 be fixed and assume the assumptions of Theorem 11 for
the existence of X and that

• The terminal condition � D f .Xs W s � T / is a square integrable functional of
the stochastic process .Xs W s � T /.
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• The measurable function g W Œ0; T � � R
d � R � .R ˝ R

d / is uniformly Lipschitz
in .y; z/:

jg.t; x; y1; z1/� g.t; x; y2; z2/j � Cg.jy1 � y2j C jz1 � z2j/;

uniformly in .t; x/.
• The driver is square integrable at .y; z/ D .0; 0/:E.

R T
0 g

2.t; Xt ; 0; 0/dt/ < C1.

Then, there exists a unique solution .Y;Z/, adapted and in L2-spaces, to

Yt D f .Xs W s � T /C
Z T

t

g.s; Xs; Ys; Zs/ds �
Z T

t

ZsdWs:

Many works have been done in the last decade to go beyond the case of Lipschitz
driver, which may be too stringent for some applications. In particular, having g with
quadratic growth in Z is particularly interesting in exponential utility maximization
problem (the non-linear PDE term is quadratic in jDvj). This leads to quadratic
BSDEs (see for instance [50]). A simple example of such BSDEs can be cooked up
from heat equation and Brownian motion. Namely from Corollary 4, for a smooth
function f with compact support, set u.t; x/ D E.exp.f .x CWt/// and v.t; y/ D
u.1� t; y/, so that

exp.f .W1// D u.1; 0/C
Z 1

0

u0
x.1 � s;Ws/dWs;

u.1 � t;Wt / D u.1; 0/C
Z t

0

u0
x.1 � s;Ws/dWs;

v.t;Wt / D exp.f .W1// �
Z 1

t

v0
x.s;Ws/dWs;

and by setting Yt D log.v.t;Wt// and Zt D v0
x.t;Wt /=Yt , we obtain

Yt D f .W1/C
Z 1

t

1

2
Z2
s ds �

Z 1

t

ZsdWs;

which is the simplest quadratic BSDE.

5.2 Time Discretization and Dynamic Programming Equation

5.2.1 Explicit and Implicit Schemes

To perform the simulation, a first stage may be the derivation of a discretization
scheme, written backwardly in time (backward dynamic programming equation).
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For the further analysis, assume that the terminal condition is of the form � D
f .XT / where X is standard (forward) SDE.

Consider a time grid with N time steps � D f0 D t0 < � � � < ti < � � � < tN D
T g, with possibly non uniform time step, and set j�j D maxi .tiC1 � ti /. We will
suppose later that j�j ! 0.

We write 	i D tiC1 � ti and 	Wi D WtiC1
�Wti . Writing the Eq. (64) between

times ti and tiC1, we have

Yti D YtiC1
C
Z tiC1

ti

g.s; Xs; Ys; Zs/ds �
Z tiC1

ti

ZsdWs:

Then, by applying simple approximations for ds and dWs integrals and by replacing
X by a Euler scheme computed along the grid � (and denoted X� ), we may define
the discrete BSDE as

.Y �ti ; Z
�
ti
/ D arg min

.Y;Z/2L2.F�
ti
/

E.Y �tiC1
C	ig.ti ; X

�
ti
; Y;Z/ � Y �Z	Wi/

2

with the initialization Y �T D f .X�
T / at i D N , where L2.F�

ti
/ stands for the set

of random variables (with appropriate dimension) that are square integrable and
depend on the Brownian motion increments .	Wj W j � i � 1/. The latter property
is the measurability w.r.t. the sigma-field F�

ti
generated by .	Wj W j � i � 1/.

Then, a direct computation using the properties of Brownian increments gives

8̂̂
<̂
ˆ̂̂:

Y �T D f .X�
T /;

Z�
ti

D 1

	i

E.Y �tiC1
	W >

i jF�
ti
/; i < N

Y �ti D E.Y �tiC1
C	ig.ti ; X

�
ti
; Y �ti ; Z

�
ti
/jF�

ti
/; i < N:

(66)

This is the implicit scheme since the arguments of the function at the r.h.s. depend on
the quantity Y �ti to compute on the l.h.s. Nevertheless, since g is uniformly Lipschitz
in y, it is not difficult to show that the Dynamic Programming Equation (DPE in
short) (66) is well-defined for j�j small enough and that Y �ti can be computed using
a Picard iteration procedure.

It is easy to turn the previous scheme into an explicit scheme and therefore, to
avoid this extra Picard procedure. It writes

8̂
ˆ̂<
ˆ̂̂:

Y �T D f .X�
T /;

Z�
ti

D 1

	i

E.Y �tiC1
	W >

i jF�
ti
/; i < N

Y �ti D E.Y �tiC1
C	ig.ti ; X

�
ti
; Y �tiC1

; Z�
ti
/jF�

ti
/; i < N:

(67)

In our personal experience on numerics, we have not observed a significant
outperformance of one scheme on another. Moreover, from the theoretical point
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of view, both schemes exhibit the same rates of convergence w.r.t. j�j, at least when
the driver is Lipschitz.

The explicit scheme is the simplest one, and this is the one that we recommend
in practice.

5.2.2 Time Discretization Error

Define the measure of the quadratic error

E .Y � � Y;Z� �Z/ D max
0�i�N EjY �ti � Yti j2 C

N�1X
iD0

Z tiC1

ti

EjZ�
ti

�Zt j2dt:

Although not explicitly mentioned in the previous existence results on BSDE, this
type of norm is appropriate to perform the fixed point argument in the proof of
Theorem 22. We now state an error estimate [33], in order to show the convergence
of the DPE to the BSDE.

Theorem 23. For a Lipschitz driver w.r.t. .x; y; z/ and 1
2
-Hölder w.r.t. t , there is a

constant C independent on � such that we have

E .Y � � Y;Z� �Z/ � C
�
j�j C sup

i�N
EjX�

ti
� Xti j2 C Ejf .X�

T / � f .XT /j2

C
N�1X
iD0

1

	i

Z tiC1

ti

Z tiC1

ti

EjZt �Zsj2ds dt
�
:

Let us discuss on the nature and the magnitude of different error contributions.

• First, we face the strong approximation error of the forward SDE by its Euler
scheme. Here we rather focus on convergence of paths (in L2-norms), whereas
in Sect. 4.1.3, we have studied the convergence of expectations of function of
X�
T towards those of XT . Anyway, the problem is now well-understood: under a

Lipschitz condition on b and � , we can prove supi�N EjX�
ti

�Xti j2 D O.j�j/.
• Second, we should ensure a good strong approximation of the terminal condi-

tions: if f is Lipschitz continuous, it readily follows from the previous term and
Ejf .X�

T / � f .XT /j2 D O.j�j/. For non Lipschitz f , there are partial answers,
see [3].

• Finally, the last contribution
PN�1

iD0 1
	i

R tiC1

ti

R tiC1

ti
EjZt �Zs j2ds dt is related to

the L2-regularity of Z (or equivalently of the gradient of the semi-linear PDE
along the X -path) and it is intrinsic to the BSDE-solution. For smooth data, Z
has the same regularity of Brownian paths and this error term isO.j�j/. For non
smooth f (but under ellipticity condition on X ), the L2-norm of Zt blows up
as t ! T and the rate j�j usually worsens: for instance for f .x/ D 1x�0, it
becomes N� 1

2 for uniform time-grid.
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Fig. 8 On the horizontal
axis, uniform grid. On the
vertical axis, the grid
.t

N�
k W 0 � k � N/, with
T D 1

The analysis is very closely related to the fractional smoothness of f .XT /
briefly discussed in Sect. 4.1.5, see also [25]. Choosing an appropriate grid of the
form (see Fig. 8)

t
N�
k D T � T .1 � k=N/1= N� . N� 2 .0; 1�/

compensates this blow-up (for appropriate value of N�) and enables to retrieve the
rate N�1.

Actually in [31], it is shown that the upper bounds in Theorem 23 can be refined for
smooth data, to finally obtain that the main error comes from strong approximation
error on the forward component. This is an incentive to accurately approximate the
SDE in L2-sense.

5.2.3 Towards the Resolution of the Dynamic Programming Equation

The effective implementation of the explicit scheme (67) requires the iterative
computations of conditional expectations: this is discussed in the next paragraphs.

Prior to this, we make some preliminary simplifications for the sake of concise-
ness. First, we consider the case of g independent of z,

g.t; x; y; z/ D g.t; x; y/;

therefore we only approximateY � ; the general case is detailed in [39,54]. Second, it
can be easily seen that it is enough to take the conditioning w.r.t.X�

ti
instead of F�

ti
,

because of the Markovian property of X� along the grid � and of the independent
Brownian increments. Thus, (67) becomes

(
Y �T D f .X�

T /;

Y �ti D E.Y �tiC1
C	ig.ti ; X

�
ti
; Y �tiC1

/jX�
ti
/; i < N:

(68)
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The same arguments apply to assert that for a (measurable) deterministic function
y�i we have

y�i .X
�
ti
/ D Y �ti : (69)

Therefore, simulating Y � is equivalent to the computation of the functions y�i for
any i and the simulation of the process X� .

5.3 Approximation of Conditional Expectations Using
Least-Squares Method

5.3.1 Empirical Least-Squares Problem

We adopt the point of view of conditional expectation as a projection operator in
L2. This is not the only possible approach, but it has the advantages (as it will be
seen later)

1. To be much flexible w.r.t. the knowledge on the model for X (or X� ): only inde-
pendent simulations of X� are required (which is straightforward to perform).

2. To be little demanding on the assumptions on the underlying stochastic model:
in particular, no ellipticity nor degeneracy condition are required, it could also
include jumps (corresponding to PDE with a non-local Integro-Differential
operator).

3. To provide robust theoretical error estimates, which allow to optimally tune the
convergence parameters.

4. To be possibly adaptive to the data (data-driven scheme).

We recall that if a scalar random variable R (called the response) is square inte-
grable, the conditional expectation of R given another possibly multidimensional
r.v.O (called the observation) is given by

E.RjO/ D Arg min
m.O/ s.t.m.:/ is a meas. funct. with Ejm.O/j2<C1

EjR �m.O/j2:

This is a least-squares problem in infinite dimension, also called regression problem.
Usually in this context of BSDE simulation, none of the distributions of O , R
or .O;R/ is known in analytical and tractable form: thus an exact computation
of E.RjO/ is hopeless. The difficulty remains unchanged if we approximate the
regression function

m.�/ D E.RjO D �/
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on a finite dimensional functions basis. Alternatively, we can rely on independent
simulations of .O;R/ to compute an empirical version of m. This is the approach
subsequently developed.

The basis functions are .�k.://1�k�K and we assume that Ej�k.O/j2 < C1 for
any k. We emphasize that

we can not assume that .�k.O//1�k�K forms an orthonormal basis in L2;

since in our setting, the distribution ofO is not explicit. Using this finite dimensional
approximation, we anticipate to unfortunately retrieve the curse of dimensionality:
the larger the dimension d of O , the larger the required K for a good accuracy of
m, the larger the complexity.

We compute the coefficients on the basis by solving a empirical least-squares
problem

.˛Mk /k D arg min
˛2RK

1

M

MX
iD1
.Ri �

KX
kD1

˛k�k.Oi //
2;

where .Oi ; Ri /1�i�M are independent simulations of the couple .O;R/. Then, for
the approximation of m, we set

QmM.:/ D
KX
kD1

˛Mk �k.:/:

To efficiently compute the coefficients .˛Mk /k , we might use a SVD decomposition
to account for instability issues, see [41].

5.3.2 Model-Free Error Estimates

Without extra assumptions on the model, we can derive model-free error estimates,
see [42].

Theorem 24. Assume that

• R D m.O/C � with E.�jO/ D 0.21

• .O1;R1/; � � � ; .OM ;RM/ are independent copies of .O;R/.
• �2 D supx Var.RjO D x/ < C1.
• Let K be a finite positive integer and ˚ be the linear vector space spanned by

some functions .�1; : : : �K/, with dim.˚/ � K .22

21Meaning that m.O/ D E.RjO/.
22There may be some colinearities within .�j /1�j�K .
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Denote by�M the empirical measure associated to .O1; � � � ; OM/,� the probability
measure of O and by j�j2M D 1

M

PM
iD1 �2.Oi / the empirical L2-measure of � w.r.t.

�M , and set:

QmM.:/ D arg min
�2˚

1

M

MX
iD1

j�.Oi/ �Ri j2: (70)

Then

E.j QmM �mj2M / � �2
K

M
C min

�2˚ j� �mj2L2.�/:

The first term in the r.h.s. above is interpreted as a statistical error23 term (due
to a finite sample to compute the empirical coefficients), while the second term
is an approximation error of the functions class24 (due to finite-dimensional
vector space). The first term converges to 0 as M ! C1 but it blows up if
K ! C1, while the second one converges to 0 as K ! C1 (as least if ˚
asymptotically spans all the functions in L2.�/). This bias-variance decomposition
shows that there is a necessary trade-off between K and M to ensure a convergent
approximation. Without this right balance, the approximation (70) may be not
convergent. Furthermore, the parameter tuning can also be made optimally.

In the quoted reference [42], the space ˚ could also depend on the simulations
(data-driven approximation spaces).

Proof. Assume that

E

�
j QmM �mj2M

ˇ̌
O1; � � � ; OM

�
� �2

K

M
C min

�2˚ j� �mj2M : (71)

Then, the announced result directly follows by taking expectations and observing
that

E
�

min
�2˚ j� �mj2M / � min

�2˚ E.j� �mj2M / D min
�2˚ j� �mj2L2.�/:

We now prove (71). As far as computations conditionally on O1; � � � ; OM are
concerned, without loss of generality we can assume that .�1; : : : �KM / is an
orthonormal family in L2.�M/, with possibly KM � K:

1

M

MX
iD1

�k.Oi /�l .Oi / D ık;l :

23Also called variance term.
24Squared bias term.
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Consequently, the solution arg min
�2˚

1

M

MX
iD1

j�.Oi/� Ri j2 is given by

QmM.:/ D
KMX
jD1

˛j �j .:/ with ˛j D 1

M

MX
iD1

�j .Oi /Ri :

Now, set E�.:/ D E.:jO1; � � � ; OM /. Then, observe that E�. QmM.:// is the least-
squares solution to min

�2˚
1
M

PM
iD1 j�.Oi/�m.Oi/j2 D min

�2˚ j� �mj2M . Indeed:

• On the one hand, the above least-squares solution is given by
PKM

jD1 ˛�
j �j .:/ with

˛�
j D 1

M

PM
iD1 �j .Oi /m.Oi/.

• On the other hand, E
�. QmM.:// D PKM

jD1 E�.˛j /�j .:/ and

E
�.˛j / D 1

M

PM
iD1 �j .Oi /E�.Ri / D 1

M

PM
iD1 �j .Oi/E.m.Oi / C �i jO1; � � � ;

OM / D ˛�
j .

Thus, by the Pythagoras theorem, we obtain

j QmM �mj2M D j QmM � E
�. QmM/j2M C jE�. QmM/ �mj2M ;

E
�j QmM �mj2M D E

�j QmM � E
�. QmM/j2M C jE�. QmM/�mj2M

D E
�j QmM � E

�. QmM/j2M C min
�2˚ j� �mj2M :

Since .�j /j is orthonormal in L2.�M /, we have j QmM �E
�. QmM/j2M D PKM

jD1 j˛j �
E

�.˛j /j2: Since ˛j � E
�.˛j / D 1

M

PM
iD1 �j .Oi /.Ri �m.Oi//, we obtain

E
�j QmM �E

�. QmM/j2M D
KMX
jD1

1

M2
E

�
MX
i;lD1

�j .Oi /�j .Ol /.Ri �m.Oi//.Rl �m.Ol/

D
KMX
jD1

1

M2

MX
iD1

�2j .Oi /Var.Ri jOi/

taking advantage that the .�i /i conditionally on .O1; � � �OM/ are centered. This
proves

E
�j QmM � E

�. QmM/j2M � �2
KMX
jD1

1

M2

MX
iD1

�2j .Oi / D �2
KM

M
� �2

K

M
:

The proof of (71) is complete. ut
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5.3.3 Least-Squares Method for Solving Discrete BSDE

We now apply the previous empirical least-squares method to numerically solve the
DPE (68). For simplicity of exposure, we consider here only uniform time grids
with N time steps, 	i D T=N . In addition to assumptions of Theorem 23, we
assume that the terminal condition f .:/ is bounded: then, we can easily establish
the following result.

Proposition 20. Under these assumptions, the function y�i .:/ defined in (69) is
bounded by a constant C?, which is independent on N and i .

Actually, C? can be given explicitly in terms of the data. To force the stability in the
iterative computations of conditional expectations (68), we truncate the numerical
solution at the level C? using the soft thresholding

Œ �C? WD �C? _  ^ C?:

Algorithm for Approximating y�
k

.�/. At each time index 0 � k � N � 1, we
consider a vector space ˚k spanned by basis functions pk.�/, which are understood
as vectors of Kk functions. The final approximation of y�k .�/ has the form

y
�;M
k .�/ D Œ˛Mk � pk.�/�C? :

The coefficients ˛Mk are computed with M independent simulations of .X�
tk
/k , that

are denoted by f.X�;m
tk
/kg1�m�M : this single set of simulated paths are used to

compute all the coefficients at once. This is done as follows:

 Initialization : for k D N , take y�N .�/ D f .�/.
 Iteration : for k D N � 1; � � � ; 0, solve the least-squares problem

˛Mk D arg min
˛2RKk

MX
mD1

jy�;MkC1 .X
�;m
tkC1

/C	kg.tk; X
�;m
tk
; y

�;M
kC1.X

�;m
tkC1

//�˛ �pk.X�;m
tk
/j2

and define y�;Mk .�/ D Œ˛Mk � pk.�/�C? .

Error Analysis. We now turn to the error estimates. The analysis combines the
BSDE techniques (a priori estimates using stochastic calculus), regression tools as
those exposed in Sect. 5.3.2, but there is a slight difference which actually requires a
significant improvement in the arguments. Since we use a single set of independent
paths, the “responses” .y�;MkC1 .X

�;m
tkC1

//1�m�M are not independent, because of their

dependence through the function y�;MkC1 . To overcome this interdependence issue in

the proof, we shall replace the random function y�;MkC1 by a deterministic neighbor:
of course, there is a complexity cost to cover the different function spaces in
order to provide close neighbors, and the covering numbers are well controlled
using the Vapnik–Chervonenkis dimension, when the function spaces are bounded



174 E. Gobet

(Proposition 20). This is the technical reason why we consider bounded functions.
We now state a result regarding the global error, see [30, Theorem VIII.3.4] for full
details.

Theorem 25. Under the previous notations and assumptions, there is a constant
C > 0 (independent on N ) such that we have

max
0�k�N EjY �tk �y�;Mk .X�

tk
/j2 � C

N�1X
kD0


N

Kk

M„ƒ‚…
statistical error

C min
�2˚k

Ejy�k .X�
tk
/� �.X�

tk
/j2

„ ƒ‚ …
approximation error of functions class

�

CC max
0�k�N

r
Kk log.M/

M„ ƒ‚ …
interdependence error

:

When the Z-component has to be approximated as well, the estimates are slightly
modified, see [54] for details.

Parameter Tuning. We conclude this analysis by providing an example of how to
choose appropriately the parametersN , Kk and M . Assume that the value function
y� is Lipschitz continuous, uniformly inN (which usually follows from a Lipschitz
terminal condition). Our objective is to achieve a global error of order " D 1

N

for max0�k�N EjY �tk � y
�;M
k .XN

tk
/j2, i.e. the same error magnitude than the time-

discretization error.
For the vector spaces ˚k , we consider those generated by functions that are

constant on disjoint hypercubes of small edge. Since X� has exponential moments,
we can restrict the partitioning to a compact set of R

d with size c log.N / in
any direction, and the induced error is smaller than N�1 provided that c is large
enough. If the edge of the hypercube is like N�1, the vector spaces have dimension
Kk 
 Nd up to logarithmic factors: then, the terms from approximation error of
functions class are O.N�2/ and they sum up to give a contribution O.N�1/ as
required. A quick inspection of the upper bounds of Theorem 25 shows that the
highest constraint onM comes from the statistical error: we obtainM 
 cN 3Cd , up
to logarithmic terms. The complexity of the scheme is of orderNM (still neglecting
the log terms), because the computation of all regression coefficients at a given date
has a computational costO.M log.N // due to our specific choice of function basis.
Hence, the global complexity is

C 
 "� 1
4Cd

up to logarithmic terms. Not surprisingly, the convergence order deteriorates as the
dimension increases, this is the curse of dimensionality. Had the value function been
smoother, we would have used local polynomials and the convergence order would
have been improved: the smoother the functions, the better the convergence rate.
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In practice, the algorithm has been performed on a computer up to dimension
d D 10 with satisfactory results and rather short computational times (less
than 1 min). There are several possible improvements to this basic version of the
algorithm.

• We can use variance reduction techniques, see [8, 9].
• Instead of writing the DPE between ti and tiC1, it can be written between ti and
T : it has the surprising effect (mathematically justified) to reduce the propagation
of errors in the DPE. This scheme is called MDP scheme (for Multi step forward
Dynamic Programming equation) and it is studied in [39].

Complementary References. For theoretical aspects, see [16, 56, 59, 61]; for
applications, see [17, 18]; for numerics, see [5, 7, 11, 14, 32, 40, 54, 69]. This list
is not exhaustive.
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