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PREFACE

1. Introduction

1.1. Background: The theory of semi-martingales is a major part of the
general theory of stochastic processes. This theory has undergone massive
growth during the last two decades. Much of the impetus for the rapid advances
in this branch of pure mathematics comes from efforts to solve applied problems.
For example, the theory of stochastic integration relative to semi-martingales is
the right tool for the analysis of stochastic dynamical systems and so for a large
class of studies carried out by theoretical physicists, electronic engineers, system
and control theorists, probabilists and statisticians. A semi-martingale is in fact
a general model of the engineer's "signal plus noise" and the statistician's "trend
plus random fluctuations".

1.2. History: Following the work of Paul L6vy and Joseph Doob, the epoch
making works in the general theory of stochastic processes are due to Paul Andre
Meyer [190671, all his papers in the 18 or so Strasbourg seminars in probability
(especially, No. 10), Kunita and Watanabe [19067], Meyer [1973], Dellacherie

*, [1972], Dellacherie and Meyer [1975, 1980] and Jacod [1979]. For anyone
"* interested in reading into the last two decade's progress in the theory of semi-

martingales. however, it must be understood that the principal original source is
the collection of Strasbourg S6minaires. These seminars are published by
Springer-Verlag in the Lecture Notes in Mathematics Series. The Universit6 de
Strasbourg S6minaire de Probabilit6s not only contain the modern theory of
semi-martingales, but also retain the false starts, the subsequent alterations to
the "correct" directions, the seemingly interesting and possibly uninteresting
concepts and the "ripening" of proofs and techniques that are characteristic of
any developing mathematical theory. For example, see the Universit6 de
Strasbourg S6minaire de Probabilit~s in 1967, 1970, 1975, and 1980 for successive
accounts of stochastic integration; the first three were given by Meyer. It is a rare
thing to be able to observe the evolution of a new theory and to see it mature in
such a short period of time. Most of the credit for this rapid development
probably belongs to a group of predominately French mathematicians led by
Paul-Andre Meyer and loosely referred to as the "Strasbourg School".

M6tivier [1982] gives a slightly different emphasis to the subject than the works
of those previously mentioned. He starts his work with quasi-martingales and
bases the entire subject from martingales to the stochastic integration of semli-
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martingales on the so-called Doleans measure. This is a very elegant
development. The use of the Doleans measure, to some degree, brings stochastic

integration within the domain of classical measure theory, a fact that will please
a large number of mathematicians. At the same time, MNtivier's approach

retains the stopping time flavor of the Strasbourg School. The additional

distinctive feature of this excellent work is that most results are formulated for
lBanach valued processes, thus providing a theory applicable to multi-dimensional

processes.

An additional book, in the spirit of Mftivier, has recently been published. Kai Li
Chung [1083], together with Ruth Williams, has written a clear and concise work

on stochastic integration. Since it is anchored in all of Chung's other works and

those of J. Doob it is worth reading. The only shortcoming from the standpoint
of this note is that it only considers martingales with continuous paths.

Gopinath Kallianpur's 1980 work on stochastic filtering theory also skips the

point process case. But it is worth reading, if only to appreciate the maturity of

the continuous parameter filtering problem and the clarity of Kallianpur's style.

The principal study of point processes from the standpoint of martingales is

'Point Processes and Queues' by P. Br6maud, 1981. This is an excellent treatise
on the theory of martingales applied to queuing and the filtering problem for
point processes. Br~maud develops his theory from first principles, relying on

, Dellacherie's Dual Previsible Projection Theorem rather than the Doob-Mever

Decomposition theorem and the extensive recent developments in stochastic
integration relative to semi-martingales. It is the best introduction to the subject

from the standpoint of applications and much of what will follow in this note
concerning filtering is borrowed, in one way or another, from the ground-breaking
work of Brfmaud since 1072.

Outside of some examples illustrating the methodology, a few simple results in

Chapter 1 and a personal viewpoint, all of the mathematics in this note is known.
The opening Chapter introduces a discrete parameter version of the martingale

calculus that will be introduced in the remaining five chapters. The purpose of
this Chapter, and its threads into the later sections where the continuous

parameter model is studied, is to provide some intuition and background for the

study of these technically difficult subjects. Starting from first principles, many
of the hard to reach concepts of the continuous time model are almost trivial in

the discrete model; certainly, the proofs and t,chnical details are element ary. The

case of discrete parameter point processes are of particular interest (Section 1.10).
One can only wonder why this material is not written down somewhere. In nv)st

instances results about such processes follow from the general theorv in :I

iv
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relatively straight forward manner (e.g., Section 4.7 of Chapter 4), but that does
not replace the insight obtained from deriving these results directly. Moreover.

having to go to the general theory of marked point processes in order to solve an
applied problem involving discrete parameter point processes seems a bit
excessive and would certainly inhibit applications of the basic concepts of the

theory.

1.2.1. Contents: The six chapters contain foundation material on stopping
times, filtrations, various types of function measurability, martingales, and a brief

description of integration relative to martingales. These chapters are meant to
constitute a brief survey and introduction to this material. Therefore, proofs are
given only when they pass loose criteria based on brevity, insight and simplicity.
Chapter I contains a brief introduction to nonlinear filtering.

'"here are two excellent surveys on martingales and stochastic integration. One,
by C. Dellacherie [19781, concentrates on stochastic integration. The other, due to
A.N. Shiryayev, is very broad. Both of these papers are true surveys in that they'
tell what has been accomplished in these areas and appropriately assume that the
reader has some understanding of the area, especially probability theory and
stochastic processes and is an active mathematician. The present note, on the
other hand, is meant to be both a survey of recent developments in this area and

an introduction to the basic theory. As such, definitions observe the
mathematical traditions of such things, examples and counter examples are
supplied to aid in the understanding of new objects defined, and Theorems.

Corollaries and Lemmas are rigorously stated. But complete proofs, sketchs or
indications of proofs are given only when they are relatively easy and
informative, or when they illustrate the meaning of newly defined concepts.
Chapter 6 is the chapter with the most, proofs simply because it is impossil)le to
have any kind of understanding of the stochastic integral without them. One of
the reasons this is true is that most readers of this note will have a strong
intuition built on classical theories of integration and this knowledge, combined
with the fact that notationally most integrals look alike and have similar
properties, will mislead rather than support their understanding of the stochastic

integral.

1.2.2. Purpose: The primary purpose of the note is twofold: (i) To summarize a
recently evolved theory and indicate how it might be applied to some BRL tasks:
(ii) To form a foundational document, a common ground for an interdisciplinary

group within the CSM branch of BRL-SECAD, all of whom are concerned with
various mathematical aspects of stochastic network problems in Army
Communication, Command and Control.

V
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SRVEY AND INTRODUCTION TO STOPPING TIMES,

\L-k\RTINGALES AND STO('I L\STIC' INTEGRATION

('hapter 1. A Discrete Time Model Of Martingale Calculus

1.1. Introduction: This first section is meant to be a discrete time model for
most of the of the topics in this note. The initial purpose of this section, though.
was only to guide the reader ( and writer ) through the intricacies of stochastic
integration by first studying martingale transforms ( stochastic integrals for
discrete time processes ). This led to introducing the quadratic variation and
variance processes, and the original Doob decomposition of submartingales.
Before long it was clear that most of the subsequent topics would be much easier
to discuss, in the sometimes sketchy manner appropriate to a survey and
introduction, if one could lean on an intuition built on the sequences of random
variables. Thus the present form of this section became an attempt to provide
such an intuition or background before launching off into the much more
sophisticated concepts required by processes indexed by a continuum.

This Chapter is not meant to be a summary of the theory of martingale
sequences. This subject is huge. For an almost flawless treatment of this theory
one would surely read Neveu's book [1975] or Meyer's [1973] Springer-Verlag
monograph. For a treatment of martingale sequences that has a large number of
examples and gives a very readable account of the theory, one should see Karlin
and Taylor (1975). Rather, this Chapter is an attempt to give a brief description

of a "discrete time martingale calculus", applicable to the study of discrete
(stochastic) dynamical systems (Section 1.10).

It may also prove useful to see how a few of the concepts introduced here must
be modified when "time" becomes non-denumerable, most notably the concept of
'previsibility". It took many years for the role of such processes to be

understood. In Meyer's 1967 book, he talks about 'natural" processes instead of
previsille ones. The connection between the two was made in an elegant paper
by KM. Rao (1969), but again only the Strasbourg Seminars (Meyer (1970)) show
how the importance of the concept emerged. By the time one reads Dellacherie
and Meyer (1980), previsible processes are referred to as the ''Borel" functions of
the general theory or stochastic processes.

.Lo.
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i.2. Filtrations and Stopping Times: Let Z be the set. of non-negative

integers and let (QH,P) denote a probability space, where H is a a-algebra of

subsets of 0 and P is a probability measure on H. A sequence, G ((r, 11(Z). f

sub o-algebras of H is called a filtration, if (relative to set inclusion) the (;, are

I'-" nondecreasing functions of n. We will assume that Go is complete, in the sense

that it contains all subsets of events (i.e., members of 1i) which are assigned

probability zero by P. G , will denote the smallest c-algebra containing all the
Gn: G IZ a U Gk (G, is a sub-o-algebra of H.)

k>O

Perhaps the single most important concept in martingale theory is the notion of

stopping time. This is more evident in the continuous case than here. But even

here where all we are trying to do is lay a foundation of sorts for things to come.
this notion plays a fundamental role. Stopping times are defined relative to

filtrations, so to motivate the definition and at the same time give a concrete

example of a filtration, we first consider the following

Example: Let X = (Xn, n = 0,1,2,...) be a sequence of random variables

executing a symmetric random walk on the real line, starting from the origin

hence, X0 = 0 ). For definiteness, suppose that Xn represents the value of a

game at its nth trial and Xn = XnI + 1, and X, = Xn-1 -1, each with

, probability - Let Go = { O, } and Gn denote the smallest a-al-ebra

rgenerated by the Xk, 0 < k K n • Gn:=U{Xk,O<k<n). G1 is the family
consisting of the empty set and unions of the partition { w' XI(w)= 1 ,.

.- { w • XI(w) = -1; G is the family consisting of the empty set and unions of the

partition

{ w'X(w) =-1, and X2(w) =-2 ,

{ w X1 (w) =-1, and X2 (w) -0}.

{ 'X 1 (w) = 1, and X,(w) =01,

{ w'X 1(w) =1, and X.,(w) 21.

Notice that the union of the first two of these events and then the union of the

S* -sCOnd two give the events that make tip the partition defining (. Thus. e

have that ('0 C G1 C G,. The remaining Ck are defined in a similar fashion and

-nonotonicit v continues to hold. G = (G,) is therefore a filtration. This is anI! example of a special type of filtration called variously the natural filtration or

-d 2



the internal history of the processes X, or the filtration generated by X.

Now, for each w(Q, let T(w):= min{ k XkW)I = 2 }, if {...} is not empty and

T(w):----o ,if { . }=O. T is the first timr hat the process, X, takes on the
value plus or minus 2. T is a mapping of f, nto the extended, nonnegative, real

1-: line, R+:=[0,oc], with the property that th.e event [T<nl:={w:T(w) n} is a

member of G n.To see this it is enough to look at a couple of cases; the formal
induction will be clear. Explicitly, [T<0]=[T<1]=, so these two events are
contained in G o and G 1. Since [T<2]=[X1 =-I,X=-2]U[XI=,X-=21, we have

[T<2]EG 2 .Viewing the family of events, G , as the history of the process up to

"time" n, this means that the value of T at time n depends only on history of

the process, X, up to and including time n. In this sense, the extended valued

random variable T is said to be a 'stopping time' relative to the filtration
history ) G. Contrast this with the variable, S, defined by setting

S(w):=max{k:l<k<5, I Xk(w) 1-=21, if such a k exists and oc otherwise.

Clearly, the values of S depend on the entire history of the paths, n -- Xn(W), of

the process X. Therefore. S is not a stopping time relative to the filtration G.
according to the follow ;g

1.2.1. Definition: A mapping T from Q to Z := Z u {oo} is said to be a G-

stopping time (optional time) if

{.w I T(w) = n I cEG

for all n in Z. When T is a G-stopping time, the o-algebra, GT, of events that

occur prior to T, is defined by setting

GT = { BE G,, I Bf[T = n]EGn, for all n in Z}.

By definition, IT=nl is in G,, for all n in Z, so that I T = oc ], the complement

of all these events, is also an event in G. Consequently, the mapping T:fO-Z is

G. -measurable. Hence, T is a random variable on (0, G) and so on (fH).

Finally, it is immediate that T is a G-stopping time iff [T<nlcG n for all n in

Z. Just notice that

[T<n] - ( U [T=k])(G(,
k=O

3
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for all n, since IT = kIcGk is contained in Gr, for all k<n. Conversely, [T = nj

[ [T < n] - [T < n-1] is in G-; . More trivial, but of some interest for later

comparison to the situation when the stopping times are R+ valued is that

[T<n]tG, iff [T<n]EG_,

We will return to the topic of stopping times in general after a few more

definitions. In Chapter 2, where the model is more complex, we will give several

more examples.

1.3. Stochastic Processes, Previsibility and Optionality: Let Z be the set

of non-negative integers. A sequence, X = (Xn, ncZ), of mappings of fQ into the

set of real numbers is called a real valued stochastic process if for each n, the

mapping, w- Xn(w), of Ql into R is H-measurable. That is, for each n in Z.

{w f : Xn(w)cBj(dI, for all real Borel sets, B. Of course, this is just the statement

that for each n, Xn is a real valued, random variable on the measurable space (0.

H).

Further, X is said to be G-adapted , if Xn is Gn-measurable for each n in Z. If

X is adapted to G, then we also say X is observable relative to those processes

which generate G. It is useful to realize that if X is G-adapted, then measurable

functions of successive finite segments, g(XI, ,Xn), of X define G-adapted

processes.

Convention: Throughout this Chapter, whenever processes are discussed it will

always be assumed that they are adapted relative to the same fixed filtration.

unless stated otherwise. This is no restriction in generality since we have not

excluded the trivial filtration, (Gn,ncZ), where Gn = H for all n.

For the discrete time processes, the important notion of "previsibility" takes on a
very simple and intuitive meaning: V = (Va, n in Z) is said to be G-previsible.

if each random variable Vn is Gn-I measurable. This description of previsibility is

intuitive since if a process, (Vn), is G-previsible, when Gn = O7(Xk, k=01 ..... n).

for some process, X, then Vn is a Borel function of Xk, for k=O,1 ..... n-I. Thus,

the value of the process V at time n is completely determined by the value of X

at the times 0,1,2 .n-I. That, is. just before time n ( prior to n ) the value of V1
is known: it is previsible. "Previsible" is the French term; in English it is usually

translated to "predictable". WVe use the former term because the notion f pr,'d-

ictabilitv as a technical term carries too many possible meanings (e.g.. it ild,

sense stationarv time series analysis) and the English interpretat i(n of the term
"previsible' . viz.. "being visible bef re", rather precisely describes tihe inten(I,,l

' d- ° " .
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technical meaning.

Later in this chapter we will need a reasonably precise understanding of the
statement that a (discrete parameter) process, X, is "evaluated at a stopping
time", XT(w)(w). An immediate difficulty that one might notice is that stopping
times take values in Z+, while for any w in fQ, n -- Xn(w) is defined only on Z+.

This can be overcome by setting, for example, the value of the process at
"infinity" equal to zero, for all w in Qt. This is equivalent to writing XT(W)(w)

I[T<o.] in place of XT(w)(w). As it is convenient, we will use one or the other, or

just qualify appropriate statements by saying " on [T < oc ]", while writing
either XT(w)(w) or XT. In any case, we then need to know what conditions must

be imposed on X so that XT is a random variable. Hence, we must first say what
is meant for a random variable to be defined on a subset of Q. So let f2o be a
subset of Qt of the probability space, (Q, H, P). The trace a-algebra, denoted
Hnfo, is the family { A f. : AH } of subsets of 00,. Of course, 0 may not

belong to H, but if it does, then the trace o-algebra is just { A AH, A a subset
of Q. }. Now we are all set: X is a real valued random variable on a subset,

0,, of Q ( on (00,, Hfto, P) ) iff X(B) c Hnfto for all real Borel sets, B.

Further, we can talk about a G-measurable random variable or fi,-ction
defined on a subset, Q.o, where-G is a sub o-algebra of H, by replacing H by G in
the definition above. Then the following result holds ( Neveu [1975] ).

1.3.1. Lemma.: f X is a G-adapted process and T is a G-stopping time, then the

random variable XT, defined on {w: T(w) < oo} by setting XT(W) := XT(w)(w) is

GT-measurable.

The random variable of this definition-theorem is obtained as a result of
evaluating the process at the stopping time T. Perhaps the most important
example is that of a stopped process. If T is a stopping time, then
Tn (w) := (T n)(w):=T(w) n, the minimum of numbers T(w) and n, defines a
stopping time for each ncZ+. Let XT(w) := XT.(W). We define the process X

stopped at time T by setting XT - (XT ' ncZ+).

The paths, n - XT(w), of the stopped process are constant to the right of the
interval [0, T(w)]. Stopped processes are fundamental to modern martingale
theory. Later in these notes, the notion of path-wise "localization" of a process
is introduced, whereby properties such as "boundedness" are attributed to the
process "locally" in the sense that the stopped process is bounded. For example,
from elementary calculus, a path-wise continuous process is locally bounded.
This technique becomes a powerful tool for extending certain results to more and

5



more general classes of processes and will be used extensively in Chapter 6.

Another detail that we need throughout is a way to say two processes are
equal". That is, we need an equivalence relation on a set of processes. Let X

and Y be two discrete parameter processes defined on the same probability space

(9. H. P). Since any countable collection of events of P-measure zero is again an
event of P-measure zero, the statements that

P( Xn n) - 1,nZ+ and P(X n = Yn nZ+ 1

are equivalent. This is not true in the continuous parameter case considered in
Chapter 2, where processes having the first property are called "modifications" of
one another and those having the second are called indistinguishable. These
concepts being equivalent for discrete parameter processes, we will only use the
latter for now. Clearly, indistinguishability determines an equivalence relation on
the set of all processes defined on (Q, H, P). So any processes or random quanti-
ties which are discussed in this chapter are only specified to within membership
in a particular equivalence class. On occasion we will emphasize this point by
writing "a.s. P", meaning "almost surely relative to the probability P". or. "with
probability one" next to equalities and inequalities involving random quantities

S\With an eye toward later chapters, we also remark at this point that a process

which is indistinguishable from the process which is identically zero is said to be
evanescent. Subsets of Z+ X f2, called random sets, are said to be evanescent
if their indicator functions are evanescent.

I.. Transforms of Stochastic Processes: Let V = (V,nZ) and X-
(Xw,nEZ) be two processes. Extend the time domain of processes on Zxf? by set-
ting X- 1 = 0 for all w in f. Set AXk = Xk - Xk-1, then in particular, AX 0 = X0

Given two processes X and V, define the process V.X on Q by setting

n

% . (V.X)" (w) := i'k (w) A Xk(w) )

SeN for all n in Z and each wE9. V.X is called the transform of X by V. When we

Wwant to use the transform of X by V to anticipate results about, stochastic
integrals, we will sometimes call this transform a discrete integral of V with

.. . . . , . . . ,. . . . . .6
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respect to X. In this case we have in mind that Vk = vtk and Xk = Xt,.

k- L2 ..... n, where O=t0<tl< .. <t,=t for some continuous parameter

processes v and x.

Equation (1) is also written in the forms

n

(V.X)n (w) = VO(W) X 0(w) + Z Wk(w) A Xk(w) (2)

- (V.X)nl(w) + V n (W) Xn (w). (2.1)

As a discrete integral it is clear that the transform in (1) is nothing more than a
particular form of a Darboux sum associated with a Riemann Stieltjes integral.
As such, in later chapters of this note, it will become the major building block of
stochastic integrals relative to various types of (continuous time) processes.

1.5. The Quadratic Variation and Variance Processes: We now introduce
two more processes that play an important role in stochastic integration. These
processes also form a link back to classical probability and statistics.

Again let X -- (Xn, ncZ) be any process and define the stochastic process, [X,X].

on fQ by setting

n n

[X,X]n (w) := 102 (w) + E ( Xk (w) - Xk- l (w) )2 = E ( A Xk (w))2, (3)

1 0

for all n in Z and each w(f. ( Recall that X_ := 0. ) The increasing process
[X,X] is called the quadratic variation of X. Some writers ingeniously call it
square brackets X.

If Y is any other process parameterized by Z, we define the cross quadratic
variation, [X,Y], by polarization

[X,YI := - IX+Y,X+ ] +- [X,X - [,] Y).

2

By elementary manipulations, this definition is equivalent to setting



[x.YA := _ Xk -11-k (5)
0

Now we assune that E(Xn2) < Dc for eachi n in Z: that is, X LIj2([), Let (

((;n, n(Z+) be the underlying filtration for the processes in this section and define

G - -1 G0.Then set

n
<X,X>n := V E{( AXk) j Gk-1 } (6)

0

for each n > 0. For now, it is appropriate to call <XX> the variance pro-
cess. Clearly, both <XX> and [X,.] are increasing processes. It is important
to note, however, that [X,XI always exists, but <XX>, as it has been defined.
exists only when X has finite second moments. Finally, note that <XX> is a
G-previsible process, whereas [X,X] is only ,-adapted,) X NA(; -odafW-

All.. . The covariance process, <XV> is defined by polarization, as in the case of

the quadratic variation, and leads to a formula analogous to equation (5).

1.5.1. With the notational agreements made at the beginning or the section,

notice that we can write any process in the form

nn

X - AX k = ' k,
0 0

where the sequence dk:=AXk is called the difference process associated with X.

1.5.2. Example: Assume, for this paragraph, that the dk a~e independent of
. k-l, with do independent of Go, and have zero mean value and finite variance.

45-a n
. 2. Then E(d [ Gn2 n } = Ed2 = ak2, so that <XX> 2. That is,

0<XX> is the variance of the process X. Thus, if X n is a sum of zero mean ran-

dom variables which are independent of the "past" and have finite variance, then
<X,X> n reduces to an increasing, deterministic process which is equal to the
variance of Xn. For example, if X is the random walk of the previous example.

then the (dk) are independent, symmetric Bernoulli random variables.

Further, if Y is another process whose difference process has the same properties
as those of X in this example, then it is easy to see that <X,>, is juist the

8
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covariance of X and Y, at time n.

Of course, <XX> is in general not a deterministic process, but it is always an
increasing stochastic process. As such, it is perhaps more honestly referred to as
a "stochastic measure" in that its properties derive more from the fact that, on
each path, its increments define a positive measure of the algebra of all subsets of
Z.

1.6. Martingales:

1.6.1. Definition: Let (fH,(G),P) be a filtered probability space. A G-
martingale is a sequence (Mn, ncZ) of random variables on f1 with the following
properties:

(a) M = (Mn(w)) is adapted to G

(b) E{IMnJ} < oc, for all ncZ

(c) E{M n G , } -- MnI, a.s.P,

for all n in Z.

By definition of conditional expectation, condition (c) is equivalent to requiring
that for all AeGnI

(c' ) f M, dP = f M_- dP.
A A

If the equality in (c) or (c') is replaced by !<, or >, then M is called a G-
supermartingale, or a G-submartingale, respectively. When the underlying
filtration, G, remains fixed in a particular discussion we will often drop the
qualifier G and just write "martingale" or "supermartingale" or "submartingale".

It follows from the definition that a martingale satisfies

Mk = E(,N n I Gk),

for every pair, (k,n), of nonnegative integers with k<n, not, just, neighboring

integers. Similar statements hold for supermartingales and submartingales. To



see this in the case of supermartingales just use the fact that filtrations are

increasing and conditional expectations are smoothing operators and proceed as

follows. \n>E(M\n+ I Gn), so that if k<n

E(M n I G) _ E(E(Mn+1 I G) I G) = E(Mn+I Gk).

Thus, (E(M n I Gk),n>k) is a decreasing sequence. Hence, supermartingales

decrease in conditional mean and so

Mk = E(Mk I G) E(Mn I Gk).

Similarly, submartingales increase in conditional mean and martingales are con-

stant in conditional mean with the same obviously being true in the case of the

unconditional means.

1.6.2. Remark: There are some immediate results about martingales that are

simple to verify and are used constantly. As usual, a single underlying filtration
is assumed in each statement.

o If M and N are martingales, then M + N is a martingale.

o If 0 is a real valued convex function defined on R1, M is a

martingale and O(Mk) has finite expectation, then (O(Mk) is
a submartingale.

o If M is a martingale which is square integrable relative to
P, then M2 - [N,M] is a martingale. Also, M 2 

- <M,M> is a

martingale.

All but the second statement follows by straightforward computation using the

(lefinition of the quantities involved.

The second statement requires Jensen's inequality. This is based on a result

about real valued convex functions which states that there exist afline map.s.

On = an x + bn , such that 0 -- sup On. Tsing the monotonicity and linearity

of the conditional expectation operators, we obtain

E( O(X) G ) > E( n (X) I o =On(E(X I G )).

10o,



Jensen's inequality follows: E ( o (X) I ) > E ( X I G )). By replacing
X and G by Nik and GkI, and using the fact that N1 is a G-martingale, we obtain
the result. Our applications include the important case 0 (x) = x-.

We have encountered some basic martingales earlier. Let X = (X,) be written as
in equation (7), and give the sequences of differences (dk) the assumptions in the
paragraph following (7). Then X is a martingale, since

E{ Xn I Gn=t } ---- E{ dj I Gn 1 } (8)

and

E{ dn I Gn - 0, E{ Xn-1 I Gn_ 1 } Xn-1, a.s.P. (9)

The first of these equations is due to the fact that we took the difference sequence
to be independent of the past and have zero expectation (i.e., the difference
sequence is centered at conditional expectations). The second is a result of the
fact that X is adapted to G. Because then, Xn-1 is Gn-l-measurable, and it is a
property of conditional expectations that E{fIK} = fE{LIK} = f, a.s.P, whenever
f is K-measurable. Putting equations (8) and (9) together verifies the claim that
X is a martingale.

Finally, it should be clear that we didn't need the finite variance assumption on
the difference sequence; this was only assumed in the original example because we
wanted to give an example about the variance process. In fact from equation (8)
it follows that if the dk have finite expectations and are centered at expectations
conditioned on Gk-I, then X is an F-martingale.

1.7. Doob's Theorems: Another example of a martingale does assume that the
Xn has finite variance, but that is all. Then

[XX] -<X.X> (10)

is a martingale relative to the filtration G. This follows directly from the explicit
form for the quadratic variation and the variance process for exactly the reasons
that our first example was a martingale. Although this is true in the continuo0us
case also, it will follow from the Doob-Meyer decomposition and will cons !itlite
the definition of the process <X,X>.

il



It will be beyond the scope of this note to even outline the proof of the continu-

ous time Doob-Meyer decomposition. Therefore, we will give a proof of the

decomposition theorem in the discrete case. This has the added advantage that it
is simple to prove and its proof, along with the statement of the result, will allow

us to introduce a number of concepts which are quite difficult in the continuous

time analogue.

1.7.1. Lemma: (Uniqueness of the Doob-Meyer Decomposition)
If a process X = (X,, nEZ) can be written in the form X = A! + .4, where M -

(Mn ) is a G-martingale and A = (An) is a G-previsible process, with Ao = 0, then

the representation is unique (up to indistinguishability).

Proof: Suppose that two representations exist : X = M + A = m + a, where m

and a have the same properties as M and A. Then M- m---A- a demands that
M - m is a previsible martingale. This implies that M n - m= E{ In-m IGn 1

} M_ - m 1. Hence, N% - m, -- M0 - m0 . Finally, since the last quantity is

equal to Ao - a0 = 0, M n = mn, a.s.P; hence, M - m is evanescent. This of course

implies the same for A - a.

Notice that we have also proved the interesting and useful fact that previsible
martingales are constant a.s.P. A similar statement is true in continuous
time (Chapter 4), but requires an enormous amount of machinery to prove.

1.7.2. Theorem: (Doob Decomposition)

Let X = (Xn) be an LI(P), G-adapted stochastic process. Then there exist

processes Al and .4, where M is a martingale and A is previsible with A0 = 0.
such that X = A! + A. This representation is unique (modulo indistinguishabil-

. ity).

13Lc'use of the previous Lemma the proof of this statement just consists in

observing that we can write

Xn - Xn-1 -- Xn - E(X, I G.-, + E( X. X_,I '(i)

It follows that X M M + A, whereI n
M. X0 + Vj (Xk-E(Xk Gk-)) (12)

k=

12
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and

n
An -- E( Xk -Xk-1 I Gk 1 ), A0 = 0. (13)

k=

Clearly, \I is a martingale and A is previsible. Of course, all these equations hold
with probability one only.

The process, A, of Doob's decomposition is called the "compensator" of the pro-
cess, X, according to the following. Let X be a P-integrable process. Then the
process, X . defined by setting AX n -- E(AXn j Gn 1 ) for n>1, X 0 = 0, is
called the compensator of the process, X. If in addition to P-integrability. X is
C-adapted, then X is obviously characterized by the following three properties:

(a) X - X is a C,-martingale:

(b) X is a G-previsible process;

(c) N 0 = 0.

Compensators will be examined in some detail in Chapter 4.

The following corollary is immediate and is of the form stated in the sequel,
where the index set is a continuum:

1.7.3. Corollary: (Doob-Meyer Decomposition Theorem)
If X is a G-subinartingale, then there erist processes Al and A, where M is a G-
martingale and A is an increasing, G-previsible process with Ao = 0, such that

X = M + A. uniquely (modulo indistinguishability).

The only part that now requires proof is the statement that A is an increasing
process. Since X is a submartingale, this follows immediately from the definition
Of A in equation (13) written in the form An = An-, + E(XnIGn) - Xn- 1  An , ,
a.s.P. (When A0(w) = 0 and An(w) An_,(w) for P almost all w in Li and
n> 1, the process A is said to be an increasing process.)

1.7.4. Remark: Immediately following the definition of martingales we pointed
out that when 1 is an L,2 martingale (so that by Jensen's inequality, \1 2 is a sub-
martingale), both M [MMJ and I2  <MM> are martingales. Since
<MM> is previsible, it follows from the uniqueness of the Doob-Niever Decom-
position that MI2 = m + <MM> is the decomposition specified by the

13
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(orollary. the Doob-Meyer decomposition of M2. Thus, <M, MI> is a preNibsille
process which "compensates*' for NI2 not being a martingale, even though I ,
one. Indeed. the process <MM> is the compensator of M2. This is b c.ausl,

E(A(MnI G_) = E( (AMNn)2 I G,_) = <\IM>.

1.7.5. Another way of visualizing the DMD Theorem is to recall that ()I the
average, sulbmartingales ris,,. That is, n - EX is an increasing function on .+

The I).ID Theorem says that A accounts for this proclivity to rise by previsibly
compensating X to produce a martingale, X - A, which of course has constant
ex pect at ion.

1.7.6. Remark: Processes of the form X = M + A, where M is a martingale and
.\ is an increasing process, are special cases of a class of processes called semi-
martingales in the sequel. When the decomposition is unique (to within dis-
tinguishability), then X is called a special semi-martingale. Hence, the Doob-

Meyer Theorem states that submartingales are a particular form of special semi-
martingale. This is a very convenient interpretation from the standpoint or
applications since a semi-martingale is just a mathematical model for a dynami-
cal system which consists of a "signal" or "trend" term, A, and a "noise" term.
M.

It is easily seen that the Doob-Mever Theorem also holds when X is a supermar-
tingale. We need only write X -- IM - A in order to maintain the property that A
is an increasing processes. Again, on the average supermartingales fall and A
previsibly compensates to produce X + A. which has constant averages.

%i 1.7.7. Remark: Since engineers have been using the "signal plus noise" model for
decades, it is probably worthwhile to take a moment to understand why they
have been so successful (and to acknowledge the generality of their achievement).
The DMD Theorem states that any discrete time process with finite mean that is
observable relative to some filtration (flow of information, Wong 119731) is a
semi-martingale. In fact, if X -- (Xw,nEZ) is any finite mean process and (F ) is
any information flow, then the sequence () n), where Yn = E(Xn I Ff). (i.e., what
is observable about X relative to available information), can bo shown to he a
semi-martingale. It took mathematicians a while to understand all this and then
to do what their discipline demands, namely, explain the reason why "signal plus

noise' models were important, from a viewpoint other than "the model seems to
work". This note is in some sense shows the lengths to which mathematicians

have gone in the last 30 or so y'ears to explain the full significance of semi-
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martingales (in continuous timev), includirig their constrliction ()f aI calciilii., to

-t udy these processes in their nw st general form and at the same til me to( p r)v ii

SCicr1t ists with the correct tools to miodel stochastic dynamical systems. On ly
tme wIll tell whet her or no )the resuti ting mat hemat icalI thleory is technicall too

(lillicult for applications.

1 .7.8. We will now return to the initial reason for this chapter: to introduce arid
stutdy transforms of mnartingales, called martingale transforms. in an effort to
set an intuitive foundation for the development of stochastic integrals.

1.7.9. Theorem.
Let X be a mnartin gal. (superinartin gale, submartin gale). If V is a nonnegative,
prerisible process and the transform of X by V" is P-integrable, then VAN is a mar-
tin gale (supermartingale, sub ma rlin gale).

The proof of this very important result is an immediate consequence of the
second1 representation of a transform in equation (2):

E{ (N-.X)n - (V.-X)n-I I~ C- I E{ Vn ( Xn - Xn- (;.-I

=VnE( Xn - X- n1)

The right side of this equation = 0, < 0 or > 0, depending on whether X is a
martin gale, a supermartingale or a submartingale, respectively. The result fol-
lows since (V.-X)n-i is Gn-l-measurable.

1.7.10. Corollary:
If T is a C-stopping time, and X is8 a martin gale (supermartin gale, sub i)a rtin gale),
then the stopped process, XT, is a martin gale (supe rmartin gale, submFtartin gale).

It is easy to see that XT =V.X, when Vn = 11n:5T* To show that V is G-
previsible just write

[n T = (U [T ==k] )cG~

Thus, the indicator function of [n T] is GI 1 -measurable, so that V is (-

previsible. It only remains to show that XT is P-integrable. Since T(w)^n<n.
this a consequence of

15
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XT(w) I I Xk(w)
0

1.7.11. Remark: Subsets B of Z+Xf2 are called random sets. In the sequel
such sets will be called previsible random sets if their indicator processes,
(n,w)-B(n,w), are previsible processes. Anticipating a concept that will be
introduced in Chapter 2, we point out that if T is a stopping time, then random
sets of the form { (n,w) : n < T(w), (n,w) c Z+ X fQ } are previsible random sets.

This random set is a particular example of a stochastic interval, denoted
* [[0,TII. In this instance, we would write V = 1[10,T] as a process defined on

Z+ X 0. Notice that in the proof of the last theorem we wrote Vn = l[n<Tj

thereby defining the process V by means of a sequence of random variables on Q.
These two ways of defining the same process leads to nothing new in discrete
time, but once we enter the continuous time domain we will find that studying
processes as families of random variables will not be adequate. It will turn out
that stochastic intervals will provide an intuitive way of studying the measurabil-
ityv of such processes as a functions of two variables.

1.7.12. Remark: It is convenient at this point to add the following Corollary.
This form of Doob's OptionAl Sampling (Stopping) Theorem (1953) is not stated
in its most general form, but it is sufficient for our purposes. The boundedness
condition imposed on the stopping times can be relaxed; such a form of Doob's
theorem (in the continuous parameter case) will be stated in Chapter 2. Page 67
in Neveu [1073] contains the discrete parameter version.

1.7.13. Theorem (Doob's Optional Sampling Theorem).
If X is a martingale, and S, T are bounded stopping himes with S < T", then XS

and XT are P-integrable and

" E{ XT IS = XS, (a.s.P). (14)

T is a bounded stopping time if there exists a constant, K, such that, T(w) K

K for all w in Q.

1.7.1 1. For the proof, just set V n = '[S<n<T, then V n  l[.!5T] - l[n<_S
I 'sing the obvious linearity of transforms, and realizing as in the proof of the pre-

Jvious Corollarv that V.X is P-integrable, this Corollary states that Y := V.X is a
martingale. which satisfies Yn XT -X X S and, in this case, satisfies Y0 = 0.
Because of the boindedness condition, we can choose a positive integer m such
that it > max(S.T) on Q. Then Ym XT XS. Therefore, 0 EY 0 -Yr

,?_
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E(XT - XS). It is a simple exercise to show that E(XT) = E(Xs) is equivalent to
equation (14). Let A be any element in Gs . Define the stopping times S' and T'
by setting S' = SIA + I I and T' = TIA + m IA". Then S'<T', and so we

again have 0 = E(Xr -X s , ), which by definition of S' and T' can be written in

the following form: 0 = E( 1 A( XT - X S )). Referring to the definition of condi-

tional expectation, this last equation is exactly the statement in equation (1-4).

1.7.15. Remark: Recall the random walk example given at the beginning of this

Chapter. The symmetric random walk, X n, is a martingale and so

EX 0 = 0 = EX. If we define the stopping times T := min(n:X n = 1) and

S = 0, then S<T, but since P(XT = 1) = 1, we have that

EXT - 1 34 EX s = 0.

The problem is that T is not a bounded stopping time. Of course,
P(T<oc) = I since the random walk is recurrent.

1.7.16, Recall the decomposition given in the first remark following the Doob

Meyer Decomposition and apply the Optional Sampling Theorem to the mar-
tingale M. Then

E( XT - X S I Gs ) E( AT- As I Gs),

where S and T are bounded stopping times with S<T. Aldous (19811 then gives

the following partial converse to the Doob-Meyer Decomposition Theorem:

1.7.17. Corollary:
Let X be a submartingale with X0 = 0 and A a previsible process. If

-E XT = E AT, for all bounded stopping limes T, then .4 is the compensator of X.

For the proof, just set M = X - A. Then EM0 = 0, so that l.'IT = 0, for vach

stopping time T. As in the proof of the Optional Sampling Theorem,

E(NIT -M ) = E(I F (NIT - NS )), for all F in Gs. Hence, NI is a martingale
and. therefore, A is the compensator of X.

1.7.18. Remark: If X is a supermartingale, then the theorem continues to hold
with the equality in equation (Il) replaced by -<. Similarly. if \ is a subnm r-

tingale, then the equality is replaced by ->". To apprec'iate the inport ancv ()f

this result, it should be noted that Abraham Vad's th(4ry of sequential laslil
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is based on this theorem.

1.7.10. There is an extremely important collection of results on the convergence

of martingale (super and submartingale) sequences together with the fundamental

inequalities of Doob ( the Maximal Inequality) and others, that could be men-

tioned at this point. The interested reader should consult Neveu, 1975. Some of

these results will be mentioned in Chapter 2 and used in the sequel.

1.7.20. We now return to the martingale transform proper, and the quadratic
variation and variance processes.

1.8. Calculus of Martingale Transforms: One of the simplest and most, use-

ful relationships involving transforms is integration by parts. Let X = (Xn)

and V = (Vn) be processes on (f,Fc). Define the process X from X by setting

(XAk := Xkl. Then the integration by parts formula is

V.X)n(w) + (X.V)n(W) = V n (w) X n (w). (15)

The proof of (15) follows immediately from the definition of a transform by by

writing down the formulae for the left side of equation (15) and verifying that the

result is a telescoping sum that reduces to the product on the right side of (15).

Observing that transforms are bilinear and writing Vk = Vki + AVk, we see

that V.X = (V_).X + AV.X. Therefore, we can write the integration by parts

formula in the more symmetric form

Xn V = (N. X )n -  X_. )n + "Vk'Xk"
0

\Ve have already encountered the last term in this equation, namely the cross

covariation process corresponding to V and X. Thus, for future reference we
state the following

1.8.1. Theorem (Integration by Parts):

v. ( _. x ), + ( x_. V + [X,xl.

This form of integration by parts would coincide exactly with the f:imili:r

Riemann-Stieltjes or Lebesgue-Stieltjes form, if we had defined [X.X] as .1

18I.I
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summation from I to n instead of 0 to n. Then we would have the usual

Xn V, - X.0 V0 on the left side of the last equation. We will return to this topic

in Section 3.2.

1.8.2. Examples:

n

(1) Xn = _ dk , where the r.v.'s dk are arbitrary. Then, using integration by
0

parts,

xn = 2( x_.x) + [X,ln,

By substitution, into this equation we obtain the following well-known formula

from linear algebra:

n n
(Edk)2 = 2 dJdk + d,

0 0<j<k<n 0

a classical formula, but obtained here as the sum of the discrete stochastic

integral of X relative to itself and the quadratic variation of X! When we com-

plete Chapter 6 and have a stochastic integral for continuous parameter
processes, we will realize that this formula in X continues to hold in exactly the
same form. In particular, when X is the Brownian motion process, we will see

that [X,X](t)=t. So the formula will read

t

X2(t) - 2 f X(s) dX(s) + t
0

and Ito's stochastic integral will not follow the "usual" rules of calculus. Kiyosi

Ito, the creator of the stochastic integral relative to the Brownian motion process

B, a martingale, designed this integral to have the property that the process
t

t-+fg dB = (g.B)(t) is a martingale, for a useful class of processes g. This had
0

the consequence that a number of the rules of ordinary calculus do not carry over
to the Ito integral. The generalization of Ito's stochastic integral to one with a

martingale integrator (Chapter 6) retains these characteristics.

A Russian mathematician, R. Stratonovich, modified Ito's definition slightly and
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• -produced a stochastic integral which followed the usual rules but necessarily lost

the martingale property. This makes the above discrete application all the more

interesting: the "Ito" integral may have its most natural setting in the discrete

case.

It is an amusing exercise to define a discrete analogue to the Stratonovich sto-

chastic integral: Let X and V be arbitrary discrete parameter processes and set

n Vk + Vk-I
(V:X)n := E ( 2 ) AXk

0

Then one can immediately find the following relationship between the Ito and

Stratonovich transforms:

(v:X)n (V.X),- -LitX],.

S-The same relationship continues to hold between the Stratonovich and Ito sto-
chastic integrals in the case of continuous parameter processes.

In Chapter 6, after we have formally introduced the Brownian motion process

and stochastic differential equations, we will see that another correction factor

varises when one attempts to approximate an Ito stochastic differential equation

by replacing the Brownian motion term with a member of a sequence of smooth

processes. If this sequence converges to Brownian motion, then (under certain
conditions) the corresponding sequence of differential equations converges in the
mean to a process which satisfies a stochastic differential equation which differs

from the original one by a term called the Wong-Zakai factor (see E. Wong and

NI. Zakai [1965]).

We conclude this example by illustrating that the (discrete) Stratonovich integral
obeys the classical rules of calculus in a simple special case. Set V=X in the last
equation and substitute Xk = AXk + Xk1 into the integrand of our transform

on the right of this equation to obtain

2(X:X)° = 2(X.X)n + [X,X]° x.

The equality on the right is due to the integration by parts formula derived ear-

lier. So, as in ordinary calculus, the discrete "Stratonovich integral" of X with
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respect to X is just X-squared over 2.

(2) The following process, N, is called a discrete point process and will be the
n

subject of the end of this Chapter. Let Nn : _ _d k , where the dk are randm
0

variables with values in {0.1}, Bernoulli r.v.'s. Let (Fn) be a filtration and \k 
E( dk I Fk-1 ). A moment's reflection will lead one to conclude that

[N,N]n-- Nn

So, using the last theorem, we have the interesting, nonclassical formula

N2 = 2(N_.N)+ N.

Notice that this also gives us an example of a simple process whose variance pro-
cess is not deterministic:

n
<N,N> n = _Xk.

0

1.9. Properties of Martingale Transforms: We now collect some additional
transform properties which will play an important role in the chapter on stochas-

tic integration.

1.9.1. Theorem:
Let T be a stopping time and H, V, Y and X stochastic processes defined on the
same filtered probability space. Then

A(V.X) = V AX; (a)

[V.X,HY] = VH.[X,Y]; (b)

H.(V.X) (HV).X; (c)

V, X previsible --. V.X previsible; (d)

(V.X) - (V.XT) = (VT.XT); (e)

[V.X]T [VT, XT] = [V,XTI; (f)

(X )T - (XT)" (g)

1.9.2. Remarks: These statements are important for later developments of the
stochastic integral and its attendant calculus. In the discrete case the ease with
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which they can be proved belies their importance. But before demonstrating this

fact we will say a few words about their meaning. If we interpret the first state-

ment in continuous time, anticipating Chapter 6. with AY, = N't  t , where

= lir Y., and
S-t-

t

(V.X) = f V, dX,
0

then .(V.X)t = VtAX, means that "jump" points of the integral are due

entirely to the jump points of the integrator, not the integrand. The integrand

only affects the magnitude of the jump. The same statements apply to the

discrete parameter processes being considered in this chapter if we say that a

transform has a "jump" at time n iff A(V.X) n 3 0. The interesting thing to

note, here and as we pass through the various types of processes on our way to

the general stochastic integral, is that these and many other properties of
transforms continue to hold at each step. This is very important, because after

the Lebesgue-Stieltjes stochastic integral the definitions of "integral" may at first

bear little resemblance to the traditional notions of such things.

.As to the proofs of these statements in the context of this chapter, the first

amounts to noting that A(V.X) n is just the nth term of the sum, V.X .

Part (b) of the theorem follows immediately from (a). For simplicity take V=H
and X=Y. Since the general term of [V.X,V.X1 is ( A(V.X)n) 2 and this equals

(V ,.Xn)2 = V (AXn) 2 . Then (b) follows by observing that this is the general
term of V2 .[X,X1.

Parts (c) and (d) are immediate consequences of the definition of a transform. In
particular. Part (d) has the corollary that if T is a stopping time and X is previsi-

ble, then X T is previsible.
a',

Now Part (c) can be used to prove Part (e). For instance, to verify this claim.

take fin = I[T>n . I !sing Part (c), we obtain

(V.X)T = H.(V.X) = (ttV).X = (X-i1).X = V.(lI.X) = V.XT.

The rest of (e) is proved in a similar manner. Part (e) provides a mechanism by

which the stochastic integrals introduced in Chapter 6 are extended to larger

classes of integrators by localization and "pasting". It says that the transform of

X by V stopped at T is the transform of X, stopped at T. by V.

.2 '2
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The proof of (f) follows from similar observations. Again set I-tn = lT>nI.

Then

A[vT,XT] -- A[H.V,H.X] = (AH.V)(AH.X) = HAV AX = A[VX]T.

since by its definition T- = H.

Finally, the proof of Part (g) uses the characterization of compensators given in
Section 1.7.2, Part (d) and the fact that a stopped martingale is also a mar-
tingale.

1.10. Discrete Parameter Point Processes: We now introduce a discrete
parameter stochastic point process theory which parallels the continuous parame-
ter point process work done, primarily by Br6maud, from 1972 to the present.
The latter material considers mainly the case where the martingale compensator
of the continuous parameter point process is absolutely continuous relative to
Lebesgue measure: most applied works involving martingale techniques treat this
case. The necessary assumptions for the discrete parameter analogues of these
results and the exact form of their conclusions can sometimes be deduced directly
from this continuous parameter case and sometimes they cannot. In either case.
discovering the correct form and supplying a direct proof in the discrete parame-
ter case is usually quite simple (mathematically) and informative. As far as I can
determine, however, such an approach does not appear explicitly in the literature.
The basic mathematical foundation for the discrete case resides in a more general
part of the theory (random measures) than point processes with absolutely con-
tinuous compensators and presents an unreasonable technical and intuitive hurdle
for most applied probabilists, mathematicians and statisticians.

The only paper I am aware of that suggests the importance of working directly
with discrete parameter point processes is by T. C. Brown [19831. Brown's objec-
tive is to approximate continuous parameter point processes by the discrete case.
One of his results says, roughly, that a large class of continuous parameter point
processes can be approximated arbitrarily closely over intervals of random length
by a discrete point process. In a later BRL report, it is our intent to use some of
Prown's results together with the discrete point process calculus suggested here
and the limit theory developed in Aldous [1981] to approximate stochastic n(,t-
work models.

1.10.1. Definition: An F-adapted process, X = (Xn,(Fn)), where Xn : £>- I.0}
and X0 =0, is called a F-Discrete Point Process (DPP). \n - [(Xn I FI

is called the F-intensity of the DPP.
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1.10.2. Remarks: (1) Define To = 0, and for k > 1, k(Z+, set

T. := inf{ n(Z+:X n - 1 n > Tk-}

if } O, and -t ,herwise.

n

Define N n  VXk. Thln N __ ,ITn_. It is immediate that (Nn) and
k-0 k>1

(T) are equivalent representations of a DPP, (Xn). Note that (Tk) is a sequence

of F-stopping times, since [Tk!_n = [Nn>k](F n for all k>1.

n

(2) Set An = ZV'Xk. Then %I = N - A is an F-martingale. The F-predictable
0

process, A, is the martingale compensator of N. The concept of martingale

compensator has been introduced earlier in Section 1.7.2.

The proofs of the following statements and additional results will appear in later
BRL Reports, Andersen[I,I,1986].

Discrete parameter PP's are of interest here for at least three reasons: first. they
present an insight into the continuous parameter version of DPP, second, they

are applicable to time slotted, single channel communication networks (for exam-
pIe, packet radio networks) and third, as noted in the reference to T.C. Brown
above, they can be used to approximr.te continuous parameter point processes.

1.10.3. Theorem: (An Exponential Martingale of a Point Process)

Let N = (Nn, Fn) be an F adapted DPP with F-intensity X, and define the pro-

cess, Y = (YI)' by setting

-aN,,*1Y = C((15)

H (1+ l+k( e3 - 1))
0

for all real a and nEZ+ . Then Y is an F-martingale.

1.10.A. Remark: Assume Xk is F0-measurable for all k. Then

m + I
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We will call a process satisfying (17) a Doubly Stochastic Bernoulli Process.

Notice that in this case Xk = E(Xk I F0 ), for all k. E.g., if F0 = o (A), where A is

some r.v., then Xk = gk(A), where gk is an F0-measureable function for each k. As

in the Poisson case (Br6maud [19811), the intensity will be said to be driven by

A.

1.10.5. Remark: With Y as in the statement of the Theorem, Y satisfies

AYn = Yn-I ABn, (18)

n exp(aXk)
where B n  N- (bk - 1) is an F-martingale and bk 1+e--

0 1 + Xk(e:pa ) - 1)

Equation (18) is an analogue of the continuous parameter differential equation dY

= YdB.

1.10.6. Remark: The proof of the Theorem is almost trivial once one writes

Yn = Yn- bk and notices that E(bk I Fki1) = 1.

1.10.7. Remark: Using the fact that e&x = Xea + I - X when X takes only the

values 0 and 1, it is easy to check that

bk - 1 (e- 1) (Xk - X k) = gk AM,
1 + Xk(ea - 1)

n

where m is the compensated martingale, m = N - A, with A n -= V__Xk . It then
I

follows immediately from equation (18) that Y satisfies the following stochastic

"integral" equation

Yn= I + ((g Y_ ).m)n,

where gk = (e This observation is a special case of a result due
I + Xk(e a  1)

to Kabanov. Liptser. and Shiryayev [198.3] for continuous parameter procesvs. In

this sense it is also a special case of the results of C. Doleans-Dade [I9701 An'l

occurs in a similar form in 1'. Bremaud [I.10l] for continuous paranvtvr p,int

processes with absolutely continuous ( relative to Lebesgue measure )',n l-'"-

tors.
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1.11. Introduction to Non-linear Filtering of Discrete Point Processes:
Earlier we showed (Doob's Decomposition) that an integrable (P), F-adapted
sequence possessed a unique representation as the sum of an F-martingale and a
predictable process. If (Fn) is an observable history, and X is F-adapted, the time
evolution of X is observable. Therefore, Doob's result says that observable
processes with finite mean values all behave as semi-martingales. As noted
earlier this is a very general and far reaching theoretical result which becomes an
important result for applications when it is noticed that a semi-martingale that is
not adapted to an observable history can be projected onto an history of observa-
tion in such a way that its image is a semi-martingale, with signal and martingale
parts adapted to the history of observation. This is the content of the Projection
Theorem below.

If the observed history is generated by a discrete point process, then the mar-
tingale portion of this projected semi-mart ingale has an integral (transform)
representation in terms of the observed point process. This result combined with
the Projection Theorem leads directly to nonlinear filtering: the estimation of
functionals of an unobservable process in terms of their projections onto an
observable point process history.

1.12. Integral Representation, Projection and Innovation:
By a discrete point process martingale we mean a martingale which is
adapted to the internal history of a discrete point process. An integral represen-

tation of such a martingale plays a crucial role in nonlinear filtering since it
guarantees the existence of the "innovations gain", whose computation results in
the construction of "filters".

The following theorem is proved in Br~maud [1981]: it is the only reference he
makes to discrete PP's. However, there is a huge literature regarding the
representation of continuous parameter point processes. We mention only Boel,
Varaiva and Wong (1943), Davis 119761 and C'hou, Mever [1975).

1.12 1. Theorem: Integral Representation of DPP Martingales:
Let N (Nn, Fn) be a DPP uith Fn = o( Xk, k < n ) and F-intensity X. Then,

if m = (mn,Fn) is an F-martingale. there exists an F-predictable process Il, with
E(( II1 .<MM>)n) < x, .for all n(Z+, such that m - t.M , where M=N A.

n
A = T__\ k

0

Because nonlinear filtering has its origins in engineering, we will follow the cus-
tomarv terminologv of that field and refer to the value of a process at any time n
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as the "state" of the dynamical system represented by that process at time n.

We have the following

1.12.2. Theorem: (Projection of State):

Let Z be a semi-martingale adapted to a filtration F:

n

Zn = ZO + Z fk + mn,
0

where E1Z 0 < o and

(I) m = (mn) is a zero mean, F-martingale

(2) f = (fn) is an F-adapted process with finite mean

(0) 0 = (On), a filtration with O n contained in

Fn for alln and 0o = {0. 0}

Then there exists a zero mean, 0-martingale, ii such that

n.

Zn = E( Z n I On) = EZO + Vfk + lfln,

0

with fk = E(fk I Ok -I)

1.12.3. Remark: In the continuous parameter case f must be taken to "progres-

sively measurable" (Br6maud [1981]).

1.12.A. We now consider the important concept of innovations. Innovations

were introduced by Kailath for Brownian motion processes and by

Br~maud[1976, 19811 for the continuous parameter point processes. In our

discrete parameter case, the following simple description of "innovations" is

rigorous. This type of argument, not the concept itself, is only formal in continu-

ous time.

U'sing the notation Theorem 1.12.2. suppose

(1) Let On = a(X 0.X 1 . . . . . X), then On is contained in
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Fn ,forall n > 1.

(2) Set Xn = E(Xn I On , where Xn is the Fn intensity
n .of Xn. and -n = ~~n" Then M = N-A is a zero
0

mean O-martingale.

(3) A-lk = ANk - A Ak

= ANk-E(Xk I Ok -)

= ANk - E(ANk I Ok- 1)

- - Observed - Expected

- Innovative Information.

Therefore, the O-martingale, M, is called the innovation
process associated with the DPP N.

(4) Using the DPP representation, the state projection of
Theorem 1.12.2 takes the form

4 .. n.
V Zn =EZ0 + VZfk + (K.M)n

0

The O-previsible process, K, is called the innovations gain.

After the following statement of the filtering problem we will show how to expli-
citly determine K.

41.13. The Non-Linear Filtering Problem for Discrete Point Processes:

We can now summarize the state equations and their projections by the following
two systems of stochastic equations:
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In
Zn = Z0 + Ed fk + m'n in is an F-martingale.

k=O

n
N n  - A n + M • An = \X k  is an F- martingale.

0

n
= EZ0 + 'rk + rhn m = K. NI is an O-martingale.

0

Nn = Akn + \'n : "*In is an O-martingale.

The Problem: On the basis of observations on N n construct a recursive estima-

tor for

2n = E(Zn I On)

All that remains is to determine K from the fact that the filtering error is orthog-
onal to the flow of information described by (On)

E{(Zn- 2n)(H. NI)n} = 0, (10)

for all O-predictable processes, fl.

1.13.1. An Application of Discrete Martingale Calculus: We will illustrate
the use of the martingale calculus given in the beginning of this chapter to deter-
mine the innovations gain.

Seto = H..I, F n = Vf k , and Fn = N-f k .Assume that (Zn) is bounded.
0 0

Then, using integration by parts,

znon = (Z . 0)n + (W. Z)n + [Z Il.

= ((HZ-) .M)n + (0. (F -- m))n + [F + m 01n

= ((HZ-). M) + ((.Z) . (A -'))n + (0- F)n +( . m), +

+ (f.) + [m ,m].
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iMaking a simila, calculation for Zn,,n obtain

, o' = Z o)n i ' Z)n + [Z ,0n

¢,,. = {{tZ ) }. W n1 + (0_. (t + rill)) + It + ri Oln

- ((IZ) .M\)n + (0 -F)n + ( --rih)n +

+ (. 5) + KU. [N , ].

Now, taking expectations of both of these equations, using the fact that the

expectations of the martingale transforms vanish, and using equation (19), we

obtain

0 = E{((IIZ) (A -A))n + (H(X - X)(m + F),}

- E{((KI-[). < I-\I>n.

It follows that K'(1- 4L,) - 4, €2,,, + *3,, - *4,, where the processes

4'i (j - 1 2 3 4) are 0-predictable and satisfy

n n
E"CcVZV,1X, = EVCL, 4 L,,

n n

EVCVZ, - ,X, = EVCV,42 V5,,

I, n

EVCvXAZ, = EVC, a 4 ,

E CI/,AZ , = EV-C,*4vi,,

.. for all nonnegative, O-predictable processes, C, and AZ, fv + Am.

-I . 113.2. These calculations follow most of the work in this area (Brbmaud [1976.

1981], Davis [19781, and others; also see Yor [1977] and Van Schuppen [1977]).
The formula for the gain given here, however, is slightly different, from those of
the listed sources because in the analogous continuous parameter, absolutely con-

tinuous compensator set-up AZ, = Am,.
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Chapter 2. Continuous Parameter Stochastic Processes

2.1. Introduction: Stopping times (Optional times) are fundamental to the
modern theory of martingales. They bring the spirit of (plane) geometry, with its
attendant intuitions, to the study of these processes and they give the probabilist
a way to replace the continuum with the countable. The development that we
outline here is pure Claude Dellacherie [Capacites et processus stochastiques,
19721. After J. Doob's original work, this is the next monumental work on stop-
ping times and associated delineations of measurability. The introduction of
graphs of stopping times and the notions of "previsible", "totally inaccessible",
and "accessible" stopping times allow a classification of stochastic processes that
is both natural and necessary for the productive development of the modern
theory of semi-martingales, their applications and the general theory of stochastic
processes.

For instance, a "previsible" time is one which is anticipated by the previous
occurrence of a sequence of observable events. Accessible times are those whose
graphs consist of pieces of the graphs of previsible times. Totally inaccessible
times are therefore those times whose graphs are disjoint from the graphs of all
previsible times. It then follows that the graph of every stopping time is the
union of the graphs of accessible and totally inaccessible times.

Optional, accessible, and previsible times are used to construct "stochastic inter-
vals", which in the manner of Borel are used to generate algebras of events with
properties similar to those of the generators. Measurability relative to these alge-
bras is then used to single out various classes of stochastic processes that form
the building blocks of a stochastic calculus for semi-martingales which at the
same time extends the classical Ito integral from Brownian motion to semi-
martingale integrators and is maximal (cannot be extended further) in an intui-
tive, Cauchy sense.

These algebras also lead to a projection theory which yields a generalization of
the conditional expectation operator for processes, and of the "infinitesimal gen-
erator" for measures.

The material in the following chapters is based primarily on Dellacherie [10721.
Meyer [19731, Dellacherie and Meyer [19801, Meyer [1076], Doleans-Dade and
Meyer [1970], Kunita and Watanabe [1967], MNtivier [19821, Liptser and Shir-
yavev [1977,1078], Br6maud [1981], and most importantly, the Strasbourg
S('minaires in Probability, published in the Springer-Verlag 'Lecture Notes in
Mathematics" from 1067 to the present.
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Definitions that have been covered in the discrete parameter case and carry over
with little change will be treated formally here. An attempt will be made to give
some insight into others and compare some with the discrete case in the hopes of
understanding each a little better.

2.2. Filtrations: Let (P,H,P) be a probability space. A family of sub-sigma
algebras, F := (F(t),t>O), of H is said to be a filtration on (02,H), iff

(i) F(s) C F(t), when s<t.

If, in addition,

(ii) F(O) contains all P-null sets, and

(iii) F(t+) (:= n F(t+h) ) - F(t), for all t>O,
h>O

then the filtration, F, is said to satisfy the usual conditions (Dellacherie, 1972).

In this case, and with H = a( U F(t)) := F(co), the structure ((Q,H,F,P) is called
t>o

a filtered probability space satisfying the usual conditions. Finally, we note
that if F satisfies (iii), F is said to be right continuous. The first and second
conditions guarantee that each F(s) is complete. (As a reminder, a subset B of
Q is a P-null set if there exists an event A in H such that B C A and P(A)=O.)

In addition to the ar-algebra, F(t+), we define F(t-) := ar(U F(s)). In general,
B<t

theses algebras of events satisfy F(t-) C F(t) C F(t+), for all t4[0,OCJ. F(t-)
can be thought of as representing the history of observation "prior" to time t.

2.3. Stochastic Processes: A stochastic process is a mapping X:[O.c)XQ
'- .- ' --.R such that, for each t > 0, the mapping w-.X(t,w) is H-measurable. (H-

measurable means that the inverse image, Xt'(B) = { w : X(tw)B }, under X(t)
of real Borei set B, is contained in H.) More directly, in terms of familiar con-
cepts, a stochastic process is a family of random variables, r.v. 's, indexed by t >0.

2.3.1. The trajectories ( paths ) of a stochastic process, X, are the mappings
t--X(tw), indexed by w in Q. Regularity properties attributed to a process. ,
such as continuity or right continuity or left limits refer to the trajectorivs.
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and will be said to hold almost surely, relative to P (a.s.P), if the set of all
w E 1 for which the property holds has P-measure equal to one. For example, X is
continuous (a.s.P), if P({wc" (tcR+)-.X(t,w) is continuous}) = 1; that is, if,
relative to P, almost all trajectories are continuous functions on R+. After a
while the qualifier, (a.s.P.), will be taken to be understood and will only be men-
tioned occasionally.

However, even with all this explanation, statements about such things can be a
little obscure; for example, a process which is a.s.P continuous at each t is not
necessarily a.s.P continuous! Such an example is given below after Lemma 1.

2.3.2. Two processes, X and Y, are said to be modifications of each other if

P( wCO: X(t,w) = Y(t,w) ) - 1,

for each t>O. More strongly, if

P( wEf2: X(t,w) = Y(t,w), for all t>O ) = 1,

the two processes are called indistinguishable.

Thus, two processes are indistinguishable if their paths coincide a.s.P. As in the
discrete case, indistinguishability establishes an equivalence relation on the set of
processes on the common probability space (0, H, P) indexed by R+. In this
sense we identify all indistinguishable processes. A process which is indistinguish-
able from the process that is identically zero is said to be evanescent. A subset
B of [Oox)XQ is called a random set. Random sets are said to be evanescent if
their indicator functions are evanescent processes. Equivalently, a random set, B,
is evanescent if its projection into Q is a P-null set. In the language of random
sets two processes X and Y are indistinguishable iff the random set
{ X p Y } := { (t,w) : X(t,w) 34 Y(t,w), t > 0, w ( Q } is evanescent.

Clearly, if X and Y are indistinguishable and X has continuous (a.s.P) paths, then
Y also has continuous paths. If X and Y are modifications, unlike the discrete

case, one cannot claim indistinguishability. However, we have the following (Del-
lacherie, 1972)

2.3.3. Lemma: If X is a modification of Y and these processes are right continiu-

ous, then they are indistinguishable.
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2.3.4. Remark: Just use the modification property on the rationals, a countable

set. whose union is P-null and, by right continuity, contains (X(t)ZY(t)) for all

t>0.-C
* This Lemma is the first hint that path regularity in the form of right continuous

paths will be an important assumption in this note.

2.3.5. Remark: We now give an example of two processes that are modifications

of one another, but are not indistinguishable, one of them not being right con-

tinuous. Let f0 = R+, H be the real Borel sets of R+, and P the probability

measure induced on H by the standard exponential distribution. Let X be the

diagonal process, X(t,w) equal to 1 on the diagonal of R+X Q and equal to 0 else-

where. Set Y equal to 0 on R+Xf2. Then X is a modification of Y, since

P([X(t) 3Z Y(t)j) = P({t}) = 0 for each t in R+. To see that X is not right

continuous, just note that the set of X trajectories which are not right (or left)

continuous has P-measure 1: P({w : w = t, for all t > 0}) = P(R+) = 1.

Since this is the same as P({w : X(tw) 4 0 for all t > 0}) = 1 the two

processes X and Y are certainly not indistinguisable.

What if we replace X by Z, where Z is one on the diagonal of R+xf2 only when

the coordinates are rational numbers, and otherwise Z is zero? With the same P.

Z is again a modification of Y, but this time Z is a.s.P right continuous and so

indistinguishable from Y.

2.3.6. We should point out that even though we have assumed that our processes

are real valued, we could have been more abstract and taken the state space of

the processes to be some measurable space (E,B(E)), where B(E) is the Borel

sigma-algebra generated by the open sets in E. Much of what we will talk about

here still holds in this more general case with a few qualifiers. For example, in the

previous Lemma we would have had to assume that E is separable.

2.3.7. A stochastic process, X, is said to be adapted to the filtration F, or F(t)-

adapted, if the mapping, w-*X(t,w), is F(t)-measurable for each t>O. Histori-

cally, adapted processes were said to be nonanticipating. A process X is alw avs

adapted to FAt) the filtration generated by X, Fx(t) :--a( X(s), O<s<t ).

, Clearly, under the "usual conditions", modifications of adapted processes

SW are adapted.

In applications, when F(t) is interpreted as a history of the evolution of a collec-

tion of processes, an F-adapted process will be said to be observable relative to

- * * .' S .,3.1< .* . *
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these processes.

2.3.8. It is important to realize that classical theories of martingalvs. \larkv
processes and stopping times were only concerned with internal historie,. Th,
modern theory on the other hand just assumes that there is a single filtration.
a reference family, relative to which all processes are adapted. Stopping times
are defined relative to this filtration and used to characterize several a-algebras (,f
random events. In the modern setting of a single filtration, applications generally
involve several partially ordered families of filtrations. For example. in the non-
linear filtering encountered in Chapter 1, we have the filtrations corresponding to
the state and observation processes with the "state filtration" containing the
observation filtration.

2.3.9. There are several additional types of measurability that are necessary for
the calculus of martingales with a continuous parameter (time) set that cannot be
discerned in the discrete parameter case. For the moment, we only introduce
measurability relative to the product spaces B([QO.))XF(oo) and B([0,t])XF(t):

A process is said to be measurable, if the mapping X:[0,oc)X -- R is
B([Ozc))XH-measurable (i.e., measurable as a function of two variables). In

most cases we will consider processes which are both measurable and adapted.
That is, a measurable mapping of ([O,oc)XfQ, B([0,oc)XH) into (R, B(R)) such
that for each fixed t, w-.X(t,w) is F(t)-measurable.

Notice that when [0, co] is replaced by Z+, as in the discrete parameter case,
every process is measurable; in the first chapter adapted processes corresponded
to adapted and measurable processes.

2.3.10. By restricting the notion of measurability to the time interval [0,t), we
obtain measurability relative to the filtration, or progressive measurabil-
ity relative to (F(t),t>O) : X is said to be F-progressive if the mapping
(s,w)- X(s,w), restricted to [0,t]XQ, is (B[,tIXF(t))-measurable, where B[O,t] is
the Borel o-algebra of [O,t]. Random sets are called progressive if their indicator

processes are progressive.

Clearly, if X is progressive then it is adapted and measurable. The example

given after the following Lemma shows that X can be adapted without being pro-
gressive. Dellacherie and Meyer[1975, IV TIS] show

2.3.11. Lemma: If X is adapted and right continuous (left continuous), then A' is
progressive.
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2.3.12. Remark: Let X. Y be the processes given in the example :after Lemma

2.3.3. Take the same probability space as in that example and define the tiltra-

tion. F =(F(t)). bv letting F(t) be the a-algebra generated by the family. :,
. s<t Then the diag nal process, X, is F-adapted. sine,

* '"[X(t) = 1] = {t}F(t), but X is not F-progressive since {X = 1 equals the rec-

tangle [0Ot]X[0,t] and this does not belong to B([0,t)XF(t) because [O.t] does not

belong to F(t), which contains only countable sets. We have already noted that

X is not right continuous.

One of the consequences of the "usual conditions" is that every martingale has a

modification that is right continuous and has left limits ( at each point of a

path, a.s.P ). Processes which are right continuous and have left limits, are
sometimes called cadlag, or rell ; the French abbreviation, "cadlag" stands for

continu a' droite, limites a' gauche". Recently. some authors have begun refer-

ring to such processes as Skorokhod processes, after Russian mathematician
A.N. Skorokhod [1956]. We will use the last descriptor. The full importance of

the Skorokhod assumption will begin to emerge in Section 2.8. Essentially, all

the processes considered in Chapters 5 and 6 will be taken to be Skorokhod.

2.4. Stopping Times: Often in probability we are interested in the time, T, at

which a certain random phenomenon associated with a stochastic process, X,

occurs. E.g., the first time, T(w), that the path, t -. X(t,w), hits a particular

level. In fact, if F(t), of the filtration F=(F(t)), is interpreted as the collection of

all events associated with the evolution of a process, X, during the time interval
[0,t], we can make precise the statement that this phenomenon occurred before

time t by requiring that [T<t :- {wjT(w)_<t} belong to F(t), for every t>O.

2.4.1. Definition: A positive r.v. T, finite or not, is called a stopping time (or

optional time) relative to the filtration F=(F(t),t>O), if the event [T < tJ

F(t), for each t>O. (Note: "positive" is meant in the sense of nonnegative.)

In Chapter 1 we saw that for non-negative, integer valued G-stopping times,
[T -- nj Gn iff [T < nj ' Gn iff [T < n] E Gn_1. Here the situation is a little

different. To appreciate the difference, let T be an F-stopping time. Then

[T<t] = ( U [T<t--])EF(t),
>0

since [T < t -](F(t - )CF(t), for t>O, by monotonicity of filtrations. There-
fore, if T is an F-stopping time, [T < t](F(t) and then so does [T>t, for all
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,2 t>0. But if all that we know about a mapping T:fr-.R+ is that [T < t](F(t) for

all t>0. then all we can conclude is that

[I < tl(F(t+) := r"O[T < t + h],
w

D ,. h>0

so T just an F(t+) stopping rime. Therefore, if the filtration is right continuous
then [T<t]cF(t) for all t>O, implies that T is an F-stopping time. Thus, under
the "usual conditions" the two conditions are equivalent. As noted already we

will generally assume that our filtrations are right continuous.

Any nonnegative constant is a stopping time relative to any filtration. For exam-
ple, if T(w) = c , for all wfQ, then [T < t] = Q when c<t and = 6, otherwise.
If T is a stopping time and c is a nonnegative real number, then c + T, is also a
stopping time: [T + c < ti = [T < t - c](F(t-c) C F(t), for all t>O.

There are numerous interesting simple results concerning stopping times that are

needed to develop an intuition about them, but covering them is beyond the
scope of this short note. Probably the best treatments are given by Del-
lacherie(1972) and M6tivier(1982). We will try to introduce only what will be
needed to provide a reasonable understanding of "previsibility" and its role in
the theory of martingales and stochastic integration.

2.4.2. We observe in passing then that the minimum and maximum of two F-
stopping times are again F-stopping times. Also, the suprernum of a sequence of
F-stopping times is an F-stopping time:

[sup{Tn ' n>O }_t] = (n[Tn -- t])F(t).
rl n=1I

The infimum, S, of a sequence of F-stopping times is, however, an F(t+)-stopping

time. That is, we can only claim [S<tEF(t+), for all t>0:

.00

[S<tj n (U [T<t+ P) F(t+-) - F(t+).
k. I~ n=-l j=-- J

But again, since we assume the "usual conditions", S is also an F-stopping time.
Hence, the limsup and liminf of a sequence of F-stopping times are F-stopping
times. Therefore, whenever the limit of a sequence of stopping times exists, the

-U limit is a stopping time. Another simple fact is that the sum of any two F-
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stopping times is again an F-stopping time.

2.A.3. In the realm of sophisticated stopping times we mention the "hitting'
tme or debut of a randnni cet. A. defined as DA (w) :=inf{ tER+ (t.%k ~ or

as DA (NV) :=+x, if the sevtion A(w) t : (t,w)cA I is empty. DellacherieI
J19721 used capacityth to show that when the filtration satisfies the usual
conditions and .A is an F-piogressive random set then the debut of A4 is an F-
stopping time. We will return to this example later in the chapter where wwIl
introduce "k-debuts". For this purpose, notice that we can write

D.\(W) =inf~tc R+ :[o,tflA(w) contains at least one element }

2... Definition: Given an F-stopping time, the family of events which occur
prior to T, denoted F(T), is defined as the set of all events AcF(OC):=-

a( UF(t)), for which Afl[T < tl &F(t), for each t>O.

2.5. If T is a.s.P equal to a constant time, t, then F(T) =F(t). This justifies
the notation F(T) when T is a stopping time. Further, it is easy to verify that
F(T) is a sigma-algebra and T is F(T)-measurable. (For the latter, just observe
[T < tj = A flIT < t] c F(t), for all t>O, where A == T<t], so AcF(T), and

consequently, T is F(T)-measurable.)

These o-algebras are monotone at stopping times, in the sense of the next
theorem.

2.41.6. Theorem:

Let S and T be F-stopping times. If S<T. a.s.P, then F(S)CF(T).

Remark: S T implies [T~t,]C[S~t], so that for any AcF(S)

Afl[T~tI = Aflis~tjfl[T~tF(t).

Therefore, A(F(T).

Remark: The following are just as easy to prove:

o AcF(S) implies Anis TI(F(T)

"C o F(min(S,T)) =F(S)flF(T)

o [S <TI,[IS > Tand[IS TJare inF(S)and F(T)
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If S is a positive r.v. which is measurable relative to F(T), then S is not neces-

sarily an F-stopping time. A sufficient condition is that S>T. Since this is sim-

ple and important. it is worth a proof. Just use [T<tj to partition the sample

space, Q". Then since S>T, [S < t] = [S < t l [T < ti and, because S is F(T)-

measurable, the right side of this equation is in F(t) for all t>O. [fence,

[S<t]F(t) for all t>O, so that S is a stopping time.

This has the consequence that every F-stopping time, T, can be written as the

limit of a decreasing sequence of F-stopping times, each taking a countable

number of values: Just define T(n) by setting N = N(n) = 2n and

T(n) := V- k ljk-1 < N(n)T<k],
k'0 N(n)

when T is finite, and oo, otherwise. Then T(n)>T and the previous result

applies, making T(n) a stopping time. Also, on {w:T(w)<o} = [T<oc], we have

0<(T(n.w) - T(w)) < 1/N(n); hence T(n,w) -- T(w), as n --. oc, for every w in

Q2. Finally, if T(n,w) = k/N(n), then we must either have
T(n+l,w) = (2k-1)/N(n+l) < k/N(n), or T(n+l,w) = k/N(n). So,

T(n,w) > T(n+l,w), for all w c Q2.

Notice that without the "countable valued" requirement, it is obvious that the

sequence Sn = T + 1 decreases to T a.s.P on [T<oc].
n

Observe carefully that one cannot make a symmetric statement relative to

increasing sequences of stopping times. In the next section we will see that
requiring this symmetry leads to the notion of "previsible stopping times".

2.5. Stochastic Intervals: Let S and T, with S < T, be two F-stopping times

and set

[[ST)) :- { (t,w) I S(w)<t<T(w), O<t<oc, wvQ }.

[[S,T)) is called a stochastic interval; if we want to emphasize the underlying
filtration, we will write F-stochastic interval. Stochastic intervals [[S.T].,

((S,T)), and so on, are defined in the same manner. If S=T, then [IT]] := [fT.TJ]

is called the graph of T.

2.5.1. F-stochastic intervals are F-progressive random sets. That is, the indi'a-

tor function of an F-stochastic interval is an F-progressive process on P+XQ:
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First ta ' -I if

I:? -First note that (s,w) , Ij[ST))(s,w) is F-adapted since IU[S,T)) Kw) f

S(w)<s<Tw), 0 otherwise, and [S<slfl[T>sj(F(s). Since l[[sT)) has right con-

tintious paths by inspection, Lemma 2.3.11 applies. Similarly, ((S.T]] has an F-
progressive indicator function. The other types of stochastic intervais are han-

dled in the same way or as combinations of stochastic intervals whose regularity

properties are known. E.g.. ((S,T)) = ((S,T]][lI[[ST)).

2.5.2. We can now show the converse of the result guaranteeing that a debut is a

stopping time. That is, every stopping time, T, is the debut of a progressive ran-
dom set: Just set A - [[T,oc)). Then A is progressive and the statement follows
bv noting that [D. t] = IT < tj. Also note that if A = [IS,T)), then

DA = Son [S < T and- oc, on [S=-T].

When A is of the form A = {(t,w): X(t,w)(B}, where X is some stochastic pro-

cess, the debut of A is called the hitting time or the first entrance time of X
into B. By what has been said, if X is progressively measurable and B is a real

Borel set, then the debut of A is a stopping time. The best discussion of this is

given in Williams [1979].

2.5.3. The following example will be used later on as an example of a stopping
time which is not a previsible time. (It is an exercise in NI6tivier [1982]). We
will specialize it somewhat in order to have a simple example to illustrate the
graph of a stopping time. Let A be a nonempty. proper subset of the interval
[0,1] = . Set F(O) -= {o, (2 and F(1) = A, A , o, 2}. Define the filtration

F(t) := F(O), if tf[O, 1) and := F(1), if t>1. Then (F(t), t>O) is a right conti u-

ous filtration. Set T :- 1 + 'A. Then T is an F-stopping time:

' if 0<t<I

[T t] = A" 1<t<2
1 2<t

so that [T < t]EF(t), for all t > 0. If we take the usual two dimensional coordi-

nate system with time (the range of T) as the horizontal axis and Q as the inter-
val [0,1] on the vertical axis, then with A = [0.51 the graph, [[T]], is the follow-

ing union of straight line segments:

%: [[T]] = {(l,w):w((.5,1]}j]J{(2,w):w([O,.5l}.
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2.5.4. Definition: The family of events which occur strictly prior to the
stopping time, T, is denoted by F(T-) and is defined as the sigma-algebra gen-

erated by F(0) and events of the form AflIT > t] for all A(F(t) and all t>0.

As with F(T), T is F(T-)-measurable. Also, since the generators of F(T-) belong
to F(T), F(T-) C F(T). Also, if S is a stopping time with S<T then F(S-) C
F(T-).

2.5.5. Remark: It is important to note that left continuity of F does not imply
that F(T) = F(T-). For example, let Q := [0, oc), and B([a,b)) be the Borel o-
algebra of subsets of the interval [a, b). Set F(t) := (B([0,t]))U{(t,oc), R+f for
all t>O and note that F(t-) = F(t) = F(t+) for all non-negative t. Setting T(w)

w on Q defines T to be an F-stopping time with F(T) 3(: F(T-). This is an
exercise in \1Wtivier [1982]. However, this is not meant to imply that the
mathematical setup is simple. This setup, or a slight variation, is at the heart of
numerous papers (e.g. Dellacherie (1970]. ('hou and Meyer [1975] and finally, with
corrections, in Chapter 4 of l)ellacherie and Meyer [1975]).

For example, in the last reference. a filtration, G, is taken to be

G(t) = o,( B{ (O,t) }, [t, oc))

for all tc[O, \]. Then G(t+) contains { t } and (t, oc), and these sets are not in
G(t). Therefore, in this case G(t) 7 G(t+) and G is not right continuous. It
follows that T, the identity mapping as defined at the beginning of this remark.
is a G(t+). but not a G(t), stopping time. We will return to this example at the
end of the next section to illustrate the special classes of stopping times intro-
duced there.

2.6. Previsible, Accessible, Optional Times: Recall again that, unless stated
otherwise, we assume that the "usual conditions" hold on the underlying filtra-
tions.

Earlier when we were approximating stopping times from above, we pointed out
that they cannot in general be approximated from below by increasing sequences
of stopping times. However. from the standpoint of the calculus of martingales,
those stopping times that do have this property can be used to characterize the
most important class of measurable processes. Dellacherie and \feyer(1980) point,
out that processes with this type of measurability (previsibility) play the same
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~zkrole in stochastic integration as Borel functions play in the classical theories of

measure and integration. The construction of this class begins with the foll(oing

defi nit ion.

2.6.1. Definition: An F-stopping time, T, is said to be F-previsible (predict-

able) if there exists a sequence (T(n)) of F-stopping times with the follo\%ing pr)-

pert ies:

(i) T(n,w) < T(w), a.s.P, on [T>O] n>o0

Vi (ii) (T(n)) is increasing (a.s.P) and converges (a.s.P) to T.

* Note: Generally, when there is no possibility of confusion, we will drop reference

to the underlying filtration, F.

The sequence of stopping times, (T(n)), is said to announce T, and is called an

announcing sequence for T. Clearly, if T is a stopping time and c is a posi-

tive real number, then T+c is previsible. Just take T(n) := T + c( - (1/n)).
'-" n>O.

Intuitively, if T is the first time an event can happen, then T is previsible if we

are aware that the event is about to happen; a sequence of events takes place
that foretell the occurrence of T. As a matter of fact, the announcing sequence is

-.- also called a foretelling sequence.

The traditional example of a previsible stopping time is first time that an

adapted, continuous ( hence progressive ) process, X, ( X(O,w) =_ 0 ) hits a single-

*$  ton set: For example,

T(w) := inf{ t : X(t,w) =1 }

and := oc, when {...} O. For definiteness, take X to be standard Brownian

motion. To see that T is previsible, just take T n , an announcing sequence of T.

to be Tn(w) := inf{ t • X(t.w) = I - I
:. n

A famous non-previsible stopping time, T, is the "time to the k th event" of a

Poisson process. The standard proof of this fact can be found in Liptser and Shir-

Yayev [Vol I]. We will give a simpler but more sophisticated demonstration by
Aldos [1981] that also yields a result useful later in this chapter. Let N =(N(t).

t>0) be a Poisson process with parameter lit at time t. Then s-.N(s+t) N(t)

12



defines a Poisson process with parameter its and so by the Strong Mlarkov Pr,-
perty. N(s+T) - N(T) is again Poisson, is. Now, if we assume that T is previsi-
ble. then T+s is previsible and announcing sequences exist for both. Evaluating
the Poisson increments at these announcing sequences and passing to the limit.
we have that N((s+T)-) - N(T-) is Poisson, its. Remembering that N has right
continuous paths and letting s - 0+, we obtain N(T) - N(T-) = 0, a.s.P. This
states that T is not a jump time of the process as originally supposed. Therefore.
T cannot be previsible.

2.6.2. We now introduce a stopping time which is (a.s.P) never equal to any
previsible time, appropriately, it will be called a totally inaccessible time. The
time to the first jump (event) of a Poisson process is such a time. The "comple-
ment" of a totally inaccessible time will be said to be accessible. More formally.
we give the following:

2.6.3. Definition: Let T be an F-stopping time. Then

(i) T is said to be accessible if there -xists a sequence of
previsible times, (T(n)), with the property

U [[T(n)]] D [[TI], up to an evanescent event.
n> 0

(ii) T is said to be totally inaccessible, if the intersection.

[[TIIl[IsII, is empty, up to an evanescent event, for each

previsible stopping time, S.

That is, the graph of an accessible time, T, is made-up of sections of graphs ,)f
previsible times, and the graph of a totally inaccessible time is disjoint with the
graph of every previsible time. Parts (i) and (ii) of the definit can be written

P(U[T, = T]JT<oc]) = I, and P(JT = SJJT<ocJ) = 0, respectively.
n

Remark: It is clear from the definition that if T is previsible then it is accessibl,
and optional. The example of Dellacherie and Meyer at the end of the last s,,ti,n
provides a case where a stopping time is nonpreN isible and accessile \\ ,tm.
of some of their observations on this example:

We noted that T, the identity mapping as defined there,. is a ((t-1. V t nt- 1
G(t) stopping time. Dellacherie and Meyer show% furtler th, ,,,,r\ I(,,o-

stopping time is G-predictable. (ontinuing with thl ,31ld,. , a fttlu
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measure P is introduced and G is completed relative to P. Call the completed

filtration G' . Dellacherie and Meyer show the following:

(a) If P is nonatomic, then G' satisfies G' (S) = G (S-) for

all previsible times, S. Also, the identity mapping, T, is

totally inaccessible.

(b) If P is purely atomic and nondegenerate, then the iden-

tity mapping, T, is a nonpredictable, accessible time.

2.6.4. Definition: If T is a stopping time and A is an event (AH), set TA(w) -

T(w), if wEA, and = cc, otherwise. Then TA is called the restriction of the

stopping time, T, to the event A.

It follows immediately from the definition that [Ti<t] = Afl[T<t]. Then, from

the definition of F(T), TA is a stopping time iff AcF(T).

Remark: As can be guessed, the graph of any stopping time can be written
(uniquely, a.s.P) as the union of the graphs of accessible and totally inaccessible

times.

2.6.5. Theorem (Dellacherie):
Let T be a stopping time. Then there exist events A and B in F(T-) which consti-
tute a unique, up to P-measure zero, partition of [T<cI, such that TA is accessi-

ble and TB is totally inaccessible.

We now mention a sequence of stopping time results that are useful in the study

of stochastic processes. Our principal use will be in the last of these results

which gives a characterization of previsibility of restrictions of stopping times.

o Let S and T be previsible (accessible, totally inaccessible) times. Then the

minumun and the maximum of S and T are previsible ( accessible, totally inac-

cessible).

o Let T be a stopping time and AEF(t). If T is accessible (totally inaccessible)
then TA\ is accessible (totally inaccessible).

(This is immediate from [[TAJ]C[[T]I.)

o Let T = lim T n.

,11



(a) If (T,) is an increasing sequence and each T, is previsi-

ble, then T is also previsible.

(b) If (Ta) is a decreasing sequence and for each w(Q there
exists a natural number n = n(w) such that
Tn(,) = T(w), then T is previsible (accessible) whenever
the T n are previsible (accessible).

From this result it can be shown that

o If T is a stopping time then the collection of all AEF(T) such that TA is prev-
isible is closed under countable unions and countable intersections.

This result can then be used to show the following important result that will be
used several times in the sequel:

o Let T be a stopping time and AEF(T). Then if TA is previsible, AcF(T-).
Conversely, if AEF(T-) and T is previsible, then TA is previsible.

2.7. Previsible, Accessible, Optional Processes: Let X be a stochastic pro-
cess on (0,H) and recall that H has been taken to be the smallest sigma algebra
containing the union of all members of the filtration, F, and then denoted F(oc).

If T is a positive r.v. on (0,H), then by X(T) we mean the mapping w
X(T(w),w) of Ql into R. If X is B[O,co)XH-measurable, then this mapping defines
a r.v. since it is the composition of the measurable mappings w -- (T(w),w) and

".' " (t'w)-X(t'w).

When X is a Skorokhod process, Meyer [1973] gives a simple method for approxi-
mating X(T), by X(Tn), where for each n, T n is a countable valued random vari-

able and the sequence (Tn) decreases point-wise to T: Let D, = {k/2n : kcZ+},
and set Tn(w) equal to the infimum of D n n (T(w),oo). Then the right con-

tinuity of X gives X(T,) -. X(T), a.s.P.

X(T) is called the process evaluated at time T. In general, we will allow T to
be an arbitrary stopping time. This means that T will be allowed to take the
(nonreal) value oo of the extended set of positive real numbers, R+. Since we
define processes X on R+xQ and not R+Xf2. we write XT I[T<-.I to denote XT
on the event [T<oo] and zero on the event [T=o]. We give the following
sufficient condition for the F(T) measurability of X(T).
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2.7.1. Theorem:
If X is F-progressively measurable and T is an F-stopping time, then 1[T< .\ A(T}

is F(T)-measurable.

2.7.2. Remark: We will give a sketch of Dellacherie's proof of this result. Let A

be any Borel set of the real line. We must show that [X(T)cAjf[T<t]IF(t) , for

all nonnegative t. But the event formed by this intersection is equal to

X X(S(t))EA]n[T~t] where S(t) = min(T,t) is easily seen to be F(t)-measurable.

But the process XoS is measurable relative to F(t), since it is obtained as the

composition of the mappings w-+(S(w),w) of (0,F(t)) into ([0,tjXQB[0,t]xF(t))
and (s,t)--X(s,w) of ([0,tjxf2,B[0,t]XF(t)) into (R,B), and because of the
definition of a progressive process.

$ 2.7.3. Remark: As in Chapter 1, an important example is obtained when the

process, X, is evaluated at the random time S := T-t, where T(w)^t

min(T(w),t) for t O. Then X(S) is called the process stopped at time T and

denoted XT. Thus, XT(t,w) = X(T(w)^t,w), and T,,t is sometimes called a
truncation of T. The use of stopped processes is fundamental to the modern

theory of martingales. As noted in Chapter 1, one reason for this is the Doob

Optional Sampling (Stopping) Theorem and another is based on the concept of

localization to be discussed at some length in Chapter 6.

Another important stopping time that can be constructed from T is the transla-

tion of T: Tt = T + t, tcR+. Then X(Tt) is called a random shift of X. (For

more information see Chung, Doob [19651.)

2.7.4. Remark: For future use, we point out that the filtration F=(F(t)) is said

to be quasi-left continuous iff F(T)=F(T-) for each previsible time, T. It can
then be shown that quasi-left continuity is equivalent to accessible times being

previsible.

2.7.5. In what follows we will often use the term "optional" time in place of

"stopping" time.

2.7.6. Definition : PT(F):= "family of F-previsible times"; AT(F) := "family
of F-accessible times"; OT(F) := "family of F-optional times", where F is the

filtration (F(t)).

F will usually not be mentioned and in these cases we will just write PT. AT.

and OT. We now define three sigma algebras of events generated b~y stf>(hast(l

intervals from each of these families. Let IK represent any one of the family of
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stopping times PT, AT, or OT and set

G(K) := o{ [[S,T)) ScK, TcK}

Remark: Since previsible times are accessible, G(PT) C G(AT) and accessible

times are, in particular stopping times, G(AT) C G(OT). If we let G(Prog)

denote the o-algebra generated by progressive random sets, we have that G(OT)

C G(Prog) by applying Lemma 2.3.11 to I[[S,T)) . Hence,

G(PT) C G(AT) C G(OT) C G(Prog)

2.7.7. Theorem:
G(K) := o{[[S,TII : ScK, T(OT},

u'here K is PT, AT, or OT.

To see this, let ScK and TEOT. Then notice that

[[S,Tl] n fl [[S,T+(1/n)))
n>O

and T + (1/n) is previsible, hence accessible and optional. Therefore the genera-
tors, [[S,T]], can be obtained from the defined generators of G(K),

K=PT,AT,OT. Since

[[TI] - '][[T,T+(a/n)]i
n

and [[S,T)) = [[S,T] - [[TI], the reverse is true and the proof is complete.

Remark: This demonstration also proves that [[T]]eG(K), if TeK, 1K = PT, AT.

OT. So, for example, previsible times have previsible graphs. Not surprising, but

certainly comforting. Notice that although it is true, we have not proved the con-
verse. The only proof that I am aware of requires the so-called "(Cross) Section

", Theorem" from Capacity theory. This will be mentioned in the Chapter on Prev-

isible Projections (Section 4.4).

Now that we know that optional and previsible random sets are progressive, the
next Theorem follows from Dellacherie's resull stated earlier, saying that progres-

sive random sets have optional debuts.
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2.7.8. Theorem:
If the random set AcG(OT) or G(PT), then the debut of A is a stopping time.

2.7.9. Definition The process, X, on (IQH) is said to be an optional, accessi-
ble, or, previsible process according to whether X is, respectively, G(OT)-

measurable, G(AT)-measurable, or G(PT)-measurable.

We have already used the following
I

2.7.10. Corollary:
If X is an optional process and B is a real Borel set then the hitting time of B is a

stopping time.

2.7.11. Remark: Let 0(w) = 0 for all wefQ; 0 is called the zero stopping time.

As with all boundary cases, it is instructive to satisfy oneself that 0 is a previsible

stopping time. Further, 0 A is previsible, if AcF(0). This is easy to show by con-

structing an announcing sequence. For example, let T(n,w) := n lB(t,w), where B
is the complement of A. Then T(n,w) = n on [0A > 0] = 0A -- ] - = B, and

T(n,w) = 0 on [0A = 01 - A. Hence, (T(n)) is strictly increasing on [0A > 0],

approaches o where 0 A is infinite, and is identically zero where 0 A vanishes.

Finally, each T(n) is a stopping time, since !Tfn) < tj = A(F(0) C Fft) for all t.
0<t<n, and for t>n, [T(n) < t] = A U B =Q, which is in every F(t).

The o-algebras G(K), KE{PT,AT,OT}, were defined by varying the type of stop-
ping time in intervals of the form [[S,T)). This was reduced to just closed sto-

chastic intervals with only the left end-point determining the type of measurabil-
ity. The next result shows that intervals of the form ((S,T]], with S and T both

optional, are sufficient to generate the previsible a-algebra, G(PT), provided that
we account for zero stopping times.

2.7.12. Theorem: (Dellacherie (1972, p.67 if))
G(PT) is generated by [[ 0A 11, where AEF(0), and by ((S,T]], where S and T are

optional.

It follows immediately that G(PT) is also generated by the random sets, B X
(s,t], where BcF(s) and s<t are any real numbers, together with {0} X B, where
B(F(O). ( We will call the indicator process of these sets the kernel process of

G(PT).)E On the other band, the indicator processes corresponding to B X (s,t] are left
continuous. Hence, G(PT) is contained in the a-algebra generated by left
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continuous processes. The converse statement and, consequently, part (i) of the

next theorem follow from the fact that left continuous processes can be obtained

as limits of linear combinations of the kernel processes of G(PT):

2.7.13. Theorem.

(i) G(PT) is generated by left continuous, adapted processes.

(ii) ,'G(OT) is generated by Skorokhod, adapted processes.

2.7.14. The following example is standard. Set

X(t,w) := Z(w) I[[S,T)) (t,w).

Then

(a) X is optional if Z(F(S, where ST are optional;

(b) X is accessible if ZEF(S), where S,T are accessible;

(c) X is previsible if ZcF(S-), where S,T are previsible;

(d) Y(t,w) = Z(w) '((S,Tl is previsible if S and T are

optional and ZF(S).

For (a). first let Z = 'A, AEF(S). Then Z is F(S)-measurable and Z I[[S,T)) -

I[[SAT,,_), which is optional. Thus, the statement holds for indicators, hence for

simple functions, hence for limits of sequences of non-negative simple functions,

etc.

2.7.15. Remark: Part (i) of the last theorem might be stated more explicitly as
follows: G(PT) is generated by mappings f from [O,oo)XQ into R such that each

function t - f(t,w) is left continuous and each function w - f(t,w) is F(t)-
measurable.

2.7.16. Remark: Part (i) of the last theorem guarantees that every left continu-

ous processes is previsible ( hence also, every continuous process). However, not

every previsible process is left continuous. For example, if T is a stopping time.
then T+ is previsible so that 1l[T+Ill is a previsible process. But this process is

not left continuous.
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2.7.17. Remark: The "modern" (post Dellacherie [1972]) way of defining G(PT)
is to use part (i) of the last Theorem as a definition, while not assuming that the

filtration, F, is right continuous. Then, having defined previsible events, a stop-

ping time is called previsible if and only if its graph, [[TI], is a previsible subset of

[0,c)XfQ. Our definition, in these notes, then holds as a theorem with (F(t))

replaced by (F(t+)). For such a development see M6tivier(19821. Under the
"usual conditions" these two approaches are equivalent.

2.7.18. Remark: We have not said nearly enough about stopping times, neither
their properties nor use in studying processes. So we will look with a little more

detail at one small sequence of results that are important in the sequel.

First, letting A be a random set, we extend the last definition of debut (Section

2.4.8) by setting D( 0 -- DA and defining, for each ncZ+,

D n) := inf{t(R+:[0,t]flA(w) contains at least n elements},

where A(w) is the section of A at w. D, ), is called the n-debut of A. We have

stated earlier that if A is progressive, then DA, and so DV'), is a stopping time.
Using this fact, we can show by induction on nrZ+ that when A is progressive

* ~-then each n-debut is a stopping time. To see this, just observe that we can
write

.De," = DAn((D,)) ) .Givn-

Given that A is progressive, this equation exhibits D~ n+' ) as the debut of a pro-

gressive set, if DP is a stopping time. Observing that the 1-debut is a stopping
time, and making an induction assumption that the n-debut is a stopping time, it

follows then that the (n+l)-debut is a stopping time. Therefore, by induction

-" (D, ),k(Z+) is a sequence of stopping times.

The following definition and Theorem are included here, not only because they
will allow us to "prove" some results in Chapter 3 and beyond, but also because

they give an indication of the spirit in which the use of stopping times give intui-
tive meaning to what could otherwise be a tedious litany of analytic conditions.

2.7.19. Definition: Let X be a Shorokhod, F-adapted process. Then X is said
to charge a stopping time, T, if P(T < oo, X(T) 7 X(T-)) > 0 and to have a

jump at a stopping time, T, if P(T < oc, X(T) 3 X(T-)) = 1. Further, a
sequence, (Tn), of stopping times is said to exhaust the jumps of X if

(i) X has a jump at each Tn, ncZ+,
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(ii) [[ti]1n[[tJr]] = j , ,

(iii) X does not charge any other stopping times.

2.7.20. Remark: Let X be an adapted, Skorokhod process, then X is a previsible
process. Set A = {X $6 X_}. For each nEZ+, let An  - {IX- 1

n
Then AncG(OT) for all n and

A = UAn.

Now, since X is Skorokhod the sections, A.(w), have no cluster points in R+ for

each n and all wEfO0 , where P(P0 ) = 1. It follows that each A, is the union of
the graphs of its k-debuts and so A is contained in the union of a countable

number of graphs of stopping times. We need the following:

2.7.21. Lemma (Dellacherie, 1972, IV T17): If A(G(K), where K is either
the class of previsible or accessible or optional times, and ACU[[Sn] ] for any

sequence of stopping times, then there exists a sequence, (Tn), with Tn(G(k) for
each n and

A = U[[T,1 ,

and the graphs of the T n are pairwise disjoint.

Combining this Lemma and the previous remarks we have

2.7.22. Theorem: (Dellacherie, 1972, IV T30)
(i) If X is any adapted, Skorokhod process, then there exists
a sequence of stopping times, (Tn), which exhaust the jumps

of X

(ii) If X is previsible (accessible), then the (TJ) in part (i)
are previsible (accessible).

Again, let X be an adapted, Skorokhod process, then from part (ii) of this
Theorem we see that if X is accessible, X cannot charge any totally accessible
time. The converse of this statement is also true and is a result of the following
observations. Let X be adapted and Skorokhod. Then since X does not charge
any totally inaccessible time, we know from part (i) of the Theorem that the
sequence (Tn) which exhausts the jumps of X must be accessible. Then

A = U[[TIl is accessible and its complement B := {X = X-) is accessible.
Since X - IBX + lAX, and X_ is previsible, it follows that X is accessible.
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Therefore, the following Corollary holds.

2.7.23. Corollary.
Let X be an adapted. Skorokhod process.

Then X is accessible iff X does not charge any totally inac-
cessible time.

Remark: Earlier we introduced quasi-left continuous filtrations. The following

result leads to an analogous class of processes:

2.7.24. Theorem:
M. Suppose that X is adapted and Skorokhod. Then the following statements are

equivalent

(i) The jump times of X are totally inaccessible;

(ii) X does not charge previsible times;

(iii) If the stopping times T, T T then

limX(Tn) = X(T) on IT<coo, a.s.P.
n

Remark: A process X satisfying any one of these conditions is said to be a
quasi-left continuous process. Later in this chapter we will point out that
each Shorokhod martingale is quasi-left continuous when the underlying filtration
is quasi-left continuous.

From the previous theorem on the jumps of Skorokhod processes, we can see that
if the Skorokhod process X is previsible, then X is quasi-left continuous iff X is
(a.s.P) continuous. A more important result concerning Skorokhod previsible

processes is given by

5"9
2.7.25. Theorem: (Dellacherie, Meyer (1980])
Let X be a Skorokhod process. Then X is previsible iff the following two condi-

tions hold:II (a) AXT = 0, a.s.P, for all totally inaccessible stoppingi times T

(b) For every predictable stopping time T. XT is F(T-)-
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measurable on [T<c]

Remark: Part (a) confirms the intuitive fact that previsible processes cannot
jump at totally inaccessible times. Part (b) of this theorem can be strengthened
as follows:
If X is previsible, then the random variable I[T<lIXT is F(T-) measurable for all

stopping times T. This exactly expresses the meaning of previsibility.

Since we are not going to prove the Theorem, it would be helpful to prove the
last remark. Perhaps more importantly this can be accomplished by a relatively
standard argument based on the Monotone Class Theorem (Appendix A). There
are numerous places in this note where this device should be used, but isn't. So
we will take a moment and at least show the setup. Since, in this case, X is
previsible, we first look at the kernel processes Xt(w) = 1A(w)l(u,,)(t), where
A(F(u) and O<u. Then XT = 'A1Iu<Tl. Since T is F(T-) measurable and

AEF(u) 1AIIu<TII[T<,l is F(T-) measurable. But An[u<T] is a generator of

F(T-). Therefore, when X has this simple form 1iT<,+XT is F(T-) measurable.

Now let H* be the set of all such processes X such that I[T<,.lXT is F(T-)
measurable for all stopping times T. Also, let L be the collection of all subsets of
(0,ox)Xf of the form (u,oo)XA, u>O, AEF(u). Then IH" and IREH* when B is
in L. Next, it would have to be shown that if (Xn) is an increasing sequence of
nonnegative functions in II* such that supnX n is finite, then supnXn is in H*.

The Monotone Class Theorem then states that H" contains all processes measur-
able with respect to o(L) =_ G(PT), as desired.

As a final remark about the meaning of the result itself, recall that if X is previsi-

ble, then it is progressive. Since it is progressive, we know that X(T) is F(T)
measurable. Thus, we see that the more restrictive assumption of previsibility.,
produces the sharper result that X(T) is F(T-) measurable (as we would expect

from the intuitive meaning of previsibility).

2.8. Martingales: This small section contains a list of some basic results on

martingales that will be needed in the remaining parts of this note.

As in previous sections, all processes will be considered relative to a probability

space (Q.1lP) equipped with a filtration, F=(F(t),t>0). U'nless stated olherwi ,.
we assume that F satisfies the "usual conditions".
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We have already discussed the martingale concept in Chapter 1. and will only

note that if X is some stochastic process, h > 0, and we want to estimate the

increment process, t--X(t+h) - X(t) on the basis of information that has accrued

up to and including time t, then a reasonable estimator is
,(t) := E(X(t + h) - X(t) I F(t)). If ' 0 (Vk > 0, 0 _ 0) then according to

the following definitions, X is a martingale (submartingale, supermartingale).

2.8.1. Definition: A F-martingale, m, is a P-integrable process satisfying

E(m(t) I F(s)) = m(s) , (a.s.P),

for all t>s>O.

From the properties of conditional expectation, martingales are F-adapted by
their definition. Supermartingales are P-integrable, F-adapted processes, I.
such that Y(s) > E(Y(t)IF(s)), a.s.P, for all t>s>O. Finally, X is an F-

submartingale, if -X is a supermartingale. Clearly, a martingale is both a

supermartingale and a submartingale.

2.8.2. It is proved in Meyer [1967] that

2.8.3. Lemma: If the filtration F satisfies the 'usual conditions", then an F-
submartingale Y has a Skorokhod (right continuous with left limits) modification

iff the mapping t-EY(t) is right continuous.

2.8. 1. Since we assume the "usual conditions" such modifications always exist for

martingales. (This follows directly from the definition of martingale since Fra(t)

- Em(O), t>O. That is, martingales have constant mean value functions.) Com-
bining Lemmas 2.3.3 and 2.8.3, we can and will always identify a martingale

with its Skorokhod modification. Actually, Meyer proves that if a submar-

tingale is right continuous then it has finite left limits a.s.P. and states Lemma
2.8.3 for right continuous submartingales.

However, if X is an F-submartingale which is not right continuous, all that can

be said for it is that for each t > 0 and a.s.P all paths, right and left limits exist

at t for the restriction of X to any countable dense subset of [0,oc). That is, let-
ting Q be the set of nonnegative rationals,

P({ w lim X(s), lim X(s) exist}) - 1,
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for each t >0.

Therefore, we can define the process, Y, by setting Y(t) - li X(s). for
s-t+.S(Q

each nonnegative t on a subset C of Q2 where P(C) = I and arbitrarily on
Q - C, so that Y is right continuous. Further, Y is F-adapted by right con-
tinuity of our filtrations: F(t+) = F(t). To see that Y is also an F-

submartingale, let (hn) be a sequence of nonnegative real numbers decreasing to
zero. Then the sequence (Yt+h.) is a "reversed submartingale", due to the fact

that the original process X is a submartingale, which can be shown to be uni-
formly integrable. We will spend some time in a few paragraphs discussing the
uniform integrability condition, but for now it is enough to know that it is
sufficient for a.s.P convergence to imply convergence in LI(P). Letting A(F(s)
and s<t. and applying this result to

EY(s)I A = lim EX(s+hn)1A K lim EX(t+hn)l A = EY(t)I A ,

,ve obtain Y(s) E(Y(t) I F(s)); Y is an F-submartingale. Y is called the right
continuous modification of X. Thus, under the "usual conditions" a right con-
tinuous modification of X always exists.

In the same manner, one shows that EX(t)IA EY(t)lA, for all AF(t), so that
X(t) < Y(t) a.s.P for all t. It follows from this last statement, that
X(t) = Y(t) a.s.P, for each t iff EX(t) = EY(t) for each t. This is basically
the content of Lemma 3.

2.8.5. Remark: There are a number of results from classical martingale theory
that will be needed in the following chapters. One, Doob's Optional Sampling
(Stopping) Theorem, has already been stated and proved in the discrete parame-
ter case. The continuous parameter version of this theorem, and others to be
stated later, follows in a relatively simple manner from the discrete version when
the "usual conditions" obtain and the processes are Skorokhod. For brief, self-
contained proofs see N. Ikeda and S. Watanabe [1981]. K. Chung [1974, 1983] is
also an excellent source.

To state these theorems in a form convenient for application in Chapter 6, we
first introduce some terminology for martingales which have finite moments of
order p: M is said to be an Lp martingale iff M is a martingale and McLp, where
p belongs to [1, oc). A related classification, that we won't use very often until
the last chapter, is Lp-bounded. A martingale M is said to be Lp-bounded if
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sup,> 0 E( I tP) I P ) < cc. L., bounded martingales are also called square

integrable martingales.

Theorem: (Doob's Inequality)
Let Mk be an Lp-nzartingale and p ( [1. : 1. Set N -- sup) M N.I O<s<t

Then

XPP( \1 * ) f Nlt I d (1)
• -. [Mi,>xl

and, if p> I then \I t* f Lp. for all t > 0. and

E )P} (P )P E{ I Mt I '1. (2)

2.8.6. Remark: Clearly, E I P < E(Mt* P). So in terms of the Lp (H,li.P)

norm, inequality (2) says that

IINIJIp <' wt'lp <' P IIMJIp.

Therefore, when p > 1, the mappings m-IlMJIl p and m--lit*p , define
equivalent norms. This remark will be extremely important in Chapter 6,

where the initial analysis will take place with L2-bounded (square integrable)

processes.

2.8.7. Remark: The inequality (2) is usually called Doob's inequality. Since this
inequality is of great importance to us we will show how it can be deduced from

(1): An application of integration by parts gives

E((Mt)P) - pf XP-'P(Mt*>X)dX
0

Spf X P-2  f Nit dP dX
0 fm,>Xl
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%CX

= pfXp-2 fI1:>× I Mt dP dX
o ...

= PfX p-2 fP[\t*>X, NIt I > j] dp dX
o 0

- -P-f(p-l)fXP-2P[Mt*>X, INitI >p]dX }dji
P-1 0 0

co

S--- Q I I > P (Mt')P-') dp

p-I
":-p-I

< p I,(E(Mt*)P) P (E(M P)) P
p-I

This last inequality is a consequence of Holder's inequality. The result follows by
dividing both sides of the last inequality by the first term on the right; if it were
zero, there would be nothing to prove.

2.8.8. Remark: Uniform integrability of a family of functions is a classical con-
cept. (E.g., Meyer [1967], Lo'eve [19601.) Since it plays a somewhat remarkable
role in the theory of martingales, we are obliged to spend some time discussing
the concept and its application to martingales. The principal use of this material
will be to construct the Stochastic Integral in Chapter 6.

A family, *, of P-integrable random variables on (0,H) is said to uniformly
integrable iff

lim sup( f IX(w) P(dw)• XE 1)-0.

"aI X ' I >a,
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Let n - (m(t), t>O) be a martingale. We will see that for 4' I(t), t R+}.

uniform integrability can be characterized by the requirement that there exists a

P-integrable r.v. Z which closes the martingale in the sense m(t) = E{Z I F(t);.
for all t>O. In this case it can be shown that Em(t) - EZ for all t>O.

lim m(t) = Z , a.s.P,
t-0

and also in L1. Z is usually denoted by Z(oc), and is called the terminal ran-

dor variable of the process m.

We will now indicate how this result and some others are derived with the aid of

uniform integrability. More exactly, we will discuss uniform integrability and its
impact on supermartingale and martingale sequences. The transfer of these

results to the "continuous- parameter case is simple for the processes under con-

sideration in this note (they are Skorokhod processes).

We will quote two principal sources as we proceed and the interested reader can

refer to these for complete details. However, an attempt will be made to supply
the basic mathematical ideas that yield the results. First of all, Meyer[1967
p.171 points out that every finite family of processes is uniformly integrable and

every family majorized by a P-integrable process is uniformly integrable. To
understand his remark about finite families, consider 4 = {h), a family with
only a single LI(P) random variable. Then

f Jh(w) I dP(w) , as a oo
.. [Ih >a]

since hcLj(P), P([Ih > a]) - 0 as a -. oc, and the measure determined by the

map B--.f I h dP of H into R+ is absolutely continuous relative to P.
B

The case for finite 4) follows immediately, as does the case where a family is
dominated by a single P-integrable function. These observations are essentially

contained in a characterization given by Mleyer[1967, 1IT101 which states, that
uniform integrability is equivalent to the uniform boundedness of Elfi for all foi

(i.e., supr(,E I f I < oc) and the "uniform" absolute continuity of the measures

B-f I h IdP, B in H, fin I.
B

The uniform boundedness condition, supnEI f, I < oc, implies that
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sup E f- < oo and sup E f' < 00 (1)

Because of the monotonicity of their expectations, supermartingales with the first

part of condition (1) are uniformly bounded; the same is true for submartingales
with the second part of condition (1).

It is well known that condition (1) is a sufficient condition for a supermartingale

(submartingale) ( fn, Fn,ncZ+ ) to converge a.s.P to a terminal random variable.

denoted f.¢, with the property that E( fo) lim E fn"
n

Another consequence of uniform integrability (Meyer[1976, 11 T21]) is that it

extends Lebesgue's Theorem and tells us that the a.s.P convergence of fn to f,

also takes place in LI(P). Therefore, Ef -= lim Ef n.
n-oc

Thus, if (fn, Fn ) is a uniformly integrable supermartingale, then this supermar-

tingale converges a.s.P and in L, to a terminal random variable. Consequently,

(fn, ,Fn n c Z+), where Z+ = Z+Uoo , is also a supermartingale. That is,

under uniform integrability, the time domain of a. supermartingale can be
extended to Z+ in an obvious manner and the resulting process continues to be a

supermartingale.

In terms of martingales, this says that for every n, we can write

fn = E( f I Fn ). Moreover, the converse of this result is true in the follow-

ing sense: If there exists an L, random variable, U, such that

fn = E( U I Fn ), then (fn , Fn ) is a uniformly integrable martingale. That

(E( U I Fn )) is a martingale is obvious. That it is uniformly integrable follows

from the following Lemma, which is of general interest.

2.8.9. Lemma

Let U be an L1 (P) random variable and C be a collection of sub-a-algebras of the
o-algebra H. Then the family { E( UI G G belongs to C } is uniformly integr-

able.

2.8.10. Remark: This is quite easy to prove. Just use the Chebyshev inequality
for positive random variables and Jensen's inequality to show that

supGCP( E(U I G)I a) IEI U.
a
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We nowv state three Theorems that are basic to the development carried out in
Chapter 6.

2.8.11. Theorem: (Martingale Convergence)
Let Al be an F, LP-inartin gale, pc[1,oo] and suppose that

sup{ E I itI : O<t<oo ) < oc. Then there exists a random variable

MOO c LP such that

$ lim Mt = M.0 a.s.P.
t-00

Further, if p = 1, and M is uniformly integrable, or simply, if p> 1, then (Nit) is

an F, LP-martin gale, where now tc[O,oo], the extended, positive real line, with

F(oc) = o,( U F(s) ), and Mt converges to M, in Las t-c.
S>O

Remark: See Chung-Williams [10831, or Meyer [1967].

2.8.12. Theorem:
If m = (mt~t 0) is a Skorokhod supermartin gate (submartin gale) and

sup,<tEmt-<oo (sup,,<tEm(<inf), then mt - m,, as t -.- cc', a. s. P, and

m -EL 1 (P).

2.8.13. Remark: Recalling condition (1) and remarks, it follows that any uni-

formly integrable martingale, m, has a terminal r.v. m,,: mt -- m, a.s.P, in

LI(P), and mt = E(m,, F(t)). Conversely, if ZEL 1(P), there exists a uniformly

integrable martingale, m, such that mt = E(Z IF(t)).

2.8.1-1. Theorem (Doob's Optional Sampling Theorem):
Let X be a Skorokhod supermartingale and suppose that there exists a r.v. YE'L1(P)

such that Xt E(Y I F(t)), t > 0. Let S and T be F-stopping times with

S < T, then XS and XT are P-integrable, and XS >! E(XT I F(T)).
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Chapter 3. Increasing Processes

3.1. Point Processes: The reader should recall the discussion on discrete point
processes in Chapter 1. Let (T(n),n>O) be a sequence of positive random vari-
ables defined on some filtered probability space, (f2,H,F,P). This sequence is
called a point process (PP) if (T(n)) is an increasing sequence on 0 with values
in (O,xo] which satisfies T(n,w) < T(n+l,w) for each natural number n and each
w in Q, if T(n,w) < oc. We immediately extend the definition by setting T(0,w)
= 0 and T(oo,w) equal to the limit of the T(n,w) as n approaches infinity, for
each w in 0. Only on one or two occasions in this note will each T(n) not be a
stopping time relative to some non-trivial filtration. (As random variables, the

T(n) are always stopping times relative to the trivial filtration, which is defined
as H for every "time" t.)

3.1.1. The "counting process", N = (N(t),t>0), associated with a point process
(T(n), n>O), is the stochastic process defined by setting N(t,w) := n, if T(n,w) <
t < T(n+l,w), and := oco, if T(oc)<t. It follows that for t>O and wOQ,

N(t,w) = V' [[JT(n),,,))(t,w) •

n>1I

Since N and (T(n)) both contain the same information it is usual refer to each as

a point process. We will adopt this custom and reserve the name counting pro-
cess for those point processes which are non-explosive, in the sense that

N(t) < oo , for all real t, t>O.

This condition is equivalent to

lir T(n) =- .

Notice that the non-explosive condition does not preclude either N(W) = oc or

N(x)< x. In both cases lim T(n) = oc. If, for example, N only has a single
jump, then T(n) is equal to oc for n > 2, by definition of the sequence as a point
process. The jump times of nonexplosive point processes, our counting processes,

do not have finite limit points.

Finally, in the Chapter on Dual Previsible Projections, it will be shown that
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corresponding to every point process, N, there is a unique (a.s.P), previsible.

increasing process denoted N, called the previsible compensator or the dual

previsible projection, such that

*
s
i N(t) - N(t) is an F-martingale, (I)

and

f d N(s) = 0. (2)

[T( z ,ocl

Jacod(1975) shows that there is a version of N satisfying (2) and having the pro-

perty that AN< 1, for each t > 0.

We note that the point process, N, is also called a simple point process bv vir-

tue of the fact that its jumps are always equal to 1.

When we want to remind the reader of the underlying filtered probahility ' Pl,'

we will write (N,P) or (N,F) for the point process and often refer to the (!.)-

point process.

Although we will deal almost exclusively with counting processes, most of the

important results holding for such processes carry over to point processes and the

more general class of marked point processes. In order to take marked point

processes into account and also to use these more general processes to understand

the meaning (limitations) of the assumptions characterizing counting processes.

we will introduce marked point processes here and give a few examples. These

processes will be studied in more detail in Chapter 4 and again at the end

Chapter 6.

We let Z = (Z(n),n>0) be an arbitrary sequence of random variables defined on

fQ and taking values in a space E; let (E,f) be a measurable space. Then, with

(T(n)) as above, the double sequence (T(n),Z(n)) is called a marked point pro-

cess and E is called the mark space.

If we define the process NA = (N(t),t>0) by

NA(wt) V1 [T(n)_< t,Z(n)A I
n>i
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for A in . Then N(t,w) := NE(w,t) is the point process introduced earlier.

The mapping

A -- p(w,[O,t]XA) := NA(w,t)

defines a random measure on 10,oo) X E.

This random measure is the primary object of study in the classical (sans mar-
tingales) approach to point processes. This is exemplified in the works of Kallen-
berg[1976,1082 and Matthes, et al. Recently, work has started to appear (Hoe-
yen) combining martingale and random measure approaches. The first significant
modern work on random measures by the martingale community is Jacod [1975];
we will return to this paper and random measures in Chapter 4.

We will end this little digression with some examples of marked point processes:

(a) E = {1}. Then n(t,E) is just our original point process.

(b) E = {1,2,3,...,k}, then Z might be the number of messages arriving at a com-
puter at some random time, T(n).

(c) Use E as in (b). Br6maud defines the multivariate counting process, N -
(N(t),t>O) by setting

N(t,w,i) - Z 1[[T(n),.lI(t,w)1[Z(n)-i](w)
n>O

and then defining N(t) by N(t) = (N(t,1),...,N(t,k)).

Naturally, most univariate counting process results carry over to this multivari-
ate process, including results on nonlinear filtering. We will not utilize this
below. In applications to stochastic networks of queues it plays a significant role.

(d) This example is really about counting processes. Just note that when E={1},
the study of (T(n),n>O) includes the study of renewal processes as a special case,
where the interoccurrence times

Sn+ :-T(n+l)-T(n)
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are assumed to be independent and identically distributed. Hence, It inciludes he
model for life testing, for example. Note that the counting process makes no
assumptions of interoccurrence time independence, and certainly no distributii ial

asslillpt ions.

(e) It is probably clear that with the proper assumptions the marked point pro-
cess (T(n),Z(n)) is also a model for countable state Markov processes! A charac-
terization of such processes can be given using the notion of "dual previsible pro-

jection".

Though by no means exhaustive, these examples should convince the reader that
point processes can be used in a wide variety of applications. We will look more
carefully at one particular application in the sequel.

3.2. Increasing Processes and Lebesgue-Stieltjes Stochastic Integrals: In
Chapter 6, where the major properties of stochastic integrals with respect to mar-
tingales are developed, we require some elementary facts about one of the sim-
plest of stochastic integrals, namely those involving integration with respect to

processes whose paths are of bounded variation. This theory alone would be
sufficient for the nonlinear filtering problem if we were able to restrict our prob-
lems to those dynamical systems where the state process was of bounded varia-
tion.

We will assume that the reader recalls the definition of a real valued function of
bounded variation defined on R. It is sufficient to recall that every such function
can be characterized as the difference of two non-decreasing functions (Also see
the Odds and Ends Appendix).

3.2.1. Definition: An F-adapted, P-integrable, nonnegative process A -
(A(t),t>O) is said to be increasing if the paths, t--A(t,w), are increasing and
right continuous, a.s.P (satisfying A(t) < oo, a.s.P, for all tcR+). Note that

'increasing" does not mean "strictly" increasing.

Additionally. A is said to be integrable if A(oc) = lim A(t), which always exists.

is P-integrable, that is, if EA(-0) < +oc. Then EA(t) < +oo, for all t>O.

3.2.2. Remark: Numerous authors talk about increasing processes on the
extended real line, [0,oc], and not wanting to exclude "jumps" at oc, write the
limit of A(t) as t - oo as A(oc-). The jump at infinity is then just
A( - A(oc-). In this case, when A is defined on [O,ool, it is said to be integrable
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if EJA(oc-)J < o.

3.2.3. Remark: By definition, an increasing process, A, has increasing, right con-

tinuous paths, a.s.P. In particular then, A is Skorokhod. Further, A is adapted,

so every increasing process is optional relative to (F(t)). When A is an increasing

process relative to the trivial filtration, F(t) = H for all t>O, A is said to be a

raw increasing process. When a given discussion involves a nontrivial filtra-

tion, and we want to talk about a raw increasing process, we will often just say A
is an increasing, not necessarily adapted, process. These distinctions become

important in applications as well as in the theory, since the state of a process is
"observable" if the process is adapted to the filtration representing the observ-

able history.

3.2.4. Remark: Denote by V+ - V+(F,P) the family of equivalence classes

(under indistinguishability) of increasing processes. Set BV :- V+ - V+ . Then

BV is called the space of processes of bounded variation, or finite variation.
In particular, elements of BV have the property that almost every sample path of

each process is of bounded variation on compact subsets of R+.

Let IV+ be that subset of V+ consisting of increasing, integrable processes and IV
be the set of differences of members of IV+ . IV is then called the space of

o

processes of integrable variation. AcfV implies Ef I dA(s) I < o.
0

3.2.5. Let X = (X(t),t>O) be a measurable process, and AcV + . Then with each

path, t - A(t,w), we can associate a Lebesgue-Stieltjes integral

t

f X(s,w) dA(s,w) := f X(s,w) dA(s,w)
0 (0,ti

where, as is the custom, dA(s,w) represents the measure associated with A, for

each w:

dA((a,b J,w):=A (bw)-A (a,w)

o

Now let X be a measurable process such that E( f IX(s) I dA(s) I ) is finite.
0

Denote the family of such processes, X, by LI(A). Then for X(L,(A) the pro-

cess
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t
I~t,w) :f fXs,w)dA(s,w)

0

is well defined up to a set of P-measure zero. This is because Fubini's theorem

guarantees that

t

w--.fX(s,w)dA(s,w)
0

is 11-measurable (See Appendix A for details). Hence, I(t) is a random variable
for each t>O. Indistinguishable versions of the process I = (I(t), t>O) are
identified and the resulting equivalence classes are denoted by X.A =

((X.A)(t).t>O) and called the (Lebesgue-Stieltjes) stochastic integral of X rela-
tive to A. As usual we have suppressed w~ff.

3.2.6. Let XEL 1 (A), with AEV . Then, the process ((X.A)(t), t>O) is continuous
on the right (continuous, if A is continuous), and therefore by Lemma 2 of
Chapter 2, it is a progressive process. Hence, by an earlier remark, (X.A)(T) is

F(T)-measurable for each stopping time, T.

Also, since we can write,

X.A = (X+).A - (X-).A,

X.A is the difference of two increasing functions, and hence, is a function of

bounded variation.

Further, if X is assumed to be F-progressive, then since A is F-adapted, Fubini's
theorem tells us that the process (X.A)(t) is F(t)-measurable (F-adapted) for each
t>O. Hence, in this case X.A is an optional process ( since we have already noted
that X.A is a right continuous process ).

3.2.7. Remark: From Chapter 2, section 2.7, we know that if A is an increasing
process, and therefore Skorokhod and adapted, there exists a sequence of stop-

ping times (T(n)) which exhaust the jumps of A and have the same measurability
as A. Set Ad(t) = V(A(T(n)) - A(T(n)-)) ll[Tn,))(t). Then Ad is increasing

n
and A' = A - Ad is continuous and increasing. Therefore, A' is previsible and
so if A is previsible, then Ad is also. Finally, the decomposition A .V + "\d is
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unique, in the usual sense.

It is shown in Dellacherie [19721 that A can be written in the form

A ---A' + V a(n) I1T(n),c)B ,

n> 0

where a(n) > 0 for all n. A' is the continuous part of A, and the process Ad is
called the purely discontinuous part of A.

It follows that

X.A = X.(Ac) + , a(n) X(T(n)) 1 [[T(n),c¢))
n> 0

and so X.A is previsible, if A and X are previsible or A is continuous (since, in
the latter case, X.A is continuous).

This equation has the obvious consequence that when A is a counting process, N
- (N(t), t_0), where AN(t) = I or 0 for all t,

X.N -- X(T(n)) 1 11T(n),c))
n>0

3.2.8. The following Theorem is well known and easily proved. It was stated in
Chapter 1 for discrete parameter processes and will be extended, in Chapter 6, to

stochastic integrals with local martingale integrators.

3.2.9. Theorem.
Let .4 and B be two Skorokhod processes in B. Then ABEBV and

t

A(t)B(t) - A(0)B(0) = f(A(s) dB(s) + B(s-) dA(s)) (3)
0

and

A(t)B(t) - f (A(s) dB(s) + B(s-) dA(s)), (4)
[0,t6
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fort>O. That is, in (3)

A(t)B(t) - A(0)B(0) = (A. B)(t) + (B_.A)(t)

uhere B_(t) := B(t-) := lim Bls)
S-t-

3.2.10. Remark: Equation (4) is the correct analogue to the Chapter 1 integra-
tion by parts formula.

3.2.11. Remark: The last equation is often written in the "differential" form
d(AB) = AdB + BdA. Of course, this has meaning only through the Theorem.

As in discrete case, the integration by parts equation can be rewritten in a more
symmetric form,

3.2.12. Corollary:

d(AB) = A_dB + B_dA + d[A,B], (5)

where, the square brackets, or cross quadratic variation process is given by

[A,BI(t):= V AA(t)AB(t),
0<s<t

where the summation is taken over the countable number of common discontinui-
ties of the bounded variation processes, A and B, and A A(t) := A(t) - A(t-)

('Iearly. the equation for d(AB) is obtained from the Theorem by noticing that
the lebesgue Stieltjes integral, (A - A).B, is just [A,B].

The importance of the representation for d(AB) above will be recognized when it
-. U. is demonstrated that the natural integrands for the stochastic integrals defined

blow are previsible processes ( and for instance A is previsible).

3.2.1.3. Remark: Recall that any martingale can be taken to be Skorokhod. If
our filtration F=(F(t),t>0) is quasi-left continuous, then any F-martingale, of

BV. is continuous at previsible times:
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M(T) -E( M(T) I F(T) )= E( M(T) j F(T-))= M(T-).

Since under quasi left continuity, accessible times are previsible, we have that
(BV) martingales can jump only at totally inaccessible times. Therefore, under
this condition on the filtration, integration with respect to martingales of
bounded variation is even permissible in the Riemann-Stieltjes sense when the
integrands are continuous at totally inaccessible times. For example, when the
integrand only jumps at previsible times, as in the case of Skorokhod previsible
processes (Jacod,1979).

3.2.14. Remark: Liptser and Shiryayev[1978,Vol 2, p261] give a very informative
example. Considering the LS integral of a Poisson process relative to the centered
Poisson process, they demonstrate that (N.M)(t) is not a martingale, but that
(N_.M)(t) is one, where N_(t)=N(t-) and M(t) = N(t) - ct, t>O, c the Poisson
parameter of N. Notice that N_(t) is previsible, because it is left continuous.

3.2.15. Remark: The following result is proved by Doleans and Meyer(1970.p.89).

3.2.16. Theorem:
If X is an F-previsible process, Al is an F-adapted martingale which belongs to I"
and X c LI(M], then (X.M)(t), 1> , is an F-martingale.

We have seen the analogous result for martingale transforms in Chapter 1. More
such results will be seen in Chapter 6 as stochastic integrals are extended to
wider and wider classes of integrators. Moreover, these stochastic integrals will

agree with the Lebesgue Stieltjes stochastic integral when the "integrator" mar-
tingale is taken to be a member of IV.

3.2.17. Remark: It is easy to show that M is a F-martingale iff E(X.M)(t) = 0,
for all F-previsible kernels, X = 1Bx(s,tJ, t>s and BcF(s). Br~maud [1981] points
this out and observes that this is just one of the many reasons why previsible

processes play a central role in the theory of stochastic integration. As we
S proceed we will meet numerous other instances to support this position.
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Chapter 4. Dual Previsible and Previsible Projections

4.1. Introduction: As observed earlier in these notes, measurable processes are

not necessarily adapted. If X is such a process (i.e., measurable, not adapted

and tile filtration F=(F(t)) is interpreted as the history of observation connected

with some experiment, then path segments of X, X(Nt := (X(s), 0<s<t ), are

not observable outcomes of this experiment for every time t. Therefore. if it is

appropriate to derive information about the evolution of X=(X(t)) over a time

interval 1O,tI from this experiment, this information must be estimated with tile

aid of the history of outcomes of the experiment. One such estimate is (t.w):=

E(X(t) I F(t))(w), a.s.P. If one intends to use X: to estimate the path segments.

X10't] . however, then one is faced with the seemingly impossible task of pasting

together an uncountable number of the versions of X(s) to obtain X(s,w) for all
s<t and all w in some set K with the property that P(K) = 1. The results of

this section show that this can be accomplished uniquely, provided that the
estimating process is carried out at optional or previsible times.

In order to look at the results of this section from another direction, suppose that
the process X is adapted to (F(t)). Then it is well known that X is determined by

(F(t)) through E{ X(t) I F(t) ) = X(t), a.s.P (X(t) = X(t) a.s.P). That is, when X

is F(t)-adapted, X(tj is determined by the integrals E{ X(t) 'A ), for all AcF(t).

Results of the first part of this section show that previsible processes X are
uniquely determined by the P - integrals of XT on [T < ocl, where T is previsi-

ble.

These two observations concern "previsible (optional) projections" of a stochastic
process. The majority of results of this section concern the "dual previsible pro-

jection" of a process. This projection concerns increasing processes and it plays a

fundamental role in the calculus of martingales. The dual previsible projection
will be defined in terms of previsible projections and "amrnissible" measures, the

latter coming up next.

We will assume throughout this section that the underlying filtration

F = (F(t),t>O) satisfies the "usual conditions".

4.2. Measures Generated by Increasing Processes: Let p be a measure on

a sub o algebra G of B([0,oc))XH, where (Q,H,F,P) is the underlying filtered pro-
bability space with H = (7( U F(t)) := F(oc).

t>O

4. We will follow M6tivier and call ,a admissible, if for B(G and B evanescent.
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p(B) = 0. This is similar to absolute continuity of measures: Let 11(1,) be 0ho

projection of B onto Q2. Then p is admissible if P(H(B)) = 0 implies j(B) 0.

As an example of such a measure, let A be an increasing, integrable (A( x)l 1 (l'))

process and set

u(C) = E{ f 1c(s.w)dA(s,w)} , (1)

where CcG = B(R+)XH. This measure, it, is admissible and bounded on
B([0,oo)) X H.

With A as above, define PA, by setting

PA(X) = E{ f X(s)dA(s)} (2)
[O,co)

on the space of bounded measurable processes X. Then PA is a linear functional

on this space. Observe that PA(lc) P(C)

It is easy to show ( e.g., first use simple processes, then pass to the limit) that

PA(X) = f Xdii (3)
R~x 0

for X measurable and bounded (or X positive) and p as in (1). In a common
abuse of the language, both i and PA are often referred to as measures, AA as the

measure generated by A.

4.2.1. Remark: Later in this Chapter, measures generated by increasing
processes will be characterized and used to introduce and study the notion of
"dual previsible projection". Prior to this development, such measures together
with previsible projections will be used to state a criterion for the previsibility of

raw increasing processes.

* 4.2.2. Now take p to be as defined in (1) and let T be an F-Optional time. Set
(s,w) -. A(s,w) := l[[T,,))(s,w). Then A jumps at [[TI], the graph of T. and is
equal to I to the "right" of l[T]], that is, on [[T,oc)).
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Therefore.

f 1c (s,w)dA~s,w) = Ic (T(w),w) I[T<ccl (w).

It follows that

p(C) flc (T(w),w) I[T<,l(W) P(dw)- E{ Ic(T) '[T<,,I}

and so, for any bounded measurable process X,

-..,

- f X dp = E{XT lITel}, (4)
R+x Q

where we have written XT in place of X(T). This is most easily seen by first tak-

ing X to be a simple process and then passing to the limit. For example,

X :-" Eak lC, , where X(s,w) = ak on Ck , (Ck) a finite partition of B(R+) X Q.

Then

f -dp = f E'k 1C, dp=\_Zak I/(Ck) = E{,K Ic,(T) IT<el }=E{ XT 'iT<-,l }

With A = I[[T, )) as in the beginning of this paragraph, denote the admissible

measure p by PT.

The following Theorem establishes a mapping of bounded measurable processes

into previsible processes. This mapping behaves much as a conditional expecta-

tion operator.
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4.2.3. Theorem:(Mitivier, 1982)

For every bounded measurable process, X, there exists a unique, previsible pro-

cess, PX. such that

fX dPT = f PX dPT, (5)
U U

u'here U = R+ X Q, for every previsible time, T.

4.3. Previsible Projections: The process, PX, is called the previsible pro-

jection of X onto G(PT), the F-u-algebra of previsible events. By equation (4),

this defining equation is equivalent to the requirement that

E{ XTI[T<nl] = E{ PXTI[T<oo]} (6)

for every previsible stopping time, T. This equation in turn is equivalent to

E{ XT I[T<. ] i F(T-) } PXT l[T<.o[ (7)

a.s.P.

4.3.1. Remark: The proof of this last statement is quite easy. The trick is to take

the previsible time, T, to be the restriction, T(, to any set C in F(T-). By the last

result in Section 2.6.5 T c is previsible and the previous equation for the previsi-

ble projection applies. Since T 0 takes the value oo off the set C, a mompnt's

thought gives this equation in the form

E{ XTI[T<,,]lC } -- E{ PXTIIT< 11}.

Then using the fact that PXTI[T<cl is F(T-)-measurable, the result follows from

the definition of conditional expectation and the arbitrariness of C in F(T-).

4.4. Section Theorems: The proof of the M6tivier Theorem itself, however,

relies on one of the deeper parts of the general theory of stochastic process es,

namely, the so-rrlled Section Theorems. These are the result of applying the

Thcory of ChoQuet Capacity and Analytic Sets to measure theory. Of course this

theory will not be discussed here, but to establish some frame of reference for the
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projection theory of this section, we will state one of the Section Theorems and
two results that follow from this theorem. To some extent, this will further jus-

tify some of the grandiose claims about stopping times made in the introduction

to Chapter 2.

4.4.1. Theorem (Section Theorem):

If (2,H,(F(t),t>O),P) is a filtered probability space and the random set A is

optional, then given any E > 0, there exists a optional time, T, such that

V a) flTl] is contained in A, and

(b) c + P{w:T(w) < oo} > P{ H(A) },

where A -- H(A) is the projection map of R+X2 onto Q. Further, if A is previsi-

ble, then T can be taken to be previsible.

The following is immediate

1.4.2. Corollary (Dellacherie, 1972):

Let X and Y be optional (previsible) processes. Then X and Y are indistinguish-

able iff X(T) = Y(T), a.s.P, for any optional (previsible) time.

The proof given by Dellacherie will be paraphrased here because it is simple and

indicates why the Section Theorems are important: Let A = { (t,w) : X(t,w) 3
Y(t,w) }. Assume that optional X and Y are not indistinguishable, then A is not

evanescent. Then there exists an optional time T, whose graph is contained in A
and which is not evanescent (by (a) and (b) of the theorem). Hence, X(T(w),w) 34
Y(T(w),w) on an event with positive probability. That is, X(T) = Y(T), a.s.P,

implies that X and Y are indistinguishable. Conversely, if X and Y are indistin-
guishable, then P(H-(A)) = 0 so that X(T) = Y(T), a.s.P, for all optional times

T.

A second application proves the uniqueness statement in MNtivier's theorem on

the existence of previsible projections:
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4.4.3. Corollary:
Let X and Y be previsible bounded (or positive) processes. If for each previsible
time T one has

E{ XTl[T<,o]} = E{ YT[T<oI}, (8)

then the processes X and Y are indistinguishable.

The proof of is similar to that of the last Corollary.

Once the uniqueness of the previsible projection is shown, a monotone class argu-
ment centering on processes of the form: X := 1Fx(s,t], with F in F(s) for s<t, is
used to show the existence of previsible projections. Previsible projections for
such processes will be given below in the Examples subsection.

On the way to proving the existence of previsible projections, M6tivier proves
that

'P (ZX) = Z PX

for all bounded previsible processes Z. This gives another important property of
previsible projections and one which again suggests that they behave like condi-
tional expectations.

Letting X be a bounded measurable process, we briefly note several properties

of previsible projections:

(a) If X is a previsible process, then PX = X;

(b) The mapping X - PX is linear;

(c) If (X,) is an increasing sequence of bounded measurable processes, then the
previsible projection of the supremum of the sequence is the supremum of the

projections;

(d) If X is left continuous, then its previsible projection is left continuous.

4.5. Optional Projections: The optional projection, °X. of a bounded
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measurable process X also exist, are unique, and satisfy (see equation (7))

E{ XT 'IT<,, ] I F(T) I = °XT I[T<cl], (9)

a.s.P. (See Dellacherie, 1972 and Dellacherie and Meyer, 1981.) Thus, as with the
previsible projection, the optional projection can be written as a conditional
expectation, but with the conditioning algebra equal to F(T), rather than F(T-).

The properties listed above for the previsible projections have obvious counter-
parts in the optional case. The following properties also hold.

(e) P X = P ( °X).

(f) X<Y, a.s.P, implies 0 X < 0 Y, P X < P Y.

The last property says that optional and previsible projections are order preserv-
fing. The next property says that optional and previsible projections are not very

different.

(g) fQ sections, B., of the random set, B - { X 3 PX }, are countable for all
c f0. This means that on any path of a process X, its optional and previsible pro-
jections differ at only a countable number of time points. In general, random
sets, C, subsets of R+ X £2, whose sections, C, = { t>O : (t,w)cC }, are count-

able for each w are said to be thin or "mince" in French literature. Therefore,
B = X { X PX } is a thin random set. In the case of the Poisson process see
example (3) immediately following.

(h) An earlier remark, characterizing the previsibility of increasing processes, has
the following analogue under optionality: A is an optional increasing process iff
for all bounded measurable processes X, PA(X) = AA( X) •

4.5.1. Examples:

(1) X of the form X=Z l((r,s]I , where r<s are positive real numbers and Z is a

bounded measurable function.

Optional case: Set Y(t) = E{ Z I F(t) }. Y can be and is chosen to be a right

continuous modi'cation having left limits. Since Y is adapted it is then optional.
Therefore,
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E{ XT 'IT<,] I F(T) } = E{ 1((,.,1l(T) Z F(T)} = 1((r,511(T) Y(T),

for any optional time T, where Y(T) = E(ZIF(T)) by Doob's Optional Stopping
Theorem. Hence, 0 X = l((rIJ Y.

Previsible ease: Take Y as before and let T be a previsible time. Let (T(n)) be
a sequence of optional times announcing T. Then Y(T(n)) = E{ Z I F(T(n))

and Y(T-) = lim Y(T(n)) = E{ Z I o,( U F(T(n)) ) } a.s.P, (VT8 Dellacherie.
n -

1972). But F(T-) = a( U F(T(n)) ), (III, T39.b Ibid). Therefore, Y(T-) = E{ Z I

F(T-) ), for previsible T. Finally, since T and Y(T-) are F(T-)-measurable, it fol-
lows as in the last case that PX = l((r,sjJY_.

(2) Let S be a totally inaccessible time and set X = ll[sl] . Then X(T(w),w) =

I[Isll(T(w),w ) = lT-Sl(w) a.s.P, for any previsible time, T. Therefore, E( XT

'IT<'I ) = E IT-S< I. The latter quantity equals zero a.s.P, by definition of
total inaccessibility. Hence, by the first Corollary to the Section Theorem, we
then have that PX is evanescent. Setting all the details aside, this should be
intuitively clear from the definition of total inaccessibility and any reasonable
interpretation of projection.

(3) Let X be a Poisson process with parameter c>O, so that X is optional (it is
right continuous) and, consequently, 0X = X. Then PX=X_ , where X_(t) =

X(t-), t>O. This example can be used to illustrate the idea of thin random sets
defined in the previous section. Notice that the sections Bw of
B = { °X3 PX} are just Bw = { Tn(w) : n > 0 }, where ( Tn ) is the
sequence of jump times of the process X.

4.6. Dual Previsible Projections: Consider the measure, PA, defined earlier in
this Chapter by setting PA(X) = E{(X.A)(oo)} for all bounded (or positive)
measurable functions X, where A was an increasing process. As noted, PUA is

called the measure "generated" by the process A. Let X be any positive measur-
able process, define another measure m(X) := E{( PX.A)(oc) } and ask if there is
a nondecreasing processes A with the property that m(X) = p,(X). This ques-

tion is the same as interpreting PA(X) as an ordered scalar product <X,A> and
asking about the dual, A, of PX, in the sense that < PX,A> = <X,A>.

We will drop the subscript A on PA for a while, but retain the above definition.
Dellacherie shows that if 1P is defined by setting pP(X) := it ( P X) for every
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positive measurable process X, then pP is a a-finite measure on B(R+) X Fix).

The corresponding unique ( up to indistinguishability ) increasing process gen-
erating this measure is denoted by A P and called the dual previsible projec-

tion of the process A. The measure pP, is referred to as the dual previsible

projection of the measure p. (E.g., M~tivier, and Hoeven.)

4.6.1. Remark: Assume the usual conditions on the underlying filtered probabil-

ity space (Q,H,(F(t)),P). Dellacherie[1972, IV T41, T42] gives the following char-
acterization of measures generated by increasing processes:

4.6.2. Theorem:
A a-finite measure p on (R+ X , B(R+)XH is generated by an integrable,

increasing (not necessarily adapted) process, A, iff

(a) p([[O]]) = 0 and p([[O,t]]) < co, tcR+,

* ~ (b) p is P-admissible.

Then A is unique up to P-indistinguishability.

Further, A is adapted iff

(c) p([0,t]XB) = p(E(IB [ Ft) 1[10,til)

for all tcR+ and BH.

4.6.3. Remarks: Recall that to avoid some complications in exposition we have

assumed as part of the definition of increasing process in Chapter 3 that A(0)=0.
This is Dellacherie's assumption also, but Jacod 11979] does not make this

assumption here, nor do Dellacherie and Meyer [1980]. These latter works also
do not assume that p([[011) = 0, but that the measure has finite mass. As
defined in the beginning of this Chapter, condition (b) just says that p assigns
zero measure to evanescent random sets.

4.6.4I. Remarks: The reader will notice that as we come to the end of this note,

more proofs will be given. This is especially true in Chapter 6. For a number of
reasons, we choose to prove the present Theorem:

Suppose then that p is generated by an increasing p:ocess as specified in the

statement of the theorem. We first note that the finiteness of p in (a) follows

from the integrability of A. The admissibility of p is obvious, since P(B)=0
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implies that IXB, where I is an interval, is evanescent. Therefore, all that
remains of the necessity portion of the proof is condition (c). We observe first
that A is F-adapted iff for all BcH

ElBAt = E(E(IBAt I Ft)) = E(E(BIFt)At)

for all tER+. This is, iff A is orthogonal to all r.v.s of the form 1B - E(IB I Ft).

But the last equation is just condition (c), since when p = PA is generated by A
and A is a adapted

ph([0,t1XB) -- n(fl[[0,t]](s,.)lB(S) dA.

0

= E(LBAt) = E(E(LBIFt)At)

00

= E(f E( 1B I Ft) 11[o,tjl dA.)
0

= PUA(E(IB I Ft) 1[[o,t]]).

Conversely, if the three conditions are satisfied, then for all BcH define
Qt(B) :- p([0,tIXn).

Then Q0(B) = 0 for all B and Q, is a bounded measure for all t>O. Admissibil-
ity of p shows that Q is absolutely continuous with respect to P on (11,H). Let

A' be defined by setting At  ±-"' a.s.P, the Radon-Nikodym derivative of

Qt relative to P. Then A 0, a.s.P, and At is P-integrable. Since p is a
positive measure, A' < At', if s<t.

By Lebesgue's Monotone Convergence Theorem, At' = lim At in LI(P), where

(tn) is any seqence decreasing to t. It follows that the convergence is also almost
sure (P). Hence, we can define the process A as a right continuous, increasing,
modification of the process A' by setting A, := inf{A; : r rational and > t }

With this A, the measure generated by A satisfies
t

PA([,tIXB) = EflBdA, = E1BA t.
0

But since A is a modification of A' , A t is, a.s.P, the Radon-Nikodym derivative
of Qt relative to P. Hence,
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t

ElBA t = flBdQs = p([0,t]XB).
0

Therefore,

PA([,t1XB) = p([0,t]XB)

for all t(R+ and BEH. It follows that PtA = p, since the sets of the form
[0,t] X B are generators for the product a-algebra, B(R+)xH.

Finally, we have already verified that A is adapted by condition (c). Uniqueness
follows by noting that if G is another increasing process generating P, then
Gt = At, a.s.P, for each t, and G is a modification of A. Since G and A are
right continuous, Lemma 2.3.3 guarantees that they are indistinguishable.

4.6.5. Remark: Let X be any positive, measurable process and set

(X) = E( PX.Aoo),

where A is a, not necessarily adapted, integrable, increasing process. Because of
the properties of linearity, monotonicity and continuity of previsible projections,
it is a a-finite measure on B(R+)XH. Therefore, by the last theorem, there exists
a unique increasing process, denoted AP, which generates p. Hence, from the last
equation

EX.A = E( PX.Ao).

We need the following lemma to conclude that, the process AP is previsible:

4.6.6. Lemma: (Dellacherie[1972, V T26]) An integrable, increasing process,

A, is previsible iff for any two positive, measurable processes X and Y with the
same previsible projection PA(X) = PAM

But if X and Y have the same previsible projections then from the preceding con-
struction

EX.A = E(PX.A,) = E( PY.AJ = EY.A .

Hence, the Lemma shows that .A" Is a previsilble process. Therefore, we have the
following

4.6.7. Theorem:(Dellacherie. 1972,p 107)

Let A be an integrable, increasing, not necessarily adapted, process with
A(O) = 0. For each positive measurable process. X, there exists a unique
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preeis'ible, increasing process, A P, called the dual previsible projection of A.,
such that

E{ f PX.dA} = E{ fX dAP}. (10)
0 0

4.6.8. Remark: Br6maud (1981) and Meyer (1973) state this result in a slightly
different form which will be useful later on:

Let A be an integrable, increasing process with A(O) = 0. Then there exists a
unique (to indistinguishability) an integrable, previsible, increasing process, A P,
such that AP(O) = 0 a.s.P and

E{ f C(s)d AP (s)} = E{ f C(s)dA(s) }
0 0

for all non-negative, previsible processes, (C(s),s>O).

As indicated in this result (with C =_ 1), the duals of integrable processes are
themselves integrable. However, it may be shown that the dual projections of
increasing bounded processes are not necessarily bounded.

The following strengthens the definition of the dual previsible projection:

4.6.9. Theorem.
Let S, T be F-stopping times, with S<T, and A an integrable, increasing process.
Then

T T

E{ f PX(t) d A(t) I F(S)} = E{ f X(t) d AP(t) I F(S)) (11)
S S

for any bounded (or positive), measurable process X.

4.6.10. Remark: The proof follows from the definition of conditional expectation

and the definition of dual previsible projection. Let CcF(S), and set, Sc and T(.

equal to the restrictions of S and T to the event C. Then we know that the sto-

chastic interval, ((Sc,TcI], is previsible. Hence, from the properties of previsible
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projections, we have 1 ((ScTcl X = P( l((SoTcll X ),

and from the definition of AP, the dual previsible projection of A, we have

'r' PA( P( l((s,,T l] X ) ---- (l((scTcll X ).

Therefore,

PA( 1((SOTcI PX) = PAi ( 1 ((Sc,Td] X ).

This last equation is the same as

T T

E{ Ic f PXdA} E{ I c fXdAP}.
S S

Since CcF(S) is arbitrary, the last equation is equivalent to the statement of the

theorenm.

4.6.11. Definition: Two raw increasing processes, A and B, having the same

dual previsible projection are said to be associated. If A and B are associated,

then we write A p B.

4.6.12. Remark: Dellacherie shows that each equivalence class determined by the

relation p contains one and only one previsible increasing process.

4.6.13. Remark: We now set down some results whose main object is to charac-

terize adapted associated processes. This characterization will be extended by

"localization" in Chapter 6.

4.6.14. Theorem:

Let AdV0 . Then the following statements are equivalent:

(a) A is a martingale;

(b) AP is evanescent;

(c) PA vanishes on previsible random sets.

Remark: There is very little to Irove. First consider the equivalence of (a) and

(c): Let s<t and BcF,. Then it is easy to see that

PA( ((sB,tB]]) = E(IB (A t - A)). Recalling the generators of G(PT), it is clear
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that this equation entails the equivalence of (a) and (c). Let S and T be stopping
times. S<T; then ((S,T]] is previsible. The equivalence of (b) and (c) follows in a
manner similar to the last case by noting that PA( ((S,T]] ) == PA( ((S,T]] ).

(We have left off some details in the two pairs of equivalences concerning the gen-
erators {0} xB and [[OB]], BcF 0 , respectively, but these are easy.)

The following Corollary is the desired characterization:

4.6.15. Corollary:
Increasing, integrable processes A and B are associated iff the process M = A - B

is a martingale.

Although the implication (b) implies (a) gives the necessity of this Corollary, it is
instructive to use the previous Theorem 4.6.9. The necessity of the Corollary fol-
lows from the previous Theorem by setting X equal to 1 and using the fact that
A and B have the same dual previsible projections. This yields

E(A(t)-A(s) I F(s)) = E-E(B(t)-B(s) I F(s))

for all real numbers s and t, with s < t. Since A and B are adapted (part of the

definition of increasing process), it follows that A - B is a martingale.

Conversely, A - BeIV 0 and A - B is a martingale. The last Theorem tells us

that 0 = (A - B)P , so that linearity gives AP = BP. Therefore, ApB.

4.6.16. Definition: Let A be an integrable, increasing process. (Hence A is
adapted.) The dual previsible projection of A is called the (previsible) compen-
sator of A, and is denoted by A.

4.6.17. Remark: The previsible compensator of A is that previsible process that

must be subtracted from A to obtain a martingale.

4.6.18. Remark: In the Chapter on martingale transforms, we noticed that in
discrete time, if an increasing previsible process was a martingale, then it was
a.s.P constant ( and equal to zero if it took the value zero at the origin ). A simi-
lar remark can be made for the continuous time analogue. Again this follows
immediately from the last Theorem.

A direct proof repeats part of the proof of Theorem 4.6.14, perhaps more care-
fully. The argument goes as follows: If A is an integrable, increasing process
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which is also a martingale, then E( 1D(A(t) - A(s)) I F(s) ) = 0, for all D in F(,).

But this says that the measure generated by A vanishes on events of the form
1(..tl.D, s t and D in F(s). It is also obvious that this measure vanishes on

{O}xD. where DcF(O). Since these events are generators of the oa-algebra of F-
previsible events, the measure generated by A vanishes on the entire F-previsible
algebra. Therefore, PAX) =---A( PX) = 0, for all bounded, measurable X. It

follows that AP is evanescent. But if A is previsible, then A = A P, and so A is
evanescent. Therefore,

4.6.19. Theorem." Integrable, increasing, previsible martingales are evanescent.

4.6.20. Remark: This will be extended to local martingales in Chapter 6.

4.6.21. In the section on Lebesgue-Stieltjes stochastic integrals we have noted
that if XcLI(A) is positive, then X.A is an increasing process. It is natural to con-

sider the dual previsible projection of X.A when either X or A is previsible. Del-

lacherie, V T31, 1972, shows that

(1) If A is an increasing previsible process, then (X.A)P = PX.A;

(2) If X is a positive, previsible, L,(A) process, then (X.A)P = X.AP.

4.6.22. Remark: We will prove the second proposition using the ordered scalar

product notation introduced above: Let Y be a positive, measurable process, then

<Y,(X.A)P> = <YP,(X.A)> = <YPX,A> =

<(YX)P,A> = <YX,AP> - <Y,X.AP>.

4.6.23. Remark: Dellacherie, 1972, discusses the notion of absolute continuity of

increasing processes. This is of some importance in the analysis of counting
processes. Let A and B be (raw) increasing processes. A is said to be absolutely

continuous relative to B if Y.B = 0 implies Y.A = 0 for all positive measurable
processes, Y. If p and X are the measures generated by B and A, respectively,
then this is the same as saying that X is absolutely continuous relative to p.
Thus, if f is the Radon-Nikodym density of X relative to p, then, using the nota-
tion from the beginning of this Chapter,

fXfdp = fXdX
U U
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or, equivalentlv,

E(Xf.B) = E(X.(f.B)) = E(X.A)

for all bounded measurable processes X. The unicity (up to indistinguishability)

of the generating processes then implies that A = f.B, where by definition, f is a

positive measurable process in LI(B). When A and B are both previsible,

A = AP = (f.B) P = Pf.B. Therefore, if all the assumptions of this paragraph

hold and A and B are previsible, then there exists a previsible process gEL 1 IB)

such that A = g.B. That is, f is previsible.

4.6.24. Remark: In nonlinear filtering of point processes, N, an important class

of problems is covered by the case where A, the dual previsible projection of N, is

absolutely continuous relative to the deterministic process, B(t,w) = t, a.s.P. In

this case, f is called the intensity of the point process N. More precisely, recal-

ling that we have suppressed the underlying filtration, (F(t),t>0), and recogniz-

ing that the dual previsible projection depends strongly on its filtration, and the

underlying probability, P, f is called the F-intensity, or the (P,F)-intensity of

N. The intensity is, in general, a previsible stochastic process.

4.6.25. Remark: Now let's cover the last paragraph again from a different start-

ing point. We return to Theorem 4.6.9., with X = 1, and take B to be the dual

previsible projection of A. If it is further assumed that B is absolutely continuous

relative to Lebesgue measure, with density X, then as defined earlier, X is the F-
intensity of A and satisfies

t

E(A(t)-A(s)) F(s)) = E( fX(y)dy I F(s)).
S

This equation becomes extremely important when A is a counting process.

Br~maud, 1981, is concerned almost exclusively with this case and the sections

below on nonlinear filtering will deal mostly with this case, following Br6maud,

[1978,70.80,81]. For now we just consider the simple example when A is a one

jump counting process: A(t) = I[T<tl , with T an F-stopping time. With this

definition of A the last equation becomes

t

P(s < T < t [ F(s)) = E( f X(y)dy I F(s)).
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Using the "little o" notation, this statement has historically been written sore-

what less exactly as

P ( s < T < t I F(s)) X X(s)(t - s) + o( t - s), (t--s+).

To justify this statement in a simple case, assume that X is right continuous and
use the identity

t t

fX (y) dy = X (s) (t - s) + ( t - s ) t f( X () X (s ) dy }.

4.7. Random Measures and Jacod's Formula: In this section we will intro-
duce a useful formula for calculating the dual previsible projection of a point pro-
cess. The derivation of this formula in its most general form is due to Jacod in

his 1975 paper on multivariate (marked) point process. (The origin of the for-
mula is contained in the paper of Delacherie [19701 which considers a point pro-
cess with a single jump. Also see Brown [19781 for a short proof of the formula in
the case of simple point processes.) Although the results of Jacod's paper are
extremely important and go far beyond just the formula and, as pointed out by

Jacod, reading the paper does not require an enormous technical background we
will not attempt to give a digest of its contents. Our goal is just to ii troduce

Jacod's "hazard" function formula for the compensator of a marked point pro-
cess, to do this without proofs, but with enough preliminary explanation to allow
one to understand why the formula holds. To accomplish this we will first show

how to develop a discrete parameter version of the Jacod formula in the case of a
simple (unmarked) point processes. Then we will suggest its continuous timie
analogue, recall (and extend) the concept of a random measure from Chapter 3
and state the general Jacod formula together with some useful special cases.
Examples of the use of the formula are given in Chap'er 5.

Recall the discussion and notation of Section 1.10 on discrete point processes,
n

(NaFnn(Z+). So Nn  -- __ X k with the Xk being 0-1 Bernoulli random vari-
k=O

ables. As in Chapter 1, let X - (Xk) be tho F-intensity of the point process
(Xk). Thus,

Xk E(Xk iFk-) = P(Xk Fk ),
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fork >1.X 0  X0  0.

Paralleling the assumptions of Jacod we take the filter F to be the internal his-
tory of the discrete point process X. Recall the definition of the "jump" times
(Tn) of the counting process N. Then

Nm -Z l[T<ml"
n>1

It is clear that this is a finite sum since the stopping times (T) are integer
valued. But we will continue the practice of writing it as an infinite sum.

We prove the following formula for the intensity of the discrete point process.
(Convention: If a and 4 are two functions and O(w) = 0 implies that a(w) = 0,

then it is natural to define the quotient -- as zero whenever 3 vanishes.)

4.7. 1. Theorem:
Under the assumptions stated above

-? \7>. e(Tn = k I FT1_)

Ek = T " k F 'l[T,,- ,T))), (12)

n>1 PT T

where FT, = a(TI, • .

First note that

Xk = ANk = l[T-k],
n>1

so that

Xk E(Xk I Fk) = E P(T n = k I Fk-l)
n>1

The following relation holds for the trace or-algebra on [Tn- 1 :_ k-I < Tn]:

Fkfl[Tn-l k-I < Tn] = FT,"[Tn- l < k-1 < Tn]. (13)

Observe that [Tn- 1 ! k-1 < T,]cFkI since the T's are F-stopping times and

[Tn-_ _ k-1 < TJ -- [Tn 1 < k-i < k < T],
I. since the stopping times are integer valued.

It follows from the last equality that

[Tn  k] - [Xk l]fi[Tn < k-i < k < Tn]. (14)
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We need the following variation of Bayes Theorem:

4.7.2. Lemma (Brown [1978]):
Let (f2,HP) be a probability space. If G and K are sub a-algebras of H, BcH,
CcG and

Gfc= Knc.
Then 

P(BnCI K)
P(BNC I G) - P(C I K)

on C and = 0. on the complement of C, where P(C I K) is a version with
P(C I K) # 0 on C.

Remark: Brown does not give a proof of this Lemma, but it follows easily from
the "quotient rule" for Radon-Nykodym derivatives by paying careful attention

to the use of the restrictions of P to the various sub a-algebras involved in the

hypotheses.

Using this Lemma, which applies due to (13) through (14), we have

( k I P(Tn- k jFT.)P(T n = k I Fkl"-0 P(T - .1FT,_,)I[T.T))"
P(Tn k IFr1 )

and consequently formula (12).

Having obtained formula (12) for the "first difference" of the compensator of a
discrete point process, it is natural of conjecture that the compensator A of a
point process N = (Nt,Ft,t>0), where Ft = a(N,,s<t) and N(t) = Z 1lT <tl,

n>1
satisfies

"I:. A(dt) = P(TnEdt I FT)(

> P(Tn t I FT,)

This equation does indeed hold and occurs in various forms (e.g., Brown [1078],
Liptser-Shiryayev [19781) and in numerous applications (e.g., Jacobson [1982], Gill

[10801). We will come back to this case at the end of the present Section where it
will occur as a consequence of the general Jacod formula. For this purpose we

need to recall the concept of marked point processes and random measures which
were mentioned briefly in Chapter 3.
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4.7.3. Remark: Let (Tn,nEZ+) be a point process relative to the probability space

(fl,H,P): (T,) is an increasing sequence of random variables on Q with values in

R+ and such that T, < T+ I on [Tn < oc]. Set Nt = XlIT.<t].n>

Let (E,f) be a measurable space and (Zn,ncZ+) a sequence of random variables on
11 with values in a space E. Hence, the Zn are H-measurable relative to . (Zn) is

called the sequence of marks and E the mark space. E is assumed to have the
structure of a Borel subset of a complete metric space. (This assumption is
sufficient for the existence of regular conditional distributions of random variables
with values in E. (Shiryayev [1984].) The usual applications will have E = R n,

for some natural number n, or E - Rz+.)

The definition of the range of the sequence of marks is extended in the following
way: Let " be some point exterior to E and define Zn(w) = iff Tn(w) = c0
(the nth event "never occurs"). To understand why this extension is made see
Jacod[1979, p.74]. Finally, let Z0(e) = 6 for all e in E and T o = 0.

Sn+ = Tn+I - T n , for n>O. The sequence (Tn,Zn) is called a marked point

process.

Let

Nt A = 'Tn <tl 1lZ EAV-
n>l

Then NA counts the number of times jumps of N have marks in A.

Set E,-=-EU({q}, E=(O,oc)XE, E --- EU{oc,'} and Q = Q X[0,cc)xE.

With an analogous meaning, let , , be the usual a-algebras on E, E. E

respectively. (E.g., = B((0,co)) X.)

Let (O.H,F,P) be a filtered probability space with the filtration F = (Ft,t>O).

Then if H = H(F) denotes the a-algebra of F-previsible subsets of X[O.Oc).
set II := [(F) = [IX , where F z (Ft,t>0).

With this structure, we call the family p = {p(w,.):w~f2} of nonnegative func-

tions a random measure on (EZ) if it is a positive transition measure (Appen-

dix A). That is, if

(a) w-i(w,A) is tl-measurable for each A, and

(b) A-.p(w,A) is a positive a finite measure for each wcQ.
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Further, a random measure it is said to be an integer valued measure if

-(c) the mapping w-p(w,A)EZ+, for each Ac , and

(d) p(w,{t}XE)<l, for all wcQ and t>O.

Let it be a random measure on (E, ). If W = (W(w,t,z),wcfQ,t>O,zcE) is a non-

negative H xB((O,oo))X measurable function on Ti, set

W*pt(w) :- f W(w,s,z)p(w,ds,dz).
(O,tlxE

By denoting the Radon-Nykodym derivative of W(w, ) relative to the measure

11(w..) by Wop, we can write the last definition in the form
i W,*t(w) :--(Wo/P)(w,(0,t]×E).

%
d

A random measure q is said to be F-previsible if for each positive H-measurable
process X, the process X*ih is F-previsible.

The marked point process (Tn,Zn,nEZ+) is completely determinded by the random

measure p defined on (E,Z) by setting

jt(w,B) V 1B(T(w),Zn(W))1T,<.l (16)
n>1I

for all BE. We will often refer to such a measure as a point process measure
or the random measure of a point process.

' It will be convenient to also write p in the form

ip(w,dt,dz) = E (T(W),Zn(w))(dt,dz) IIT.<] ,  (17)
fl>

1

where E. is the Dirac measure ( unit mass concentrated ) at the point a.

Following Jacod (19751, to each probability measure P on (fQ,H) and point process
random measure p we associate a nonnegative measure M. on (0,11) defined by

setting

,'--... .M (W ) :-- E((W * ),)

.- ' for any nonnegative fl-measurable function W on Q. Jacod then proves

4.7.4. Lemma:
If tj is a random measure such that M. is o-finite, then there exists a unique ( up
to a P-null set ) F-previsible random measure such that for each positive Xdl,
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NM,(X) == M? (X).

Remark: Comparing this result to Theorem 4.6.7., it is clearly appropriate to call
the random measure i' of this Lemma the dual previsible projection of the
measure il. In a moment, we will point out the more compelling reason that

- i' is, in a natural sense, a martingale.

In order to apply this Lemma to the random measure u of a marked point pro-
cess (refer of equation (16)), Jacod shows that NIA is a-finite on (Q.H). Then he

obtains

4.7.5. Theorem:
If (Tn,Zn) is a marked point process and p is given by (17, then there exists a
unique (up to modification on P-null events) F-previsible random measure 1/ such
that for each positive previsible process X (XEH),

E f X(t,z) p(dt,dz) = E f X(t,z) v(dt,dz). (18)
(0,c o)xE (0,oo)xE

Jacod then uses (18) and one of the Section Theorems to show that the dual
previsible projection v of p in (18) can be chosen so that

({t}XE) _ 1 (10)

and

L([T,,oc)xE) - 0. (20)

Remark: Set AtG(w) :- v(w,(0,t]XC) and At := AtE. Then A is the compen-
sator of NE - N- =Z l[T<t and inequality (19) says that the jumps of A

n>I
have magnitude not exceeding one: 0<AAt_ I. Equation (20) says that A does
not charge the random set [T.,oo).

In order to emphasize the connection between this and earlier results of the
Chapter (when E is a singleton set), we note that the dual previsible projection of
the marked point process measure p is characterized by (10), and (20) together
with the requirements that

(i) the process (v(0,t]xB),t>0) is previsible for each B,
and

(ii) m1 n)  p((0,tATn]XB)- v((O,tATn]XB), defines a
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uniformly integrable process rn = (mn t 0), for each n

> 0 and Bf.

4.7.. Remark: Set G --= a(N"\,s<t,A(,f). It can be shown (e.g., Itim [19801,

Br6maud [19811) that The filtration G is continuous on the right and
Gs- o(N A t, t>0, Aff), where S is a G-stopping time and from this that for
n>1,

GT o = (Tk,Zk,l<k<n) (21)

and

GT.- = o(Tk,Zk,Tn,1<k<n-1).

Now if we take into account the probability measure P, and define F,, t>O, to be

the smallest o-algebra generated bthunion of the family, r, of all P-null sets
in H and G t, then the family F retains the right continuity of G. Therefore, since

Ft = 0(FuGt) (22)

is complete, it is a filtration satisfying the "usual conditions".

For each ncZ+, let Kn(w,dt,dz) be a version of the regular conditional distribution

of (Sn,Zn) given FT., and Hn(w,dt) = Kn(w,dt,E ), the conditional distribution

of Sn. Kn(w,.) is a probability on E while Hn(w,.) is a probability on (0,oo].

We can now state the Jacod formula:

4.7.7. Theorem:

With the filtration F = (Ft,t O) given by equation (22), the dual previsible pro-
jection v of the random measure p of(17) satisfies

dz) > Kn(dt-Tn-l ' d z )  (3
v dt,dz) - Hn(tT n, ]) [T,,) <tT .  (23)

- ~. n>1

4.7.8. Remark: Several examples of marked point processes were given in
Chapter 3. But for the purposes of this section an informative example to keep
in mind is that of a jump process. A jump process, X = (Xnt>o), is a

Skorokhod process all of whose paths are step functions (with only a finite

number of jumps in any bounded interval of time, Appendix A). If we let the
sequence (Tn,n>1) denote the sequence of jump times of such a processes X and

(Zn,n> 1) the sequence of jump sizes of X at these jump times, Zn := AXn, then
with the proper conventions at time 0, (Tn,Zn) is a marked point process and
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Xt(w) = X0(w) + V Zn(w) l[[T.,-))(w,t). (24)
n>1

In this case the random measure p in (17) is called the saltus measure or jump
measure of the process X.

In this case, with the filtration as in (22), the Theorem of Jacod shows us that
the dual previsible projection v of the saltus measure of X can be written in the
form

L dt ,z) P(TnEdt,Zncdz I FT21)

!i ~dt~dz) = d...M P(T n > t I FT._) I((T-"T"I]" (25)

We have expressed the conditional laws of (23) in terms of the process (T,)

instead of the inter-occurrence times (Sn) so that we could make a direct cor-

parison with the discrete point process case given in (12). As one can see, (25)

could have be conjectured fron (12).

4.7.9. Remark: From the standpoint of the creators of the General Theory of

Stochastic Processes and existing literature, one would deduce (12) (similar

remarks would hold for its marked analogue) from (23). To see how this can be

accomplished, we will use the notation for discrete point processes given at the

beginning of this Section and let ( J denote the "greatest integer" function. Since

it does not make the problem more difficult, we will assume in our discrete
parameter case that there is a sequence of marks, (Zn). Thus, we start with the

integer valued times (Tn), the sequence of marks (Zn) and the filtration

F = (Fn,n>0). The filtration will be the one defined by

FT. = o(Tk,Zk,1<k<n,F) (26)

and

FT - = o(Tk,Zk,Tn,l<k<n-l,F).

Once we define the continuous time filtration, this is enough information to con-

J. struct the random measure p* and its dual previsible projection v, as well as the

4 continuous parameter point processes, N1 - (Nt,t>O) and N := NE. The

continuous parameter filtration F can be defined by setting F, := F1[. Since

the times are integers, this gives in particular that FT. = FT..

Thus all the main features of an induced continuous parameter marked point
process have been defined. For example, the dual previsible projection of N is

A t : ((O,t]XE). To recover (12) from (23), just define the F-intensity by

Xt ----v({[tJ}XE) and the result follows. By Jacod's Theorem then, O<Xk_5l.

9.3
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Certainly this is the proper route to (12). But from the standpoint of building an
intuition and gaining the interest of practitioners from other fields the discrete

parameter approach has some worth.

4.7.10. Remark: We will close this Section and the Chapter by stating oft used

forms of Jacod's formula for unmarked point processes. Assume that the filtra-
tion is given by (22) with E - {1}, so that G (in (22)) takes the obvious form. If
the point process Nt - T<t] has dual previsible projection A (with

n>1

A0  0), then using the notation of Jacod's Theorem (23) we have

A, v(0,t]), so that equation (15) holds.

Also, in the unmarked case, Hn  Kn, so that (assuming the point process is

non-explosive) we can write the compensator in terms of the conditional inter-
occurrence time distributions by integrating equation (23) over (Tn-1 (w),t] for

Tni<t<Tn(w) and then making a change of variable to obtain:

t -T,(w)

. At(w) = AT,,(w) + f dKn(ws)/(1-Kn(w,s-)), (27)
0

when Tn-I(w)<t<Tn(w), n>1.

Here is a particular example of (27): Let Kn(y) = 1 - e_ y, for y > 0, zero oth-

erwise: let E = {1}. Then, from (27),

At = AT,, + X(t - Tn_ ),

when (t,w)(((Tn-i,Tn]]. This yields the interesting relationship

AT. - AT,, = X,(T,- T,-_),

for Markovian systems.

Formula (27) can be rewritten in terms of the conditional distribution functions

of the (Tn). (So can (23), of course.) For this purpose, let

Ln(w,s) = Kn(w,s-Tn(w)), then L n is the conditional distribution function of

T,, given FT,, and

t AT,

At - AT-. + f dLn(s)/(l-Ln(s-)), (28)
T-1

on [Tn- <t<T], n>1. Simple direct proofs of equation (28) without the aid of

(23) can be found in T. C. Brown [1978] and Liptser, Shiryayev [1978].

Finally, we point out that if the point process N has an F-int ensity
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X = (X,,s O) (i.e., if A is absolutely continuous with respect to Lebesgue mleas-

ure, with X as the Radon-Nikodvm derivative), then

Z k(n~')(w~t - Tn(W))
Xtdw) K > K(n~')(w,[t -T(w,')1(TT 1 (~,) (29)

where k (n+ 1) is the conditional density of Sn~1 give FT.. Hence, we have an

interpretation of the intensity as a conditional hazard function.
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Chapter 5. Local Martingales and Semi-Martingales

5.1. Local Martingales: The important concept of local martingales was intro-

* duced by K. Ito and S. Watanabe in an article titled Transformation of 'larkoc

Processes by Multiplicative Functionals, published in the Annals of Institute of

Fourier in 1965. This concept provides a generalization of martingales which will
be used to extend the stochastic integral developed in Chapter 6 beyond the class

of square integrable martingales.

5.1.1. Definition: An adapted, Skorokhod process M is said to be an F-local

martingale iff there exists a sequence of F-stopping times, (T(n),n>l), increas-

ing to oc as n-- o, such that for each n, m n = (MtW(n),tj>O) is a uniformly

integrable F-martingale.

We also introduce the term F-local L -martingale as a process, N, for which

there exists a sequence of F-stopping times, Sn 1 oc, such that for each n.

mn(t) = NIs (t), t>O, defines an Lp-martingale.

5.1.2. Remark: The notation is attempting to say that for each n, the process

defined by t -- mn(t) = M(T(n)-t) is a uniformly integrable martingale.

The sequence (T(n)) is called the localizing sequence of the local martingale. or
of the local Lp-martingale. This device of only requiring desirable properties such

as boundedness and integrability locally ( on stochastic intervals [[0.T(n))) ).

occurs frequently in the theory of martingales and will be discussed at some

length in Chapter 6. Relative to paths, this particular form of localization is in
the same spirit as truncation of functions in classical analysis and probability

theory, with the further qualification that it is intended for use on processes that

will occur as integrators in (stochastic) integrals. Another type of localization I)v

stopping times for integrands will occur in Chapter B. In the study of mar-

tingales. localization is a type of path-wise truncation that is mathematically

tractable because of the Doob Optional Sampling (Stopping) Theorem.

5.1.3. Remark: The definition states that (mn(t), F(t), t>O) is a uniformly integr-
able martingale for each n>0. This can be proved equivalent to the same require-

ment on (mr(t), F(T(n)-t), t>O), Kalianpur [1980].

5 1.4. Remark: Actually, the definition of a local martingale does not have to
include uniform integrability. This can always be achieved by replacing T(n) with

T(n)-k, for some fixed k>0. This remark is made to highlight what is re:,llv
being assumed. In this spirit, we remark that if X is a bounded local F-
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martingale. then X ij an F-martingale.

Just notice that X(y'T(n)) - X(y), a.s.P, y > 0, as n - oc, and since

E( X(t'-T(n)) I F(s)) =X(s ^T(n)), for s<t, the boundedness allows us to pass

to the limit under the -,pectation as n -* oc to obtain E( X(t) I F(s) ) = X(s),

a.s.P.

Similarly, using Fatou's Lemma (the liminf part), it is easy to show that a

positive,local martingale is a positive supermartingale.

5.1.5. Remark: Every martingale is a local martingale. To see this, take T(n)=n

and It M be a martingale. Then

NIPT(n)-t) = M(n-t) = E{M(n) I F(t-n)} = E{M(T(n)) I F(t-T(n.

It follows, from the characterization of uniform integrability given in Chapter 2.
with kl(T(n)) := Z(-\) =Z(ocn). that, t--M(T(n)^t) is a uniformly integrable

mart in gale.

5.1.6. Finally, Chung and Williams give the following converse of sorts to the

previous observations.

5.1.7. Theorem:
If 31 is a local LP-martingale and if for each t>0, { Mt-T(k) I } is uniformly

integrable, where (T(k)) is the localizing sequence of Al, then Al is an Lp-

martingale.

5.1.8. Remark: We observe the following fact, which will explain to some extent.
the Ito-Kunita-Watanabe approach to stochastic integration, which builds on the

class of square integrable martingales. Consider an almost surely continuous mar-

tingale, m. Define the sequence (T(n)), by T(n) := inf{ t : Im(t)l _> n }, and =

*, if {...} empty, for each positive integer n. Each T(n) is a stopping time by
results in Chapter 2 concerning debuts. By Doob's Optional Sampling Theorem,

m(tT(n)) is a martingale, for each n, and I m(t,,T(n)) <n, for all t>0. It fol-
lows that the stopped continuous martingale is bounded on the interval [[0,T(n)]].
and so "square integrable", in a sense to be made precise in Chapter 6. There-
fore, once the stochastic integral has been defined for square integrable mar-

tingales, it is available for all continuous martingales by localization.

It should be noted that if the trajectories of m are not continuous then
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m(t"T(n)) is bounded only on [[0, T(n))). We have no idea of the magnitude of

any possible jump at T(n). Providing for this, in extensions of the integral, is one

of the difficult issues in the construction of a stochastic integration theory for

arbitrary local martingales, rather than just for continuous local martingales.

5.1.9. Having hinted at one use of localization we will now formally state and

prove a result (Chung-Williams[1983, p.21]) that is required for the work in

Chapter 6:

5.1.10. Lemma:

Any continuous local martingale is a local LP-martingale for any pc[loc]

The proof of this technical result depends strongly on the previously stated "(n-
verse" of Chung and Williams, so the idea of the proof is to figure out h,,w t

stop the local martingale in such a way that it defines a sequence of unifrrii

integrable local martingales. Let m be the continuous local martingale with lw:il

izing sequence (Tn) and set Sn - inf{ t > 0 Im(t) I > k }, a sequeno, ,)f

stopping times (Chapter 2).

Then Rkn : =: min(Sk,T n ) defines a double sequence of stopping times. So

Doob's Optional Stopping Theorem tells us that (m(t ,R )) is a double sequence

of martingales. Further, by definition of (Sn ), for each k, this sequence of mar-
tingales is bounded by k for all n. Therefore, m k (t) := m(t Sk ) defines a

martingale for each fixed k. Hence, (Sk) is a localizing sequence for m such that

for each k, 1yk is bounded and so in LP for any p> 1.

.... Remark: There is also a close relationship between martingale transforms

and local martingales. Let X be adapted. It can be shown that X is a (discrete
time) local martingale iff X is the transform )f a martingale.( Meyer [1973] ) It
follows that if X is a P-integrable, local martingale then it is a martingale. (This

is not true in continuous time.) So a local martingale, in discrete time, is not
much of a generalization of a martingale.

5.2. Semi-Martingales: We have encountered the concept of semi-martingale
several times in this note. We can now give a general definition of this concept.

"" 52.1. Definition: A Skorokhod process, X = (X(t),t>O), is called a semi-

martingale if it allows the following decomposition:
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X(t) = X(O) + re(t)r A(t),

where in is an F-local martingale, null at time zero and A is a process ,f bun led

variation (IIV(F)).

5.2.2. Remark: In the last section of this chapter we will give a number of
examples to illustrate how a wide variety of particular processes can easily be put
into the form of a semi-martingale.

Recall the Doob Meyer Decomposition in Chapter 1. There are numerous varieties
of this decomposition theorem. This particular form will be deduced from a much
more restrictive and easily proved form in Chapter 6. Indeed, in our attempt to
construct a stochastic integral relative to semi-martingales, we will spend a rela-
tivelv large amount effort studying semi-martingales in Chapter 6.

5.2.3. Theorem: (Doob-Meyer Decomposition)
If X is a submartingale, then there exists a unique previsible increasing process A,
.4(0)=O and a local martingale A1, M(O)=O, such that

X(t) = X(o) + M(t) + A(t).

This decomposition is unique (a.s.P).

5.2.A. Remark: A is the previsible compensator of X, as defined in the Chapter
on dual previsible projections. We will illustrate the Doob-Meyer Decomposition

with counting processes.

We first note that since a counting process, N, always has nondecreasing sample

paths, it is a submartingale. It follows from the Decomposition theorem that
there exists an increasing, F-previsible, P-integrable, process, A, with A(O)=O,
and an F-local martingale, m with m(O) = 0, such that N = m + A.

5.2.5. Theorem:
.-

Let N be a point process adapted to the filtration F -- (F(t), t, > 0). Then there
exists a unique, F-previsible, increasing process, A, with A(O) = 0. such that
N(t) M N(t) + A(t), where M is an F-local martingale, M(0) = 0. The localiza-
tion sequence, (Tn,n > 1), for M may be defined by setting

Tn'- int{t I N(t) n}, if"I"." -d , and - oo, otherwise.

: %w%
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It can be shown [e.g. Liptser and Shiryayev vol il that A is continuous iff the

counting process, N, only jumps at totally inaccessible times. Since applications

in this note will concentrate primarily on counting processes with absolutely (-on-

tinuous compensators, it follows that in these cases the counting process Jump

times are always totally inaccessible. As noted earlier, the Poisson process is such

a process. Its compensator is, of course, given by A(t) = Xt, where X>O.

5.2.6. We now give some examples to illustrate the dependence of A on the

filtration, F. We need to recall the Jacod [19751 formula discussed in the section

on dual previsible projections.

Assume that the filtration is the internal history, the a-algebra generated by

the counting process, N.

.. 2.7. Example( 1): Except for some simple modifications, this example is given

in Liptser and Shiryayev [10781. Suppose that X=(X(t),K(t),t_0) is an adapted

process with continuous paths and (K(t)) satisfies the "usual conditions". Define

T(n):=inflt: X(t) > 1-(1/n) }, with T(n,w)"-= 0o if {...} is empty. Then we

know from Chapter 2 that each T(n) is an K-optional time. Define the counting

process, N=(N(t),K(t)), by setting N(t) : lT(o.)<_t]. Then, since (T(n)) increases

to T(oo) and the sequence is optional, we see that T(oo) is a previsible time. By

definition then, N is also previsible. Hence, in the Doob-Meyer decomposition,

the previsibility of A (and so, the uniqueness of the decomposition) implies that

N=A. (Any process which is indistinguishable from zero is certainly a mar-

tingale.)

w., Now, changing histories, let N be defined as before, except that N=(N(t),O(t)),

where 0(t) is the sigma algebra generated by N. Let F be the distribution func-

tion of T(oc) := T, and suppose that 1 - F(s-) > 0 on [0,oo].

Then, using the Jacod result (see the section on Dual Previsible Projections),

t -T(oo)

A(t) f dF(s)/(1-F(s-)).
0

Clearly, A(t) -In( 1 - F(t-T) ), t>0.

Thus, when A is K-previsible, A is the two valued counting process, N, but in the

second example when A is 0-previsible, I - exp(-A(t,w)) - F(t, T(w))
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5.2.8. Example(2): When A is absolutely continuous relative to Lebesgue meas-
ure and F(t) contains O(t), as defined in the last example, then,

with history (F(t)) we have

t

A(t) = fr(s)ds.
0

with history (O(t)) we have

t
A(t) = f (s)ds,

0

where i(s):= E{ r(s) I O(t) }.

5.3. Examples of Semi-Martingales: In this section we will give several
examples of semi-martingales. The last of these examples will demonstrate a pro-
cedure for writing a function of a point process as a spmi-martingale.

5.3.1. Example(l): Let N be a counting process adapted to the filtration F. By
definition, N is finite for every t O. Assume that its previsible compensator is
absolutely continuous relative to Lebesgue measure, with Radon-Nikodym den-
sity, X, the F-intensity of N. (See the section on previsible projections for these
definitions.) Then,

t

N(t) = f X (s) ds + M(t), (*)
0

where M is an F-local martingale and X is a non-negative, measurable process.

* For example, when X is a constant, then (N,P) is the Poisson process with param-
eter X. As the Poisson process is the baseline counting process, both historically
and usefully, it is important to note that property (*) characterizes this process.
That is, Watanabe 11964] proved that if N(t) - tX is a martingale, then (N,P) is
Poisson. P. Br~maud [1975] subsequently showed that if A is any deterministic.
right continuous increasing mapping of (0,oc) into itself, with A(0) = 0, and N -
A is a (P,N)-local martingale then (N,P) is a generalized Poisson process in the
sense that the characteristic function of (P,N) is given by
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E( exp(iu(N(t)-N(s))) -

S--- 1-1 { e iu AA(v) + (1 - AA(v)} exp[eiu - 1]( A(t) - Ac(s)),

where A' is the continuous part of A. Compare this and equation (*) with the

Doubly Stochastic Bernoulli process of Section 1.10.4.

5.3.2. Example(2): A sequence of sums of independently distributed random

variables, (Ok), with finite expectation, can be used to construct a sequence of

semi-martingales. Let ak = EYk and for each n>1, define Xn(t) for t>0, by set-

ting

Xn(t) -" Yk - ak ) + - ak = M(nt)+B(nt).
k-1 k=1

Then Xn = (Xn(t),t>O) is a sequence of semi-martingales .

It is worth noting that in this example the term, B, is purely deterministic and.
under very general conditions, for large n, M has the characteristic properties of

integ~rated noise.

5.3.3. Example(3): Let

t

X(t) := f f(s) ds + M(t) = B(t) + M(t),
0

where (M(t),F(t)) is a Wiener Process (Doob, [1953]), and f(t) is an F(t)-
t

7measurable process such that E( f If(s)I ds ) < oc, for each t>0. This is the
0

classical model for integrated signal plus noise.

In this case, X(t) is a Wiener process with drift process B(t) (drift rate f).
Further, if W denotes the standard Wiener process, and, if M(t) is the Ito-integral

of g relative to W (see the section on Stochastic Integration), with the Le esgupe
%integral of g2 having finite expectation, then X(t) is a Wiener process with drift

rate. f. and diffusion coefficient, g.

5.3. Remark: The remaining examples in this section illustrate a technique' for
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writing functions of point process as semi-martingales. This type of procedure

will be extremely useful in any application of the theory to nonlinear filtering of
point process.

5.3.5. Example(4): Let (N,P) be a Poisson process with parameter c and define

the stochastic processes X by setting X(t) :- exp(qN(t)), for every t>O, where q
is a fixed positive number. Although it won't play a distinctive role in this exam-

ple, we will let F=(F(t)) denote a history of the process N = (N(t)). This exam-

ple, like others, will be used again in this note as we illustrate the various stages
of the filtering problem, and notation will be carried forward.

Clearly,

X(t) = X(O) + A AX(s).
G<s<t

Since, X jumps at a point s only when N jumps at s, and then N(s) - N(s-) + 1,
we can write

q

AX(s) = 2 X(s-) e 2 sinh(-).
2

at jump points. So, since X(O) = 1, we have

q
X(t) = 1 + e2sinh(q!) X(s-)AN(s)

- O<s<t

Then we can write X in the form

t

X(t) = 1 + f c X(s)ds + NI(t) = X(O) + B(t) + NI(t),
0

where X(.s) 2(exp(q/2))sinh(q/2)X(s-), and

t

M(t) "= f X(s) d(N(s)- cs)).
0
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4 Since the compensated point process, N(t) -ct, is a martingale, and X is previsi-
ble. it follows from the theory of Lebesgue-Stieltjes stochastic integration that

\1(t) is a martingale. Thus, as B is a process of integrable variation, X is a semil-

mart in gale.

5~.3.6. Example(5): (Br~maud [11977], [19811) Consider a queue with the number

of messagres (customers) arriving during the interval [O,t] denoted by a(t) and the

number of departures during this time period denoted by d(t). Let q(t) be the

number of messages waiting for service (processing) or being served at time t.

Assume that q(0) is a positive random variable. Set q(t) - q(O) + a(t) - d(t) for

all t > 0. Assume that Aa(t)AId(t) = 0 for all t>0 (i.e.. a and b have no Jumps

in common). By definition q(t) >! 0, for all t >0. Let z(t~w,n) =1[1l(t~w)=n1. later

we wvill use this example to determine the conditional distributio)n of q 0gi"en

observations on the number of arrivat s. This is because
PO r %I

E z(t) F(t)) P Pq(t) n F(t))

As inthe previous example, we beg-in bv writing

z t) =z(0) + V A..z(s) =zjO) + ' A zis).1als) + '~ zsMs
0O<s<t 0O<s<t 0<~

Fix n>1I; then if s Is a point of increase of a, (that is. if Aa(s)=Al). then

ri(s) = q(s-) + 1. Hence,

z (s, n) 1L~),j:: [I(s-)+I-nl = z(s -, n- 1),

so that A.z(s~n) = z(s-,n-1) 1[n>i1 - z(s-,f .

Similarly, if Ad=I, then Az(s,n) =z(s-,n+l) - z(s-,n).

Assuming that the counting processes a and b have F-intensities, t-l(t,w) and

t-u(t,w), we can accumulate the previous equations to write

t

- z(t,n) - z(O,n) =f A~ z(s,n) (d a(s) + d d(s)).
0

Then, as in the last example, by adding and subtracting Lebesgue integrals of the

10.

zo



intensities, we obtain

z(t,n) - z(O,n) =f A z(s~n) (I(s)ds + u(s)ds + d ini(s) + (I v(s))
0

t

-f (z(s,n-I)l(n 1) - z(s~n)) I(s) ds)+
0

t

+ f (z(s,n+1)-z(s,n)1(n O)u(s)ds)+M,(t)±V,(t).
0

Thus, using the linearity of the Lebesgue integral and the fact that the sum of
two martingales, in this case NI and V, is again a martingale, we have

z(t,n) - z(O,n) f f(s) ds + m(t) = B(t) + m(t),
0

as th semi-martingale representation of z, where

f(s) =(z(s,n-1) 1(n>1) -z(s,n) ) I(s) + ( z(s,n+1) - z(s,n) 1(n O))u(s)

and

t

m(t) =M(t) + V(t) =f (z(s-,n-1)1(n )-z(s-,n))(da(s)-l(s)ds)
0

t

+f (z(s-,n+1) - z(s-,n)I(n O))(dd(t)-u(s)ds)).
0
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Chapter 6. Stochastic Integrals

6.1. Introduction: N. Wiener [1923] defined a stochastic integral with

Brownian motion integrators and deterministic integrands. K. Ito [19-1.1051[
developed a stochastic integral for a class of processes which are optional (non-

anticipating) relative to Brownian motion.

In his construction, aside from the properties of any continuous martingale, Ito

only used two properties of Brownian motion. Namely, that

(W(t), t>_0) (1)

• , and

(W2(t) - t, t>0) (2)

are martingales, where W is standard Brownian motion.

6.1.1. J. Doob [1953] extended stochastic integration of Ito to the class of square
integrable martingales. In their important paper, "On Square Integrable Mar-
tingales", Kunita and Watanabe used the following result analogous to equation
(2) for square integrable martingales: Since m is a square integrable martingale,
m 2 is a submartingale, so by the Doob-Meyer Theorem, there is an increasing

process, denoted <m,m>, such that

(m2 (t) - <m,m>(t), t>0) (3)

is a martingale. We will formally introduce <m,m> below, but equation (3) has

already occurred in Chapter 1 for discrete processes so the reader should not. have

difficulty with it. For continuous process, we will only point out that in the case
of Brownian motion, <m,m>(t) = t, in which case equations (2) and (3) agree

and, also, that the Kunita Watanabe stochastic integral reduces to the Ito

integral when the martingale integrator is Brownian motion.

Stochastic calculus is still young enough, in terms of the length of time it takes

for significant mathematical theories to develop, that it is almost always

presented as it was developed historically. We will call this the traditional
approach. Dellacherie's 1978 talk at Helsinki is an exception, and in some ways

. Jacod (1979] is also. We will follow Jacod.
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In the traditional approach the stochastic integral is developed as outlined in the
next Section. As described there, it is defined first for a particular class of inter-
grands consisting of linear combinations of (previsible) indicator processes relative
to a square integrable martingale, m. The actual definition of this "elementary
stochastic integral" is given in terms of the transforms of Chapter 1. The first
extension, to the space of square integrable martingales, is accomplished using the
path-wise stochastic Lebesgue Stieltjes integral relative to the increasing, previsi-
ble process, <mm>. However, as we have pointed out earlier, this process does

not exist when the underlying martingale does not have moments of the second
order. To remedy this situation a second increasing process is created that does
not require the existence of second order moments. It is the continuous parame-
ter analogue of the optional quadratic variation process of Chapter 1 and is also
denoted by [m,m]. As in Chapter 1, if the process m has second order moments,
so that <mm> exists, [mm] - <m,m> is a martingale. Hence, when m is not
in L , the < , > process is defined as the dual previsible projection of the pro-
cess [m,mJ. Formally then, the development of the stochastic integral for the
larger class of integrators proceeds as before in terms of a Lebesgue-Stieltjes
integral relative to [m,m].

This then becomes the procedure for extending the integral to an ever widening
circle of families of processes, culminating with its final extension to semi-
martingale integrators and locally bounded previsible integrands. At each step,
preparation for the next extension is made by first extending the increasing pro-
cess, [m,m], and then repeating the definition of the next more general stochastic

integral in terms of, notationally, the same defining equation as utilized at the

previous step.

6.1.2. Embedded in the procedure just sketched is a method of extending the
(integrator) processes themselves. We have already encountered one example in
going from martingales to local martingales. This is the method of localiza-
tion. It is one of the most important applications of stopping times in the theory
of martingales. It goes as follows.

Let ( Q , H, (F(t), tcR+ ), P ) be a filtered probability space satisfying the
"usual conditions". Let C be a family of processes ( equivalence classes of indis-
tinguishable processes ) defined on this probability space. Denote by

Clo = Co ¢ (F,P) the family of processes, X, defined on the same probability
space for which there exists an increasing sequence, ( T n , n( Z+ ), of stopping

times, T n I o0 a.s.P., such that each stopped process XT c C. For example, let-

ting M. be the set of uniformly integrable martingales, its localization, is (Mudloc ,

the family of local martingales. We have seen that Mu C (M~1)o0 in Chapter 5.
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C (o is called a localized class. Jacod [1979] proves a number of interesting

results on the algebra of localized classes. For instance, he shows that if a class.

C', a vector space of processes, is closed under the operation of stopping (called

stable under optional stopping), then (Cloc )ioc - C1,0 . The reader should

ponder this result in relation to the family M u.

On our way to extending stochastic integrals, we will apply localization to a

number of classes of processes. This will be carried out a little differently for
integrands than for integrators, for obvious reasons. In any case, the class of

bounded, previsible processes becomes the class of locally bounded. previsible
processes, and the class of processes of integrable variation becomes the class of
processes of locally integrable variation. We will prove that the class. S, of semi-

martingales cannot be extended by localization: S = S1o, (Jacod [1979]).

The stochastic integral will not be extended beyond the class S of integrators.
The reason for this is simple. It cannot be done. That is, it can't be done if we

want sequences of stochastic integrals to have the following natural Cauchy pro-

perty:

Let ( ht (n)) be a uniformly bounded sequence of previsible

processes. Then the point-wise convergence of this sequence
to 0 with n--oo, implies that

f h(n) d X - 0, in pr-bability, as n -"°
10, 1

'5.

for all t, where X is in S.

Bichtler [1981] proved that if an integrator is Skorokhod, adapted and the
corresponding stochastic integral possessed this Cauchy property, then the

integrator is necessarily a semi-martingale.

The material in this chapter is based primarily on Jacod [1979], Kunita and
Watanabe [1967], Doleans-Dade and Meyer [1970], Meyer [1976], Rogers [1981].

and Dellacherie and Meyer [1978]. Dellacherie [1978], Chung and Williams [1983].
and Ikeda and Watanabe [1981] were also used.

6.2. An Outline of the Construction of Stochastic Integrals:

6.2.1. Introduction In this Section, we will attempt to outline the traditional
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approach to constructing the stochastic integral. In succeeding Sections, we will

mostly follow the development of Jacod [1979]. Although Jacod's development
does not begin with elementary processes and simple integrals, there is much in
common with the outline given here. The principal reason for following Jaemd is
that it leans more heavily on martingale methods ( the Strasbourg variety ). than

on the methods of classical functional analysis. It therefore appears to be more
succinct and self-contained than the traditional approach.

What we are referring to as the traditional approach begins the way most of us
would expect. However, as observed by Rogers [1981], some very clever new
ideas were required to successfully carry out the original development of the sto-
chastic integral. As noted earlier, this was done by Kiyosi Ito in the 1950's for
Brownian Motion and extended to square integrable martingales in the 1960's by
Kunita and Watanabe. P-A. Meyer and the Strasbourg School of probabilists are

mostly responsible for the final extension to semi-martingales in the late 1960-70
time frame.

6.2.2. Outline: The first integral to be introduced in this Section is called the
elementary stochastic integral. In French literature, it is called the triviale

stochastic integral, translated as the "obvious stochastic integral". As demon-
strated in an example by Rogers, aside from starting with processes whose sample

paths are simple step functions and defining their integral as a finite sum, the
definition of the elementary stochastic integral is neither trivial nor obvious.

Let (f, H, (F(t)), P) be a filtered probability space with F(c0) = o( U F(s)
s>0

contained in H and assume the "usual conditions".

6.2.3. Let the family 2 designate the vector space of linear combinations of indi-
cator functions of rectangular subsets of (s, t] Xf of the form (s, t]XA. with

A(F(s), and s<t, s,t in R+; in other words, =_, consists of linear combinations of
the kernel processes which generate the F-previsible a-algebra. More precisely.
let -- be the family of processes H=(H(t),t>0) such that H is adapted, left con-
tinuous, bounded and for which there exists a finite set {tk : k = 0,1,2,....n.n+l

which partitions [0,x],

to = 0< tI < < tn < tn+i

and such that t -H(t.w) is constant on each subinterval of the partition.

Further, assume that each r. v. Ii lI(ti) is F(t i) measurable.
i=,...n.n+l.
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6.2.4. Definition: Let M be a bounded martingale and H ( E=. Then the elemen-
tary stochastic integral, H.M. is

' (IIA )(t) V HkAilt (4)

_jtk

k>O

H(O)M(O) + V H(tk) (M(tk+ l  t) - M(tk t)).
k=1

6.2.5. Remark: Based on Chapter 1, this is nothing more than the martingale

transform of an integrable, stopped, bounded martingale N1 by the bounded prev-
isible process H, hence we have immediately that H.M is a martingale.

* To ease the notational burden for the reader, we will often write
t

fil(s) dM(s) := (H.M)(t). Notice that with the definition as in (4). there should
0

be no ambiguity in meaning if we set the upper limit in the last expression equal

to the symbol oo.

In general, here and in the sequel, when the notation H(s) becomes too cumber-
some because of superscripts and such we will write H, for H(s). Though perh:ps
ambiguous here, this should not be the case in actual usage.

Now, since M is a square integrable martingale, M2 = r t>0) is an F-

submartingale and so the Doob-Meyer decomposition theorem of Chapter 5

guarantees the existence of an increasing, pre% isible process, A, with the propertv
that M2 - A is an F-martingale. (We have already used the notati(n
-<M,> = A.)

Then it is easy to see that for a simple process H,

E( H, dM, )2= E( 11 2 (A Mk)2 )
0 k>o

=E( V 1-12 E( (\k )2 IFk )
k>0

- E( (H2.<M,M> ) = EfH 2 d<M.M> .
0
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where we have used the previsibility of H and the adaptiveness of NI t,, ,bt:,11i

E(H1 HkAMjAMk ) - E(HjHkA-f j E( AMk I Fk1 ) ) 0

for 0<j<k , and so the first equation. To go from the first euation t 1, tl,

second use either the definition of <MM> from Chapter 1, or a simple rclatin-
ship between M and <MM> (in fact, the reason for the name "quadratic varia-
tion") that will be derived later in this Chapter.

Since the F-previsible a-algebra is generated by the kernel processes, any" previsi-
ble proces: is the limit of a sequence of simple processes. Let

00

LM) : {H: H previsible, EfH 2d<M,M>, < oc
0

where the last integral is a Stochastic Lebesgue-Stieltjes integral (Chapter 3) rela-
tive to the nondecreasing process <MM>, the dual previsible projection of NI.

Let m be a square integrable martingale and set

1IlL.m) := E(fHS'd<m.m>) - . Then inL is a norm on L,(m). Notice that
0

since H is previsible, L0(m) is independent of the choice of martingale compensa-
tor of m2. (Just recall the results in Chapter 4 on dual previsible projection.)

Define K 2 to be the space of square integrable martingales, m.
(supt,REm.2 <oc). The phrase "square integrable" is a result of the fact that

as a submartingale, m2 . has an increasing mean-value so that when the

supremum is taken over compact intervals, [0,T], rather than over Re,, "square

integrability" indeed just means Em T < cc, or existence of second order

moments.

From Chapter 2, we know that if m is square integrable, then it has a terminal
1

r.v., m'. Let Ifm, 2 := (Em-,, be the norm on .

The following Theorem is then proved in almost every presentation of the sto-
chistic integral. It establishes an isometry between L2(m) and K2.

6.2.6. Theorem:

The mapping H--H.m, from R to bounded martingales, can be extended uniquely
as a norm preserving operator from L2(m) onto K2, and will continue to be

denoted by 1I----H.m.
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t5.2.7. Next. it may be verified as in Chapter 1 ) that

. < XT  = I((0.TII.X, for all optional T.

o .1 I.X t = litlXt, a.s.P, t>.

Seeniingly, in all int egration theories the (litticult work begins with Ii1 2 , thie space

', ,,f square integrable martingales. Much more will be said about this space in the
next Sections. Kunita and Watanabe [10671 give fundamental results on the
decomposition of the space K2. To prepare for this we need to know that a
stable" subspace, Q, of K(2, is essentially just a closed subspace of IK-, that is

closed tinder stopping. We need the following

6.2.8. Definition:: Processes m,nK 2 are said to be orthogonal if the process
in= (rn n.t>O) is a martingale.

Remark: It will be shown later in this Chapter that if m and n are square integr-
able and vanish at the origin, m0 = 0 = n0, then m and n are orthogonal if

*EmTnT =- 0, for every stopping time T.

Kunita and Watanabe [19671 prove: If Q is a stable subspace of (2, then every
martingale, m, in K2 can be uniquely decomposed into a sum, m = x + v,
where x belongs to Q and y is orthogonal to every element of Q.

If one recalls (Chapter 2) that the norm in (2 is equivalent to the L0(P) norm of
the supremum process, mr* = sups<tmsl, it is easy to show that the space of

continuous, square integrable processes is stable. If we call this space Q, and
observe the convention that n0 _-= 0, we have Q CK0 , the latter being the set

of square integrable martingales that vanish at the origin.

..Applying the decomposition theorem of Kunita and Watanabe, this Q yields a
unique decomposition of any square integrable martingale, m, into a continuous,
square integrable martingale, m', and a "purely discontinuous" square integrable
martingale, m, which is orthogonal to every element of Q.

The space of purely discontinuous martingales will he described in a later Sec-
tion. For now it is sufficient to know that this space is the closure in 1K2 of a
relatively simple class of martingales whose paths are of bounded variation, a.s.P.

But not every purely discontinuous martingale is of bounded variation. In con-
trasl to this, every nonconstant, continuous (nonzero, by the convention

i0  0), martingale has (a.s.P) paths of unbounded variation. This follows
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easily from the Doob Meyer decomposition theorem by assuming that such a

(necessarily previsible) martingale is of bounded variation.

For these reasons the construction of a stochastic integral, even within the space
of square integrable martingales, is a formidable affair.

Kunita and Watanabe also define a process, <mn>, for square integrable mar-
tingales (recall Chapter 1 for the discrete analogue), as the unique, previsible pro-
cess with the property that mn - <mn> is a martingale. Note that <me,n>
0 then becomes a sufficient condition for orthogonality of m and n. This new

process, which is of bounded variation, is used by Kunita and Watanabe to
characterize the process, H.m, as opposed to the operator H-*H.m. But it is clear
that existence problems arise when m and n are not square integrable. To cope
with this difficulty, Meyer introduced a process denoted by [m,n] which exists

even when m and n are not square integrable and, like the process <m,n>, is a
process of bounded variation.

Finally, Kunita and Watanabe created a type of Schwarz inequality in terms of
the process <m,n>, ( given later in this chapter in terms of the process [m,n])
and used Stochastic Lebesgue-Stieltjes integrals (introduced in Chapter 3) with
previsible integrands to establish the following characterization of the stochastic

process, H.m:

6.2.9. Theorem:
If m,ncK 2 and H(L 2 (m), then

E( fIHa Id<m,n>I ) < oo
0

and the stochastic integral, H.m, is the unique element of K2 (up to indistinguisha-
bility) which satisfies the equation

[H.m, nj = ILm,n]

for every n in K2.

This rest of the development, as noted in the introduction to this Chapter. con-
sists of a succession of extensions of the quadratic variation processes and of the

stochastic integral which culminate in the stochastic integral of locally bounded,
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previsible processes relative to local martingales and thence to semi-martingaie

integrators.

.6The Jacod development starts with the definition of the stochastic integral of a
local martingale, albeit a continuous one. The attractive feature of his approach

is that it focuses on semi-martingales from the beginning. With some minor

exceptions (occurring with the treatment of purely discontinuous processes and in
the preparation for the definition of quadratic variation) Jacod's approach is fol-
lowed in the remainder of this chapter.

6.3. Some Extensions to Chapters 3-5: In this Section we will bring together

and extend some of the material in Chapters 3, 4 and 5. As usual, let

(0, F( o0 ), (F(t), t > 0 ), P ), where F( o)- -a( U F(t) ), be the underlying
t>0

filtered probability space. Recall (Section 3.2) the definitions of increasing

of bounded (finite) variation, BV = V + - V + , and of processes of integrable vari-

ation, IV = IV+- IV+ . (Of course, we mean V' - V (F,P),
BV = BV(F,P), and so on.) Let C be a class of processes. We write CO for the

set of all A(C with A(O) = 0.

If A ( BV, then B(t) - f I dA(s) I denotes the variation of the process A.
10,.1

It is the unique (to indistinguishability) process of V + such that the measure

(Ot] - dB(t,w) on R+ is the total variation of the signed measure
(Ot] -. dA(t,w).

6.3.1. Using the notation introduced in Section 6.1.2, an increasing process, A.
.'. A c V+), with A(0) = 0 is said to be locally integrable if Ac(IV0

+ )o. That is,

if there exists an increasing sequence, Tn I oc, a.s.P, of stopping times such that
EA T " < oo. Since A(tT n  A(T, ) we can and will write the condition as

EAT < c. If A(0) & 0, then the definition applies to the process

t t A(t) - A(0) and E(A(0) F(O)) < o0 is required. In this case we write
.{-. 4.- A ( IV ) o+.

__' A is said to be of local integrable variation if A( BV and the process

* - t--. f IdA(s) I :=B(t) is locally integrable. In this case we write A(IV))C.
I0,tI

More succinctly, Ac(IV)o, iff Bf(V)1+.

When the local integrability of the variation process, B, is at issue we can use the

fact that if EB(T) < oc and EB(S) < c for two stopping times, then
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EB(max(S,T)) < oo. Therefore, for local integrable variation, we don't have to
require that T, t cc; sup n Tn =-cc is good enough.

6.3.2. The first two results in this Section concern local variation. Simply stated.
N increasing previsible processes are locally integrable, and optional processes of By

are of local integrable variation iff they differ from local martingales by a previsi-
ble process of bounded variation. The proofs may be found in Dellacherie and
Meyer[1982, VI 80] or Jacod[1979, p.17].

6.3.3. Theorem:
Let A be a process of bounded variation.

(1) If A is previsible then A is of local integrable variation.

(2) A is of locally integrable variation iff there exists a
unique, previsible process B E BV such that A - B is a local

martingale.

B is unique, modulo indistinguishability, and is called the

dual previsible projection, or the previsible compensa-
tor of the A.

This extends the Chapter 4 notion of the dual previsible projection of increasing,
integrable processes to bounded variation processes of local integrable variation.

6.3.4. Remark: We will sketch the proof the first part of this Theorem with the
aim of giving the reader a feeling for the use and force of these new definitions.
In part (1), since A is of bounded variation and previsible, the total variation pro-
cess of A is previsible. Therefore, without loss of generality, take A to be increas-
ing and A(0) = 0. Set Sn = inf( t : A(t) c[n,oo) ), where I < n ( +. Then

by the results concerning the debut of random sets in Chapter 2, Sn is a previsi-
ble stopping time. It is strictly positive since A(O) = 0, and it can be shown to
be previsible since A is previsible. Therefore, for each n, Sn has an announcing

sequence, ( Sk , kcZ+ ) and since S k < S, for all k (since Sn is strictly positive),
we have by the definition of Sn that A(S k ) < n for all k. Therefore,

EA(Sk ) < oc. Since sup{S k  n.k} - oc. A is locally integrable.

The following Corollary is useful and obvious. It is a generalization of the result
in Chapter 4 which said that [V 0 martingales have evanescent dual previsible
projections.
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6.5.3. Corollary:

If A is of bounded variation, then A is a local martingale iff A is of local int:gr-
able rariation and the previsible compensator of A is evanescent.

6.4. Some Spaces of Martingales: Let (01, F(oo), F, P), where
F(oc) = a( U F(t) ) and F = (F(t), tER+), be a filtered probability space. Let

t>O
I\ - MU(FP) be the space of uniformly integrable F-martingales. Of course M u

is a set of equivalence classes of processes under indistinguishability.

As noted in Chapter 2, if X belongs to M, then (X(t)) converges a.s.P, and in L1,
as t--c, to a terminal random variable X(oo) and we can write
X(t) = E( X(oo) I F(t) ). The converse was also discussed, so we know that if
ZLj(f,H,P) there exists a unique X in M u such that X(t) = E(Z I F(t)) and
X(oc) = E(Z I F(cao)). It follows that M u is mapped bijectively onto

L1(fOF(oo),P).

6.4.1. Definition: A (right continuous) supermartingale, X = (X(t), F(t)). is

said to belong to the class D iff the family of random variables.
{X(T) : T any finite F-stopping time }, is uniformly integrable.

, 6.4.2. We now characterize M as a subset of (Mu),o,. For convenience we will
write Mloc := (Mu)!o¢ throughout this chapter.

6.4.3. Lemma: Let XcMIo,. Then XEM 0 iff X belongs to the class D.

Remark: We will indicate the proof. Let X belong to Mu. Then by our previous
remarks, there exists X(oc)L 1 such that X(T) = E(X(oc) I F(T)), for each
optional T. As noted in Chapter 2 (Doob's Optional Stopping Theorem), if we
let T range over the set of finite (i.e. real) valued optional times, then the family
{X(T)} is uniformly integrable and X belongs to the class D.

Conversely, let X be a local martingale in the class D. Then, in particular the
family {X(t),t(R+} is uniformly integrable. Thus, it remains to show that
(X(t),tcR+) is a martingale. Let (Tn) be a localizing sequence for the local mar-
tingale X. Then for s and t real numbers, s<t. the families ? X(t- T0?, n(Z+

and I \(s- T). n(Z+ } are uniformly integrable and the corrspondinig
sequences (s and t are fixed) converge as. P. and in L, to the random varibhles
X(t) and X(s), respectively. By definition of X as a local marting:ah,.
". xT, = [(X "(t) F(s)) for each n. It follows (using Jensens inequality) that

It A
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E((XT"(t)-X(t)) I Fj) I < E( I X T(t)-X(t)I IF,). Taking expectations of

both sides, we obtain E( I E(X T(t) I F) - E(X(t) I F, I )

< E I xT"(t) - X(t) Having noted that (xT(t), n>1 ) converges to X(t) in LI.

and similarly (XT"(s), n> 1) to X(s), we have X(s)=E(X(t) I F,), hence XM.\o.

6.4.4. Remarks: Now let m*(t) = sup,<tI m(s) for any process

m = (m(s),sER+). Let p'[l,oo] and II Y I= E( I Y I P), the

LP- LP(fQ, F, P) norm of Y of order p. Recall that if p=oo, L, denotes the

family of F-measurable, bounded functions. Set

K p = { mMo: 1 m*(c)1p < 00}.

Then K p C Mu, for p>l. This is because K p C K p' for all p' < p, by

Holder's inequality, and so in particular K p C K 1. But if m(K 1, then m*(Cc) is

P-integrable and so {m} is in the class D. Therefore, by the last Lemma. mN1c.

That is, K 1 = M U.

6.4.5. As noted in Chapter 2, if p > 1 then the norms Ilm(oO)IP and im*(oc)lIp are

equivalent. Therefore if pc{l,oo], then KP can be equipped with the norm defined

by the mapping m -- IIm(cc)Ip. In this manner, KP is identified with the space

LP (Q, F(oc), P) through the bijection (mcKP) ,--- m(oc)(Lp, for p > 1. (Recall

also that there exists a bijection between M u and L1.)

The space K2 is called the space of square integrable martingales or the
space of L2 - bounded martingales. (These were also defined in Chapter 2.) By

remarks in the previous paragraph, the space K2 is identified with the Hilbert

space L,, having norm m-[m(c)I0 and scalar product (m,n)--E(m(Oc)n(oc)).

Set M0 equal to the space of martingales such that mcM u and m(O) = 0. We will

write (M 0 )oc as M0,1o¢.

6.4.6. Following Jacod [1791 we state the following.

Definition: Let m and n be local martingales. Then m and n are said to be
(strongly) orthogonal if the product mn is a local martingale which vanishes at
the origin.

Remark: In the traditional source, Meyer [19751, first defines orthogonality for

square integrable martingales, he then extends this to local martingales as above.

w
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For square integrable martingales he defines m to be orthogonal to n if
m(0) = 0 and Em(T)n(T) = 0 for all stopping times, T. fie then proves that
m,nK 2 are orthogonal iff the product mndK1 and m(0) = 0, Jaco(ds definition
restricted to the space K2. To show this characterization of orthogonalitv, one
needs the following interesting characterization of M.. One should refer back to
the proof of Doob's Optional Sampling Theorem ( in Chapter 1 ) for the genesis
of this theorem. Actually, that the equality of expectations of an integrable pro-
cess at different finite stopping times is equivalent to the Chapter 1 form of
)oob's Theorem for martingales is sometimes called Komatsu's Lemma. This

Lemma will also be used in the proof of the Theorem characterizing stochastic
integrals relative to a continuous local martingale.

6..7. Lemma:
Let L be an adapted Skorokhod process for which limL(t) (=: L(oc) ) exists.

Then L is in M u iff L(0) is P-integrable and E(L(T)) = E(L(0)) for all stopping

times, T.

Remark: If L is in M u this follows from Doob's Optional Stopping Theorem. For
the converse take T = tA, the restriction of the constant stopping time t to
some A in F(t). Then E(L(T)) = E(L(0)). Since E(L(oc)) = E(L(0)) (S = cc
is an optional time), decomposing both expectations over A and Ac, it follows
that E(L(t)IA) = E(L(o)IA). That is, the last equation holds because

EL(O) = EL(T) = fL(t) dP + fL(oo) dP
A Ac

~.- -~and

EL(0) = EL(x) = fL(oc) dP + fL(oo) dP.
A A'

Since A is an arbitrary event in F(t), we have L(t) = E(L(oc) I F(t)) and so L

belongs to M .,

Remark: It follows easily thn that this martingale definition of orthogonalitN is
stronger than the natural orthogonality in the Hilbert space L2  K--- N2 under

the inner product condition Em(oc)n(.x) = 0:

, M. °'.--
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6.1.8. Theorem:
If the square integrable martingales in and n are strongly orthogonal. then
Em(,x)n(oc) = 0 and the product inn is a martingale in K0'.

Remark: We could equally well claim that for all stopping times T. mT and nT
are orthogonal in L,. This follows since m* and n. in L2 , implies that the pro-

duct m nL EL1. But then (mn). < n so that mncK 0
1 . It follows that

EmT nT Em0 no = 0, by the Lemma.

A converse also holds: If m0n0 = 0 and mT, nT are orthogonal in L.. for all stop-

ping times T, then m and n are orthogonal in the sense of the definition of strong
orthogonality. This is also a consequence of the Lemma.

6.4.9. A continuous local martingale (CLM) is , !ocal martingale whose paths
are continuous (for P-almost all paths). Let Milc b0 the family of continuous

local martingales. On occasion, we will also (following Jacod) use the notations
KP,' , V I o and so on, with the same meaning being carried by the superscript c:

namely, 'D denote various subfamilies of Mil satisfying the additional require-

ment of path continuity.

6.4.10. If the local martingale m is (strongly) orthogonal to each nei 0 loc, then m
is said to be a (purely) discontinuous, or a compensated jump martingale.
The first name is widely used, but is misleading since, for example, the compen-
sated Poisson process (N(t) - X (t), t 0), is such a martingale and its paths are

continuous between jumps.

Let Mdlo be the subset of Mlo consisting of compensated jump martingales. MId

is called the space of compensated jump martingales.

Lemma:
Let pc[l,o]. Then Kf, KPC and K p d are closed subspaces of KP.

Remark: The proof uses the equivalence of Iim*(oc)IIp and Im(oo)Jp = I1m11KP.
Since then if Im N) - mp, converges to 0, as n--*oo, there exists a subsequence (nk)

such that suptR, I mt -mt I 0 a.s.P. That is, m~ n(w) _ m (w), uniformly

on [0,3c], for all w in some set of P-measure 1. Therefore, sequences of continu-
ous processes converge to continuous processes, so KPc is closed.

If mk Kpd, for each k and n is any bounded continuous process with n(0) = 0.
then EnTMre - 0 for each k. Again, if m converges to m, then EnTreT = 0
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and so m is in KPd.

We will return to discuss the structure of K2 d at the end of Section tB.5.

6.5. Semi-Martingales Revisited: We now return to the definition of a semi-

martingale, introduce some convenient notation and state some results that are
crucial to the development of stochastic integrals. This Section and the
remainder of the chapter follow Jacod 11979] very closely. In order to remind the
reader that the notation should not obscure the simplicity of the semi-martingale
concept, we state its definition as follows:

6.5.1. Definition: A Skorokhod process, X, is a semi-martingale relative to a
filtered probability space, (Q, H, F, P), if there exists a sequence of F-stopping

times, Tntoo, such that for each n, there exists a sequence of F-martingales Nl n )

with M(n)(0) = 0 and an F-adapted process of bounded variation, A ), such
'N that X(t,w) M'n)(t,w) + A(n)(t,w) for all (t,w),[[0, Tn)) -

6.5.2. Remark: Of course, this is equivalent to the requirement that there exist
processes mcMo ,lo and A((BV)o ¢ such that X = m + A. Notice that the condi-
tion m(0) = 0 is no restriction, since if m(0) $ 0 then we can write X = (m -
m(Of) + (A + m(O)) obtaining a representation of X that satisfies the require-
ment. Notice also that the requirement that X be Skorokhod is redundant since

both M(n) and A(n) in the definition are Skorokhod.

6.5.3. Remark: Let S = S(F) = S(F,P) denote the collection of equivalence
classes of semi-martingales on (fQ. F(oc), F, P).

If XES, the representation X = m + A is in general not unique. For a simple.
but artificial, example let A(t) -- t and m be any local martingale of bounded
variation. Then another representation of this X is X = 0 + A', where A' = m

. + A.

A semi-martingale for which the decomposition X = m + A is unique is called a
special semi-martingale. The subfamily of S consisting of all special semi-
martingales will be denoted bv Sp.

M. Yor is credited by Dellacherie and Meyer with the following example of a
semi-martingale which is not special. Start with the probability space.

([0,1J.H,L), where L denotes a complete Lebesgue measure and A is a positive ran-
dom variable. Define the filtration (F(t)) on i1 by setting F(t) = {o,[0.11}, for

O<t<l, and F(t) = H, for t>l. Set X(t) := Al 1 Ix)(t). Then X is an
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increasing process and so is a semi-martingale. This process X is a special semi-
martingale iff AeL 1 , according to the next Theorem.

The Doob-Meyer Decomposition shows that submartingales are contained in SP

The following theorem sheds further light on the structure of SP.

6.5.4. Theorem:(Characterization of Special Semi-martingales)
Let XES and

X = m+A. (8)

The following statements are equivalent:

(1) If there exists a decomposition (8) with A previsible and

in (IV),., then XcSp.

(2) There exists a decomposition (8) with A in (1V)oc.

(3) Each decomposition (8) satisfies A in (IV),oc.

(4) The increasing process X*(t) = supt> I X(s) I belongs

to (IV+)o.

Remark: The decomposition specified in (.1) is called the canonical decomposi-
tion of an element of SP.

The following Lemma is needed in the proof of this Theorem:

6.5.5. Lemma:

(1) X is both a local martingale and a process of bounded
variation iff X is a local martingale of local integrable varia-

tion.

(2) If X(Mo0 , and is a previsible process of bounded varia-

tion, then X is evanescent.

Remark: Jacod's sensible way of expressing (1) of the Lemma is to just write

M flo, -BV = M1o'-lllV)o0 .
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Part (2) has the obvious consequence that the only continuous local martingales
of bounded variation are constant processes. In plain language, non-constant.
continuous local martingales are of unbounded variation ( have paths that are of

unbounded variation ).

To obtain some exercise with the definitions, we indicate the proof of (1). We
only need to show the inclusion in one direction. Let X belong to the left side of
the last equation and (Ta) be the localizing sequence for X as a local martingale.
Set

Sn  inf(t' f IdX(s)I n).
10}t

We will use the notation X(s) and X, interchangeably. In any case, XT is still the

process stopped at T. Then f I dX(s) < n + AXsT". Since
10, tI

IA X  n + IXs and min(Sn, Tn) c c, as n-ox, we have that X

% belongs to (IVh)o.

The second statement of the Lemma is an extension of the same result in
Chapter 4, where the process was a previsible, increasing martingale vanishing at
the origin. The result here follows from the first Theorem of the third Section of
this Chapter and its Corollary.

Remark: (Proof of the Theorem 6.5.4 characterizing Sp) : Following
Jacod[1979,p.29], assume that statement (2) of the theorem holds and so X = m
+ A, with A of local integrable variation (Ac(lV)lo,). We show that (1) holds.
Write X = m + A - m + A - AP + A P. Since Ac(IV)io¢ we know by

Theorem 6.3.3 that A - AP is a local martingale. Therefore, X = m' + A P,

where m' Mo and AP is a previsible process of bounded variation. But again by

* . Theorem 6.3.3, it follows then that AP is in (lV)[loc. This takes care of statement

(1), except for uniqueness. But this follows easily from part (2) of the last
Lemma. That is, just assume that X = m' + A P has a second representation
X = n + B. Then the process n - m' = A P - B satisfies the conditions of part
(2) of the Lemma and so is evanescent. Therefore the representation is unique up

to indistinguishability, and (1) holds.

The next step is to show that statement (4) follows from (1). Let X = m + A be

the "canonical decomposition" of (1) and A*(t) = sup,>, I A(s) I . for all t >0.
Then A*I\' 'o, since AdIV0 o . Let (T) be the localizing sequence for m and
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S n := inf(t:m'(t)>n), where the * again indicates the supremum process. Then
we (an assume that SnTc, so that min(S n , Tn)t \ . Therefore, m(STn) is P-

integrable ( just recall that m T belongs to M, ). Hence, m'(S T T) is bounded

above by n + I m(SnTn) , so that m" is of local integrable variation. Since A* is

also in this family of processes we have that X" is of local integrable variation

and (4) holds.

The remaining parts, showing that (4) implies (3) and (3) implies (2), are, respec-
tively, straightforward and trivial.

6.5.6. The following Corollary shows that any semi-martingale can be
transformed into a special semi-martingale with uniformly bounded jumps:

6.5.7. Corollary:
Let X be any semi-martingale, a>O andXa the process defined by setting

Xa(t) = N AX(s) I

Then X'cBV and X - X' is a special semi-martingale whose canonical decomposi-

tion, X-X' = m+A, satisfies IAm --2a and IAAI < a.

Remark: Since this result will allow a second Corollary that is central to the con-
struction of the stochastic integral, we will give its proof: By definition of semi-
martingale, X is Skorokhod, so that the paths t-Xa(t,w) have only a finite
number of jumps in any finite interval (Section A 1.1.2). Consequently, Xa is of

bounded variation. Since adding a process of bounded variation to a semi-
martingale returns a semi-martingale, Y := X - X cS. By construction

I AY I <a. We use this fact to show that the supremum process corresponding
to Y is an increasing process of local integrable variation, which by the Theorem
demonstrates that Y is a special semi-martingale. Set T n = inf(t:Y'(t)>n).

Then we can choose TnToo, for if not then OY'(t)_ n0 for some no and all t>0.
and then the process is of increasing, integrable variation, so certainly of local
integrable variation. On the other hand when TToc, then 0<'(T) n+a, so
that Y" is an increasing process which is locally of integrable variation. Y is

therefore a special semi-martingale (6.5.4).

Let Y = m + A be the canonical decomposition of Y. We have,
AY = Am + AA. The idea of the proof is as follows: \We know from (Chapter
•4, on previsible projections, that PAY = PAm + PA.:. Since A is previsible.
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PAA AA. It will be shown below that PAm = 0. ConsequentLy.

PAY = AA. Boundedness of the jumps of A follows from the Chapter 4 result
that previsible projections preserve order: I AY a implies P 1 Ay < Pa = a.
This gives the result that I AA a. Immediately then

Am < A I + I AA, so that J Amj < 2a, and the proof is complete
except for justifying PAm = 0.

To see that the previsible projection of the jump process of m (i.e., (Amt,t>0)
is evanescent, let T be a previsible time with announcing sequence (Tn). Then
Tn T T, and T, < T on [T > 01. Doob's Optional Stopping Theorem supplies
the fact that E((m(T) - m(Tn)) I F(Tn)) = 0 so that (heuristically) letting
n-*x. we obtain E((m(T) - m(T-)) I F(T-)) = 0 on [0 < T < o], which
says that the jump process has an evanescent previsible projection.

Now the much anticipated and important result.

6.5.8. Corollary:
If N1 is a local martingale, then it has a decomposition, M = m' + i'
where ni' is a local martingale vanishing at the origin, with uniformly bounded
jumps. I Am' I < 1 and m' ' is a local martingale of local integrable cariation.

6.5.9. Remark: This decomposition is not unique. Since local martingales are. of
course, semi-martingales, we can apply the last corollary to M(NIo0  with a = 1/2.

";-"The result is N4 = N + m + A. where m and A are as in the definition of a
special semi-martingale, I Am < 2a = I and A is previsible and locally of

integrable variation. Set mn = in' and mn ' =M' + A = \1 - i Since M'
is of bounded variation, m - m' = m' ' is of bounded variation. Since i' ' is
also a local martingale, Lemma 6.5.5 guarantees us that m' ' is of local integr-

able variation.

Remark: We now discuss the structure of the class K 'd and obtain, as a (onse-

qience, information about the sums of jumps of any local miartingale. Such
results are needed in order to define the quadratic variation of local martingales
and thence semi-martingales in the next Section.

Finally, we reformulate the previous decomipo;ition theorem for local inartingale
-. 7., into one whose summands are continuous and purely discontinuous local mar-

tingales. For us this will complete the geometrical picture of local martingales as

sums of orthogonal processes. The main purpose for including it here. however.
is that it can be used to obtain a corollary which gives us the imp)rt'ant fact that

w,- the continuous part of any semi-martingale is unique.
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6.5.10. Remarks: A rigorous discussion on the structure of the space of purely
discontinuous square integrable martingales would require more space than is
appropriate in this note. But certain facts can be explained. We start with mar-

tingales which are of bounded variation. Let m be such a martingale. Then we

can show that

m t = M0 + , Am M-( ) m)P.

0<s<t 0<s<t

where the symbol p indicates that the last term on the right is the dual previsible

compensator of the sum of the jump process t-Am t over the interval (0.t].

Thus, m is represented as a sum of compensated jump martingales.

The proof of this statement is quite easy and it also shows that the compensator
( the dual previsible projection ) is continuous: Just set X =m 0- i - J. where

J = -%m,. Then it is clear that X is continuous and so previsible. So

XP  X. Also, since m - m0 is an IV0 martingale, its dual previsible projection

is evanescent (Theorem 1.6.1-). Therefore, using the linearity of the dual previsi-
ble projection operator, we have that X = XP = -JP, which says that JP IS

continuous and m = m0 + J - JP, which is the stated result.

It turns out that such martingales are dense in K2 ,d. The usual way to establish

this fact (Mever [19761) is to let T be a stopping time and define the subspace

M[T] of K 2'd to be those martingales which are continuous outside of the graph of

T. In order to state the basic results, first consider the case where T = 0, a.s.P
(remember that we are still under the "usual conditions", so T is indistinguish-
able from the zero stopping time). If mEnM[0], then m - m0 is a square int-grable.

purely discontinuous martingale which is also continuous. Therefore, m-mo must

be the zero martingale, and so m t is the constant martingale equal to the random

variable m0 for all t>O. (Remember the convention stated in the Outline, which

set m0 - = 0, so that all members of the space of continuous martingales must

satisfy the condition m 0=0.)

Therefore, suppose from now on that T > 0, a.s.P. So if mcM[T], we must have

m0 = m0 -  0 and so M[T]C '( 0d, when T > 0, a.s.P.

Now, let m :- A - A P, where A := g l([T.,)) , where g is a random variable

with finite second moment, so that A is in IV and m is a martingale (Chapter 4),

a compensated jump martingale.
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There are two cases to treat: (i) T totally inaccessible and (ii) T previsible.

Consider case (i): Since AP is previsible, its discontinuities, if any. are exhausted

by a sequence of previsible times and by definition ( of the term "exhaust
C hapter 2 ) it cannot charge any other stopping times; in particular, it cannot
charge T, since T is totally inaccessible. Further, we now show that AP cannot
even charge any previsible time.

To see this, recall the language of Chapter 4. and the fact that the measures gen-
erated by A and AP agree on G(PT), the a-algebra of previsible events. Then

notice that here, the support of the measure PA is [[T]]. So if AP charges a prey-
isible time, U, then the random set {[IUIf"[[T] is not evanescent and so T is not
totally inaccessible. This contradiction therefore tells us that AP does not charge
any previsible time. Hence, AP must be continuous and so m is continuous out-
side of the graph of T.

Finally in case (i), with more effort than we want to expend here, it can be shown

that, A PL 2 , so that this compensated sum of jumps martingale is square integr-
able. Therefore, m(M[T]CKo'P.

w -

Now in case (ii), with T previsible and a.s.P. positive, and with the additional
assumption on g that E(g I F(T)) = 0, it can be shown that (g II[T,e¢))) p = 0.

Hence the compensated jump martingale, m, has the form m, = g 1 [[T,,,)) and
belongs to M[T].

Therefore, with either of the assumptions on T and the corresponding assump-
tions on g, m = g IllT, )) - (g I[T,:)))p (called a compensated jump mar-
tingale ) is a martingale in M[T].

Further, it can be shown that for every n, nEK 2, the process

L - mn - AmTAnTI[T, ,))

is a uniformly integrable martingale which vanishes at the origin ( belongs to

M0 ).

When n is continuous at T, this shows that mnNf0 , so that m is orthogonal to
every n which is continuous at T. Since our compensated jump martingale is in

2, we also have m2 - (AmT) 2 ll[T,))(NMO. From this and the properties of uni-
orrly integrable martingales,
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Em, = E(AMT) 2.

We now apply these observations to an arbitrary n in K2. Set

m - AnT I[[T._,)) - (AnT I[[T..,:))P. Then in is a compensated jump martingale

with the property that n - m is continuous at T, and consequently. orthogonal to

M[T]. m is therefore the projection of n onto m[T].

We can now state the principal result concerning the structure of purely discon-
tinuous, square integrable martingales.

6.5.11. Theorem:
2od

If mEKO , then m is the sum of a series of compensated jump martingales and m

is orthogonal to every martingale nEK 2 which does not charge a jump of m ( so m

is orthogonal to every member of K2 'c).

Remarks: By a Theorem in Chapter 2 there is a sequence of stopping times, (Tn),
that exhaust the jumps of m. (Recall that the definition of exhaust includes the

fact that the graphs of these stopping times are pairwise disjoint.) Further, since
each stopping time can be decomposed into the sum of a totally inaccessible and

an accessible stopping time (whose graphs are disjoint), and by definition each
accessible time is included in the union of a sequence of previsible times, we can

assume that each Tn is either totally inaccessible or previsible.

For each k, let m(k) be the compensated jump martingale associated with the
stopping time Tk. Since the graphs, [[Tn]], are pairwise disjoint, the m(k) are
pairwise orthogonal (in L o(P), if you like).

k
Letting U(k) : m(i ), we have that m - U(k) is continuous at the stopping

times T 1 , ,Tk and, therefore, orthogonal to m(l),. . . ,m(k). It follows that

m - U(k) is orthogonal to U(k).

Therefore, if we write m = U(k) + (m - U(k)), square both sides and then take
expectations of the result we have

Em, k +E(m E(m.- U C )

k
- Z E(AmT.)2 + E(m. - U()) 2 .

(We have used equation (9).) It follows that U(k) converges to an element U of
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K'2 d. (Recall a previous Lemma stating that K2,d is closed.) It is a simple matter
to conclude therefore that m - UeK 2,, and m - U is orthogonal to U. But since m
is purely discontinuous, it follows that i - U is orthogonal to itself. Hence,
m - U, and so

Em = E(AmT )2.

This completes the "proof" of the Theorem.

Now if we take any element in K2, not necessarily continuous or purely discon-
tinuous, then we can carry out the same construction and write

im = U + (m - U). Therefore, we have a unique decomposition of m into its
"continuous" and " purely discontinuous" parts. This decomposition also yields,
as before,

Em = V E(ImT )2 + E(m- Uj 2 .

But now m is not necessarily equal to U, so

Em 2 > E(AmT) 2, (10)moo 
(10

with equality holding iff mK 2 d.

Returning to the decomposition of reEK 2, and writing m' m m- U and
m = U, we can say that there exist mCEK 2, , ind K2,d such that m is uniquely
decomposed into the sum m = + m

This is a essentially a special case of a more general result about local mar-
tingales. To prove the more general statement directly, without the last version,

Jacod first notes that any local martingale of bounded variation is in the family
M and, using the decomposition given in Corollary 6.5.8 above, reduces the
proof of the decomposition of local martingales into their continuous and purely

discontinous parts to a proof of this statement for members of Ko .

We state this result:
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6.5.12. Theorem:

Let m be a local martingale. Then there exist martingales m' and md in Ml' and

\Ildo¢ respectively, such that m = m' + md . This decomposition of m into its

continuous and discontinuous parts is unique.

Remark: We have already mentioned the first of the following two results. The

second will be needed in the construction of the stochastic integral for local mar-

tingales.

(1) Any local martingale of bounded variation is in the family

(2) Any two members of M 1id which have indistinguishable
jumps processes are indistinguishable. The latter means sim-
ply that Am = An implies m = n for m,neMldc.

Remark: For the second statement, let X = m - n. Then the hypothesis of (2)

says that the jump process of X is the zero process. By unicity of the decomposi-
tion theorem, X is then a continuous process which takes the value zero at the

origin. Since X is purely discontinuous, this means that X is the zero process, or
what is the same, m = n.

6.5.13. Corollary

Let any semi-martingale, X, have the representations

X = m+A and X n+B

where m,n c M0,IO, and A,B c BV. Then mc = n'.

Remark: Just note thatm-n = B-A C M0,10C.

Therefore, 0 = (m - n)c = -nC

If the semi-martingale X decomposes as X = m + A , then we write X m'

and call X the continuous part of the semi-martingale. By the Corollary, X is

independent of the decomposition. If XcMI0o, we set X c = m' where m' is given

4. by the decomposition m = mc + md of the theorem itself.

Now, return to the inequality (10). This immediately yields the following.
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6.5.14. Theorem
If m(K 2 , then __..m 2 < oc, a.s.P, for all t>O.

s<t

Remark: Following custom, we have used the following abbreviation:
Ams2 := (Am5 )2 .

The extension of this result to local martingales is an immediate consequence of
applying this theorem to the decomposition given in Corollary 6.5.8 and using an
obvious property (explicitly stated below) of processes of integrable variation.

The following Corollary is necessary to prove the existence of the quadratic varia-
tion of a semi-martingale:

6.5.15. Corollary:
If mcMo,, then -Am2 < oo, a.s.P, for all t>O.

S<t

6.5.16. Corollary:
If XcS, X = m + A, then E X 2 < oc, a.s.P, for allt>O.

s<t

Remark: Since A is in BV,

"AAA < C IA, I <_
i ._.t B<t

a.s.P, for some positive constant C, for all t>0. The result follows from the pre-
vious Corollary by noting that

AX < 2(AM5
2 + A).

We will now give a result of Jacod which says that localization does not extend
semi-martingales.

6.5.17. Theorem:
(1) SP is not extended by localization: Sp = (Sp)1oc.

(2) S is not extended by localization: S = SI.

Remark: We will only prove (1). The main purpose is to illustrate what Del-
lacherie and Meyer (19811 call "pasting": a procedure for constructing a single
process from segments of a sequence of processes.
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As always, Sp C (Sp),.. So let Xf(Sp) 0 , and (Tn) be a localizing sequence of X

which reduces X to Sp, that is, such that XT, Sp for each n. Let the canonical

decomposition be XT " = M(n) + A(n ) for each n. Since the T n are nondecreas-

ing, Tn+ 1 ^T n - , so that (XTn.)Tn = XT, . The uniqueness of the canoni-

cal decomposition allows the summands of the decomposition to inherit this pro-
perty:

(m(n+l))T _ = e(n)-

(A(n+l))Tn = A(n).

The required local martingale, m, and previsible process of bounded variation, A.
are obtained by pasting these path segments together, path by path, over all

paths. Geometrically, it might help the reader to realize that equation (9), for

instance, means that on [0, Tn(w)], m(n)(w) - m(n+I)(w). Thus, m and A with

the required properties exist such mTn - m (n ) and AT" - A(n), and

X = m + A. Therefore, XcSp, and soSp = (Sp)Ioc .

Remark: Thus, we have reached the end of the line in extending our processes by

localization. That this is exactly the right place to stop in order to develop the

stochastic integral will only be apparent after we complete the construction of
the stochastic integral.

6.5.18. Remark: In Chapter 5 we gave a very general form of the Doob-Meyer

Decomposition Theorem. We will now state this important result in a more res-
trictive and more easily proved form (see for example Ikeda and Watanabe).

Then, using this and the results developed so far in this Section, we prove the
Theorem as stated in Chapter 5. This will to some exLent explain the central role
this result plays in the modern theory of semi-martingales.

6.5.19. Lemma (Doob-Meyer Decomposition for Class D submar-

tingales):
Let X be a supermartingale of the class D. Then there exists a unique, previsible.

integrable increasing process, 4, such that X + A (M 0 ( is a uniformly integrable

martingale which vanishes at the origin ). Further, 4 is continuous iff X is

quasi-left continuous.

6.5.20. Remark: Note that the Lemma does not involve localization. With
Theorem 6.5.10 and Lemma 6.5.12, we can now state and prove the DMD
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Theorem in a form equivalent to that of Chapter 5:

6.5.21. Theorem (Doob-Meyer Decomposition):
Ecery supermartin gale (submartingale) is a special semi-martingale.

Remark: Because the proof (Jacod) is very elegant and gives application of some

basic martingale results, we will give its outline. Set Tn := infit : IX(t) _> n }
and Sn := min(n,Tn). Let F = (F(t)) be the underlying filtration. For each n,

consider the stopped process, X n, and notice that since X is an F-supermartingale.
when t>n, X n = E(Xn I Ft), and when n>t, then X t > E(X n I Ft). These
two statements can be combined by writing Xtn _ > tn) :- E(X n I Ft ): thus

for each n, the uniformly integrable martingale, y(n) is a minorant for the

stopped process X". Therefore, Doob's Optional Sampling Theorem applies to the
stopped process, Xs". That is, the process X s

n = (Xn)Tn is an F-

supermartingale. Further, since this process is majorized, for each ii, by the ran-
dom variable n + (Xs)', it is a class D supermartingale. The previously stated

class D form of the Doob-Nleyer decomposition theorem then applies and Xs is a
special semi-martingale. Since we know that the class of special semi-martingales
is closed under localization, we have that X is a special semi-martingale.

The following also holds:

6.5.22. Theorem:
Eeery special semi-martingale is the difference of two local supermartin gales (sub-

martingales).

Doob's class D Lemma also applies to submartingales. The only change would be
that we would have X = m + A with A increasing.

6.6. The Quadratic Variation Processes of a Semi-Martingale: In various
forms, we have mentioned that if m is a square integrable martingale, then m 2 is
in the class D and, hence by Doob's Theorem, a previsible, increasing process of
integrable variation exists which compensates m2 into a martingale. In Chapter 1
we denoted this increasing process by <rm>.

% It may have escaped notice, but we have also proved this for the family of mar-
tingales, m, that are only locally square integrable. If m ( K,2,, then m2 is a spe-
cial semi-martingale. This is because mdKio2 _ mgf(Sp)o, = SP, by Theorem

6.5.10 Letting the associated previsible process, A, of the canonical decomposition
be denoted by <mm> and observing that it is an increasing process since m is
a local submartingale, we have
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6.6.1. Lemma:
If m is a locally square integrable martingale. then there exists a locally integr-

able, increasing, precrisible process. <mm>. such that m2 - <mm> £ N1,,.

As in Chapter 1, we call process <mm> = (<m,m>(t), t ( R+ ) the previsi-

ble quadratic variation of m. In our notation, <m,m>(IV-+)o.

When m and n belong to K1o , the process <mn> is defined by polarization, as

in Chapter 1. It is immediate that the mappings m -- <m,n> and

n - <mn> are linear. Indeed, for m,n,i,k in KIzC and a,b,c,d real numbers.

<am+bn,cl+dk> = ac<m,l> + ad<m,k> + bc<n,l> + bd<nk>.

6.6.2. Theorem:
If min c K1o., then <m,n> is the unique previsible process in (IV)1 o¢ such that

mn-<m,n> belongs to M0,1oc.

6.6.3. Remark: It might be worthwhile to first consider the case where m and n

are square integrable martingales (m,ncK 2). The Theorem then follows by noting

that (m+n) 2 - <m+n,m+n> is a martingale and equals the sum of the following

three martingales:

. 2- <m,m>, n2 - <n,n>, 2{mn - (<m+n,m+n> - <,m> - <nn>)/2}.

so that the last term in the braces must a martingale. The conclusion that

mn - <m,n> is a martingale "ollows from the uniqueness of the Doob-Meyer
decomposition.

The reader should note that the conclusion of the remark says that if you start
with martingales you end up with a martingale, not just a local martingale.

A proof (Jacod [1979]) that gives the generality of the Theorem follows by recog-
nizing the product mn as a special semi-martingale. This is because writing

1

mn I -(m+n) 2 - (m-n)2 )
2

expresses the product mn as the difference of two submartingales. Ifence, mn is

in Sp, by Theorem 6.5.15.

As in Chapter 1, the process, <m,n>, is called the covariance process of in

133



and n.

6.6.-4. Remark: Again take ni and n to be square integrable martingales. kn
easy computation, based on the last Remark, yields

*E{m(t)n(t) I F(s)} - m(s)n(s) = E{<m,n>(t) -<m,n>(s) I F(s)}.

This equation states that the product mn is a martingale iff <m,n>(t) = Ofor
all t>O. Recall the earlier discussion on orthogonality of martingales and store
for later purposes the fact that <m,n> = 0 if m is continuous and n is a com-

pensated jump martingale.

6.6.5. We now define the (optional) quadratic variation and the (optional)

cross quadratic variation of semi-martin gales, X and Y.

[X,X]t := <X C XC >t + E (AX(s)) 2  (11)

* O<s<t

[X,Yi :- <XC, YC >t + E AX(s) AY(s) (11.1)
O<s<t

for all t in R+.

6.6.6. Remark: From the definition of < , > on Ko., <m,n> is well-defined
for m and n in Ml',, since MNfl' C K12 Section 5.1.11 gives a proof of the fact
that any continuous local martingale is an LP local martingale, for any p > 1.

Hence, the first terms on the right side of equations (11) and (11.1) are well-
defined. Corollary 6.5.16 of the last Section then shows that [X,X] is well-defined.
It follows easily that [X,Y] makes sense.

Having observed that M1', C K, 2 the following example due to C. Stricker (Del-

lacherie and Meyer [19801) of a local martingale that is not locally square integr-
able is probably worth the interruption. Define the filtration (F(t)) on the proba-
bility space, (O1,H,P), as F(t) = {$,42}, for 0<t<I, and F(t) = H. for t>1.
Then X(t) = E(h(F(t)), where hc(L 1 - L, ), is such an example.

6.6.7. It can be shown that <X,XC> is always continuous. ( Actually, the prey-
isible compensator of the submartingale in the DMD Theorem is continuous iff
the process is quasi-left continuous, which is true if the process is continuous.)

Therefore, [X,X] will be a continuous process iff the sum vanishes, that is, iff X is

continuous.

13.1%,j ! %3
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Of course, in the cross quadratic variation, the sum is the zero process if X and Y

have no common jumps and clearly [X,Y] = 0 if one of tile factors is continuous

and the other is purely discontinuous, since then <Xc,Yc> = 0.

We will not take time to prove the following important Theorem.

6.6.8. Theorem: Let m and n be local martingales. Then
(1) [m,n] is a process of bounded variation and

(2) mn - [m,n] c M0,1oc

6.6.9. Remark: We see from this Theorem that m and n are (strongly) orthogo-

nal iff [mn] is a member of M0,1o, for then mnEM0,oi.

Our main purpose, however, in stating this Theorem is that it is but a short step

to the result that [X,X] is a member of V1. For let X = m + A, with m in

M0:o0 and A in BV. Then, as shown in the proof of Corollary 6.5.16, the series

with terms (AA) 2 converges, so that the process defined by V' (AA(s)) 2

0<s<t
belongs to V+ . By (1) of the previous Theorem, [m,m] is in V+. Hence,

[X,X] c V+ , and we have the following Theorem.

6.6.10. Theorem:
If X is a semi-martingale, then [X,X] is an increasing process.

6.6.11. Remark: We will list a few of the consequences stemming from this

result. Let X and Y be semi-martingales. Then

(1) [X,YJc(BV);

(2) (X,Y) --+ [X,Y] is bilinear;

(3) If T is a stopping time, then

\,py]T = [XT,yT ] = [XTy] =- [X,Y T ]

6.6.12. Remark: If m,n(Kio., then we have seen that mn - <mn> and

mn - [m,n] both belong to M0o0 . Therefore, [m,n] - <m,n>(Mo0 .1o also. Since

[m,n] (V) 1o, we have <mn> = [m,n]P. That is, <mn> is the previsible

projection of [m,n]. For X,YtS, we therefore can extend the definition of < >

by setting <X,Y> := [X,Y]P, whenever [X,Y1([V)lo¢.
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4..i 6.6.13. As might be expected, to complete the construction of the stochastic

integral we require inequalities analogous to the Cauchy-Schwartz inequality. The

form of the factors on the right side of the second of these inequalities should be

noted in order to understand the selection of a norm for Lp(m), defined below.

The following is due to Kunita and Watanabe (19671:

6.6.14. Theorem (Kunita-Watanabe Inequality):

If H and K are optional processes and m,nEK-, then

f I H(s) I I K(s) I d[m,n], I _ (fH 2 (s) d[m,m]5 )2 (fK 2 (s) d[n,nI,) 2 .

0 0 0

I pfp>l and q is the conjugate of p, then

to I

E(f I H(s) i IK(s) I I d[m,n], I) II1 .[m,m]) Ilp II(K2  .[n,n])91,q.
0

Remark: If n and m are continuous, then we can replace I , J with < , >. In

fact, the inequality was originally proved in terms of < ,

The following remarkable Theorem shows that with p>l the norm II m iP

and the norm ii [m,ml 2 () l1p are equivalent. In particular, this means that we

-can define the space K2 of square integrable processes in terms of the L2 norm of

6.6.15. Theorem (Davis, Burkholder, Grundy):

Let p,[1,oc). Then there exist positive constants cp and cp such that for each

cp m jllp < II [m,m] 11p :5- cp II m lip.

6.7. Stochastic Integrals Relative to Continuous Local Martingales: Let

m be a local martingale and p[l,oc]. As usual l.l1p denotes the LP norm:

l1fl P :- E( lfl ). Set
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II H Bpm : (H2 .[mm]( )) lip

and Lp (m) { H previsible ii H "p,m < cc }. The Kunita and

Watanabe Inequality shows that L, (m) C Lq (m) if q :_ p.

6.7.1. After our discussion on localization of integrators in the introduction to

this Chapter, we noted that localization for integrands would be carried out

differently than for integrators. Let p[l,oc), and Lpiloc(m) denote the set of all

previsible processes for which there exists an increasing sequence, TnIOC, of

optional times such that H c[T.]] Lp (m). Notice that this type of localization

is a natural choice for integrands. Attempting to integrate constants other than

zero over unbounded sets relative to o-finite measures tends to produce undesir-

able results.

6.7.2. Suppose that m(M'1oC. Then the Lebesgue-Stieltjes stochastic integral

H2.[m,mi is continuous, and the increasing processes t-/H.v -.[m,m](t) is continu-

ous and vanishes at the origin. Therefore, this process is of bounded variation iff

it is locally bounded. Therefore, under the assumption that m£M 0 , it can be

shown that Lp,10 (m) = Li,10 (m) for all p 1.

To define the stochastic integral for H in L1,i0 (m) relative to moEM'1 0 it is there-

fore sufficient to define it for L, sm).

6.7.3. Let HcL 2 (M). Consider the linear transformation on K2 defined by

n-- C(n):= E((H.[m,n])(cc)). (12)

Set

III n 111 1 1i n(oo) 112,

the norm on the Hilbert space, K 2 , equipped with the inner product

(m.n)--Em(oc)n(oc). Then according to the Kunita-Watanabe Inequality with K

1 and using equivalence of norms, we have that I C(n) I is bounded above bv
II H 11m III n I1. This shows that C is continuous on K

But as a continuous, linear functional on a Hilbert space, there exists a unique

process y(KN with the property that E(Y!cc)n(3C)) - C(n) for all K2. Recalling
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equation (12), this remark justifies the following

6.7.4. Definition: If HcL 2(m), we call the stochastic integral of H relative to

rnmMjloc, denoted by H.m, the unique element of K2 such that.J.
M E((H.m) ) nt) = E(H.[m,n])O, (13)

for all n in K2.

Having justified the definition of the stochastic integral, we now give a result

which characterizes it.

6.7.5. Theorem (Characterization of H.m on M'0,,,):

If HcL 2 (m) and mcM Io, then H.mcKo '2, and H.m is the unique element of J(2

such that

[H.m, ni = H.[m, n], (14)

for all n(K.

% 6.7.6. Remark: Thus, if Y is a solution of [Y,n]=H.[m,n], an equation equating a

process of bounded variation and a Lebesgue-Stieltjes integral, then Y = mr.

If we define f H(s) dm(s) = (H.m)(t), for all t>O, the equation (14) takes on the
0

following form:

t

If H(s) dm(s), n](t) f H(s) d[m,n](s). (14.1)
0 0

6.7.7. Remark: This Theorem is due to Kunita and Watanabe. The proof given

here is from Jacod. From earlier remarks, we know that Y = t.m4K 2. Letting
C be as defined above, C(Yd) = E(Y(oO)Yd (oc)) and, since the discrete and

continuous parts of Y are orthogonal, we have

C'(Yd) - E((Yc (oc) + yd (Oc) yd (Oc)) - E((Yd (c)2).

138

a""',, . . . . . .

'"4



W.'W . ''w w,. . U.. .. , -r, -. .-- . -- V- . C - V if -- :•- - -. , - , . : -.. - .U.
- 

, -' ,J.

But since m is continuous, we have [m, Yd 0, the zero process. Therefore.
by definition of stochastic integral C(Yd) = E( H.[m,yd]) = 0 and conse-
quently E((yd(Oc)) 2 ) = 0. Therefore, yd = 0, the zero process (it is clear that

we are working with equivalence classes), and so Y is continuous and Y0 = 0

(the latter with the convention 10- = 0). That is, Y Ko 'c.

Next, for each optional time, T, and each n(K 2  we know that
Y nT - [YnJi nKr ' and [Y,nT = [",niT: hence,

E([YnJ (T)) = E Y(T) n(T) E(E(Y(oc) I FT)) n(T))

= E(Y(zc) nT(,C)) _ C(nT(cC)) = E(H.[mnT] (cc)

= E(H.[m,n]T (00)) = E(H.[m,n] (T)).

That is,

E[Y,n](T) = EHl.[m,n](T)

for any ncK 2 and optional time T.

It follows from Theorem 6.6.8 that [Y, nj - l1.[mn](Mo. But [Y. n] - ll.[mn]
is a process of bounded variation which is previsible (the latter since Y andi m

are continuous), so that [Y, n] - H.1m,n] = 0, the zero process. This proves
the theorem in one direction.

Conversely, let YcK 2 and satisfy [A. n] = H.[m,n] for all n(K 2. Then
E [Y.n](x) = E (H.[m,n!(oc)) = C(n) = E(Y(oc)n(oc). Therefore,
E[Y.n](t) = E(Y(,c)n(cc)) for all ndK2. Then, by definition, Y = H.m, com-
pleting the proof.

Remark: We have observed that when m is continuous, H.m is continuous.
Hence, [H.m,a] = <H.m,n> and we remarked earlier that m continuous gave
us [m,n] = <mn> so under the assumption, of the theorem, equation (14) can
be expressed as

<H.m,n>=H.<m,n>. (14.2)

Further, from the properties of [ , ], we can show

6.7.8. Corollary:
(II.m)T = H.mT - H l10,Tl.im for all optional times T.
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.i.7.9. Remark: Let lhL 1 i:n and Tn,,tc a localization of 11 relative to L._,(ml.

No, the 2 is not a mistake: recall that LI.1o L2 1 .! That is, If I[O.T](L 2 (mI).

The previous Corollary provides us with a way of extending the definition of ll.1in

to 11 in Lt,,,,. bv setting (ll.m)T, = (H l[O.T.11).m. for each n. The result is

called the stochastic integral of H relative to m . Thus. the stochastic

integral has been defined for IhL and M&Ioy. It satisfies a characterization

analogous to that stated in the last Theorem and the same equations as given in

the Corollary.

6.8. Stochastic Integrals Relative to Local Martingales:

6.8.1. Definition: If 11LI.io,(m) and mc 10 , then the stochastic integral lI.m

of H relative to m is the unique element of Mlo which satisfies

(H.m)' = L.m' , A(H.m) = HAm.

6.8.2. Remark: Recall that if m is a continuous local martingale then the paths

of m are of unbounded variation. So, in this case, H.m should never be mistaken

for the Lebesgue-Stielt'es (pathwise) integral of H relative to m. We know that

such objects do not exist.

Hence, until this Section, either mcMif or meMiom[fBV and so the stochastic

integral H.m was either that of the last Section or the Lebesgue-Stieltjes stochas-

tic integral, respectively. The last definition considers mEMi0. so now the possi-

. "bility of an inconsistency in our definition of H.m arises. Jacod shows that I"
H.m as just defined cannot have two distinct meanings. He argues as follows: If

t

mc\11oeflBV, HLI(m), and n(t) = fH(s) dm(s) exists as a Lebesgue-Stieltjes
0

integral, then nc(R')0 ¢. This can be shown to imply that neNIo. But

mE.MioflBCNiIoa so that m' = 0. But then, by definition.

S= 0 (Y = H.m'). So YMi also. Now recall the "you know them by

their jumps" description of M1 given earlier. Using the facts that An = HAm

and, by definition, AY = 11.Am, we conclude that Y = n.

Remark: We have just noted that the stochastic integral of this Section reduces
to the Lebesgue-StieltJes stochastic integral when m(lI.o so that it is important

to realize that contrary to the case of the Lebesgue Stieltjes integral, H.m is not
defined pathwise: its definition depends on the underlying probability and filtra-

tion.

.Ito
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6.8.3. Theorem (Characterization of H.m on NIIoJ:

(1) Let m(Mo, and 1IEL110o(m). Then H.m is the unique ele-

iment of w10o uhich satisfies [l-.m,n] = H.[m,n] for all

ncN110.

(2) In order that H.mcK P (respectively KIP,) it is necessary

and sufficient that HeLp(m) (respectively Lp,,o,)

6.8.4. Remark: Part I echoes the characterizations of stochastic integrals on
Nil',. Thus, the definition of H.m on MIo, is consistent with the definition on

N411,. Part 2 says that the "size" of the integral is directly related to the "size" of

the integrand. This result is not surprising when the definition of Lp(m) is

recalled.

6.8.5. Remark: A sketch of the proof that [H.m,n] = H.[m,n] is as follows. By

definition of [,], [H.m,n] = <(H.m)c,nc> + E](AH.m)An. By definition of

* -"H.m, (H.m)- H.mc, so that <(H.m)c,nc> = <H.mc,nc>. The latter equals

[H.mC,nc], which by the last characterization for continuous local martingales
equals H.[mC,nl = H.<mc,nc>. Finally, since AH.m = HAm, we have

[H.m,n] = H.<mc,nc> + E[XAmAn = H.(<mC,nc> + -,AmAn) =
H.[m,n]. For the converse we must show that if YcMio, and [Y.n]=H.[m,n] for all

ncNM1o, then Y' = (H.m)c = H.mc and AY = HAm. The interested reader

should just write Y = yC+yd, and m = m+m and proceed, or see Jacod.

6.9. Stochastic Integrals Relative to Semi-Martingales

6.9.1. For simplicity, let H be a bounded previsible process. Let XcS and have
the decompositions X = m + A = n + B with the usual meanings. By the pre-
vious two Sections, the stochastic integrals H.m, H.n and the Lebesgue Stieltjes

V. integrals H.A, H.B are well-defined. Since, m - n = B - A is a local martingale of
.3 bounded variation, we know by the consistency of the stochastic and Lebesgue
-. Stieltjes stochastic integrals that H.(m - n) = H.(B - A). Therefore, the formula

H.X = H.m + H.A defines the stochastic integral of a semi-martingale and this
definition is independent of the choice of the decomposition. The resulting

expression H.X is called the stochastic integral of H relative to X.

6.9.2. Remark: Properties specifically derived or implied in these Sections are

summarized (with a minimum of special notation) in the following Portmanteau

Theorem. The first part of the Theorem contains a result referred to in the
introduction concerning the extension of the stochastic integral beyond the class
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of semi-martingales. It also includes a stochastic integral version of Lebesgue*'.

Dominated Convergence Theorem and relates the elementary stochastic integral
discussed in the Outline in Section 6.2.2 to the integral developed in this

Chapter.

For additional details on the construction of the stochastic integral the reader
should consult Dellacherie-Meyer [1982,313], Jacod [1979], and Dellacherie [1978].

Let the space B of elementary processes introduce in 6.2.3. and equip -E- with the
topology of uniform convergence. Denote by L0 = L0(F,P) the space of finite

measurable functions equipped with the topology of convergence in probability,

P.

6 9.3. Theorem (Portmanteau)
(1 Let X be fixed Skorokhod process and H.X denote the elementary stochastic

integral of H relative to X. Then the mapping H-H.X, from 2 to Lo, defined by

* t

H(t) -- f H(s) dX(s):= H.X(t) (*)
0

for each non-negative t, is continuous iff X is a semi-martingale.

(2) Let X be a semi-martingale. The mapping from ' into Lo defined by (*) can
be extended uniquely to the space of all bounded, previsible processes in such a

way that ( retaining the notation HX ), the mapping H---H.X is linear, the process

H.X is Skorokhod and the following properties hold.

*" (a) (Lebesgue): If the sequence (Y) of bounded measurable
processes converges pointwise to a process, Y, and the Yn are

dominated in absolute value by a bounded previsible process,
then Y is a bounded previsible process and the sequence

Yn .X converges in probability to Y.X .

(b) For every bounded, previsible H, H.X is a semi-

martingale. Also, if X is a special semi-martingale, then H.X
is a special semi-martingale.

(c) For every H in I, the (extended) stochastic integral, H.X,
is an elementary integral.
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(d) If X is of bounded variation and H is bounded and prev-
isible then the (extended) stochastic integral, H.X, is indistin-
guishable from the stochastic integral, H.X, defined pathwise

by H.X(t,w) f H(s,w) dX(s,w), for each wEfQ, as a
[0, t)

Lebesgue-Stieltjes integral.

(e) If H and K are bounded previsible processes, then
K.(H.X) = (KH).X, and A(H.X) = H A X.

(f) If T is a stopping time,

(H.X)T = (H lff0,TJ].X) = (H.( lfO,TII.X)) = H.XT

(h) If H is a bounded, previsible process, then H.X is a mar-
tingale, local martingale or process of bounded variation, if X
is one of these processes.

6.10. Local Characteristics of Semi-Martingales: In this Section we will
only add a few remarks to what has already been written with the aim of show-
ing some relationships between several of these concepts and with a portion of
the classical theory stochastic processes (processes with independent increments).
Recall Corollaries 6.5.7 and 6.5.8. If XcS and we define

Yt := X0 + EAX I wI.l >11, (15)

s<t

then X-Y is a semi-martingale with bounded jumps and hence a special semi-
martingale. Therefore,

X-Y = m+ ,

where m is a local martingale with uniformly bounded jumps and a is a previsi-
ble process of integrable variation. Both m and a vanish identically at time zero.
Decompose m into its continuous and purely discontinuous parts,
m = mC + m d, and recall that XC := mc. It follows that

6.10.1. Lemma.
If X(S, then X can be written in the form

Xt = Xo+at+Xt+Yt+mtd (16)

and this representation is unique.
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Remark: Let it be the saltus measure of X (Chapter 4):

p(w.dt,(lz) = l[A. oIE(sAx,(dt.dz), 17)

and v be the dual previsible projection of the random measure, p. Setting

3 = <Xc,Xc>, the triple (a,3,v) is called the triple of P-local characteristics

of the semi-martingale X. This triple is uniquely determined by the semi-

martingale X, to within a P-null set. But while 3 and v are intrinsic characteris-

ties of . the component a depends on the "truncation point" in the definition of

Y in (15). Therefore, the triple does not characterize the semi-martingale X.

In Chapter 4 integration relative to a random measure was taken in the sense of

a Lebesgue-Stieltjes integral. But we also noticed there that.

p . p((O,t]XB) - v((0,t]XB) is a local martingale, for each B , t>0. In fact, it is a

purely discontinuous local martingale. So, if we want to integrate relative to

"p pi-v, we need to at least recognize the fact that yet another stochastic integral is

required. We will not go into the construction of this type of stochastic integral,

but recommend Part I of the 1978 paper by Kabanov, Liptser and Shirvayev in

the Sbornik or Jacod[1979,p.96].

With the aid of this stochastic integral which we will denote by f ...d(p-v) and

with md as in (16), Kabanov et al show that

t

md = f f xd(pu-v). (18)
SX:ili _ '}

We can also write the process Y in (15) (as a path integral) in terms of the saltus
measure it of X:

,t. tmesueYt - - f f xp(ds,dx). (19)

O{x: lxI >I}

Thus, we can state the following

6.10.2. Theorem:

If X(S, uith saltus measure u and local characteristics (a,3,v), then

t t

X t = X0 + ot + 3t + f f xi,(ds,dx) + f f xd(t-L,). (20)
0.X: nx I>i) 0rex: Ix a .

.'and thi's representation is asP unique.

This representation of a semi-martingale allows one to relate seni-martingal,', to

P. Levy's remarkable theory of processes with independent increments

4c.,
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(L6vy[1937] and Loeve[1960]),

6.10.3. Definition: A process with independent increments (I) on a filtered

probability space (OH,F,P) is a Skorokhod process X adapted to F such that for

each pair (s,t) with O<s<t<oo the random variable X, - X is probabilistically

independent of F. Further, a process X with II is said to be a process with sta-

tionary independent increments (SH) if X0 = 0 and Xt - X, has the same

distribution as Xt, O<s<t<oo.

Remark: The most famous examples of processes with stationary independent

increments are Brownian motion and the Poisson process. Standard Brownian
motion, also called the standard Wiener process, is a process B with the pro-

perties that B is F adapted and for each pair of numbers (s,t), 0<s<t<oc, the

random variable Bt - B. has a normal distribution with zero expectation, variance

t - s and is independent of F.

Since

E(Bt 2- BS2) 1 F) = E(Bt - B,) 2 1 F) = E(B t - BJ)2 = t-s,

it follows that <B,B> t =-t, t>0. Notice that this also shows that,

(Bt2 - t,t_0) is an F-martingale. B is obviously an F-martingale also and it can

be shown that P-almost all of its paths are continuous. So the paths of Brownian

motion are of unbounded variation with probability one.

Any reference to a Brownian motion process will mean a process X such that

Xt = mt + aBt, where m is any real number, a>0, and B is standard Brownian

motion.

Not only is B a process with stationary independent increments, but if X is any

SII process which is a.s.P continuous then X is Brownian motion ( X = mt+aB ).

That is, every a.s.P continuous process with stationary independent increments is

a Brownian motion process.

Since standard Brownian motion is a martingale it follows that every Brownian

motion process is a semi-martingale. Poisson processes are submartingales, so

they are also semi-martingales by the Doob-Meyer Decomposition Theorem. But

not every process with independent increments is a semi-martingale. Jacod[1979]
shows that a process with independent increments is a semi-mart ingale iff the

function t-.Ee uX , u, t real, has finite variation on compact sets.

Remark: At this point it might be of some interest to readers of this note to
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glance back at Lo~ve's 1960 book on probability. Specifically, refer to Section 22

where the classical Central Limit Problem is defined and recall the role played by

"infinitely divisible" random variables in the solution of this problem. Then turn

to Section 37 and look at the definition of a "decomposable" random function

(stochastic process); this is a process with independent increments. Some of the

principal results there indicate the beginnings of the modern theory of semi-

martingales and random measures.

Remark: Jacod (Jacod[1979, 90-951) shows that semi-martingales which are

,processes with independent increments have deterministic local characteristics

1 (i.e., there exists a version of the triple (a,3,v) that does not depend on w(f) and

conversely only semi-martingales with 11 have this property. When the local

*1 characteristics have the additional property that a and 3 are linear in t and v is

- a particular product measure on (0,o,)XR, then these processes are also station-

ary. This provides a useful link between the classical and modern theories of sto-

chastic processes.

6.11. Ito's Formula and Applications to Brownian Motion: We will limit

our discussion of Ito's formula to processes with continuous paths. Stochastic

integrals relative to this type of process are the most studied because of their

close connection to Brownian motion and stochastic differential equations.

6.11.1. Remark: Let the function K:R-R have continuous second order deriva-

tives. Let m be a continuous function on R+. Then using a finite Taylor series

*expansion applied to the increments of K, we have

n-i

K(mt) - K(m 0 ) = V (K(mt,) - K(mt,_,))
k-0

" n-I , 1 n-1 2!), , r

_,)AImt, + -I:K2 ' (mtk)t,)" + r

(E.g., tk = k(n) - tk/n, so that 0 = to < tj < ...< tn = t.)

If m is of finite variation (in addition to being continuous), the remainder r1(2) and
n-i
V (AmIt,) 2 converge to zero and we have the usual change of variable formula for

k-0

Stieltjes integrals:

K(mt) - K(m0 ) f K' (mj)dm,
0

or symbolically dK(mt) -K' (mt)dm t .
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Now, if we replace the function m t by a standard Brownian motion, B. a continti-

ous process of unbounded variation, it can be shown that

n-i
(Bt)2 - <B,B>t = t, a.s.P,

n-1

and rn2) -- 0 as n - oc. Further, both the sequence of sums Ni(AB)' and the

remainders rn' converge to zero for each v>3. Therefore we would expect the

change of variable formula for stochastic intcgrals with Brownian integrators to

".9 be of the form
-% t t

K(Bt) - K(B0 ) fK' (B,)dB, + -jK' (B)ds.
0

This is Ito's original formula for Brownian motion. When B is replaced by con-

tinuous local martingale M, equation (*) continues to hold but the limit is the

process <M,M>, the compensator of the submartingale %,12 . We will show below

that the process <MM> is distinguishable from <B,B> unless M=B. So for

any continuous local martingale one would expect that the change of variables

formula for stochastic integrals would become

It

K(Mt) - K(M 0 ) = fK' (MsldM , + 2fK' ' (M)d<M,M>,.
0 0

This is the claim of the next Theorem.

Let (f2,H,F,P) be a filtered probability space. Take m to be a continuous local

martingale and recall that Mj', C K,2., so that <m,m> exists. We will say that

X is a continuous semi-martingale if X = m + A, with m as specified above
and A a continuous process of bounded variation on finite intervals. Then the

following form of Ito's change of variables formula holds (Kunita,

Watanabe[1967]; Meyer[1976]):

6.11.2. Theorem:

Let X be a continuous semi-martingale and K be a function mapping R--+R and

having continuous second derivatives on R. Then the process Y=K(X) is a

semi-martingale and (up to indistinguishability)

t t

K(Xt) - K(Xo) = f K' (Xj)dX, + 2f K' I (X,) d<X,X>,. (21)
0

This change of variables formula is often written in the purely symbolic form of
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"differentials": dK(X) = K' (X)(dX + IK' d<X>, but this only has meaning2

in terms of the integral equation in (21).

Remark: Although we will consider only continuous processes in this Section, it

is informative to see how theorem changes in the case of an arbitrary semi-

martingale:

S t t

K(X) - K(X0 ) = f K' (X, ) dX + If K' ' (X.) d<X,Xc>, (21*)o 20

+ V. (K(X) - K(X,) - K' (X _JX)).
O<s<t

Remark: When the semi-martingale is purely discontinuous and of bounded vari-
ation, it is clear from the application of Taylor's Theorem above that a change of
variable formula should only involve the first derivative of K. Ito's formula, as

given in the last equation, verifies and extends this to show that in the case of an

arbitrary purely discontinuous semi-martingale, the formula also involves only

the first order derivative of K.

6.11.3. Remark: The Theorem immediately extends to vector valued continuous,

semi-martingales (a finite dimensional vector whose components are continuous

continuous semi-martingales): X = (X',X2 , ,Xn ). Let K be a function from
R n to R having continuous second order partial derivatives. Let D'K denote the

first order derivative of K relative to its ith component with the obvious meaning

for DiJK, the formula takes the form

n t n t

K(XY) - K(X0 ) = Ef(D'K)(X) dX3' + -Z-f(DiiK)(X,) d<X ,Xi >5- (22)
i 0 O2 0

6.11.4. Remark: When K(u)=u2 in (21), and mfMo,, Ito's formula gives

t

mt - in - 2f m, dm, + <mm>,.
0

-. When K(u,v) uv and we use (22) with m,ncMo,, we obtain

mtnt - mono - fmsdn8 + fnsdm, + <m,n >,. (23)
0 0
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This integration by parts formula is of course the continuous parameter (continu-
ous process) analogue of the one in Chapter 1. It can be extended to general

semi-martingales.

Remark: It is useful to allow the map K in Ito's Theorem to be a complex-valued

function. For this purpose, the expectation, conditional expectation, and so on,
of complex valued processes are defined in terms of their real counterparts via the
real and imaginary parts of the process. For instance, a complex valued mar-
tingale is one whose real and imaginary parts are martingales.

Remark: The following is the canonical first application of Ito's Theorem. It is
due to P. Lvy. As proved in Doob[1953], it assumes that X is a continuous mar-
tingale with the property that (Xt2 - t) is a martingale. The statement and proof

given here is due to Kunita and Watanabe[1967]. It uses their extension of Ito's
formula and assumes for the proof of LUvy's Theorem only that X is a continuous
local martingale satisfying the condition that <X,X> t = t. When X is a mar-
tingale, this latter condition is equivalent to the requirement that (Xt - t) is a
martingale as in Doob's statement of Levy's Theorem. Our presentation of the
Kunita-Watanabe proof is due in part to Chung and Williams[1983].

6.11.5. Theorem:
X is standard Brownian motion relative to the filtration F if, and only if,
X(M0 1 0C(F) and <X,X> t = t, t>0.

Remark: The condition is necessary by a remark in the last Section. In order to
prove that the condition is sufficient, define Ku on R by Ku(x) - eiux, for each u
in R and apply the Ito formula. From (21), since X0 = 0, we obtain

t t

K(X) - I = fK' (X')dX - If K.' (X)ds.

That is,

e iuf e ~XdX, - -Lf e"d s.(40 2 0eX-1 = iUXd-o -2- f eo d " (24)

The second integral on the right of (24) results from (21) and <X,X> s = s. The
first integral on the right of (24) is a martingale, because its integrand is a
bounded, previsible process and the stopped process Xt is a martingale for any t.

t+s

Therefore, E( f e .UXd.X I F) = 0, for s,t>0. Then, from the definition of condi-

t+s
tional expectation, if BcF, E(1B f eiUX'dXy) = 0. It follows that

S
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U) t+s

E(IB(eiuX '" - ei'ux)) - I B f e iux'dv
2

" t+s

S-- f E(IBei'dv, (25)
2S

with an application of Fubini's Theorem. If we define g,(t):- E(lBe i -') equa-

tion (25) becomes
ot

g,(t) - g(0) = -- fg(v)dv"
0

U,

It can be shown from this equation that g, must satisfy g(t) = g,(0)e 2

'U. Therefore, again using the definition of c.exp. and the fact that g,(0) is F,-

measurable, we obtain
u2

E(eiu(xt *" -') I F ) = e , (26)

and so if Y is an arbitrary bounded F,-measurable random variable,
U. U

2

E(Y eiu(x -s) I Fs) = Y e 2 (27)

S. Hence,

" E(Y eiu(xt - X-)) = (EY) e 2

But from (26), this is the same as

E(Y eiu(-- - X-)) = (EY) E(eu(x+" - X.)).

It follows that the random variables eiU(X. +.- X) and Y are independent. Hence,

(Xt ,- X) is independent of F.. Again, by (26), E(ei l'u(X - Y) =e 2 , the

characteristic function of a Normal zero mean random variable with variance t.

Therefore, X is standard Brownian motion.

6.11.6. Remark: We have already noticed in the previous section that Brownian

motion is the only continuous process with stationary independent increments.
.The following observation is a much stronger indication of the importance of

Brownian motion in the General Theory of Stochastic Processes. It says that a

large class of continuous local martingales are but "a time change away from

being Brownian motion"

% Let ! be a continuous local martingale and suppose that <M,M>, = xo.
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Then, if we define

it- inf{s:<I,M>, > t},

the process 3 defined by setting (,3, :=-- \,,,s>O) can be shown to be an (F,1 )-

Brownian motion process and \1 = '3<MM>' t>O. (Dubins, Schwartz[1965].)

Remark: We now give a very simple application of Ito's formula that will be
extended to vector valued processes later. Let K:R-R have two continuous
derivatives and introduce the differential operator, L, by setting

LK := mK' + -L2K"

2

Let X be a Brownian motion process:

Xt = mt + aB,

where mER, t>O, o'>O and B is standard Brownian motion. Then, in differential
form, Ito's formula gives

dK(X) = K (X)dX + -K" (X)d<X,X>,-.: 2

= K' (X)(mdt + adB) + 1K'' (X)o'2dt
2

= oK' (X)dB + (mK' (X) + -la2K' ' (X))dt
2

Therefore,

dK(X) = aK' (X)dB + (LK)(X)dt.

Since K' is continuous, and so previsible, and B is a martingale, it follows that

t t

K(Xt) - K(X0 ) - f(LK)(X,)ds = faK' (X\)dB,,
0 0

is a martingale.

6.11.7. Remark: We conclude this Section and the Chapter with a brief look at

stochastic differential equations. To be consistent with the generality of the

stochastic integral introduced in this Chapter, we will start with the development
of C. Doleans-Dade [1976]. However, our main intent is to introduce stochastic

differential equations "driven" by Brownian motion processes. Ito diffusions, and
relate these to A.N. Kolmogorov's original description of a diffusion. \Ve will use
the Ito formula and a generalization of the operator L defined in the last Remark
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to very briefly describe the connection with the Stroock-Varahdan theory [1979].

Let (fLH,F,P) be a filtered probability space with the filtration F satisfying thc

"usual conditions". Suppose that a and b are two functions mapping R+XQXR
into R, which are left continuous with right limits in the first factor, F-adapted

relative to the second and satisfy the following uniform Lipschitz condition:

f b(s,w,x)-b(s,w,y) + Ia(s,w,x)-o-(s,w,y) 1< K x-y (L)

for some constant K and all (s,w,x), (s.w,y) in the domains of a and b. C.

Doleans-Dade [1976] proves the following:

Theorem:
If M is an F-local martingale and A is a process in BV and a and b satisfy the
conditions stated above, then there exists one and only one adapted Skorokhod
process X satisfying the stochastic integral equation

t t

Xt = X0 + fa(s.,X.)dN4, + fb(s,X_)dtA.
0 0

Remark: As pointed out by Doleans-Dade, the uniform Lipschitz condition in x
implies that the mappings (w,x)-ca(t,w,x) and (w,x)-b(tw,x) are FtXB(R)-

measurable. Consequently, the functions w--.a(t,w,Xs) and w-.b(t.wX_) are
F-adapted, if we assume that the process X is Skorokhod and adapted. By the
assumed left continuity and existence of right limits for a and b. we have there-
fore that the processes (o(t,X_),t>O) and (b(t,XJ-),t>0) are adapted, left con-

tinuous and have right limits. Hence, these processes are F-previsible and locally
bounded. Therefore, if X is any adapted Skorokhod process the integrals on the

right side of the equation in the Theorem exist, by earlier results in this Chapter.

This Theorem can be extended in several ways. One is that it can be restated for
N as a d-dimensional vector valued process, with a a matrix valued function of
order (n,d) and b a vector valued process with values in Rn. The condition (L)
can be modified in an obvious way and if we agree that vector valued processes

,- are adapted, Skorokhod, etc when their components have these properties, an

existence and uniqueness Theorem analogous to the one above continues to apply.
We will consider this type of structure in paragraph 6.11.8 below, with the coln-
ponents of NI being independent Brownian motion processes.

A very interesting paper that we mentioned in the first Chapter (Doleans-Dade

11970]) treats a special case of the stochastic integral given above. Suppose that
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a(t,w,x) = b(t,w,x) = x, then this stochastic integral takes the form

t

Xt = X0 + fxdZ ,
0

where Z is a semi-martingale. In her 1970 paper, C. Doleans-Dade finds the expli-
cit solution to this equation. It is called the exponential of Z when X% _ 1 and

is given by

Xt = exp(Z' - .<ZcZ>t)H(l +AZ)e
s<t

The proof that this process satisfies the previous stochastic integral equation is a
simple application of the general Ito formula. If we set e(Z) = X in the last
equation, a two line application of integration by parts to evaluate the product
e(Y)e(Z) for Y.ZcS yields

e(Y)e(Z) = e(Y + Z + [Y,Z])

and not the expected e(Y+Z). The expected happens, of course, when [Y,Z] = 0.
',)r example, this occurs when Y and Z are counting processes representing the

number of arrivals and departures (respectively) at a particular queueing station
when arrivals and departures from the queue never occur at the same time.

6.11.. Remark: Now, we will specialize the local martingale in the previous
Theorem to Brownian motion, the integral relative to the process A to an integral
relative to Lebesgue measure, allow the processes a and b to depend on t only
through Xt and, in the other direction, consider multi-dimensional processes.

Thus. let B = (Btj be a d-dimensional F-Brownian motion process. That is,

Bt= (Bt ..... ,B'), where the B' are P-independent F-Brownian motion
processes; so in particular the distribution of Bt-B, (t>s) is normal (O(t-s)I),
where I = d X d is the identity matrix.

Thus, o':Rn - RnXRd, b:R' -. R n and X satisfies the equation

t t

Xt = X-0 + foi(, 5 )dB, + fb(X,)ds. (28)
0 0

With X0 = x, the process X is called an Ito diffusion, and is said to satisfy the
stochastic differential equation

dX t = o(Xt)dB t + b(Xt)dt.

for t>O. and X0 = x. X = (Xt) is then a strong Markov process with a.s.P con-
tinuous paths. (For an easy to read account on stochastic differential equations

see Oksendal [19861, in particular, his Theorem 5.5 for an existence and unique-
ness result that covers this case.)
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The kth component, Xk, of equation (28) is given in differential form by
d

dXk - \] kjd + bkdt.
j_1

-; An application of (22) to (28) yields

dK(X) -- V' (' DJK)(X idBJ + (29)
i=Ij=1

+ V(D'K)(X)bidt + -VDkK)(X)aikdt
i " i,k

where a = ca', o'* the transpose of a.

The extension of the previously defined operator L to functions K on Rn is
n I n

(LK)(x) = V(D'K)(x)bi +1V(D'iK)(x)ai.(LK)() + --d'
i IJ

Then from (29) we see that

t

C- K(X) - K(X,) - K(x) - f(LK)(X lds (30)
0

is a martingale, as in the one dimensional case treated earlier.

Thus, starting with Brownian motion on a given filtered probability space, and

an Ito process X satisfying (28), we associated the operator L with the property

that CK(X) was a martingale for a large class of functions, K, defined on R n.

There is a "converse" to this result due to Stroock and Varahdan [1979] which is
extremely important in the study of vector valued diffusions and, further, can be

used to define diffusions on more general manifolds than R n. We can not say

much about the Stroock-Varahdan approach in this note, but highly recommend

the paper by D. Williams [1981] for an introduction to this subject and its rela-

tionship to the Ito method.

Roughly speaking, view a process, X, as a member of the space, W, of continuous

functions from R+ to R'. Take At' to be the o-algebra of subsets of W generated
by {JX,s<t} and set A* = A . Let xcR n and L be an operator of the form

(LK)(x) = ,(D'K)(x)b i +-V(D'K)(x)aij,
""-'"i i~j

where the matrix valued function "a" and the vector valued function b are

defined on R n.
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Suppose that P. is a probability measure on (W,.), with the property that

P, x) = and CK, defined by (30), is an (W,A,(At'),PX)- martingale, for all
twice differentiable functions K on R' having compact support. (Then P. is said

to solve the martingale problem for L starting from x.)

Finally, if "a" can be written in the form a:j = .ao'*)ij, then X is continuous

and there exists a Brownian motion process B such that X, is independent of

Bt - B. and

t t

.Xt = x + fb(X3 )ds + fo(XjdB.
0 0

,

",.
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LIST OF SYMBOLS

X := (X(t), tcR+): Stochastic process

X(t,w) Xt(w): Process evaluated at (t,w)

[XcA] : {w :Xt(w)cA}

{XcA} :- {(t,w) : Xt(w)EA,t>0,w Q}

XT: Process X stopped at time T.

V.X: Stochastic integral of V relative to X.

IX,X]: (Optional) quadratic variation of X.

<XX>: (Previsible) quadratic variation of X.

' ~~Xt_ :--- limX'; (X_) t :--- Xt_, t>0.

X t :-X t - X t_, tcR .

(X-), = X,,-,, ncZ+; A := X, -Xo_,, nEZ+.

oj(G): Sigma-algebra generated by the collection of sets, G.

TA: Restriction of the stopping time T to the set A.

IA: Indicator function of the set A.

[[T]I: Graph of the stopping time T.

[[S,T]]: A stochastic interval, S and T stopping times.

PX ( °X): Previsible (Optional) projection of X.

XP: Dual previsible projection of X.

X*(t) := sup,<t I X(s) " Supremum process.
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G(PT): o-algebra of previsible sets.

G(OT): o-algebra of optional sets.

G(AT): u-algebra of accessible sets.

R+ "Extended non-negative real line, [O,oo].

Z+ • Extended non-negative integers.

a'b : Minimum of the numbers a and b.

X : Compensator of the process X.

Spaces of stochastic processes:

MU: Uniformly integrable martingales.

\.:- (Mv)O: Members of M, with m(O) = 0.

M (M)o: Local martingales.

M0, (M06)10 .

K 2 : Square integrable martingales.

K2,,: Continuous square integrable martingales.

K2,d: Purely discontinuous square integrable martingales.

MIT]: Square integrable martingales, continuous outside of [IT]].

V+: Increasing processes.

BV: Processes of bounded variation.

RV+: Integrable increasing processes.

IV: Processes of integrable variation.
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INDEX OF DEFINITIONS

absolutely continuous, 4.6.23.
accessible, 2.6.3.
adapted, 1.3., 2.3.7.
admissible, 4.2.
almost surely, relative to P, 2.3.1.
announce, 2.6.1.
announcing sequence for T, 2.6.1.
associated, 4.6.11.

bounded stopping time, 1.7.13.
bounded variation, 3.2.4.
Brownian motion, 6.10.3.

cadlag, 2.3.12.
charge a stopping time, 2.7.19.
class D, 6.4.1.
closes the martingale, 2.8.8.
compensated jump martingale, 6.4.10., 6.5.10.
compensator, 1.7.2., 1.7.4., 1.10.2., 4.6.16.
complete, 2.2.

9 conditional expectation, A.1.1.1.
continuity, 2.3.1.
continuous local martingale, 6.4.9.
continuous part, 3.2.7., 6.5.13.
continuous semi-martingale, 6.11.1.
counting process, 3.1.1.
covariance process, 1.5.
covariance process, 6.6.3.
cross quadratic variation, 1.5., 3.2.12., 6.6.5.

debut, 2.4.3.
difference process, 1.5.1.
diffusion coefficient, 5.3.3.
discrete integral of V with respect to X, 1.4.
discrete point process, 1.8.2., 1.10.1.
doubly stochastic Bernoulli process, 1.10.4.
drift process B(t) (drift rate f), 5.3.3.
driven, 1.10.4.
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dual previsible projection, 3.1.1., 4.6., 4.6.7, 4.7.4, 6.3.3.
dynamical system, . 12. 1.

, elementary stochastic integral, 6.2.2., 6.2.4.

equivalent norms. 2.8.6.
evaluating the process at the stopping time T, 1.3.1., 2.7.

evanescent, 1.3.1., 2.3.2.
exhaust the jumps, 2.7.19.
exponential of a semi-martingale, 10.11.7.

filtered probability space, 2.2.

filtration, 1.2., 2.2.
filtration generated by X, 1.2., 2.3.7.

finite variation, 3.2.4.
first entrance time of X, 2.5.2.
flow of information. 1.7.7.

foretelling sequ(nce, 2.6.1.

graph of a stopping time, 2.5.

hitting time, 2.5.2.

increasing process, 1.7.3, 3.2.1.
independent increments, 6.10.3.

indistinguishable, 1.3.., 2.3.2.
innovation process, 1.12.2.
innovations gain, 1.12.2.

integer valued random measure, 4.7.3.
integrable, 3.2. 1.

integrable variation, 3.2.4.
integrals, 3.2.
integrated signal plus noise., 5.3.3.

integration by parts, 1.8.
intensity, 1.10.1., 4.6.24.
internal history, 1.2.
Ito diffusion, 10. t 1.8.

jump at a stopping time, 2.7.19.
jump measure. 4.7.8.

jump process, 4.7.8.
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kernel, 2.7.12.

Lp - bounded, 2.8.5.
Lp martingale, 2.8.5.

local characteristics, 6.10.1.
local integrable variation, 6.3.1.
local martingale, 5.1.1.
localization, 5.1.8.
localized class, 6.1.2.
localizing sequence. 5.1.2.
locally integrable, 6.3.1.

local Lp -martingale. 5.1.1.

mark space, 3.1.1.
marked point process, 3.1.1., 4.7.3.
martingale, 1.6.1.. 2.8., 6.7
martingale problem, 10.11.8.
martingale compensator, 1.10.2.
martingale transforms, 1.7.8.
martingales, 2.8., 6.7
measurability relative to the filtration, 2.3.10.

measurable. 2.3., 2.3.9.
measurable random variable or function, 1.3.
measures generated by increasing processes, 4.2.

method of localization, 6.1.2.
modifications, 2.3.2.

n-debut, 2.7.18.
natural filtration, 1.2.

non-explosive, 3.1.1.
nonanticipating, 2.3.7.

observable, 1.3.. 1.11., 2.3.7.

optional, 2.7.9.
optional projections, 4.5.

orthogonal, 6.4.6.

P-null set, 2.2.
packet radio networks, 1.10.2.
path segments, 4.1.

point process, 3.1.
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Vi predictable, 2.6.1.

previsible, 1.3.. 2.6.1
previsible compensator, 1.7.4.. 3.1.1.. 4.6.16.
previsible projection, -1.3.

previsible quadratic variation, 6.6.1.
prior to T, denoted F(T), 2.4.4.

probability space, 1.2.
process stopped at time T, 2.7.3.
progressive, 2.3.10.
progressive measurability, 2.3.10.
purely discontinuous, 3.2.7., 6.4.10.

quadratic variation, 1.5., 6.6.5.
quasi-left continuous filtration, 2.7.4.

quasi-left continuous process, 2.7.24.
queue, 5.3.6.

random measure, 4.7.3.
random measure of a point process, 4.7.3.

random set, 1.3.1, 2.3.2., 4.5

random shift, 2.7.3.
random variable, 1.3.

raw increasing process, 3.2.3.
reduces, 6.5.17.
reference family, 2.3.8.
restriction, 2.6.4.

Riemann-Stieltjes, 3.2.13.
right continuity, 2.3.1.
right continuous, 2.2.
right continuous modification, 2.8.4.

saltus measure, 4.7.8.

semi-martingales, 1.11, 1.7.6, 5.2.1, 6.5.1
simple point process, 3.1.1.
single filtration, 2.3.8.

Skorokhod processes, 2.3.12.
solution, 6.11.7.
special semi-martingale, 1.7.6., 6.5.3.
square brackets, 1.5., 3.2.12.
square integrable, 2.8.5.
square integrable martingales, 6.4.5.
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stable, 6.1.2.
state space. 2.3.6.

stationary independent increments, 6.10.3.

stochastic differential equation, 6.11.7.

stochastic integral, 3.2.5., 6.7.4., 6.7.9., 6.8.1., 6.9.1.

stochastic interval, 1.7.11., 2.5.

stochastic process, 1.3., 2.3.

stopped at time T, 1.3.1.

stopping time (optional time), 1.2.1., 2.4.1.

submartingale, 2.8.1.

supermartingale, 1.6.1., 2.8.1.

terminal random variable, 2.8.8.

thin, 4.5.

totally inaccessible, 2.6.3.

trace o-algebra, 1.3.

trajectories, 2.3.1.

transform, 1.4.

transition probability, A.1.2.1.

transition measure, A.1.2.4.

translation, 2.7.3.

trivial filtration, 1.3., 3.1.

triviale stochastic integral, 6.2.2.

truncation, 2.7.3.

uniformly integrable, 2.8.8.

--- usual conditions, 2.2.

variance process. 1.5.

variation, 6.3.
versions, 4.1.

.N Wiener process, 6.10.3.

zero stopping time, 2.7.11.

-"
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Appendix A

A 1. Odds and Ends, including Fubini's Theorem.

A 1.1 Some Useful Definitions and Results:

A 1.1.1. Conditional Expectation:
Let (fl,H,P) be a probability space and G be a sub o-algebra of H. Let X be a P-
integrable random variable and define the measure i on G by setting

p(A) := fX(w)P(dw)- fXdP,
A A

for all A in G.

Then p is a finite measure on G which is absolutely continuous relative to the
restriction of P to G. The Radon-Nikodym derivative of p with respect to this

4', restriction is called the conditional expectation of X given G. Therefore,
E(XIG) is an a.s.P unique G-measurable integrable random variable Z which is
characterized by

fZ dP = fXde, (1)
A A

for all A in G, since P and its restriction agree on G.

The following is a list of some of the more important properties of conditional
4. expectation. These properties together with equation (1) are constantly ( and

silently ) used in Chapters 1 through 6.

Let X and Y be P-integrable random variable and a,b real numbers. Then

(i) E(aX+bY I G) = aE(X I G)+bE(Y I G),a.s.P.

(ii) If Y is G-measurable and XY is P-integrable, then

E(XY I G) = YE(X I G), a.s.P.

(iii) If J is a sub a-algebra of G, then$ E(X J) = E(E(X G) J), a.s.P.

(iv) E( I G) = 1.
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(v) If X>O a.s.P, then E(X I G) > 0.

(vi) If XnEL(P), for all nZ+, and Xn - X, in LI(P), then

E(Xn I G) -- E(X IG), in LI(P).

(vii) If XncL 1(P), for all nfZ+, XnDX. a.s.P, and XELI(P), then
E(Xn, I G) - E(X I G), a.s.P.

(viii) If h:R 1 -- R1 is convex, and h(X)&L1(P), then

h(E(X I G)) _ E(h(X) I G), a.s.P.

Remark: Properties (ii) and (iv) combine to yield Y = E(Y I G), a.s.P, when Y is
G-measurable and P-integrable.

A 1.1.2. Skorokhod Processes

A function is called Skorokhod if it is right continuous with left limits at each
point in its domain. Some basic results on such functions can be found in Bil-
lingsley [1968]. Billingsley considers real-valued Skorokhod functions defined on
compact intervals. In Chapters 2 to 6 in the body of the -present note, the usual
domain for functions ( as paths of stochastic processes ) is the interval [0,0o).
The results from Billingsley that we quote here carry over in an obvious way to
this domain. For this purpose, let f be a Skorokhod function defined on [0,0c).
Then

(i) f has at most a countable number of discontinuities;

(ii) On any compact interval, f has at most a finite number
of discontinuities where the magnitude of the corresponding
jumps exceed a specified fixed positive number;

(iii) f is bounded on compact intervals.

A 1.2. Fubini's Theorem:

A 1.2.1. Definition (Transition Probability): Let (vw, wdff) be a family of pro-
bability measures on the measure space (E,G). Let (0,H) be a measure space If
the mapping w - vw(B) is H-measurable, for each B in G, then the family
(v,, wEf!) is called a transition probability from (0,H) to (E,G).
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A 1.2.2. Theorem ( Fubini ):
Let U = EXf, V= G xH, and f be a real valued, V-measurable function ( a
random variable on (U,V)).

(i) Then, for each wcfO,

(x -- f(x,w)) is G-measurable

and, for each xeE,

(w -- f(x,w)) is H-measurable.

(ii) Further, let P be a probability measure on (f0,H) and
(vW, wEfl) a transition probability from (0,H) into (E,G).

Then there exists a unique probability measure, p, on (U,V)
such that

p(CXD) = f vw(C) P(dw)
D

for all CEG and DcH.

(iii) If f is non-negative, then

(w -- f f(x,w) vw(dx)) is H-measurable
E

and

f f di = f ff(x,w) vw(dx)P(dw). (2)
U flE

If fUL(p), then equation (2) holds and (x--f(x,w))cL 1(vw),

a.s.P.

1.2.3. Remark: In the special case that vw is independent of w, P is called the

product measure.

1.2.4. Remark: We have stated Fubini's Theorem in terms of transition proba-

bilities. It holds also, and will be applied, when the indexed family of probability

measures in the definition of transition probability is replaced by an indexed fam-
ily of a-finite measures, satisfying the measurability condition of the definition.

The result is called a transition measure.
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APPENDIX B.

LEBESGUE-STIELTJES STOCHASTIC INTEGRALS.
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Appendix B

B 1. Lebesgue-Stieltjes Stochastic Integrals:

B 1.1. On the Existence of a Lebesgue-Stieltjes Stochastic Integral:

We will now give a detailed explanation of the the existence of the stochastic

Lebesgue-Stieltjes integral induced by an increasing stochastic process, A.

Let B=B([0,oo]) be the a algebra of subsets generated by intervals of the form

(a,b], a and b non-negative. Let C -. v(C,w), CcB, be the measure on B induced
by the right continuous, increasing function, A by setting v((a,b],w) := A(b,w) -

A(a,w), for all non-negative a and b (a<b) and each w~fc.

Let V := BXH be the product algebra on U := [0,o)Xfl. Since t-,A(t,w) is

increasing, A is V-measurable. Therefore, the mapping w -- v(C,w) is H-
measurable for each C in B.

By Fubini's Theorem, given the family of u-finite transition measures {v(.,w)

wcf2 } and the probability measure, P, on H, there corresponds a unique u-finite
measure, p, from V into [O,oo], such that

p(CXD) = fv(C,w)P(dw)
D

for all CcB and DeH, and for any p-integrable real function, f, defined on U, the

mapping

w -+ f f(s,w)v(ds,w)
1o,)

is H-measurable, and

ffdp = f f f(s,w)v(ds,w)P(dw).
U foo)

00

Let X be any V-measurable process such that Ef I X(s) I dA(s) < co, where dA
0

denotes the integration relative to the measure v.

Then
00

fXdp = E fX(s)dA(s)
U 0
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and Fubini's theorem states that the pathwise Lebesgue Stieltjes integral

(X.A),(w) f fX(s,w) dLA(s,w)
0

exists, a.s.P. The process ((X.A)t,t>O) is then defined by setting

(X.A)t := (110,tlX.A)c, for each t>O.

B 1.2. Monotone Class Theorem:

B 1.2.1. Theorem: Let 0 be a set and C a collection of subsets of 0 which is
closed under finite intersection.

1) Let S(C) be the smallest collection of subsets of 0 which contains C and
satisfies

a) OES(C);

- .'- b) If A,BS(C), with A a subset of B, then B-AES(C);

c) S(C) is closed under countable unions of increasing

sequences of its members.

Then S(C) is the smallest o algebra containing C.

2) Let H* be a vector space of real-valued functions defined on the set 0 and
satisfying

a) LEX* and if AcC then 1AEH*;

b) If (fnn > 0) is an increasing sequence of nonnegative

members of H*, with bounded supremum, then sup{ f:n>0}
is also a member of H° .

Then H° contains all bounded real-valued functions, defined on 0, which are
measurable relative to the o algebra generated by C.

N
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