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Preface 

This book aims to provide a unified treatment of input/output 
modelling and of control for discrete-time dynamical systems subject 
to random disturbances. The results presented are of wide applica­
bility in control engineering, operations research, econometric 
modelling and many other areas. 

There are two distinct approaches to mathematical modelling of 
physical systems: a direct analysis of the physical mechanisms that 
comprise the process, or a 'black box' approach based on analysis of 
input/output data. The second approach is adopted here, although of 
course the properties ofthe models we study, which within the limits 
of linearity are very general, are also relevant to the behaviour of 
systems represented by such models, however they are arrived at. 

The type of system we are interested in is a discrete-time or 
sampled-data system where the relation between input and output is 
(at least approximately) linear and where additive random dis­
turbances are also present, so that the behaviour of the system must 
be investigated by statistical methods. After a preliminary chapter 
summarizing elements of probability and linear system theory, we 
introduce in Chapter 2 some general linear stochastic models, both in 
input/output and state-space form. Chapter 3 concerns filtering 
theory: estimation of the state of a dynamical system from noisy 
observations. As well as being an important topic in its own right, 
filtering theory provides the link, via the so-called innovations 
representation, between input/output models (as identified by data 
analysis) and state-space models, as required for much contemporary 
control theory. 

System identification - modelling from input/output data - is 
considered in Chapters 4 and 5. Most current techniques are based 
in one form or another either on least-squares or on maximum 
likelihood estimation and these procedures are described. A general 
approach to identification, due largely to L. Ljung and P. E. Caines, is 

IX 
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the prediction error formulation, whereby a 'model' is thought of as an 
algorithm which generates one-step-ahead predictions of the output 
given past data. The corresponding model-fitting procedure is 
to choose that model within a specified class for which some measure 
of the average prediction error is minimized for the given data set. 
This gives a new slant on the idea of 'consistency': one asks, not 
whether the parameter estimates will converge to their 'true' values as 
the amount of available data increases - a question which is only 
relevant in the artificial case when the data was actually generated by 
some finitely-parametrized model- but rather whether one's 
identification procedure will succeed in giving the best available 
model within the prescribed model set to represent the data. Some 
general results along these lines have been provided by Ljung and we 
give a somewhat modified version of them in Chapter 5. In the last 
two chapters we turn to control topics. Chapter 6 covers the 
quadratic cost regulator theory for linear deterministic and stochastic 
systems. As is well known, the deterministic linear regulator is 'dual' to 
the Kalman filter in that the so-called matrix Riccati equation occurs 
in both contexts. The properties of this equation are studied in detail. 
The Kalman filter appears directly in the optimal stochastic linear 
regulator where state estimation is required as part of the control 
algorithm. We formulate the separation and certainty-equivalence 
principles which encapsulate this idea. In the final chapter, some 
topics in adaptive control are discussed. Adaptive control, that is, 
simultaneous identification and control of an initially 'unknown 
system', is a subject which is at the moment in a state of active 
development, and we restrict ourselves here to a discussion of the 
special but important topics of minimum-variance and self-tuning 
control. Conditions under which the self-tuning property is possible 
are investigated and one algorithm with guaranteed stability pro­
perties under well-defined conditions is presented. 

Mathematical modelling and control are of course vast fields of 
enquiry and any single-volume treatment of them must necessarily be 
highly selective. In this book we do not enter into issues of practical 
data analysis such as are admirably covered in, for example, the 
influential book of Box and Jenkins. Neither do we discuss in any 
detail the numerical properties of the algorithms we present, although 
there has in fact been considerable recent research in this area. Rather, 
our objective has been to provide a cohesive account of the main 
mathematical methods and results underpinning most of the recent 
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work in this area. The emphasis is on the unity of the subject, that is, 
on the fact that all the models are in some sense interchangeable and 
tend to appear in whatever guise is appropriate to the problem at 
hand, be it model fitting, prediction, regulation, or any other. 
In taking this point of view we make much more systematic use of 
linear system theory than is customary in 'time series analysis'. 

This book is intended both to provide suitable material for 
postgraduate courses on the stochastic aspects of control systems, 
and to serve as a reference book for researchers in the field of 
stochastic systems. It has therefore been organized so that it can be 
read on several levels. A reader new to the field may wish to stick to 
the main body ofthe text, where intricate arguments are avoided; here 
certain results are merely stated (though we have made an effort in 
such cases to provide sufficient explanation that their significance can 
be appreciated). On the other hand, a reader with more experience 
should treat the appendices, where the more difficult proofs are to be 
found, as an integral part of the text. 

We have tried to make our treatment as self-contained as possible. 
Our coverage of background topics is, however, brisk, and readers 
will undoubtedly benefit from some knowledge of probability, 
statistics, stochastic processes and linear system theory, as provided, 
for example, by the references at the end of Chapter 1. 

This book grew out of our involvement in teaching and research in 
the Control Group at Imperial College, London. Our first debt of 
gratitude is to David Mayne, who has been largely responsible for 
creating, in the Control Group, an environment in which projects 
such as this can flourish, as well as for initiating the courses on which 
much of the material of this book was originally based. We would like 
to dedicate the book to him as a token of affection and esteem. We are 
indebted to Martin Clark and again to David Mayne for advice and 
discussions over the years, and to many other colleagues at Imperial 
College and elsewhere whose work has influenced our thinking. Of 
course, none of them can be blamed for the consequences. Doris 
Abeysekera has played a quite exceptional role in the creation of this 
book by typing, at great speed and often under considerable 
pressure, successive drafts of the various chapters, only to be con­
fronted with irritating requests for additions and alterations. We 
are grateful to the Leverhulme Trust for a research grant to one of 
us (MHAD) which facilitated completion ofthe book. Finally, a word 
of thanks to David Cox for including this book in the Monographs on 
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Statistics and Applied Probability series under his editorship, and to 
our editors at Chapman and Hall for their collaboration and for 
tolerating what we modestly think must be a record-breaking series of 
missed deadlines. 

M. H. A. Davis 
R. B. Vinter 
London, 
September 1984 



CHAPTER 1 

Probability and linear system 
theory 

This book is concerned with the analysis of discrete-time linear 
systems subject to random disturbances. This introductory chapter is 
designed to present the main results in the two areas of probability 
and linear systems theory as required for the main developments of 
the book, beginning in Chapter 2. 

Section 1.1. on probability is divided into three subsections dealing 
with distributions and random variables, stochastic processes, and 
convergence of stochastic sequences. In the space available it is not 
possible to give a complete and self-contained account ofthese topics, 
which are in any case discussed at length in many other texts. The 
intention here is only to summarize the main ideas and results needed 
later in the book. Suggestions for further reading are contained in 
the Notes at the end of the chapter. 

Section 1.2 covers the elements of linear system theory with 
particular emphasis on those aspects relevant to linear filtering and 
quadratic cost stochastic control. The section centres around the 
concepts of controllability and observability together with refine­
ments of them in the form of stabilizability and detectability. The 
concepts are characterized and interrelated. Along the way there is 
discussion of pole assignment. The treatment is largely self-contained 
in that almost all results are proved in full, but the reader with little 
background in linear systems theory will probably none the less wish to 
consult the suggested references to complement the coverage here. 

1.1 Probability and random processes 

1.1.1 Distributions and random variables 

A random variable X is the numerical outcome of some experiment the 
result of which cannot be exactly predicted in advance. Mathemati-
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cally the properties of X are specified by a distribution function, F, 
which defines the probability that in a single trial the value of X will 
fall in a given interval of the real line. Symbolically, 

F(a) = P[X < a] (1.1.1) 
so that 

PEa ~ X < bJ = F(b) - F(a) (1.1.2) 

for arbitrary a, bEiR. Thus F is a non-decreasing function with 
F( - 00) = 0, F( CX)) = 1. It is left-continuous (this is due to the choice 
of < rather than ~ in (1.1.1)), and the jump F(a+)-F(a) is the 
probability that X takes exactly the value a. Two important special 
cases are the following. 

(a) Discrete random variables Here X takes on one of a finite or 
countable number of values Xl' x2 , ••• with corresponding proba­
bilities Pl,P2, ... , which must satisfy 

Pi ?: 0, L Pi = 1. 
i 

The distribution function is 

F(a)= L Pi 
xi<a 

which is a piecewise-constant function with a jump of height Pi at Xi; 

see Fig. 1.1 
(b) Continuous random variables These are random variables 

(r.v.s) whose distribution function F is absolutely continuous, i.e. can 
be written 

F(a) = f~oo f(x)dx 

for some function f, the density function of X. f must satisfy 

f(x)?:O, f:oo f(x)dx= 1. 

t Xi Xz x3 X" 

Fig. 1.1 
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In view of (1.1.2) we then have 

P[a:::;; X < b] = f~ f(x)dx. 

3 

(1.1.3) 

Since F is continuous the probability that X takes exactly any 
particular value a is zero, so it is immaterial whether the endpoints of 
the interval [a,b] are included or excluded in (1.1.3). 

An important parameter of a random variable is its expectation or 
mean value EX. This is normally defined for discrete and continuous 
random variables respectively as follows: 

EX=LxiPi 
i 

EX = f~oo xf(x)dx 

(discrete case) 

(continuous case) 

(1.1.4) 

(1.1.5) 

We can subsume these in a single formula as a Stieltjes integral 
with respect to the distribution function F. For positive-valued 
continuous functions g we define 

foo 22n ((k+l) (k)) g(x)dF(x): = lim L g(xt) F -n- - F ----;; ,(1.1.6) 
-co n->ook=-2 2n 2 2 

where xt,n is any minimizing point in the interval [kI2n, (k + 1)/2nJ, i.e. 
any point such that 

g(xt,n) s g(x), kl2n:::;; x S (k + 1 )/2n. 

The sum on the right is increasing as n increases and the limit may be 
finite or + 00. For a general continuous function g we define 

and 

if g(x) ~ 0 

if g(x) < 0 

f~CXl g(x)dF(x) = f~CXl g+(x)dF(x)- f~CXl g-(x)dF(x) 

as long as both integrals on the right are finite, which is the case if and 
only if 

f~CXl Ig(x)ldF(x) < 00, (1.1.7) 
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since 

Ig(x)1 = g+(x) + g-(x). 

It is easily seen that with the definition (1.1.6), the formula 

EX = f:oo xdF(x) (1.1.8) 

agrees with (1.1.4) and (1.1.5) in those special cases, and this is our 
general definition of the expectation. In accordance with (1.1.7), for 
EX to be well defined we require that 

f: 00 Ixl dF(x) < 00. 

Random variables whose distribution has this property are called 
integrable; thus only for integrable r.v.s X is the expectation EX well 
defined. 

If g is a real-valued function and X is an r.v. then g(X) is a r.v. whose 
expectation, if defined, is 

Eg(X) = f: 00 g(x) dF(x). 

g(X) is integrable if (1.1.7) is satisfied. It is not necessary for g(.) to be 
continuous for this to be valid but if g is not continuous (1.1.6) may 
require some modification. This technical point need not however 
detain us here. 

The expectation measures the average value of X to be expected in 
a long series of trials. A measure of the spread around the mean value 
is given by the variance, defined by 

var(X) = E(X - EX)2 = f:oo (x - EX)2dF(x). 

The standard deviation of X is 

(j = Jvar(X). 

This has the same units as X. The properties of var(X) are 
summarized in the following proposition. 

Proposition 1.1.1 

Suppose X2 is integrable, i.e. EX2 < 00. Then: 
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(a) X is integrable, and hence var(X) is well defined; it is given by 

var(X) = EX2 - (EX)2. 

We therefore say that X is a finite variance random variable if 
EX 2 < 00. 

(b) (Chebyshev inequality) For any positive constant a, 

P[IXI > a] $ (lja2)EX2 

(c) Define a function v: IR --+ IR by 

v(b) = E(X - b)2. 

Then v(b) takes its minimum at b = EX, and the minimum value is 
var(X). 

(d) EX2 = 0 if and only if P[X = 0] = 1. 

PROOF It is evident from (1.1.6) that if g, h are functions such that 
h(x) 2: g(x) for all x then Eh(X) 2: Eg(X). For part (a), take g(x) = 
lxi, h(x) = 1 + x2 to conclude that EIXI $ 1 + EX 2 < 00. Thus X is 
integrable. For part (b), define g(x) = 0 for Ixl $ a and g(x) = a2 for 
Ixl > a and take h(x) = x2 . Then h(x) 2: g(x) and Eg(X) = 
a2P[IXI > a]. The result follows. For any constant b we have 

E[X - b]2 = f:oo (x - W dF(x) 

= f:oo x2dF(x)-2b f:oo xdF(x) 

+b2 f~oo dF(x) 

= EX 2 - 2bEX + b2. 

This last expression is minimized over b at b = EX; when b = EX it is 
equal to var(X) and coincides with the expression given at part (a). 
Turning to part (d), to say that P[X = 0] = 1 is equivalent to saying 
that the distribution function F of X is given by F(a) = 0, a $ 0 and 
F(a) = 1, a> O. It follows from (1.1.6) that EX2 = 0 if X has this 
distribution. Conversely, if EX 2 = 0 then for any number a 2: 0 

0= f: 00 x2 dF(x) 2: f: x2 dF(x) 2: a2 f: dF(x) = a2 P[X 2: a] 2: O. 



6 PROBABILITY AND LINEAR SYSTEM THEORY 

This shows that P[X ~ a] = 0 for any a> 0 and hence that 
P[X >0] =0. 
A similar argument shows that P[X < 0] = 0; thus P[X = 0] = 1. 

o 

A random n-vector X = (X 1, ... , X n)T is a collection of n random 
variables Xl' ... , X .. To examine its probabilistic behaviour it is not 
sufficient to know the distribution of each Xi because this information 
does not specify how the components interact. In general one needs 
to know the joint distribution function F(a 1, .•• , an) which specifies 
the probabilities of events via the formula 

P[XI <a1,···,Xn<anJ =F(au ... ,an). 

The random variables Xl' ... , Xn are independent if 

F(a 1,···, an) = F l(adF 2(a2)··· Fn(an) 

where Fi is the distribution of Xi. This is the only case in 
which knowledge of F 1, ... , F n suffices to determine F. On the other 
hand, knowledge of F always determines the distribution of each Xi 
(the so-called marginal distribution) since, for example, 

F1(ad=P[X l <a1,X2 < oo, ... ,Xn< ooJ 
= F(a 1 , 00, ... , 00). 

Xl' ... , X n have a joint density function f if 

F(a1,···,an)= f~w ... f~oo f(x 1 ,···,xn)dxn···dx1· 

If the Xi are independent and Xj has density function fj then 

f(x 1'·· ., Xn) = fl (xdf2(X2)··· fn(xn)· 

If g: [Rn ~ [R is a continuous function then the expectation Eg(X) can 
be defined using Stieltjes integrals in a way that agrees with the usual 
expressIOn 

Eg(x) = f~oo··-f~oo g(xl,···,xn)f(xl,···,xn)dxl···dxn 

valid when X has joint density f. We give the definition for the 
bivariate case n = 2; for n > 2 it is similar but notationally cumber-
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some. For n = 2 we have 

peal ~ Xl < bl ,a2 ~ X 2 < b2] = F(b l ,b2) - F(b l ,a2) 

- F(a l , b2) + F(a l , a2)· 

Let us denote this expression by An(i,j) when 

i 
a --

1 - 2n ' 

Then we define 

j 
a --

2 - 2n ' 

Eg(x) = J:CXl g(x)dF(x) = 1~~ i.j=~22n g(x7)An(i,j), 

7 

where x?j is some point at which the function g attains its minimum in 
the rectangle {(X l ,X2): al~xl~bl' a2~x2~b2}' As before, we 
require (1.1.7) to hold. It follows directly from the definition that if X 1 

and X 2 are independent and g(x) = gl(X l)g2(X2) then 

Eg l(X l )g2(X2) = J:ro gl(xddFl(x l) J:ro g2(x2)dF2(x2) 

= Eg 1 (X l)Eg2(X 2) 

as long as all these expectations are well-defined. 
Now let Xl' X 2 be any pair of finite variance random variables. 

Taking gi(X) = Xi - EXi, i = 1,2 we obtain the covariance of Xl and 
X 2 : 

cov(X l' X 2):= E[(X 1 - EX d(X 2 - EX 2)]. 

X 1 and X 2 are said to be uncorrelated if cov(X l, X 2) = O. The 
properties of the covariance and some related results are summarized 
below. 

Proposition 1.1.2 

Let Xl' X 2 be finite-variance random variables, i.e. Exf < 00, i = 1,2. 
Then: 

(a) cov(X l, X 2) is well defined. 
(b) If Xl' X 2 are independent then they are uncorrelated, but the 

converse is not generally true. 
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(c) (Schwarz inequality) Icov(X 1, X 2) I ~ J [var (X dvar (X z)]' 
(d) E[(X 1 - X 2?J = 0 if and only if P[X 1 = X 2] = 1. In this case we 

say that Xl = X 2 almost surely (a.s.). 
(e) Define the correlation coefficient p as follows: 

coV(X 1 ,X2) 
p:= 

where ai = ~(var(X)), i = 1,2 (assumed non-zero). Then ipi ~ 1, 
and ipi = 1 if and only if there are constants c1 , c2 such that 

X 1 =C 1X 2 +C2 a.s. 

PROOF It is no loss of generality to suppose that EX 1 = EX 2 = 0 
(otherwise, replace Xi by Xi - EXi throughout). Then cov(X 1, X 2) = 

EX 1X 2 . For any numbers x,y, 

ixyi Sox2 + y2. 

It follows that 

EiX 1X 2i So Exi + EX~ < 00 

and hence that cov(X 1, X 2) is well-defined. If Xl' X 2 are independent 
then EX 1 X 2 = EX 1 EX 2 = 0, so that Xl' X 2 are uncorrelated. To see 
that uncorrelated random variables are not necessarily independent, 
consider a random variable X such that EX = 0 and EX 3 = 0 (for 
example, X ~ N(O, 1); see below) and define Xl = X, X 2 = X 2 - EX2. 
Then cov(X l' X 2) = E[X(x2 - EX2)] = EX 3 - EX EX2 = 0, so that 
Xl, X 2 are uncorrelated; but they are generally not independent. To 
get the Schwarz inequality, take any number a and calculate 

(1.1.9) 

This expression takes its minimum value Exi - (EX 1 X 2)2 / EX~ at 
a = - EXIX2/EX~. But this minimum value must be non-negative 
since E[X 1 + aX 2]2 ~ 0 for any a. This gives (c). For part (d), note 
that (a) implies E(X 1 - X 2)2 < 00, i.e. (X 1 - X 2) is a finite variance 
random variable. Applying Proposition 1.1.1(d) with X = Xl - X 2 
gives the result. Finally, turning to part (e), the fact that ipi So 1 is just a 
restatement of the Schwarz inequality. Rewrite (1.1.9) as 

E[X 1 + aX 2]2 = ai + 2apa 1 a 2 + a2d. 
If p = ± 1 then the right hand side is (a 1 ± aa 2)2 and thus choosing 
a = + at/a 2 gives E[ Xl + aX 2]2 = O. In view of (d), this implies that 
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X 1 = - aX 2 a.s. Thus C1 = ± at/a 2. The constant C2 is zero if EX 1 = 

EX 2 = 0; in general it takes the value EX 1 =+= (a t/a 2)EX 2. Conver­
sely, it is easy to check that ipi = 1 if X 1 = C1 X 2 + C2 a.s. 0 

For a random n-vector X = (X 1' ... ' Xn)T the mean EX is the n­
vector with ith element EXi. The covariance matrix cov(X) is the n x n 
matrix with i,jth entry COV(Xi' X). One can check that 

cov(X)=EXX T -(EX)(EX)T. (1.1.10) 

Any covariance matrix is symmetric and non-negative definite, the 
latter property following from the fact that for any aE [Rn, 

0::;; E[aT(X - EX)]2 = L aiajE[Xi - EXi)(Xj - EX). 
i.j 

An alternative way of specifying the distribution of a random 
vector (or random variable) is through its characteristic function 
defined for UE [Rn by 

(/Jx(u) = EeiuTx = J:oo··· J:oo eiUTXdF(x). 

This is always well-defined since eiuTx=cosuTx+isinuTx and the 
trigonometric functions are bounded. There is a one-to-one corre­
spondence between F and (/Jx: if F has a density function f then ¢x is 
just the Fourier transform of f, and f can be recovered by the Fourier 
inversion formula (1.1.12) below. If F does not have a density then F 
can still be recovered uniquely from ¢x by a generalized inversion 
formula which it is not necessary to give here. 

We shall have many occasions to consider linear transformations 
of a random vector X, i.e. random p-vectors of the form 

Y=GX +b (1.1.11) 

where G is a p x n matrix and b a p-vector. The information we need is 
as follows. 

Proposition 1.1.3 

(a) If (1.1.11) holds and X is a finite-variance random vector then 
EY = GEX + b, cov(Y) = Gcov(X)GT• 

(b) If G is an n x n matrix then 

E[XTGX] = (EX)TGEX + tr[Gcov(X)]. 

(c) If Y is any finite variance random p-vector then there is a random 
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n-vector X for some n ~ p and a vector b such that cov(X) = I. 
(the n x n identity matrix) and (1.1.11) holds. 

(d) If cPx, cPy are the characteristic functions of X and Y respectively, 
then 

cPy(u) = eiuTbcPx(GTu). 

(e) Suppose that n = p, that G is non-singular and that X has density 
function Ix. Then Y has density function Iy, where 

1 _ 1 

I y(y) = Idet(G)1 Ix(G (y - b)). 

PROOF Part (a) is immediate from (1.1.10). For (b), suppose first 
that EX = O. Then 

• • 
E[XTGX] = E L GijXiXj = L Gij(cOV(X))ij 

i.j~ 1 i.j~ 1 

= tr[G cov(X)]. 

If EX = M =1= 0 then writing X = X - M we have EX = 0 and hence 

E[XTGX] = E[(X + M)TG(X + M)] 

= E[XTGX] + EXTGM + EMTGX + MTGM 

= tr[Gcov(X)] + MTGM. 

For (c), let Q = cov(Y). It is shown in Appendix C that Q can be 
factored in the form Q = U AUT where U is orthogonal and A is 
diagonal with entries Ai,'''' )"p, the eigenvalues of a. Define 

and 

G= UAi/2. 

Suppose for a moment that Ai> 0 for all i; then G is non-singular. If we 
define X = G-i(y - EY) then, by part (a), EX = 0 and cov(X) = Ip, 
and Y = GX + EY. If only p - n eigenvalues are non-zero then a 
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similar construction applies but X has dimension n and IS not 
determined as a unique linear combination of the Yi• 

Part (d) is immediate from the defintion, since 

(/>r(u) = EeiuTY 

= EeiuT(GX+b) 

= eiuTbEei(GTu)TX 

= eiuTb(/>x(GT u). 

For (e) we use the Fourier inversion formula 

Iy(y) = ~foo ... foo e-iUTY¢y(u)dul'" dup 
2n - 00 - 00 

(1.1.12) 

1 
I det ( G) I Ix ( G - 1 (y - b)). o 

Notice that in Proposition 1.1.3, part (d) is true with no restrictions 
on the distribution of X or on the dimensions n,p, whereas (e) holds 
only under special conditions, without which Y may not have a 
density at all. This is why the characteristic function is such a useful 
construction in dealing with linear combinations of random variables. 

We now introduce the idea of the conditional distribution of a 
random variable X given another random variable Y. (In the 
following discussion X and Yare, for notational simplicity, taken as 
scalar but analogous results apply to the vector case.) Recall that for 
events A, B, the conditional probability of A given B is 

( ) _ P(A and B) 
P AlB - P(B) 

if P(B) > 0, with arbitrary assignment if P(B) = 0. The obvious 
definition for the conditional distribution F Xly(a; b) of X given Y 
would be 

Fx1y(a;b)=P[X <aIY=b]. 

This is correct if Y is a discrete random variable taking values b1,b2 ••• 
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with positive probability, but not if Y is a continuous random 
variable since then the event Y = b has probability 0 for all b. To 
circumvent this difficulty we adopt the following approach. Let F(a, b) 
be the joint distribution function of X and Y, so that the marginal 
distribution of Y is F y(b) = F( 00, b). If F y(b + b) - F y(b) > 0 for all 
b > 0 then 

b < b b] _ P[ X < a and b ~ Y < b + b] 
P[X<al _Y< + - P[b~Y<b+b] 

We now define 

F(a, b + b) - F(a, b) 
Fy(b + b) - Fy(b) . 

. F(a, b + b) - F(a, b) 
F Xly(a; b) = hm (b b) _ (b) ~-+O Fy + Fy 

(1.1.13) 

when this limit exists. If F y(b + b) - F y(b) = 0 for some b > 0 then 
F Xly(a; b) is defined arbitrarily as F x(a). For each fixed b, F Xly(a; b) is a 
distribution function in a. 

This definition is still not completely general, but it does cover both 
discrete and continuous random variables. Indeed, it is easy to see 
that if X, Y have a continuous joint density function f then 

f~ 00 f(x, b) dx 

F Xly(a; b) = f 00 

f(x,b)dx 
-00 

if the denominator is positive, so that X has a conditional density 
function 

{

f(X'b) 
fy(b) 

fx1y(x; b) = f x(x) 

where ix, fy are the marginal densities. 
The conditional expectation of some function g(X, Y) given Y is just 

the integral with respect to the conditional distribution, i.e. 

E[g(X, Y)IY] = f:oo g(x, Y)dFXIY(x; Y). ( 1.1.14) 
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It is a function of the random variable Y. Conditional expectations 
have the following important properties. We state them for the vector 
case. 

Proposition 1.1.4 

Let X, Y be jointly distributed random vectors and g be a real-valued 
function such that g(X) is integrable. Then 

(a) If X and Yare independent then E[g(X)1 Y] = E[g(X)]. 
(b) If X is a function of Y, say X = h(Y), then E[g(X)IYJ = 

g(X) (= g(h(Y))). 
(c) E[g(X)]=E[E[g(X)IY]]' 
(d) E[g(X)h(Y)IYJ = E[g(X)IYJh(Y) 

for any function h such that g(X)h(Y) is integrable. 

REMARK The conditional distribution F XIY exists for any random 
vectors X, Y and the above propositions hold. In fact, they hold even 
if Y has an infinite number of components. We give a partial proof 
here for the scalar case when the conditional distribution is defined by 
( 1.1.13). 

PROOF Part (a) follows from the fact that if X and Yare in­
dependent then the ratio in (1.1.1 3) is equal ot F(a) for any J. Thus 
the conditional distribution of X given Y is the same as the 
(unconditional) distribution of X. For (b), take first a < h(b). Then 
P[X < a and b ~ Y ~ b + 15] = P[h(Y) < a and b ~ Y ~ b + 15] = 0 for 
sufficiently small 15 (as long as h is continuous). Thus F Xly(a; b) = 0 
if a 2:: h(b) and similarly F Xly(a; b) = 1 if a 2:: h(b). Thus F Xly(a; b) is the 
distribution that puts probability 1 on the point h(b) and hence 
E[g(X) I Y = b] = g(h(b)) = g(X). Properties (c) and (d) follow immedi­
ately from the definitions (1.1.13) and (1.1.14) when the conditional 
density fXIY exists. They also hold without this restriction but we do 
not give a proof here. D 

Two further properties of conditional expectation will be required. 
The first of these relates to 'least-squares' estimation. Recall from 
Proposition 1.1.1 that the choice a = E[g(X)] minimizes E[g(X) - a]2 
over constants a. One can regard E[g(X)] as the 'best estimate' of g(X) 
when no information about X (other than its distribution) is supplied. 
Now suppose we observe the random vector Y and base our estimate 
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on the value of Y, that is we wish to choose a function e(Y) so as to 
minimize E[g(X) - e(Y)Y This is the so-called non-linear least­
squares problem. 

Proposition 1.1.5 

Let X, Y, 9 be as in Proposition 1.1.4. Then E[g(X) - e(y)]2 is 
minimized over functions e by the function e( Y) = E[g(X) I Y]. 

PROOF Using Proposition 1.1.4(c) we can write 

E[g(X) - e(y)]2 = f f [g(x) - e(y)]2dF XIY(x; y)dF y(y). 

The double integral is certainly minimized if the inner integral is 
minimized pointwise for each y. But the inner integral is equal to 
E[g(X) - e(y)] 2 where X is a random vector with distribution 
F XIY(x; y). It follows from Proposition 1.1.1 that the minimizing value 
of e(y) is E[g(X)] = E[g(X)IY = y]. 0 

The final result states the rather natural property that if two 
random vectors Yand Yare in one-to-one correspondence with each 
other then conditioning on Y is equivalent to conditioning on r. 

Proposition 1.1.6 

Let X, Y, 9 be as in Proposition 1.1.4 and suppose Y = 4>( Y) where 4> is 
a one-to-one function. Then E[g(X)IYJ = E[g(X)IYJ a.s. 

PROOF Denote e(Y)=E[g(X)IY] and e(Y)=E[g(X)IY]' It is not 
hard to see, from Proposition 1.1.4(d), that e(') is the unique function 
such that 

E[h(Y)e(Y)] = E[h(Y)g(X)] (1.1.15) 

for all bounded functions h(·).t Similarly, e is characterized by the 
property that 

E[h(Y)e(Y)] = E[h(Y)g(X)] for all h 

which we can write 

E[h°4>(Y)e°4>(Y)] = E[h o 4>(Y)g(X)] (1.1.16) 

tIt is unique up to equivalence, i.e. if e is a function such that P[e(Y) = e(Y)] = 1 then 
E[g(X) I Y] can also be taken as e(Y). 
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where h 04>( Y) = h( 4>( Y)), etc. But if j is any bounded function then 
j=h°4> where h=j04>-l. Thus (1.1.16) is equivalent to 

E[j(Y)e°4>(Y)] = E[j(Y)g(X)] for all bounded j(.). 

Comparing with (1.1.15) we see that 

e=e°4> 
and hence that 

E[g(X) I Y] = e( Y) = eo 4>( Y) = e( Y) = E[g(X) I YJ. 0 

The normal distribution 

This is probably the most important distribution in statistics and has 
many special properties. A random n-vector X has the normal or 
gaussian distribution if its characteristic function takes the form 

4>x(u) = exp(imTu - !uTQu) 

for some n-vector m and non-negative definite matrix Q. Then 
m = Ex and Q = cov (X). We write X""' N(m, Q). In the special case 
m = 0, Q = In' X is said to be standard normal; it follows from 
Proposition 1.1.5 below that the components Xi are independent 
N(O, 1) random variables (i.e. each component is normally distributed 
with zero mean and unit variance). 

Any collection of r.v.s is said to be jointly normal if the vector r.v. 
containing those r.v.s as components has normal distribution. 

Proposition 1.1.7 

(a) Linear combinations of normal r.v.s are normal. 
(b) If two jointly normal r.v.s are uncorrelated they are independent. 
(c) Any normal vector can be expressed as a linear transformation of 

a standard normal random vector. 
(d) If Y""' N(m, Q) and Q is non-singular then Y has density function 

1 1 T -1 
fy(X) = (2n)n/2(det(Q))1/2 exp( - 2(X - m) Q (x - m)). 

(e) If X is a normal n-vector then the conditional distribution of 
(X 1, ... , X d given (X k + l' ... ,X n) is normal. Its mean is an affine 
function of (X k + 1, ... ,X n) and its covariance is constant (does not 
depend on (Xk+j, ... ,Xn)). 
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PROOF (a) If X", N(m, Q) and Y is given by (1.1.11) then, by 
Proposition 1.1.3(d), 

(/>r(u) = eiuTb4>x(GTu) 

= exp(iuTb + imTGTu - 1uTGQGTU). 

This shows that Y '" N(Gm + b, GQGT). 
(b) If X 1, X 2 are uncorrelated and Q = cov(X) then 

Q = [V1 0 ] o V2 

where Vi = var(X;). Thus 

4>x(u) = exp(imTu - 1V1Uf - 1V2U~) 

= 4>dU1)4> X2(U2)· 

This implies that X 1, X 2 are independent. 
(c) This is immediate from part (b) of Proposition 1.1.3 together 

with (a) above. 
(d) From part (c) we can write 

Y=GX+m 

where X is standard normal and G is non-singular. Now if Z '" N(O, 1) 
(scalar standard normal) then 

4>z(u) = e -u2/2. 

and it follows from the Fourier inversion formula that the density is 

1 
fz(z) = .j(2n) e- z2

/
2 • 

Therefore the density function for X is 

_ 1 -lxl'/2 
fx(x) - (2n)"/2 e . 

Applying part (e) of Proposition 1.1.3 we obtain the stated density 
function for Y. 

(e) A full proof of this fact, and general expressions for the 
conditional mean and covariance, are contained in the section on 
linear estimation theory, Section 3.1. However, let us demonstrate it 
for the case n = 2, supposing that the covariance matrix Q = cov(X) is 
non-singular. Then X = (X 1, X 2) has density function fx(x) as in 
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Part (d) and the conditional density of Xl given X 2 is 

f ( .)- exp(-i(x-mlQ-l(x-m)) 
XIIX2 Xl ,X2 - foo 

-00 exp(-~x-m)TQ-l(x-m))dx1 

This is a one-dimensional density function in xl for each fixed value of 
X 2. Note that the denominator does not depend on Xl and is just an 
x2-dependent 'normalizing constant'; denote it by K 11 (x 2). Then if 
we denote Q -1 = R = [rij], 

!XIIX2(X1; x 2) = K 1(x2)exp( - t(x - m)TR(x - m)) 

= K l(x2)exp(-H(Xl -m1)2rll 

+ 2(X1 - m1)(x2 - m2)r12 + (X2 - m2)2r22 }) 

=K 1(X2)exp ( -irll {X1-( m1 -(X2 -m2):::) r 
where K 2(X 2 ) is a term not depending on Xl' We can write the last 
expression as 

where 

and 

K 3(X 2 ) = K 1(x2)exp(K2(X2))· 

We know that this is a density function in Xl; it is clearly the density 
function N(m 1, 0'2) and the normalizing constant K 3(X 2) is therefore 
l/O'J (2n) (it actually does not depend on X2)' Thus, as claimed, the 
conditional variance 0'2 does not depend on X2 and the conditional 
mean m1 is affine in X2' To get the coefficients explicitly, note that 
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where Q = [qij]. Using the fact that Q = cov (X) we see that 

_ coV(X 1,X2) 

m1 "" m1 + (X) (X 2 - m2 ) 
var 2 

ai = (l - p2) var(X 1) 

where p is the correlation coefficient. These agree with the general 
expressions given in Section 3.1. One notes in particular that a 1 = 0 if 
Ipi = 1 which is correct because then Xl = ± X 2 with probability 1. 

o 

1.1.2 Stochastic processes 

A stochastic process is just a collection {X" tE T} of random variables 
indexed by a set T. Generally T has the connotation of time: if it is an 
interval, say [a, b], then {X t} is a continuous-time process, whereas if T 
contains only integer values then {X t } is a discrete-time process. The 
most commonly encountered time sets T for discrete-time processes 
are the integers 7L = { ... - 1,0, 1, ... } and the non-negative integers 
7L + = {O, 1, ... }. In this book we consider only discrete-time processes: 
they are mathematically simpler, and from the point of view of 
applications we must in any case discretize at some stage for digital 
computer implementation. The reader can consult Davis (1977) for an 
introduction to stochastic system theory in continuous time. 

Time series which might be modelled by discrete-time processes 
arise in two ways: 

(a) Series which are only available in discrete form, such as economic 
data. 

(b) Series which are produced by sampling continuous data. 

In the latter case, in addition to studying the time series itself, the 
relation between the series and the underlying continuous data needs 
to be considered: for example, one can ask what constitutes an 
appropriate sampling rate. Such questions are however beyond the 
scope ofthis book in that they cannot meaningfully be posed without 
bringing in the theory of continuous-time processes. 

If T= {1,2, ... ,N} then the process {Xt} = {Xl>X 2 "",XN } is 
equivalent to a random vector and its probabilistic behaviour is 
specified by giving the joint distribution of the N random variables 
involved. In principle this covers all practical cases in that any data 
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record is necessarily finite, but conceptually it is often useful to think of 
a process either as having started at some time in the distant past, or 
as continuing indefinitely into the future, or both, in which case Twill 
be infinite. The probabilistic behaviour is then in principle specified 
by the family of finite-dimensional distributions of the process, i.e. by 
giving the joint distribution of (Xtl , ... , XtJ for any arbitrary times 
t1,t2, ... ,tn. We say 'in principle' because giving an infinite set of 
distributions is a rather unwieldy way of specifying a process; usually 
it will be constructed in some well-defined way from some very simple 
process, and then the joint distributions can be calculated, if required. 
However, for the theory given in this book the complete distributions 
will rarely be required, analysis being generally carried out only in 
terms of means and covariances. 

In this book we shall often consider vector processes {Xk,kET}, 
where each X k is a random d-vector. The mean of such a process is the 
sequence of vectors {m(k), kET} where 

The covariance function is the d x d matrix-valued function 

k,IET. 

In the scalar case d = 1 we usually denote the (scalar-valued) 
covariance function by r(k, I). Note that these functions are defined in 
terms of the two-dimensional distributions, i.e. they can be calculated 
if one knows the distributions of all pairs ofrandom vectors X k , Xl. 
From the Schwarz inequality, Proposition 1.1.2(c), the mean and 
covariance functions are well-defined as long as the process has finite 
variance, i.e. 

for all k. 

Since the mean is just a deterministic function, it is often convenient to 
assume that the process has mean zero, or equivalently to consider the 
centred process 

X~ = X k - m(k) 

which has zero mean and the same covariance function as X k. 

While there are no restrictions on the form of the mean m(k) this is 
not true of the covariance function R(k, I). Indeed, pick n time instants 
kl' k2 ,···, kn and d-vectors at> ... , an and calculate 



20 PROBABILITY AND LINEAR SYSTEM THEORY 

E(.f aT xk,)Z = '[. EaT Xk,X[jaj 
l = 1 l,J 

= L aT R(ki , k)aj. 
i,j 

Since the left-hand side is non-negative, it follows that 

.L aT R(k i , k)a j 2: 0 
i,j 

(1.1.17) 

for all possible choices of n, k 1, ••• , kn and a 1 , ... , an' A function with 
this property is said to be non-negative definite. R is also symmetric in 
that 

R(k, l) = RT(l, k). 

The process X k is normal if all its finite-dimensional distributions 
are normal. In this case the finite-dimensional distributions are 
completely specified by the mean and covariance function. For the 
covariance matrix Q of the nd-vector random variable 

IS 

_[R(tl' t d R(t1 , t2)'" R(tl ,tn) ] 
Q - R(tZ,t 1) R(t2, t2)'" 

: : R(tn, tnl 

which is a bona fide covariance matrix in view of condition (1.1.17). 
The mean is: 

m =[m~tl)J 
m(tn) 

Thus the distribution of (X tl ' . .. , XtJ is specified by the characteristic 
function 

<Ptl . .,tJU) = exp(imTu - tuTQu). 

This shows, among other things, that to every second-order process 
there corresponds a normal process having the same mean and 
covariance function. For if Xk is an arbitrary (not necessarily normal) 
second-order process with mean m(k) and covariance R(k, I) then the 
above construction gives a normal process X k whose mean and 
covariance coincide with those of Xk • 
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Stationary processes 

A process {X k' kE T} is said to be stationary (or strict-sense stationary) 
if its distributions do not vary with time, i.e. if for any ko, k 1, ... , kn the 
distribution ofthe n-vector random variable (X kl"'" X kJ is the same 
as that of (X kl +ko'"'' X kn +ko)' This means that the origin of time is 
irrelevant and the joint distributions of the random variables only 
depend on the time intervals separating them. Taking n = 1 we see in 
particular that all X k have the same distribution - the distribution of, 
say, X o. Thus if Exi < 00 then EXt < 00 for all k and the process has 
a well-defined mean m(k) and covariance function R(k, I). Since all X k 

have the same distribution, m(k) = m(O) for all k, i.e. the mean of a 
stationary process is a constant. Similarly, for any ko, k, I, the joint 
distribution of (X k' Xl) is the same as that of (X k+ko' Xl +ko)' so that 

R(k, I) = R(k + ko, I + ko). 

Take ko = - I; then 

R(k, I) = R(k -1,0). 

Now define 

Then we see that 

and that 

R(k, I) = R(k -I). (1.1.18) 

For a stationary process the term 'covariance function' usually refers 
to the one-parameter function R defined as above. In the scalar case, 
where the (two-parameter) covariance function is denoted r(k, I), we 
define r(m) = r(m, 0); then r(m) = r( - m) and 

Thus the covariance between X k and Xl depends only on their 
distance apart in time. 

The simplest form of stationary process is a sequence {X 1, X 2""} 
of independent identically distributed random variables. IfF denotes 
their common distribution function then the distribution function of 
the random vector (Xtl ' . .. , XtJ is given by 
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n 

= f1 P[Xf. < a{,j = 1, ... ,dJ 
i= 1 

n 

= f1 F(aJ 
i= 1 

Thus the finite-dimensional distributions are completely determined 
by F. The mean and covariance are given by 

m(k) = EX 1 

R(k,l) = {~ar(x 1) 

This process is, for reasons discussed below, sometimes known as a 
white-noise sequence. It plays a central role in the theory. 

A finite-variance process X k with constant mean and whose co­
variance function satisfies (1.1.18) for some function R is said to be 
weakly or wide-sense stationary. As above, the one-parameter func­
tion R(k) is known as the covariance function of the process. Not every 
wide-sense stationary process is strict-sense stationary: for example, 
let 11' 12 be two different density functions satisfying 

f:oo x/;(x)dx=O, f:CXl x 2 /;{x)dx= 1 i = 1,2 

and suppose XI' X 2, ... are independent random variables such that 
the density function of Xi is fo if i is odd and fl if i is even. Then 
EXi = m(i) = 0 for all i and the covariance function is 

where 

r(k,l) = EXkXI = <5(lk -11) 

<5(i) ={ ~ i = 0 

i =1= 0 

Thus X k is wide-sense stationary, but it is not strict-sense stationary 
since X k and X k + 1 do not have the same distribution, for any k. 

A wide-sense white-noise sequence XI' X 2, . .. is a wide-sense 
stationary process with zero mean and a covariance function of the 
form 

R(k) = Q<5(k) 
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for some non-negative definite matrix Q. This merely stipulates that 
the random vectors Xi have the same mean and covariance and that 
X~ and X} be uncorrelated for all k, I and i =f. j. Q can always be 
factored in the form Q = AAT where A is a d x m matrix for some 
m ~ d. If (Yk) is an m-vector weak-sense white-noise process with 
covariance I m6( k) (1m is the m x m iden tity matrix) then X k: = A Yk has 
covariance Q6(k) so there is no real loss of generality in taking Q to be 
the identity matrix, in which case the components X~ and xl are 
uncorrelated at the same time i for k =f. I. 

In the analysis of wide-sense stationary processes a large role is 
played by Fourier series techniques, giving rise to the so-called 
spectral theory of stationary processes. We shall make occasional but 
not extensive use of spectral methods in this book. To introduce the 
ideas let us consider first a scalar zero-mean wide sense stationary 
process X k with covariance function r(k). Suppose that 

00 

L Ir(k) I < 00. (1.1.19) 
k= - 00 

Then we define the spectral density function lI>(w) for - n ~ w ~ n by 

00 

lI>(w) = L r(k)e- iwk . (1.1.20) 
k= - 00 

Since Ie -iwkl = 1, condition (1.1.19) ensures that the sum converges for 
any wand it is easily seen that lI>(w) is a continuous function of w. It is 
also real and non-negative, due respectively to the symmetry and non­
negative definiteness (1.1.17) of r(k). Evidently, from the definition 
(1.1.20), r(k) is the kth coefficient in the Fourier series expansion of 
lI>(w); it can therefore be recovered from II> by the standard formula for 
calculating Fourier coefficients, namely 

(the integral is certainly well-defined since II> is bounded). In 
particular, the variance of the process is given by 

1 f" var(Xn) = r(O) = -2 lI>(w) dw. 
n _" 

Note that a scalar white-noise process with variance (j2 has spectral 
density lI>(w) = (j2, i.e. a constant for all w. This is the reason for the 
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name 'white noise', by analogy with white light which has an 
approximately flat frequency spectrum. 

Not every wide-sense stationary process has a spectral density 
function but each one has a spectral distribution function. A general 
result known as Bochner's theorem asserts that if r(k) is the covariance 
function of some wide-sense stationary process with variance r(O) = 
(J2 then r(k) can always be represented in the form 

r(k)=- eirokdF(w) (J2 f" 
2n _" 

where F is a distribution function on (- n, n), i.e. a monotone 
increasing function with F( - n) = 0, F(n) = 1. The integral is a 
Stieltjes integral as described earlier. The process has a spectral 
density <1> precisely when the spectral distribution F is absolutely 
continuous, and then 

F(w) = f~" <1>(w')dw'. 

Thus (1.1.19) is a sufficient condition for F to be absolutely 
continuous. Note that, since F is non-negative and monotone, 
<1>(w)~O on (-n, +n). 

Analogous results hold for vector processes. The spectral density 
function now takes values matrices over the complex field. We 
summarize the results in the following proposition. 

Proposition 1.1.18 

Let {Xk,kEZ'} be a wide-sense stationary d-vector process with co­
variance R(k) and suppose that 

+ 0:, 

L IIR(K) 11< 00 
k= - ex) 

(the matrix norm II II here is, say, the spectral norm; see Appendix 
0.2). Then {Xd has a spectral density function <1>(w) given by 

ex) 

<1>(w) = L R(k)e- irok. 
k= - 00 

<1> has the following properties: <1>( - w) = <1>T(W), <1>( - w) + <1>(w) is real 
and <1>( - w) + <1>(w) ~ 0 for WE( - n, + n). The covariance function is 
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given in terms of the spectral density by the inversion formula 

1.1.3 Convergence of stochastic sequences 

On many occasions in this book we shall wish to investigate questions 
such as whether a given process is asymptotically stationary, whether 
parameter estimates converge to their true values as the length of a 
data record increases, and so on. We need to know something about 
convergence of sequences of random variables in order to formulate 
such questions precisely. 

First let us consider a non-random sequence {X k} = Xl' X 2, ... of 
real numbers. We say that {Xk } converges to X, which we denote 

X k ~ X as k ~ 00 
or 

lim Xk=X 
k-oo 

if for any e > 0 there is an integer k(e) such that IXk - XI < e for all 
k> k(e), i.e. if the distance between X k and X is eventually arbitrarily 
small. {X k} is bounded above (resp. below) if there exists a number K 
such that X k ~ K (resp. X k ~ K) for all k; it is bounded if it is bounded 
above and below. Any sequence bounded above has a least upper 
bound, denoted SUPkXk, while any sequence bounded below has a 
greatest lower bound denoted infkXk. If {Xk} is not bounded above 
(resp. below) we define SUPkX k = + 00 (resp. inf X k = - (0). Then 
SUPkX k and infk X k are well defined for any sequence {X k}' It is clear that 
SUPkXk ~ infkXk and that Xk is bounded if and only if - 00 < 
inf X k < sup X k < + 00. {X k} is monotone increasing (resp. de­
creasing) if Xk+l ~Xk (resp. Xk+l ~Xk) for all k. A monotone 
increasing sequence always has a limit, namely SUPkXk, if we agree 
that 'Xk~ + 00' means that for any number M there is a number 
k(M) such that X k > M for all n ~ k(M). A monotone decreasing 
sequence has a limit also (the limit may possibly be - (0). 

For an arbitrary sequence {Xk}, define 

Yn= SUPXk 
k<':n 
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Then Yn is monotone decreasing and Zn is monotone increasing, since 
the sup and inf are being taken over progressively fewer and fewer 
terms. We define 

lim sup Xk = lim Yn 
k-> 00 n-> 00 

liminfXk= lim Zn 
k-oo n-oo 

Thus lim sup X k and lim inf X k are well-defined for any sequence 
{Xd; it is always the case that lim sup X k ~ lim inf Xk. 

The lim sup operation describes the behaviour of 'large' values of 
the sequence in the following way. 

Proposition 1.1.9 

Let {Xd be any sequence such that x*:= lim sup Xk < + 00. Then 
foranye > OthestatementXk > x* + eis true for only a finite number of 
indices k whereas the statement X k > x* - e is truefor infinitely many k. 

There is an analogous characterization of lim inf X k. 

Finally, a sequence {Xk} is a Cauchy sequence if IXn-Xml--+O 
as n, m --+ 00, i.e. iffor any e > 0 there exists nee) such that IX n - X ml < e 
for all n, m ~ nee). Note that the definition of a Cauchy sequence refers 
only to the elements of the sequence themselves and does not involve 
any possible limit points. 

We can formulate the idea of convergence in two alternative but 
equivalent ways using the above definitions. 

Proposition 1.1.10 

Let {Xk } be any sequence of real numbers. Then the following 
statements are equivalent: 

(a) X k --+ X for some finite real number X. 
(b) {X k} is a Cauchy sequence. 
(c) - 00 < liminfXk = limsupXk < + 00. 

k-oo k-oo 

If any of these holds then 

lim Xk = lim SUPXk = lim infXk • 
k- 00 k- 00 k- 00 

Let us now turn to convergence of sequences of random variables 
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or, equivalently, of stochastic processes {Xk' kEZ+}. Then we have a 
different sequence of real numbers for every realization of the process. 
The most obvious way to define convergence would be to say that 
Xk ~ X as k ~ 00 for every realization of {Xb X},in the sense described 
above. Note that the limit X is in general a random variable, i.e. 
depends on the realization of {Xk}' This is known as sure convergence, 
but is not actually a very useful concept because it can be destroyed by 
trivial modifications of the process. Indeed, suppose {X~} is another 
process such that P[Xk = X~] = 1 for all n; {Xk} and {X~} are then 
said to be equivalent. {X k} and {X~} have exactly the same joint 
distributions and it is unreasonable to attempt to distinguish between 
them, yet it is quite possible that {X~} converges surely and {X d does 
not. We therefore make the following definition: {Xk } converges 
almost surely (a.s.) to X if there exists an equivalent process {XU and a 
random variable X' such that P[X = X'] = 1 and {XU converges 
surely to X'. Similarly, we say that {Xd is a Cauchy sequence a.s. if 
every realization of some equivalent process {X~} is a Cauchy 
sequence. We then have the following result. 

Proposition 1.1.11 

A process {X d converges a.s. to some random variable X if and only 
if {Xd is a Cauchy sequence a.s. 

Another approach to convergence of random variables is based on 
the following idea. In the case of sequences {X k} we know that X k ~ X 
if and only if d(Xk'X)~O where d(Xk' X) = IXk - XI is the distance 
between X k and X. To apply this in the stochastic case we need some 
scalar measure of the 'distance' between two random variables. The 
most common such measure, used in most chapters ofthis book, is the 
mean square deviation d2(X k' X) = E(X k - xf Occasionally it is 
useful to replace the exponent 2 by some other number p 2: 1 giving 
the pth mean deviation diX k' X) = EIX k - XIP. In general we say 
that Xk~X in pth mean as k~oo if EIXkIP<oo for all p and 
EIXk-XIP~O as n~CIJ (this will imply that EIXIP<oo). When 
p = 2 this is usually known as quadratic mean convergence. 

These various modes of convergence are not equivalent. The 
standard example to demonstrate this is as follows: let U be a random 
variable uniformly distributed on [0,1] (i.e. with density function 
fu(x) = 1, 0 ~ x ~ 1, fu(x) = 0 elsewhere). Define 
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elsewhere 

and 

Xk = gk(U), 

Clearly X k ---+0 a.s. since gk(U) = 0 for all k> IjU but EX~ = 
E(Xk - 0)2 = 1 soXkdoesnotconvergetozero in quadratic mean. Now 
define for m = 1,2, ... and n = 0, 1, ... , 2m - 1, 

n n+l 
-s;xs;~-
2m 2m 

elsewhere 

and arrange these functions in a single sequence 
{h 1•0 , h1,l' h2,o, ... , h2,3' h3,o,"'}' Let hk denote the kth element of this 
sequence and define 

Yk = hk(U), 

Since E[hm.n(U)J2 =2- m it is clear that Eyk2 ---+0 so that Yk---+O in 
quadratic mean; but almost sure convergence does not take place 
since for any U E(O, 1), lim sup Yk = 1, lim inf Yk = O. 

The following proposition summarizes the relationship between 
the various convergence concepts. 

Proposition 1.1.12 

Let {Xk,kEZ+} be a stochastic process. Then 

(a) X k ---+ X in pth mean (p 2: 1) for some r.v. X such that EIXIP < 00 

if and only if X k is a Cauchy sequence in pth mean, i.e. 
EIXn-XmIP---+O as n,m---+oo. 

(b) Xk---+X in pth mean implies that Xk---+X in rth mean for any r, 
1 S; r S; p. 

(c) If Xk---+X in pth mean, p 2: 1, then there exists a subsequence Xkm 
such that Xkm ---+X a.s. as m---+ 00. 

As the name implies, a subsequence is a sequence {X m' mEZ +} 
where Xm = Xkm for some increasing sequence of indices kl < kz < 
k3 < .. , . In the above example, for instance, it is clear that 
hm,o(U) ---+ 0 a.s. as m ---+ 00 and this is a subsequence of (Yk ). 



1.1 PROBABILITY AND RANDOM PROCESSES 29 

All of the above discussion extends immediately to d-vector-valued 
processes. In this case X k -t X a.s. if and only if X~ -t Xi a.s. for each 
i = 1,2, ... , d. The definition of pth mean convergence requires no 
change and all propositions are valid as stated. 

Finally, we shall need the following ergodic theorem. It was stated 
earlier that EX is the 'average value of X in a long sequence of trials'. 
This is obviously what it ought to be but such properties are results of 
the theory rather than being built into the definitions. Ergodic 
theorems are the results which establish just such connections 
between sample averages and expected values. The one we are going 
to give depends on the so-called Borel-Cantelli lemma. We do not give 
a proof of this here. 

Lemma 1.1.13 (Borel-Cantelli). 

Suppose {Ak} is a sequence of events, event Ak having probability 
PAk • If 

then PEAk occurs for infinitely many k] = O. 
Alternatively, one can say that if IP Ak < 00 then with probability 

one there is some integer ko such that Ak does not occur for any k 
beyond ko. This is very useful in proving almost sure convergence, 
as the next lemma illustrates. 

Lemma 1.1.14 

Let {X k> kE Z +} be a vector process such that 

Then X k -t 0 a.s. 

PROOF Fix £ > 0 and define 

Ak = [IXkl > £]. 

By the Chebyshev inequality, 
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Therefore IP Ak < 00 and from our alternative formulation of the 
Borel-Cantelli lemma this means that with probability one, IX kl ~ e 
for all k greater than some ko. Thus IXkl ~o. D 

Here now is the main ergodic theorem. Note that, unlike many of 
its ilk, it does not require that the process {X k} be stationary. 

Theorem 1.1.15 

Let {Xk,kEZ+} be a scalar finite-variance process with covariance 
function r(t,s). Suppose that there arc numbers c > 0, AE(O, 1) such 
that 

Ir(k, 1)1 ~ d lHI for all k,l Z 0. (1.1.21) 

Then 
1 N 

lim - I (Xk - EXk) = ° a.s. 
N .... ooN k =l 

REMARK Suppose for example that the X k are uncorrelated 
random variables with the same mean JJ. and variance (}2; then the 
condition (1.1.21) is certainly satisfied and the theorem asserts that 

1 N 
Jim - I X k = JJ. a.s., 

N .... ooN k =l 

i.e. sample averages converge to the mean value. This confirms our 
interpretation of the expectation as the average value in a long 
sequence of trials. 

PROOF The theorem is true as stated ifit is true when EXk = 0, so 
we shall assume that EX k = ° for all k throughout. It is easily shown 
that for AE(O, 1) there exists a number K such that for all N, M, 

M M 
I I A1k - 11 ~ KIM - NI· ( 1.1.22) 

k=N i=N 

Define 

Then 

1 N N Kc 
=N2 I I r(k,l)~-

k=ll=l N 
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where we have used condition (1.1.21) together with 0.1.22). Consider 
the subsequence Xk(N) where k(N) = N2• Then L:= 1 EX~(N) ~ 
KCL~ N- 2 < 00 so that by Lemma 1.1.14, 

Xk(N)~O a.s. as N ~ 00. 

To show that the entire sequence XN converges and not just the 
subsequence Xk(N)' it suffices to show that 

Yn~O a.s. as n~ 00 

where 

Fix n and denote temporarily p = k(n) = n2 ,q = k(n + 1) = (n + If 
Then 

1(1 1) p 1 q 1 Yn= max --:--- L X l +--:- L Xl 
p~j~q ] P 1=1 ] l=p+1 

q-p p 1 q 

~-2 L IXll +- L IX11· 
P 1=1 Pl=p+l 

Therefore 

On taking expectations and using (1.1.21) and (1.1.22) again, we find 
that for some constant K 1, 

It now follows from Lemma 1.1.14 that y" ~ 0 a.s. This completes the 
proof. D 

1.2 Linear system theory 

System theory concerns the qualitative properties of devices whose 
responses depend on inputs applied to them and on the initial values 
of certain internal variables. Such devices are called systems. Issues 
connected with selection of inputs which give rise to desirable 
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responses, extraction of information about the values of internal 
variables from the response and equivalent descriptions of the system 
equations are of primary interest. We shall look into some of these 
issues, laying special emphasis on aspects relevant to the study of 
filtering and control problems. As far as the problems studied in this 
book are concerned, system theory enters most explicitly when we 
come to the steady-state analysis of optimal estimators and con­
trollers. Analysis is possible when certain hypotheses are made which 
involve the system-theoretic concepts of controllability, observa­
bility, stabilizability and detectability. We provide a largely self­
contained, but rapid, coverage of the theory surrounding these 
concepts. 

The systems we consider are discrete time, linear time-invariant 
systems. They are described by the equations 

Xk + 1 = AXk + BUk 

Yk = HXk 

(1.2.1) 

(1.2.2) 

in which, A, Band Hare n x n, n x m and r x m matrices respectively. 
In these equations the r-vector Yk is the output of the system, 

sampled at time k. (The time scale is assumed normalized so that 
sampling occurs at times k = .... , - 1,0, + 1, ... ). The m-vector Uk' the 
input (or control) at time k, summarizes the control action applied to 
the system during the interval oftime t, k s:; t s:; k + 1. The n-vector Xb 

the state at time k, comprises variables which, loosely speaking, sum 
up the effect of past inputs and other influences on future outputs. 
Equation (1.2.1) is often called the state equation, and (1.2.2) the 
observation equation. 

Notice that, given any time j, and given the state Xj at time j, Xj' and 
the inputs uj , Uj + 1' ... at times j,j + 1, ... , we can solve the system 
equations (1.2.1) and (1.2.2) for Xk'Yk' k > j, and obtain 

k-l 
xk=Ak-jxj + I Ak-i-lBui 

i=j 

k-l 

Yk = HA k - jXj + I HA k - i - 1 BU i 
i=j 

(1.2.3) 

(1.2.4) 

(in these expressions A raised to the zeroth power is interpreted as the 
identity matrix). 

The state has the following property: knowledge of Xj' the state at 
time j, in addition to knowledge of present and future inputs, namely 
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Uj, Uj + 1"", suffices for calculation of future outputs Yj+ I,Yj+2,'" . 

This is clear from (1.2.4). It is in this sense that the state contains all 
relevant information about the past history of the system for purposes 
of determining future outputs. 

The discrete time system with description (1.2.1), (1.2.2) is called 
'linear' because X k and Yk depend linearly on Xo and Uo,"" Uk-I' It is 
called 'time-invariant' for the followmg reason. If we set an initial state 
at time 0 and apply an input sequence, then the state and output, Xk 

and Yk, at time k, coincide with the state and output Xk+ j and Yk+ j at 
some subsequent time k + j, which would result if the same initial 
state, previously set at time 0, is now set at time j, and the input 
sequence is delayed by the time interval j. These properties are 
obvious from the formulae (1.2.3) and (1.2.4). So the response of the 
system is invariant under time shifts. 

1.2.1 Controllability and observability 

Controllability 

We first examine conditions under which we can change the state of 
the system at will by suitable choice of the input sequence. Systems 
having this property are called 'controllable systems'. 

Definition 1.2.1 

The system (1.2.1), (1.2.2) is controllable when, given any n-vectors Xa 

and X b, there exist some non-negative integerj and inputs Uo, ... , uj - 1 

such that Xj generated by the state equation 

k = O, ... ,j-l 

Notice that the definition of controllability involves only the state 
equation which is itself specified by the matrices A and B. For this 
reason we often say '(A, B) is controllable' in place of 'the system 
(1.2.1), (1.2.2) is controllable'. 

We remark that variants of Definition 1.2.1 appear in the literature. 
Many authors reserve the terminology 'controllable' for systems 
which can be driven from an arbitrary initial state to zero, a notion of 
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controllability which is strictly weaker than ours. (As an example of a 
system (A, B) which is not controllable in our sense but is controllable 
'to the zero state' take A such that Ak = ° for some k and B = 0). We 
could consider too systems which can be driven from the zero state to 
an arbitrary terminal state. Such systems are often called reachable 
systems. Actually reachability is equivalent to controllability in the 
sense of Definition 1.2.1. 

A simple condition expressed directly in terms of the matrices A 
and B of the state equation (1.2.1) is available for testing controlla­
bility. This is Kalman's rank condition test, described in the following 
proposition. 

Proposition 1.2.2 

(A, B) is controllable if and only if 

rank[B:AB: ... :An - 1B] = n. (1.2.5) 

The n x nm matrix [B:AB: ... :An - 1B] is called the controllability 
matrix. Since it has n rows the rank condition can be otherwise stated 
as: the controllability matrix has range all of IRn. If m = 1, that is the 
input is scalar valued, then the controllability matrix is a square matrix 
and the rank condition reduces to the requirement that the controlla­
bility matrix be non-singular. 

The validity of the rank condition test for controllability hinges on 
the Cayley-Hamilton theorem. For the moment we take A to be an 
arbitrary n x n matrix with characteristic polynomial 0:0 + 0: 1 S + ... + 
O:n _ 1 Sn - 1. The Cayley-Hamilton theorem tells us that A 'satisfies 
its own characteristic equation', by which is meant 

(1.2.6) 

(1 is the n x n identity matrix). A consequence of this property is that, 
given any non-negative integer i, Ai satisfies 

Ai = /301 + /31A +.". + /3n_1An-1 for some scalars /30'··"' /3n-1" 
(1.2.7) 

In other words, Ai is some linear combination of the matrices 
I, A, ... , An -1. The representation (1.2.7) is obviously pos­
sible when i = 0, ... , n - 1, and also when i = n, from (1.2.6). That it 
is possible for arbitrary i is now proved by induction; suppose that, 
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given arbitrary j ~ 0, (1.2.7) is true whenever i ~j. Under the induction 
hypothesis Ai can be expressed 

for suitable coefficients Po, ... , Pn - I . Premultiplying through by A we 
obtain 

(1.2.8) 

But each of the terms on the right-hand side of (1.2.8) is expressible as 
a linear combination of I, A, ... , An - I since, as we have remarked, 
(1.2.7) is true for i = 0, 1, ... , n. It follows that Ai+ I, given by (1.2.8) is 
also a linear combination of I,A, .... ,An - l . This provides the 
required representation of Aj+ I and the induction is complete. 

We are now ready to establish the rank condition test. 

PROOF OF PROPOSITION 1.2.2 Let us write W for the controllability 
matrix. Suppose first that W has rank n. Let Xa and Xb be arbitrary n­
vectors. Under the assumption, W has range all of [R!n and so there 
exists an nm-vector ~ (which we partition as a collection of m­
vectors Uo, .. " Un-I' thus ~ = col {Uo,"" un-IF) such that 

Xb - Anxa = W~ = [B:AB: ... :An- I BJ col {Un-I'"'' Un}· 

This equation can be written in the form 
n-l 

Xb = Anxa + L An- j-I Buj . 

j=O 

It is clear from (1.2.3) that the input sequence UO,"" Un - I drives the 
state Xa at time ° to Xb at time n. We have shown that (A, B) is 
controllable. 

Next suppose that W does not have rank n. This means that the 
rows of Ware not linearly independent and so there exists a non-zero 
n-vector ~ such that 

or, otherwise expressed, 

~TB=~TAB='" =~TAn-IB=O. (1.2.9) 

t Given an ordered collection of matrices {F J, ••. , Fq }, each having the same number of 
columns, then col{FJ, ... ,Fq } denotes [FI:Fi: ... :F~]T. 
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It remains to show that (A, B) is not controllable. Equations (1.2.9) 
imply that 

for k = 0,1'00' 

Indeed, for arbitrary k, Ak can be expressed as 

Ak = f30I + 00.+ f3n_1 An - 1 

(1.2.10) 

for suitable coefficients f3o, ... , f3n _ 1, in view of our earlier remarks on 
the consequences of the Cayley-Hamilton theorem. But then 

~TAkB = f3o~TB + f31~TAB + 00. + f3n_l~TAn-1B = o. 
We claim that there can exist no time k and input sequence 
Uo, •.. , Un - 1 which drives the system from the origin at time 0 to ~ at 
time k; it would certainly follow that (A, B) is not controllable. If such 
a time k and input sequence did exist, we would have 

k-l 
~= L Ak -j- 1Buj' 

j;O 

Premultiplying through this equation by ~T we obtain 

~T~=~TAk-1Buo+ 00. +~TBui_l 

which is a contradiction since the left-hand side is non-zero, and the 
right-hand side is zero by (1.2.10). We have shown that (A, B) is not 
controllable. D 

A byproduct of our proof is the fact that, if (A, B) is controllable, 
then we can drive the system from one state to another in at most n 
time steps. What is an input sequence which achieves this transfer? 
Let Xa, Xb be arbitrary states. One input sequence Uo,"" Un - 1 which 
transfers Xa at time 0 to Xb at time n is provided by the formula 

r un-1J l I:' ~ W'(WW')- '(x. - A"xJ. (1.2.11) 

(To apply the formula we need to know that (WWT) is non-singular: 
let ~ be any non-zero n vector. Since (A, B) is controllable, ~T W =1= o. 
But then ~TWWT~ = (~TW)(~TW)T =1= ° and so, certainly, WWT~ =1= 0, 
i.e. WWT is non-singular.) We check that if the system is at state Xa at 
time 0 and the input sequence UO,oo., U n - 1 defined by (1.2.11) 
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is applied, then the state at time n (see (1.2.3)) is 

n-l 
Anxa+ L An-j-1Buj=Anxa+ Wcol{un-1,···,uo} 

j=O 

as required. 
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As an example of a system which is not controllable, consider one 
involving the state equation 

Xk+ 1 =AXk+Buk 

in which the matrices can be partitioned as follows: 

A=[lll A12 ]}", B=[Bl]}n (Fi<n). 
o A22 0 

Notice that if Xk is partitioned compatibly with A and B, namely as 
Xk = col {Xk1), xf)} then Xk2) and Xk2) satisfy 

Xkl~l = A11 xP) + A 12Xk2) + B1uk 

Xk2~ 1 = A22 XF)· 

This system is obviously not controllable since certain components of 
the state (those comprising Xk2)), on which the control has no effect, 
can be split off from the system. A very useful fact is that we can always 
interpret controllability as arising in this way (provided we permit a 
suitable transformation of the state variables). 

Proposition 1.2.3 

Suppose that (A, B) is not controllable. Then there exists a non­
singular matrix T with the following properties: if we define 

A=T-1AT, 13=T-1B 

then A and jj can be partitioned 

" 
A = [~l ~::J", 13 = [~l J", (Fi < n) 

and (A 11,13 d is controllable. 
The matrix T of the proposition provides the required transform­

ation, for if we introduce the new state vector Zk defined by 

(1.2.12) 
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then substitution of (1.2.12) into (1.2.1) gives 

PROOF Let W = [B:AB: ... An - 1 B] and let ii = rank{ W}. ii can be 
interpreted as the dimension of the space spanned by the columns of 
W. Since the system is not controllable, n < n. It is known that linearly 
independent n-vectors, VI' ... ' Vn can be chosen such that the first n 
vectors in the collection span the same space as the columns of W. 
Now define the non-singular matrix T as 

T=[v1:···:vn]. 

It is convenient to partition T: 

where Tl = [v 1:···:VI1J and T2 = [v,,+I:···: vn]. 
We shall show that T has the required properties. Notice first that 

AVj lies in span{v1, ... ,v,,} for j= t, ... ,n. ( 1.2.13) 

To see this, take V j with 1 ~ j ~ n. v j lies in the span of the columns of 
W so 

for suitable m-vectors a l , ... , an (which depend on j). Then 

But, by the Cayley-Hamilton theorem, 

where the !Xi are the coefficients in the characteristic polynomial of A. 
It follows that 
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° 

We have expressed AVj as a linear combination of the columns of W, 
and so have confirmed (1.2.13). 

Now A is defined by 

AT= TA. (1.2.14) 

Let us partition A as 
n 

A = [~11 A12]}'; 
A21 A22 

Equation (1.2.14) can be written 

A[T1:T2J = [T1:T2J[~11 
21 

or 

[AT1:AT2J = [T1All + T2A21:T1A12 + T2A22]. 

Equating the first blocks we obtain AT1 = T1All + T2A21 . Now the 
columns of AT1lie in span{v1 , ... ,vn} by (1.2.13). We must therefore 
have that A21 = 0, for otherwise the Vi could not be linearly 
independent. 

Next examine iJ defined by 

B= TiJ. (1.2.15) 

Partition B as 

From (1.2.15) we have 
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Now the columns of B coincide with the first m columns of W, and so 
lie in span {VI' ... ' vn}. We deduce from the linear independence of 
Vl,···,Vn that B2 =0. 

We have shown that A and B can be partitioned 
fi 

A=[A~l t~Tn, B=[~lJ}n. 
Finally we show that (All' Bl ) is controllable. Since premultiplica­

tion by a non-singular matrix does not affect the rank of a matrix 

n = rank[B:AB: ... :An-1B] 

= rank T-l[B:AB: ... :An- l B] 

= rank[(T- l B):(T- l AT)(T- l B): ... :(T- l AT)"-l(T- l B)] 

= rank[B:AB: ... :An-1B] 

= rank[[Bl ] :[.411 ~12J[B1J: ... :[.411 ~12Jn-l[B1JJ o : 0 A22 0: : 0 A22 0 

- - - - 1-
= rank [Bl :AllBl:··· :A~l Bll 

But, in consequence ofthe Cayley-Hamilton theorem, the columns of 
A11 B l' ... , A~ 1 Blare expressible as linear combinations of the 
columns of Bl , •.• ,An- 1Bl (cf. the remarks following Proposition 
1.2.2), and so if the blocks A1 1Bl , ... , A~ll Bl are dropped from the 
matrix [B l : ... :A~lBl]' the rank of the matrix is unaffected. We 
conclude that 

rank[Bl:AllBl : ... :A111 Bl ] = n. 
So (All,B l ) is controllable. This completes the proof of 
Proposition 1.2.3. 0 

An alternative to the Kalman rank condition test for controllability 
is due to Hautus, and is described in the following Proposition. 

Proposition 1.2.4 

A necessary and sufficient condition that (A, B) be controllable is 

rank [s1 - A:B] = n 

for all eigenvalues s of A. 

(1.2.16) 



1.2 LINEAR SYSTEM THEOR Y 41 

Testing condition (1.2.16) has the advantage that it avoids com put -
ation of powers of the matrix A, but requires knowledge of its 
eigenvalues. The significance of Proposition 1.2.3 in our treatment of 
linear systems theory is that it will illuminate the relationship between 
controllability and another important system theoretic property, 
'stabilizability'. 

Notice that we could replace the condition by the requirement that 
(1.2.16) hold for all complex numbers s, and not merely the 
eigenvalues of A since, if S is not an eigenvalue then sI-A has rank n 
and so (1.2.16) is automatically satisfied. 

PROOF We first prove necessity of the condition. Let us assume 
that rank [sol - A:B] < n for some eigenvalue So of A. We must show 
that (A, B) is not controllable. In view of the assumption, there exists a 
non-zero n-vector ~ (possibly complex) such that 

~T[soI - A:B] = O. 

This implies that ~T A = SO~T and ~T B = O. But then 

~T[B:AB: ... :An - 1B] = [~TB:sO~TB: ... :SO-l ~TB] = O. 

We suppose, of course, that A and B are real. It follows that 
(Re ~)T[B:AB: ... :An - 1 B] = (1m ~)T[B:AB: ... An - 1 B] = O. Since either 
Re ~ or 1m ~ is non-zero, we conclude that the controllability matrix 
does not have linearly independent rows, i.e. (A, B) is not controllable. 

And now for sufficiency. Let us assume that the system is not 
controllable. We must show that condition (1.2.16) fails for some s. 
Since (A, B) is not controllable we know (Proposition 1.2.3) that a 
non-singular matrix T exists such that, if we define A = T- 1 A T and 
B = T- 1 B then A and B can be partitioned 

(ii < n). 

Let So be an eigenvalue of A22 and ~T be a corresponding (possibly 
complex) left eigenvector, that is ~T is a non-zero row vector which 
satisfies 

(1.2.17) 

We shall show that [Sol - A:B] has rank less than n. It suffices to 
show that the matrix 
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, [T OJ T-l[Sol - A:B] 0 I 

has rank less than n since pre- and postmultiplication by square non­
singular matrices amount to performing simple row and column 
operations on the original matrix, and such operations leave the rank 
unaltered. But 

[OieT]T-1[sol - AiB] [~ ~J 
= [Oie] [sol - T-1ATiT-1B] 

= [OieT][[S~l S~l J -[A~l t:JI ~l JJ 
= [OisoeT - eTA22 iO] = 0 

by (1.2.17). This means that the rows ofthe matrix cannot be linearly 
independent and so its rank must be less than n. 0 

Observability 

Given a linear system governed by the equations (1.2.1) and (1.2.2): 

Xk+ 1 = AXk + BUk 

Yk=Hxk 

itis natural to ask: if we know the inputs to the system for all time, and 
outputs up to a certain time j, can we predict the outputs Yk for time 
k > j? Clearly the answer is yes if the initial state Xo is known, for then 
we can solve the state equation for the state and obtain the output, for 
all time, from the output equation. The property of 'observability' 
concerns our ability to determine Xo from the data. We can limit 
attention to the situation in which the input sequence is zero since the 
effect of the input is, by linearity, simply to add a known quantity to 
the output; this can be subtracted off and we are back to the input -free 
case. 

Definition 1.2.5 

Let Yk(XO)' k = 0,1, ... be the solution to the system equations (1.2.1) 
and (1.2.2) for initial state Xo and zero inputs. The system (1.2.1) and 
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(1.2.2) is observable when, for arbitrary xo, there exists some time 
k ~ ° such that Xo can be determined as a function of Yo(xo), 
Y 1 (xo), ... ,Ybo)· 

Since only zero inputs are considered, the input matrix B is 
immaterial to the definition of observability. Observability is deter­
mined then by the nature of the matrices A and H; for this reason we 
often say '(H, A) is observable' in place of 'the system (1.2.1), (1.2.2) is 
observable'. 

As with controllability, Kalman has provided a simple rank 
condition test for observability. 

Proposition 1.2.6 

(H, A) is observable if and only if 

rank[ :A ] = n. 

HAn - 1 

(1.2.18) 

The matrix in (1.2.18) is called the observability matrix. Notice that 
since it is an nm x n matrix, the rank condition means that it has 
linearly independent columns or, in other words, the null space of the 
observability matrix comprises just the zero vector. In the event that 
the output is scalar, H is a row-vector and the observability matrix is 
square; here the rank condition means that the observability matrix is 
non-singular. 

PROOF Observability ofthe system is equivalent to the property: if 
the output Yk to the system 

is zero for all k then Xo must be zero. Observability obviously implies 
this property. On the other hand, if the system is not observable then 
there exist distinct initial states xo, Xo which give rise to a sequence of 
states xk, Xk, i = 1,2, ... , and an identical output sequence Yk' 
k = 0,1, ... By linearity, the output resulting from the initial state 
Xo - Xo is zero; since (xo - xo) is non-zero (xo and Xo are distinct, 
remember) the property above does not hold. This establishes its 
equivalence with observability. 



44 PROBABILITY AND LINEAR SYSTEM THEORY 

If the initial condition is xo, the corresponding output is 

Yo = Hxo, Y1 = HAxo, Y2 = HA2xo,··· 

It follows that the system is observable if and only if 

HAkxo = 0 for all k implies Xo = O. 

Now the rank condition (1.2.18) means that 

[ H 1 ~A Xo =0 

HA·n-1 

implies Xo = 0 

or 

(1.2.19) 

Hxo = HAxo = ... = HAn-1xo = 0 implies Xo = O. (1.2.20) 

Clearly (1.2.19) implies (1.2.20). On the other hand for arbitrary k, 

Ak=/301 + ... + /3n_1An-1 

for some coefficients /30' ... ' /3n-1 in consequence of the Cayley­
Hamilton theorem (see the remarks following Proposition 1.22). It 
follows that if (1.2.20) is true then 

HAkxo = /3o Hxo + /31HAxo + ... + /3n_1HAn-1xo = o. 
So (1.2.19) is true. We have shown that (H, A) is observable if and only 
if (1.2.18) is true. 0 

Actually we have proved a little more than is stated in the 
proposition: if (H, A) is observable then the initial state Xo for the 
system Xk+ 1 = AXk' Yk = HXk can always be determined from the 
outputs Yo, ... ,Yn-1 up to time n -1. An explicit formula for Xo is 

Xo = (M™)-l MT col {Yo, ... ,Yn- d 
in which M is the observability matrix. (The matrix (MT M) is non­
singular, and so the formula makes sense, since M has linearly 
independent columns.) 

It is customary to describe two properties concerning matrices as 
being 'dual' when one property is equivalent to the other following 
transposition of matrices. The rank condition tests for controllability 
and observability tell us that controllability and observability are dual 
properties in this sense. In fact, (A, B) is controllable if and only if 
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(BT, AT) is observable. Controllability of (A, B) is equivalent to the 
condition 

rank[BiABi ... iAn-1B] = n. 

But rank is unaffected by transposhion, so this is equivalent to 

rankl B~:T ] = n 

BT(AT)"-l 

which is precisely the rank condition test for observability of (BT, AT). 
Appealing to the duality of controllability and observability is a 
valuable, labour-saving device: it renders results on observability 
merely adjuncts to results on controllability, and vice versa. For 
example we recall (Proposition 1.2.3) that a system which is not 
controllable is one from which we can split off certain state 
components which are unaffected by the input (provided a suitable 
transformation of the state is first carried out); we deduce from the 
duality of controllability and observability that, if a system is not 
observable then, after the state is suitably transformed, state compo­
nents can be split off which have no effect on the output, whatever the 
initial state. More precisely expressed we have the following. 

Proposition 1.2.7 

Suppose that (H,A)is not observable. Then there exists a non-singular 
matrix S with the following properties: if we define 

A = S-l AS and Ii = HS 

we have that A and Ii can be partitioned 

A = [ 311 _0 ]lli 
A21 A22 ' 

Ii 

Ii = [H 11 :0] 

and (Ii 11' All) is observable. 

(fi < n) 

PROOF If (H, A) is not observable then, by duality, (AT, HT) is not 
controllable. So there exists a matrix T with the properties described 
in Proposition 1.2.3. It is easy to see that the matrix S = TT has the 
desired properties. D 
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Notice that if we transform the state: 

then the system equations (with zero input) 

become 
-1 -

Zk+ 1( = S ASzd = AZk 

Yk( = HTzk) = Ezk • 

If Zk is now partitioned as Zk = col {zP), Z~2)} compatibly 
with the partitioning of A and E, we have that z~l) satisfies 

(1) - A- (1) 
Zk+1- llZk 

- (1) Yk=Hllzk . 

We see that there exist components of the transformed state (those 
comprising the vector Z~2») which have no effect on the output. 

Likewise, the Hautus test for controllability (see Proposition 1.2.4) 
translates immediately into a test for observability, via duality. 

Proposition 1.2.8 

(H, A) is observable if and only if 

rank [ ~£~-~ ] = n 

for all eigenvalues s of A. 

1.2.2 State feedback 

Suppose that the inputs to a system with state equation 

Xk + 1 = AXk + BUk (1.2.21) 

are chosen according to a feedback control law which specifies the 
input at time k as a linear function of the state at time k: 

(1.2.22) 

Then the state of the system is governed by the equations obtained by 
substituting (1.2.22) into (1.2.21), namely 

x k + 1 = (A + BK)Xk' 
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Many significant qualitative properties of the state sequence 
Xo, Xl"" resulting from application of a feedback control law are 
expressible in terms of the eigenvalues of the 'closed-loop system 
matrix' A + BK: stability, response decay rates, frequencies of natural 
modes, for example. It is of interest then to know when the eigenvalues 
of A + BK can be moved to arbitrary locations by suitable choice of 
the feedback matrix K. (Of course we must limit attention to 
eigenvalue locations which occur in complex conjugate pairs; the 
characteristic polynomial of A + BK has real coefficients and conseq­
uently the eigenvalues must occur in complex conjugate pairs, 
whatever K.) Pairs of matrices (A, B) defining systems for which this is 
possible are called pole-assignable. The terminology reflects the fact 
that, in much of the control engineering literature, eigenvalues are 
called 'poles'. 

Definition 1.2.9 

(A, B) is pole-assignable when, given any nth-degree monic poly­
nomial p(s) = !:to + !:tIS + ... + !:t._IS·-1 + s· (with real coefficients), 
there exists a (real) matrix K such that (A + BK) has characteristic 
polynomial p(s). 

We can expect the presence of some relationship between the 
notions of pole-assignability and controllability since they are both 
concerned with the influence of inputs to a system on the resulting 
state sequence. It is one of the most striking results in linear system 
theory that the two notions are in fact equivalent. 

Theorem 1.2.10 

A necessary and sufficient condition for (A, B) to be pole-assignable is 
that (A, B) be controllable. 

PROOF OF NECESSITY Suppose that (A,B) is not controllable. By 
Proposition 1.2.3, there exists a non-singuh~r matrix T such that, 
taking A = T- 1 AT, B = T- l B, we have 

(Ii < n). 

Let K be arbitrary. We partition K and T compatibly with the 
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partitioning of A and B 

T = [Tll TT12 ], K = [K 1:K2]. 
T21 22 

For any complex number s, we have 

det[sI - A - BKJ = det{T-l[sI - A - BK]T} 

(since detS1S2 =detS l detS2 for square matrices Sl,S2) 

= det [sf - A - BKT] 

_ [Sf - All - B1(K1 Tll + K2T21 ):- A12 - B1(K1 T12 + K2TdJ 
- det ,_ 

o : sl - A22 
= det(sf - All - B1(K1 Tll + K2 T2 1)) det(sf - A22) 

(by the properties of the determinants of block matrices). We see 
that the factor det(sI - Ad cannot be removed from the character­
istic polynomial of (A + BK) by choice of K, and so (A,B) is not pole­
assignable. Our conclusions, otherwise expressed, are that pole­
assignability implies controllability. 

PROOF OF SUFFICIENCY Sufficiency of the controllability con­
dition is rather more difficult to establish and it is convenient to break 
the proof down into a number of steps. 

Step 1 We show that (A, B) is pole-assignable when the input is 
scalar valued (i.e. B = b, an n-vector) and when A and b take the 
special forms 

[ 0 1. 0] l?l A= 0 '. 1 , b= ~ . 
- ao ... - an - 1 1 

In this case, for any row vector qT = [ql ... qn] 



1.2 LINEAR SYSTEM THEORY 49 

Now this last matrix is a matrix in 'companion form'; it is known 
that coefficients of its characteristic polynomial p(s) can be read off 
the bottom line: p(s)=sn+(an_l -qn)sn-l + ... +(ao-qd. We see 
that the coefficients of the characteristic polynomial of A + bq T can be 
arbitrarily assigned through choice of qT. 

Step 2 Suppose now that A is a general n x n matrix and b an n­
vector, such that (A, b) is controllable. By introducing a state 
transformation which brings us back to step 1, we show that in this 
case, also, (A, b) is pole-assignable. 

Let p(s) = C(o + C(ls + '" + C(n_1Sn-l + sn be the characteristic poly­
nomial of A. Consider the vectors 

b, Ab, A2b, ... , An-lb. 

These vectors are linearly independent since (A, b) is controllable. The 
following linear combinations of these vectors are also linearly 
independent: 

el =An-lb+C(n_1An-2b+ ... +C(lb, 

e2 = An- 2b + C(n_1An-3b + ... + C( 2b, 

(1.2.23) 

From (1.2.23) we deduce that 

and so 
k=l, ... ,n-l. (1.2.24) 

Also from (1.2.23), and the Cayley-Hamilton theorem, 

Ael = (An + C(n_1An-l + ... + C(lA)en = - C(oen. (1.2.25) 

Equations (1.2.24) and (1.2.25) can be organized as follows: 

A[el: ... :enJ = [el: ... :enJ [0 ~ .. ?]. 
- C(o - CXn - 1 

From the last equation in (1.2.23) we have 
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Now take the non-singular matrix T to be 

T=[e1:···:en]. 

We have shown that, if A = T- 1 AT, b = T-1b, then 

A = r 0 ~ ... ? l' b = [Il. 
l-()(o -()(n-l 1 

(1.2.26) 

Now consider the characteristic polynomial ofthe closed-loop system 
matrix when the feedback control law is Uk = q T T - 1 Xk for some n­
vector q. This is 

det(sI - A - bqTT-l) = det{T-1(sI - A - bqTT-1)T} 

= det(sI - A - bqT). 

The coefficients of this characteristic polynomial can be arbitrarily 
assigned through choice of q by (1.2.26) and by the results of step 1. 

Step 3 Sufficiency ofthe controllability condition has been proved 
when the inputs are scalar-valued. We now prove a lemma which 
reduces the general vector inputs case to that of scalar inputs. 

Lemma 1.2.11 

If (A, B) is controllable, there exists an m x n matrix K and an m­
vector v such that (A + BK, Bv) is controllable. 

First of all we prove the lemma. Suppose that (A, B) is controllable. 
Choose any vector v such that Bv =1= O. (Such a v exists since (A, B) is 
controllable and therefore B =1= 0.) We first show that an input 
sequence uo, ... , Un _ 2 and a state sequence xo, ... ,Xn _ 1 can be chosen 
such that 

Xk + 1 = AXk + BUk 

xo=Bv 

for k = 0, 1, ... , n - 2, 

(1.2.27) 

and Xo, . .. ,Xn _ 1 are linearly independent. We claim that the choice 
can always be made as follows: Xo (= Bv) is given, we choose any Uo 
such that Xl = Axo + Buo and Xl' Xo are linearly independent, we 
choose any U I such that Xz = AXI + BU I and Xz, XI' Xo are linearly 
independent, and so on all the way up to Un _ 2, Xn _ I. We argue by 
contradiction; if this were not possible then, for some k < n - 1, we 
would have 
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for all u. 

By considering the case when U = 0 we see that 

AXkEspan {xo,···, xk }. 

But then (1.2.28) implies 

BUEspan{Xo,···,Xd for all u. 
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(1.2.28) 

(1.2.29) 

(1.2.30) 

Since AXj = Xj+ 1 - Buj,j = k, k - 1, ... ,0, we see from (1.2.29) and 
(1.2.30) that 

for j = k, k - 1, ... ,0. (1.2.31) 

Let ~ be a non-zero n-vector orthogonal to Xo, ••. , Xk (such a vector 
exists since k < n - 1). In view of (1.2.30) and (1.2.31), 

~T[B:AB: .... :An-l B] = O. 

This contradicts the controllability of (A, B). It follows that 
xo, ... , Xn - 1, UO,···, Un - 2 can be chosen to satisfy (1.2.27). 

Now define K by 

K = [UO:u 1 : ••. :un- 1] [XO:x1: ... :xn-1r 1 

in which Un - 1 is any m-vector (the matrix inverse exists since the Xi are 
linearly independent). Clearly 

K[xo:·· .:xn - 1 ] = [uo:·· .:un - 1] 

and so KXk = Uk for k = 0, ... , n - 1. It follows now from (1.2.27) that 

X k + 1 =Axk+BKxk, i=0, ... ,n-2, 

Xo = Bv. 

Solving these equations for the Xi we obtain 

Xk = (A + BK)k(Bv), k = 0, ... , n - 1. 

Since the Xk are linearly independent we conclude that the matrix 

[Bvi(A + BK)Bvi ... i(A + BK)n-l Bv] 

has rank n. But this is the controllability matrix for (A + BK,Bv); we 
have found K and v such that (A + BK, Bv) is controllable. This proves 
the lemma. 

We can now conclude proof of the theorem. Let (A,B) be con­
trollable. By the lemma there exists K and v such that (A + BK, Bv) is 
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controllable. Let p(s) be an arbitrary monic polynomial. By the result 
of step 2, q can be chosen so that 

p(s) = det[sI - (A + BK) - BvqT] 

= det[sI - (A + B[K + vqT])]. 

We see that the feedback control law Uk = (K + vqT)Xk yields a closed­
loop system matrix with characteristic polynomial the arbitrary 
monic polynomial p(s); (A, B) is therefore pole-assignable. 0 

Let us recall that, when the feedback control law 

specified by the matrix K, is applied to a linear system with state 
equation 

Xk+ 1 = AXk + Buk, 

there results a closed-loop state equation 

xk+ 1 = (A + BK)Xk' (1.2.32) 

and the concept of pole-assignability arises when we study whether K 
can be chosen so that the closed-loop state equation (1.2.32) has good 
characteristics. Of course, our interpretation of 'good' will depend on 
the application at hand. But often the components of the state 
represent deviations of certain variables from desired values, in which 
case a minimum objective in selection of the feedback control law is 
that the deviations diminish as time increases. This objective is 
achieved if the matrix A + BK is stable, in the sense that its 
eigenvalues lie in the open unit disct, for then the state Xi' generated by 
(1.2.32), decays to zero as i tends to infinity. Systems for which we can 
arrange that A + BK is stable therefore deserve special attention: they 
are called 'stabilizable'. 

Definition 1.2.12 

(A, B) is said to be stabilizable when there exists an m x n matrix K 
such that the eigenvalues of A + BK are contained in the open unit 
disc. 

tThe 'open unit disc' referred to here is the open subset {(: 1(1 < I} of the complex plane. 
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It is often difficult to test directly whether matrices (A, B) defining a 
particular linear system satisfy the conditions in the definition, since 
determination of a suitable matrix K is involved. Fortunately a 
simpler test is available. This is a variant on the Hautus controlla­
bility test (see Proposition 1.2.4). It is expressed directly in terms of the 
matrices A and B but does, admittedly, suffer from the disadvantage 
that extraction of the eigenvalues of A is involved. 

Proposition 1.2.13 

A necessary and sufficient condition that (A, B) be stabilizable is 

rank [(sI - A):B] = n 

for all eigenvalues of A outside the open unit disc. (1.2.33) 

Comparison with the Hautus controllability test confirms that 
stabilizability is a weaker property than controllability; indeed 
controllability requires the rank condition in (1.2.33) to hold for all 
eigenvalues of A rather than merely those outside the open unit disc, 
as here. 

It is clear from the definition of stabilizability that (A, B) is always 
stabilizable if A is a stable matrix (for then stabilization is achieved for 
zero input). At the other extreme, when all the eigenvectors of A lie 
outside the open unit disc then stabilizability and controllability are 
equivalent; this follows frorn Propositions 1.2.4 and 1.2.13. 

PROOF To prove necessity, let us suppose that the rank condition 
(1.2.33) is violated: this means that there is some eigenvalue So of A 
lying outside the open unit disc, and a (possibly complex) non-zero n­
vector ~ such that 

~T[soI - A:B] = o. 
This condition can be written 

~T A = soe and ~T B = O. 

It follows that, for any m x n matrix K, A + BK has an eigenvalue 
outside the open unit disc since 

~T[soI - (A + BK)] = SO~T - ~T A - ~T BK = O. 

So (A, B) cannot be stabilizable, and thus the condition is necessary. 
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Let us now assume that the condition (1.2.33) is satisfied. Let 
~ -, ~ + denote the collection of eigenvalues of A lying inside and 
outside the open unit disc respectively. A basic result in matrix theory 
(see Wilkinson, 1965, p. 486) tells us that a real, non-singular matrix 
T exists such that 

(1.2.34) 

where A is a matrix which can be partitioned 

- [AI A= _ 
AI2 

Here Al is a square matrix, of dimension n+ and having eigenvalues 
~ + , and A 2 is square matrix, of dimension n - and having eigenvalues 
~ -. Condition (1.2.33) is equivalent to 

rank T-I[s1 - A:BJ[~ 
which can be written 

k[(S1 -AI ran _ 
-A12 

Here 

O]=n 
1 ' 

for all SE~+, 

is a partitioning of T- I B compatible with that of A and the 1 are 
identity matrices. The last condition is equivalent to 

[(
SI - Al 

rank 0 ° ):(BI)] 
s1 - A2 : ° = n 

since sl - A2 is non-singular for SE~ +, or 

rank[(s1 I - AI):BIJ + n- = n, for all SE~ + 

which can be expressed as 

rank[s/l - A1 :B I J = n+ for all SE~+ 

since n - + n + = n. By Hautus's criterion (Proposition 1.2.4), (A I, B d 
is controllable. We conclude from the pole-placement theorem 
(Theorem 1.2.10) that there exists an m x n + matrix K I such that 
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Al + ElK I has eigenvalues in the open unit disc. Now let 

K = [KI:O]T-t, 

and consider the eigenvalues of A + BK. These are the eigenvalues 
also of 

However, due to the upper right block zero, this last matrix has 
eigenvalues those of Al + ElK I together with those of A2 , all of which 
lie inside the open unit disc. So A + BK is a stable matrix. We have 
shown that condition (1.2.33) is sufficient for stabilizability. 0 

A dual concept to that of stabilizability is detectability. 

Definition 1.2.14 

(H, A) is detectable when there exists an n x r matrix M such that all 
the eigenvalues of (A + MH) lie in the open unit disc. 

Bearing in mind that transposition does not affect the eigenvalues 
of a matrix, we see that (A, B) is stabilizable if and only if (BT, AT) is 
detectable. Indeed, if (A, B) is stabilizable so that there exists a matrix 
K such that A + BK is stable, then· (BT, AT) is detectable, since 
AT + KTBT (= (A + BK)T) is stable. In a similar manner we show 
that detectability of (BT, AT) implies stabilizability of (A, B). 

The duality between stabilizability and detectability enables us to 
deduce from Proposition 1.2.13 the following characterization of 
detect a bili ty. 

Proposition 1.2.15 

(H, A) is detectable if and only if 

rank [ sf ; A] = n 

for all eigenvalues s of A outside the open unit disc. 
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The terminology 'stabilizability' is a natural one, but 'detectability' 
requires a little explanation. This we now supply. Consider a linear 
system with zero input 

X i + 1 = AXi 

Yi=Hxi' (1.2.35) 

The system parameters which specify the matrices H, A are known 
but the initial state, xo, is not. Suppose we wish to extract informa­
tion about the state Xi at time i, from observations of present and 
past outputs. A simple, and widely used, procedure is the following: 
we take as estimate xk of X k the output of a replica of the system driven 
by an input which depends on the discrepancy between the observed 
output Yk and the output we would observe if X k coincided with xk, 
namely Hxk • More precisely stated, xk is generated by the recursive 
equations 

Xk+ 1 = AXk + K(y - Hxk ) 

Xo =0 (1.2.36) 

for some suitably chosen matrix K. The estimate of the state obtained 
in this way is called an observer. It is a deterministic analogue of the 
estimate supplied by the Kalman filter in a stochastic setting, which 
we shall study in detail in Chapter 3. 

The error ek incurred when the true state X k is replaced by xk , 

is governed by the equations (obtained by subtracting (1.2.36) from 
(1.2.35) ): 

ek+ 1 = (A - KH)ek 

ek = Xo· 

The error can be made to decay to zero, for arbitrary initial state, if 
and only if K can be chosen in such a way that (A - KH) is a stable 
matrix. This is precisely the condition that (H,A) be detectable. Thus 
the detect ability condition means that the state can be detected, with 
error which decays to zero, at the output of an appropriately designed 
observer. 

Notes 

Section 1.1.1 There are many good introductory texts on probability, 
for example Larson (1969). More advanced texts, such as Kingman 
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and Taylor (1966) or Chow and Teicher (1978) involve measure 
theory, which is necessary for an adequate treatment of the more 
technical parts of the subject. In particular, the existence of con­
ditional distributions for random vectors is proved in Theorem 2, 
Section 7.2 of Chow and Teicher (1978). 
Section 1.1.2 A very readable introduction to stochastic processes 
and their applications in time series modelling is given by Chatfield 
(1979); at a more technical level, Wong (1970) can be consulted. 
Stationary processes and spectral analysis are covered by Cramer and 
Leadbetter (1967), Hannan (1970), Priestley (1982) and Wong (1970). 
Hannan in particular gives detailed coverage of the multivariable 
case. 
Section 1.1.3 Convergence of sequences of real numbers is part of 
'real analysis'; see for example Bartle (1964). Convergence of se­
quences of random variables is discussed in any book dealing with 
measure-theoretic probability, such as Kingman and Taylor (1966). 
The Borel-Cantelli lemma (Lemma 1.1.13) is given by Chow and 
Teicher (1978, Lemma 2, Section 2.2). 

The ergodic theorem which we give as Theorem 1.1.15 is adapted 
from a continuous-time result of Cramer and Leadbetter (1967, 
Section 5.5). 
Section 1.2.1 See Anderson and Moore (1971), Chen (1970), Kailath 
(1980) and Kwakernaak and Sivan (1972) for supplementary reading 
in linear systems theory. The authors of these books occupy 
themselves for the most part with continuous systems but, at least as 
far as the topics we consider are concerned, the continuous-time and 
discrete-time theories run in parallel. Suitable background in linear 
algebra can be acquired from a number of texts, for example Lang 
(1979). For a more advanced treatment, we refer to Gantmacher 
(1964). 

Kalman and his co-workers (1963) provided a key early paper on 
controllability. The rank tests for controllability had, however, 
appeared independently in the literature as a technical hypothesis in 
optimal control theory (LaSalle, 1960). The concept of observability is 
due to Kalman (1960). The condition for controllability, which we refer 
to as the Hautus condition, first appeared in Hautus (1969). 
Section 1.2.2 Early proofs of the pole assignment theorem, for multi­
input systems, were provided by Popov (1964) and Won ham (1967). 
Wonham drew attention to the significance of stabilizability and 
detectability in quadratic cost control and linear filtering, and the 
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characterization of these properties which we provide are implicit in 
his book (1979). 
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CHAPTER 2 

Stochastic models 

All science is concerned in some way with prediction, since the 
ultimate test of a scientific theory is its ability to predict the results of 
experiments which have not yet been carried out. In the context of 
engineering systems, a model is some description of a system which 
enables us to predict its behaviour when it is subjected to certain 
classes of inputs. Models may be divided into two categories, internal 
and external. Internal models describe the complete structure of a 
system, possibly including parts of it which do not contribute directly 
to observable outputs, whereas external models are concerned solely 
with describing the input/output behaviour of the system. There are 
two ways in which models may be arrived at: by an analysis of the 
components of the system using physical laws, or by a 'black box' 
approach whereby the contents of the 'box' are inferred from 
experimental data. In the former case the laws involved are those of 
Newtonian mechanics, electromagnetism, thermodynamics, etc. In 
elementary situations such as, say, describing the motion of a 
pendulum, Newtonian mechanics gives such good predictions that 
the distinction between 'model' and 'system' is almost forgotten. 
However, in more complicated cases - describing the motion of an 
aircraft, for example - it will be clear that the equations one writes 
down are only approximations, valid over a certain range of 
operating conditions. Models arrived at in this way are generally in 
the first instance internal ones, in that they involve the 'states' of 
various components comprising the system regardless of whether 
these states are 'observable'. An external model - which is, after all, 
less detailed - can often be derived from a given internal model; we 
study this question in Section 2.4 below. On the other hand, a model 
obtained by the black-box approach is necessarily external since no 
other information is available about the system than its input/output 
behaviour. 

In this book we are mainly concerned with input/output models 

60 
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and how to obtain them by data analysis. In this chapter, however, we 
introduce some general classes of models, internal and external, and 
study their properties. We shall deal only with linear models, that is to 
say models involving a linear relationship between inputs and 
outputs. Of course no real system is exactly linear, but many are 
approximately linear at least with respect to small variations around 
some operating point which are often what we wish to study. Also 
there cannot be any satisfactory general theory of non-linear models -
this class is simply too big to be treated as a whole - whereas for 
linear systems a unified theory is possible. 

A system is deterministic if its input together with certain initial 
conditions and times uniquely specify the output. Otherwise it is 
stochastic. We explain the non-unique response to input signals by 
supposing that the system has a random 'noise' input in addition to 
possible control inputs. Thus denoting input, output and noise by 
u,y, w respectively we represent the system as in Fig. 2.1. 

The actual noise in a system may well be generated internally, say 
by thermal noise in electronic components, but conceptually this is not 
different from regarding it as being injected by some external source 
(in either case, it is not supposed that the noise can be directly 
measured). An important restriction on the class of systems we 
consider is that the noise should be additive. This excludes some quite 
natural phenomena such as randomly varying gains but is necessary if 
we are to stay within the framework of linear systems. In fact if the 
basic input/output relationship is linear and the noise is additive then 
the noise can always be regarded as being added at the output, giving 
us a somewhat simplified model structure as depicted in Fig. 2.2. 

Fig. 2.1 

W 

v-1L----...JS ~-+ • y 

Fig. 2.2 
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A full description of a system model in this form must specify 

(a) The input/output behaviour of system S; and, 
(b) The statistical characteristics of the noise w. 

So far we have said nothing as to the nature of time. Here we have a 
choice between continuous-time and discrete-time models, and a viable 
theory can be developed either way. In this book we only consider 
discrete-time models. These arise in practice either because the data 
for the system under study is presented in discrete form (for example, 
monthly or quarterly economic data) or because we wish to discretize 
an underlying continuous system for purposes of computer control. 

If a model is to be identified from data then it is essential that it be 
chosen from a finitely parametrized model set, that is to say a set 
{M(8): 8ED} indexed by a finite-dimensional parameter 8. Choice of a 
parameter 8 from D then specifies the model M(8) uniquely. A broad 
class of discrete-time linear systems with this property is that of state­
space models, such a model being represented by the equations 

xk+ 1 = AXk + BUk 

Yk = HXk' 

Here X k is the state of the system at time k and Uk' Yk are the input and 
output respectively. If Xk' Uk' Yk are of dimension n, m, r then this 
model is specified by a parameter vector 8 of dimension n2 + nm + 
nr + n whose components are the elements of the matrices A, B, H 
together with an initial state vector Xo' All of the system models we 
consider below can be represented in this form, though they may be 
parametrized in some other way. 

To complete our description of the model of Fig. 2.2 we have to 
'specify' the noise w. The most precise specification would be to give 
the finite-dimensional distributions of the process {wk }. Generally, 
however, this is overambitious: estimating the distributions of 
random variables is not an easy task, and usually we will only be 
concerned with properties involving means and covariances. One can 
suppose that {Wk} has zero mean (the mean is a deterministic sequence 
which can be modelled as part of the system S), which leaves the 
covariance function to be specified, or equivalently, if W k is stationary, 
the spectral density function. The class of all covariance functions is, 
however, 'too big': again for model-fitting purposes we must have a 
finitely parametrized set of covariance functions. How to obtain 
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White noise f---....,W 

+ u I---o--·y 
+ 

Fig. 2.3 

useful classes of finitely parametrized covariance functions is in fact a 
major topic of this chapter. The general strategy is to start from a very 
simple process - white noise - and then obtain other processes by 
'filtering' it, i.e. passing it through a linear system. The coefficients of 
this linear system then specify the noise covariance. This approach 
gives us the model of Fig. 2.2 in a 'symmetrized' form, as shown in 
Fig. 2.3. In terms of parametrization the whole model is reduced to 
two linear systems Sand S, the coefficients of which specify the 
input/output relation and the noise spectral density respectively. 

The chapter is organized as follows. In the first two sections we set 
up the mathematical machinery which will permit us to make sense of 
and analyse processes generated at the output of stochastic dynamical 
models expressed as difference equations. Considerable attention is 
then given to ARMA models, the important class of noise models in 
which the noise process is taken to be the solution of a difference 
equation driven by white noise. We investigate their properties and 
examine the nature of the assumptions on the noise process implicit in 
choice of such models. Finally, we incorporate the noise model in a 
linear system, to obtain a model of the overall stochastic dynamical 
model, and give some related formulations. 

2.1. A general output process 

Many stochastic models incorporate as a basic building block an r­
vector process {Yk} which results from passage of another, I-vector 
process {ek} through a linear system. It is necessary to attach a precise 
meaning to processes which arise in this way and to examine their 
properties. For concreteness we shall refer here to the Yk and ek as 
'outputs' and 'disturbances' respectively, although in applications of 
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the results of this section they will often have interpretations other 
than the actual outputs and disturbances associated with the stochastic 
dynamical system in question. Initially we adopt a somewhat abstract 
framework for definition of the process {Yk} because this is convenient 
for analysis. We shall see in the next section that our theory is consistent 
with an intuitive definition of the output of a system defined by 
stochastic difference equations. 

Let ek , kEZ, be a collection of I-vector random variables. Let 
T(a) be an r x I matrix of rational functions in the complex vari­
able a. We can represent T(a) in terms of a scalar polynomial g(a) 
in a and r x I matrices Go, ... , Gn thus: 

(2.1.1 ) 

We wish to consider the process {yd obtained by passing the dis­
turbance sequence {ed through a linear system with 'transfer 
function' T(z - 1): 

(2.1.2) 

Here Z-1 is the backward shift operator defined by Z-1 ek : = 
ek - l' Powers of Z-1 are defined recursively by Z-(i+ 1)ek : = z - 1 (z -ie)k' 

so that Z-iek = ek-i' When g(a) = 1, T(a) is a polynomial in a and 
(2.1.2) is simply an operational way of stating that Yk is given by 

n n 

Yk = L (Giz-i)ek = L Giek- i· 
i;O i;O 

When g(a) #- 1 we express T(a) in the form of an infinite-degree 
polynomial as in (2.1.5) below and interpret (2.1.2) as the corres­
ponding infinite sum. This approach can be made precise under the 
following hypotheses. 

There exists a number c > 0 such that 
(2.1.3) 

for all kEZ. 

Here d is positive integer which will vary with different applications. 
Also, some representation (2.1.1) can be chosen for T(Z-1) such that 

a -+ g(a) has all zeros outside the closed unit disc. t (2.1.4) 

tThe 'closed unit disc' is the closed subset g: 1(1 ::; I} of the complex plane. 
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Take To, T1, ... to be the matrix coefficients which result from 
formal expansion of T(a) about a = 0: 

T(a) = To + T1a + T2a2 + ... (2.1.5) 

Such an expansion is clearly possible under hypothesis (2.1.4). The 
T; are called the Markov parameters associated with the transfer 
function T(z - 1). 

We now are ready to define the solution {Yk} to the equation (2.1.2). 
It is 

N 

Yk = lim L T;ek-;· (2.1.6) 
N-+oo ;=0 

The limit here is taken in the dth mean. (The positive integer d is that 
of hypothesis (2.1.3)). The following lemma tells us that the limit exists 
and that therefore the definition makes sense. It provides also the 
information that the Yk have uniformly bounded dth order moments. 

Lemma 2.1.1 

Suppose that hypotheses (2.1.3) and (2.1.4) are true. Let To, T1, . .. be 
the Markov parameters of T(z - 1) (see (2.1.5)). Then the partial sums 

N 

sk(N) = L Tiek- i, 
;=0 

N= 1,2, ... 

converge to a limit Sk in the dth mean as N -+ 00, for each kE7L, and 
there exists a constant c 1 > 0 such that 

for all kE7L. 

PROOF Taking note of hypothesis (2.1.4), we deduce from Propo­
sition 0.3.3 of Appendix 0 that there exist numbers C2 > 0 and 
AE(O, 1) such that 

i = 0, 1, ... (2.1.7) 

(The norm here is the spectral norm; see Appendix D.) 
For k an integer and M, N non-negative integers such that M ~ N, 

define 

N 

8k(M, N) = L T;ek-i· 
i=M 
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We have 

Ilck(M,NW S CtM IITdlllek-ill y 
S C1CtM Aillek_d1 Y 

by (2.1.7) 

Sc~CtM)"iy-l CtM Ailleilld) 

by the generalized Holder inequality (see Appendix E). 
Taking expectations and noting hypothesis (2.1.3) we obtain from 

this inequality: 

which implies 

(2.1.8) 

We see that 

supEllck(M,NW--+O as M-+CIJ (2.1.9) 
N?::M 

for each kEZ. Noting that Ek(M, N) is related to the partial sums by 

Ek(M, N) = sk(N) - sk(M - 1) 

we deduce from (2.1.9) that {sk(N)}N is a Cauchy sequence in dth 
mean, and therefore that the limit in dth mean lim siN) exists. 

N-+oo 

Since sk(N) = Ek(O, N) we deduce from (2.1.8) that 

Ellsk(N)lldsC1, forallkEZ,N?O, 

where C 1 = cc1 Ad /(1 - At But sk(N) --+ Sk in dth mean. It follows that 

o 

An important feature of the relationship between disturbances and 
outputs provided by the transfer function T(z - 1) is that the effect of 
the disturbance ek (at time k) on subsequent outputs (Yk,Yk+l"") 
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falls off exponentially. In the analysis of identification algorithms 
transfer functions To(z - 1) need to be considered which depend on a 
parameter (). Here, under suitable hypotheses, the exponential decay 
is uniform with respect to the parameter (), as we now show. 

Let {Yk((})} be defined by 

Yk((}) = Tiz- 1)ek, kEZ 
TO(Z-l) = [go(z-l)]-lGo(z-l)ek 

(2.1.10) 

(2.U 1) 

in which () is a parameter which ranges over some compact subset f!) of 
~q. In (2.1.11), gO(Z-l) is a polynomial in Z-l: 

gO(Z-l) = go((}) + gl((})Z-l + ... + gn((})z-n 

with coefficients go((}), ... , gi(}) real numbers which depend con­
tinuously on (). G o(z - 1) is a polynomial in z - 1: 

GO(Z-l) = Go((}) + G1((})Z-1 + ... + Gn((})z-n, 

with coefficients r x I matrices Go((}), ... , Gn((}) which depend con­
tinuously on (). {ek } is a sequence of I-vector random variables. The 
notation Yk((}) emphasizes that the solution depends on the parameter 
(). 

It will be assumed that our earlier hypotheses assuring that (2.1.10) 
does indeed define {Yk((})} are in force, namely there exists a number 
c > 0 such that 

for all ke"Z. (2.1.3) 

(d is some fixed positive integer), and 

for all (}Ef!), u ..... go(u) has all zeros outside the closed unit disc. 
(2.1.12) 

Proposition 2.1.2 

Consider processes {Yk((})} kEZ, (}Ef!), defined by (2.1.10). Suppose that 
hypotheses (2.1.3) and (2.1.12) are true. Then there exist constants 
C3 > 0, AE(O, 1) such that 

for all (}Ef!). 

PROOF Let To((}), T1((}), •.. be the coefficients in the formal expan­
sion of [go(u)] -1 Go(u) about u = O. By Proposition D.3.3 of 
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Appendix D there exist C1 > ° and 2E(0, 1) such that 

Now define 

We have 

by (2.1.13) 

for 8EP2, i = 0,1, ... 

N 

sN(8,k)= L T;(8)ek- i· 
i=O 

II sN(8, k) lid S (Jo II T;(8) 11·11 ek -i II r 
sc~(Jo 2illek_illY 

s c~ (ito },i J-1 it ).i II ek - i II d 

by the generalized Holder inequality (Appendix E). 
Taking expectations, we deduce that 

N 

Ell sN(8,k)ll dsc3 L 2iEllek_i ll d 
i=O 

(2.1.13) 

where C3 = c1 (1 - 2) -(d- 1). Passage to the limit N ---+ CfJ on both sides 
of this inequality gives 

00 

EIIYkildsc3 L 2iEllek_dl d 

i=O 

since, by definition of Yk(8), sN(8, k) ---+ Yk(8) in dth mean and since, by 
hypothesis, {E II ek _ i II dL~ 0 is a sequence of uniformly bounded 
numbers. 0 

Notice that Proposition 2.1.2 provides bounds for changes in the 
output {Yd resulting from changes in the disturbances {ek } since the 
system of equations (2.1.10) is linear; it will be in this guise that 
Proposition 2.1.2 will prove most useful. 

2.2 Stochastic difference equations 

In this section we examine systems in which the output sequence {Yk} 
is related to the input sequence by difference equations: 

AoYk + A 1Yk-l + ... + AnYk-n = BOek + B1ek-1 + ... + Bnek-n 
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where Ao, ... , An are r x r matrices and Bo, ... , Bn and r x I matrices. 
His assumed thatAo is non-singular. We shall show that initial data can 
be supplied in the form of the finite past of both {Yd and {ek } (here the 
definition of {Yk} in terms of {ek} is elementary) or alternatively in the 
form of the infinite past of just {ek } (in this case we must draw on the 
theory of Section 2.1). The output processes corresponding to these 
two different frameworks will then be related. 

Recall that we interpret z - 1 as the backward shift operator: more 
precisely if {Uk} is any sequence then z - 1 {ud denotes the same 
sequence shifted backwards by one time unit, i.e. the ith element of 
Z-l {Uk} = Ui-1, for all i. Powers of Z-l are defined in the following 
manner: the ith entry of z - n {ud = Ui _ n' for all i. 

The difference equations can be expressed in terms of the shift 
operator as 

(2.2.1) 

in which A(Z-l), B(Z-l) are polynomials in Z-l with matrix 
coefficients: 

A(Z-l) = Ao + A1z- 1 + ... + Anz-n, 

B(Z-1)=Bo+B1z- 1 + ... + Bnz-n. 

Eqn. (2.2.1) should be regarded as shorthand for the equation for 
sequences 

n n 

L Aiz-i{Yk} = L Biz-i{Uk}' 
i=O i=O 

Here AO{Yk} denotes {AOYk} etc., and sums of sequences are defined in 
an obvious manner. 

Notice that our formulation does not restrict us to consideration 
of situations in which the output and disturbances are subject to 
the same number of delays, since we can take certain of the Ai or 
Bi to be zero. 

Initial data must be supplied if the outputs Yk' k = 0, 1, ... are to 
be well-defined, given ek' k = 0, 1, .... Two forms of initial data are 
commonly considered. On the one hand, we can take (2.2.1) at face 
value as a difference equation which we can rewrite 

Yk = AD 1 [ - A1Yk-1 - ... - AnYk-n + BOek + ... + Bnek-nJ, 

k = 0,1,.... (2.2.2) 

Initial data Yk' k = - 1, - 2, ... , - n, ek, k = - 1, - 2, ... , - n which 
may possibly be random, is appropriate here. Knowledge of this 
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initial data, together with the disturbances ek , k = 0,1, ... clearly 
permits us to generate the outputs Yk, k = 0, 1, ... by recursive solution 
of equations (2.2.2). On the other hand, we can take as initial data the 
'infinite past' of the disturbance process at time 0, namely 
L 1, e _ 2' .... In this setting restrictions must be placed on the 
equation parameters, the disturbances and the initial data, in order 
that they well-define the output {Yk}' 

In order to interpret (2.2.1) when the initial data is the infinite 
past of {ek} .we rewrite (2.2.1) as 

Yk = T(z-1)ek' (2.2.3) 
with 

T(Z-1) = [g(Z-1)]-1G(Z-1) 

in which g(z-1)=det[A(z-1)] and G(z-1)=(Adj[A(z-1)])B(z-1). 
Then Yk is defined by the limit (2.1.6). This is possible, in view of 
the theory of Section 2.1, provided there exists a number c > Osuch 
that 

Elleklld~c, kEZ (for some d) (2.2.4) 
and 

the zeros of u --+ det A(u) lie outside the closed unit disc. (2.2.5) 

Now suppose that the initial data is the infinite past of {ek}' 
Assuming of course that (2.2.4), (2.2.5) hold, we shall show that in 
this case Yk satisfies 

Yk=Ao1[ -A1Yk-1 - ... -AnYk-n + BOek + ... + Bnek-J, 

k=O,I, .... (2.2.2), 

The last equation can be interpreted as a recursive equation for 
YO,Y1,'" with (random) starting values e_ 1, ... ,Ln,Y-1>···,Y-n 
(The random variables Y-1, ... ,Y-n are obtained from (2.2.3)). In 
other words, the process Yo, Y1, . .. defined by (2.2.3) (and (2.1.5)) 
coincides with the solutions to the recursive equation 

A(z-1)Yk=B(z-1)ek, k= 1,2, ... 

provided the initial data on the variable Yk are chosen appropriately. 
Of course the converse is not necessarily true. Definition (2.2.2) makes 
sense if merely det [A(O)] "# ° and arbitrary initial data Y -1"", Y -n' 
e -1"'" e -n are given, whereas the definition provided by (2.2.3) can 
be used only when u--+det[A(u)] has zeros outside the closed unit 
disc and when the initial output data Y -1, ... , Y _ n is compatible 
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with past disturbances L 1, L 2, ... , in the sense that 

Yk= T(z-l)ek , k= - t, ... , -no 

One instance when they are compatible is when e -1 = 0, e _ 2 = 0, ... 
and Y _ 1 = 0, Y - 2 = 0, ... , Y _ n = 0; the difference equations 

Yk=Ao1 [A 1Yk-l + ... + AnYk-n + BOek + "'+Bnek-n], k=O, t, ... 
Yk = 0, ek = 0, k = - 1, ... , - n 

generate the same process Yk> k = 0, t, ... as 

k=O, t, ... 

provided ek = 0, k = - 1, - 2, ... , and the zeros of u -+ det A(O) lie 
outside the closed unit disc. This example is important since it is 
natural to formulate models for identification as difference equations 
with initial data specified over a finite time interval, yet the analysis 
is often simpler if we treat the output as a function of the infinite 
past of the disturbances. The example tells us this can be done when 
the initial data on the difference equation is zero and the system is 
stable. 

Let us confirm that Yk defined by (2.2.3) satisfies equation (2.2.2). 
The Markov parameters To, T1, ••• of T(Z-I) satisfy 

(Ao + A 1u + ... + Anun)(To + T1u + ... ) = Bo + B1u + ... + B.un• 

We deduce (on equating powers of u) 

j = 0, t, ... ,n 

mi~.n} 

L AiTj-i=O, j>n. 
i=O 

Define for N > nand k = 0, t, ... 
k+N 

Yk(N) = L Tjek- j' 
j=O 

We have, by definition of Yk' 

(2.2.6) 

Yk(N)-+ Yk in dth mean as N -+ 00. (2.2.7) 
Now 
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The double summation on the right-hand side can be rearranged 
and written 

k+N( min{j,Il} ) 

L L A)j-i ek - j' 
j=O i=O 

In view of (2.2.6), this is precisely L1= o Bjek _ j' since N > n, k ~ 0. It 
follows that 

Yk(N) = Ao 1 [ - A1Yk-l(N) - ... - AnYk-n(N) 

+ BOek + ... + Bnek-nJ. 

Bearing in mind (2.2.7) and taking the limit N --+ 00, we deduce that 
Yk' k = 0,1, ... satisfies the difference equations (2.2.2) as claimed. 

2.3 ARMA noise models 

A widely employed and versatile noise model takes a noise process 
{nd as the output of a linear system, defined by difference equations 
driven by white noise, According to this model {nk} is given by 

A(z-l)nk = B(z-l)ek, kE'Z (2.3.1) 

in which 

and 

B(u) = B + B u + ... + B Ud2 o 1 d2' 

The matrices Ao, ... , Ad, are r x r and the matrices Bo, ... , Bd2 are 
r x l. (It is convenient to emphasize here that A(u), B(u) might be of 
different degrees.) It is assumed that the roots of u --+ det A(u) lie 
outside the closed unit disc. We take {ekhEZ to be a sequence of 
zero-mean, uncorrelated second-order vector random variables with 
common covariance matrix W. 

One important special case occurs when A1, ... ,Adl take value 
zero. The equations can then be organized 

nk = EOek + E1ek- 1 + ... + Ed2ek-d2 (2.3.2) 

in which Eo = Ao 1 Bo, El = Ao I B I " •.. Models of the form (2.3.2) 
are called moving average models (MA for short) since the noise 
variable is expressed as a weighted average of present and past values 
of the white noise. 
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The situation when B1, ... , Bd2 take value zero is another 
important special case. In this case the equations can be organized 

nk + A1nk - 1 + ... + Ad,nk-d, = ek 

where A1=Ao1A1' A2 =Ao1A2 , ••• and {ek } is the process 
{Ao 1 BOek}. Models of this kind are called autoregressive (AR for 
short) models since the equations for the current value of the process 
{nk } involve a linear combination of (or in classical statistical 
parlance 'regression on') past values of the same process. 

The model (2.3.1) in its full generality, which contains moving 
average and autoregressive terms, is referred to as an autoregressive 
moving average model (ARMA for short). 

Notice that, by the theory of Section 2.1, {nk } is a well-defined 
second-order process. We have 

00 

nk = L Th-i kEZ 
i=O 

where To, T1, ... are the coefficients in the formal expansion of 
a-tA- 1(a)B(o") about 0: 

A-1(a)B(a) = To+ T1a+ ... 

and the infinite summation indicates a limit in mean square. 
(The formal expansion is possible since, by assumption, det Ao 
( = det A(O)) =#= 0). Actually {nk } is a wide-sense stationary process 
with spectral density function which is related in a simple way to 
the transfer function A(a) -1 B(a) as follows. 

Proposition 2.3.1 

The process {nd defined by equations (2.3.1) has zero mean and is 
wide-sense stationary. The process has covariance function 

I? 0 

1<0 

and spectral density function 

<1>(0)) = A -l(e- iw)B(e- iW)W[A -l(e- iW)B(e- iw)]* 

(the star * indicates complex conjugate transpose). 
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PROOF By definition 

nk = lim sk(N) 
N--+oo 

where sk(N) = Lf:o 7;ek-i. The limit is taken in mean square. 
For each N, sk(N) obviously has zero mean. The random variable 

nk therefore has zero mean since it is the mean square limit of a 
sequence of zero-mean random variables. 

We now calculate the covariance function R(l). 

R(l) = E{nknl-l} 

= E {( lim sk(N))( lim Sk-I(NW}. 
N~oo N-+oo 

We claim that we can bring the limiting operations outside the 
expectation operator and write 

E{nknl-l} = lim E{Sk(N)sl-I(N)} (2.3.3) 
N--+oo 

To see this observe that, for arbitrary N, nk can be written 

nk = sk(N) + ek(N) 

where 

The infinite summation indicates a limit in mean square. Now 
E{nknl- l} can be written 

E{nknl-l} = E{[Sk(N) + ek(N)] [Sl-I(N) + el-I(N)]} 

= E{ siN)sl -1(N) } + q(N) (2.3.4) 

where 

q(N) = Eek(N)sl-I(N) + ESk(N)el-I(N) + Eek(N)el-I(N). 

By taking spectral norms across this last equation, and by appealing 
to the Schwarz inequality (Proposition 1.1.2) and the properties of 
the spectral norm (see Appendix D) we deduce 

Ilq(N) II ~ (Ellek(N) 112)1/2(Ellsk_I(N) 112)1/2 

+ (Ellsk(N) 112)1/2(Ellek_I(N) 112)1/2 

+ (E II ek(N) 112)1/2(Ellek_I(N) 112)1/2. 

It now follows from the facts that, for fixed k, 1, Ell sk(N) 112 and 
Ellsk_I(N)112, N=O,l, ... are uniformly bounded and ek+I(N)-+O, 
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Bk(N)-tO as N -t 00 (see Proposition 2.1.2), that 

q(N)-tO as N -t 00. (2.3.5) 

Since (2.3.4) is true for arbitrary N, 

E{nknr-I} = lim [E{Sk(N)sl_I(N)} + q(N)] 
N-.oo 

by (2.3.5). We have verified (2.3.3). 
For each N, 

N N 

E{Sk(N)sl-I(N)} = L L 1jE{ek_jel-l-p}T! 
j=O p=O 

N N+I 
= L L 1jE{ek_jel- p}T!-1 

j=O p=1 

min{N,N+/} 
= L 1jWTJ-1 

j=max{O,/} 

{ ~t: Tj+IWTJ 120 
= N+I 

j~O TjWTJ-1 1 < 0. 

It follows from these expressions and (2.3.3) that 

We see that {Uk} is a wide-sense stationary process and the 
covariance function is as claimed. 

Notice next that, by Proposition D.3,3 of Appendix D, there exist 
numbers c > 0, AE(O, 1) such that 

j=0,1, ... (2.3.6) 

From these estimates and properties of the spectral norm it is not 
difficult to deduce that the covariance function R(') satisfies 

IIR(l)II ~ Ilj~m~{o,/} 1jWTJ-111 
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ex; 

::::; L IITfIIII WIIIITf-111 
j~max{O,I} 

::::; C 1 Alii, for I = 0, ± 1" " 

for some constant c l' So certainly Lr:;, _ rIO IIR(l) II < CfJ and therefore 
{nk } had a spectral density function <I>(w) which is given by 

ex; 

<I>(w) = L R(l)e- i1w, WEe - n, + n], (2.3.7) 
l~ -00 

F or the purposes of calculating <1>( w) it is convenient to introduce 
the convention Tk = ° for j < 0. Then R(l) can be expressed 

+00 

R(l) = L TfWT}-1 1=0, ± 1,,,. 
j= - 00 

Substitution into (2.3.7) gives 

00 00 

<I>(w) = L L TfWT}_le- i1W. 
l=-ooj=-oo 

However, we easily deduce from (2.3.6) that 

+00 +00 

L L II TfWTJ-l II <00. 
1= -ooj=-oo 

Under these circumstances we are justified in changing the order of 
summation and writing 

+00 00 

<I>(w) = L TfW L TJ_1e- i1W 
j=-oo 1=-00 

+00 +00 
= L TfW L T~e-i(j-m)w 

= C):oo Tje- ijW ) wCXoo T~eimw) 
= A -l(e- iw)B(e- iw) W[A -l(e- iw)B(e- iW)]*. 

This completes the proof of Proposition 2.3.1. o 

We have expressed the covariance function R(') of the process 
{nk } as an infinite sum. Sometimes we require expressions for 
values of the covariance function in closed form. These can be 
obtained from the Yule- Walker equations: 
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{ 

d2 

d, L B;WrJ-1 
L A;R(i -1) = j~maxlO,I} 
;=0 0 

Here the 1i are, as usual, the Markov parameters, To check these 
equations we post-multiply (2.3.1) by nI-1 and take expectations: 

The left-hand side is simply 

d, 

L A;R(l- i), 
;=0 

To evaluate the right-hand side recall that 

and so 

CIJ 

nk = L 1jek - i' 
j=O 

i-l:?O 

i-I < O' 
(2.3.9) 

Substitution of (2.3,9) into (2.3.8) yields the Yule-Walker equations. 
These equations can be solved for R(O), R( ± 1), R( ± 2), ... , under 

suitable non-degeneracy conditions. Let us see, first of all, how we 
can obtain R(O), R(± 1),,,,, R(± dl).Consideration of the values 
1 = 0,1, ... , dl yields dl + 1 linear r x r matrix equations for the 
2d l + 1 unknown r x r matrices R( - dl)' R( - dl + 1),,,., R(d l ). 
However, 

R( - W = R(i), all i, 

so the linear equations really involve just dl + 1 unknown r x r 
matrices, say R(O), ... , R(d l ). If the Jacobian matrix in question is 
non-singular the equations can be solved for R(O),,,., R(d1) (and 
hence R(-dl), ... ,R(dl )). We may now regard the Yule-Walker 
equations as recursive relations which yield the remaining R(k) given 
the starting values R( - dl )" .. , R(dd. 

In practice it is often more convenient, instead of using the 
Yule-Walker equations themselves, to use the idea behind their 
derivation. That is to say we obtain relationships between the R(j) 
as a result of mUltiplying across the ARMA model equations by 
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outputs or disturbances at different times and taking expectations. 
We shall illustrate this shortly. 

An alternative approach is to evaluate contour integrals. Here we 
note that the R(j) are the coefficients in the Fourier expansion of 
the function <I>(w) on [ - n, n]: 

+00 

<I>(w) = L R(j)e- ijw. 
j= - 00 

Consequently the R(j) can be recovered from <I>(w) by use of the 
'inverse' formulae: 

1 f" .. R(j) = - <I>(w)e')W dw, 
2n _" 

j=o, ± 1, ... 

Now 

f ~" <1>( w )eijw dw = f ~" A( e - iW)eijw dw 

(where A(a) is taken to be [A(a)]-IB(a)W[A-l(a- 1)B(a- 1)]T) 

= f~" A(e-iw)(eiwy-leiw dw 

= i-I t A(C 1)~j-l d~. 

The last integral is a contour integral in the complex plane around 
the unit circle, denoted r. It follows that 

R(j)=~f A(Cl)~j-ld~, 
2m r 

j=o, ± 1, ... (2.3.10) 

The right-hand side will be recognized as the sum of the residues of 
poles of ~ -+ A( C 1 )~j - 1 which lie inside the open unit disc. (No 
difficulties arise with poles on the contours because of our hypotheses 
on A(z - 1)). The problem of calculating the covariance function 
then reduces to one in residue calculus. In the event that ~-+ 
A(C 1)~j-l has only simple poles (let us write them ~ 1, ... , ~p) inside 
the open unit disc, we have 

R(j) = ~)residue of the pole at zJ 
i 
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Example 2.3.2 

79 

Consider a scalar autoregressive process {Yk} described by the 
equations 

(2.3.11) 

Here {ek } is a sequence of zero mean, second order, uncorrelated 
random variables, each of unit variance. We assume that lal < l. 
The Markov parameters associated with the transfer function 
(l-az- 1)-1 are l,a,a2 , .... Consequently the Yule-Walker 
equations take the form: 

R( _I) - aR(I-/) = {O 
alII 

(2.3.12) 

Setting 1 = 0 and 1, as prescribed above, yields equations for starting 
values R(O), R( - 1) (= R( + 1)): 

R(O) - aR( - 1) = 1 

R(-I)-aR(O)=O. 

These simultaneous equations for R( - 1), R(O) have solution 

R(0)=(I-a2)-1, R(-I)=a(l-a2)-1. 

Knowing R(O) we can solve (2.3.12) recursively for R( - 1), R( - 2), ... : 

for 1= -1, -2, .... 

A more direct approach is to multiply across (2.3.11) by Yk-I and 
take expectations: 

(2.3.13) 

Now Yk-I and ek have mean zero and are uncorrelated for 1 ~ l. 
Consequently 

R(l) - aR(l- 1) = 0, 

Setting 1 = 0 in (2.3.13) gives 

/ ~ 1. 

R(O) - aR(I) = E{ekYk}' 

(2.3.14) 

(2.3.15) 

In order to evaluate E{ekYk}, we multiply across (2.3.11) by ek and 
take expectations: 
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The second term on the left is zero and we deduce 

From (2.3.15) then 

R(O) - aR(1) = 1. (2.3.16) 

It follows from (2.3.14) and (2.3.16) that 

1= 0, 1,2, ... , 

in agreement with our earlier calculation. 
Finally we illustrate computation of the covariance function by 

contour integration. According to Proposition 2.3.1, the process {Yk} 
has spectral density 

W(w)=(I-ae- iw)-l(l-aeiw)-l. 

Formula (2.3.10) for the covariance function gives 

RU)=~f (1-aCl)-l(l-a~)-l~j-ld~. 
2m r 

The integrand can be expressed 

(~ - a)(1 - a~)" 

For j = 0,1, ... this function has just one first-order pole in the unit 
disc; it is at ~ = a. The residue at ~ = a is 

It follows that 

j=0,1, ... 

whence 

as before. 

It is natural to enquire into the nature of the assumptions implicit 
in consideration of ARMA noise models. As we have seen, the ARMA 
noise model (2.3.1), under the stated hypotheses, has spectral density 
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function <I>(w): 

<I>(w) = A - I(e - iW)B(e - iW) W[A -I (eiW)B(eiw)y 

81 

By multiplying numerators and denominators of entries of this matrix 
by a sufficiently high power of e- iw we can arrange that <I> has the 
property that its entries are rational functions of e - iw. It is essentially 
this property which characterizes a process whose spectral density 
function coincides with that of some ARMA noise model. In other 
words, consideration of an ARMA model amounts to assuming that 
the spectral density function is rational in e- iw. To be more precise, we 
have the following theorem. 

Theorem 2.3.3 

Let <I>(w) be a matrix spectral density function. The following is a 
necessary and sufficient condition that <I>(w) be the matrix spectral 
density function of some ARMA noise modelt : 

<I>(w) = A(e- iw) a.e. WE[ - n, + n] 

for some matrix A(a) of rational functions with real coefficients which 
is such that 

(2.3.17) 

Furthermore, any r x r matrix spectral density function which 
satisfies this condition is the matrix spectral density function of some 
ARMA noise model in which the noise vectors have dimension rand 
common covariance matrix Ir (the r x r identity matrix). 

Observe that, for any A(a) related to <I>(w) by <I>(w) = A(e- iw), 
(2.3.17) is automatically true for almost every a on the unit circle by 
properties of the spectral density function. Condition (2.3.17) requires 
the relation to hold almost everywhere on the complex plane, not just 
on the unit circle. 

Necessity of the condition given in the proposition is a simple 
consequence of the representation of the spectral density function of 
an ARMAX noise model provided by Proposition 2.3.1. To prove the 
rest of the theorem we need to show that if <l>(w) is an r x r matrix 

t'Almost every' (a.e. for short) means 'for all except a finite number of values of the 
variable in question'. 
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spectral density function expressible in terms of A as described in the 
proposition, then A can be written 

A(u) = [A -l(u)B(u)][A -1(u- 1)B(u- 1)]T 

where A, B are polynomials with r x r matrix coefficients and such the 
u--+det A(u) has no zeros in the closed unit disc; these polynomials 
will then serve to define an ARMA noise model (2.3.1) with spectral 
density function $(w) when we take cov{ek} = f r • 

We limit ourselves now to consideration to the scalar case. The 
matrix case, which is complicated, is treated by Hannan (1970), p. 128. 

COMPLETION OF PROOF OF THEOREM 2.3.1 (SCALAR CASE) Let us 
suppose that A(u) is not identically zero since otherwise $(w) is 
obviously associated with some ARM A noise model. 

We show first of all that none of the poles of A(u) lie on the unit 
circle. Suppose this were not the case. Then there is some eE 
[ - n, + n] such that e - iB is a pole of A( a), of multiplicity v. By means of 
partial fraction expansion we can express A(a): 

r(a) 
A(a) = ( iO r + s(a) e -a 

where r(u) is a polynomial such that r(e- iB) #0 and s(a) is a rational 
function of which e - iB is not a pole. It is not difficult to see that, as 
w --+ e, A(e - iw) deviates by an arbitrarily small amount from tjJ(w): 

tjJ(w) = iVr(e-iB)eviB(w - er v + s(e- iw). 

But because of the w --+ (w - e) - v singularity tjJ(w) is not an integrable 
function. It follows that neither is A(e- iW). This contradicts our 
assumption that A(e- iw) is a spectral density function. So A(a) can 
have no poles on the unit circle. 

Next note that, in the scalar case which we consider here, (2.3.17) 
can be expressed 

a.e. UEe. (2.3.18) 

Suppose now that b (b # 0) is a zero of A(u) of mUltiplicity J1.1t follows 
from (2.3.18) and the fact that the coefficients of A(a) are real that b -1, 

b* and (b*) - 1 are also zeros of multiplicity J1. The zero b occurs then as 
a member of a certain configuration of 4,2 or 1 distinct zeros, each of 
multiplicity J1, depending on how many distinct complex numbers are 
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generated by the operations of inversion, complex conjugation and 
inversion of the complex conjugate. Let us state these conclusions 
more precisely. An arbitrary complex number e, if it is not 0, 1 or - 1, 
is of one of the following three types: 

Type 1: Im{ e} ;t: 0 and lei ;t: 1 
Type 2: e is real and e ;t: 0, 1 or - 1 
Type 3: Im{e} ;t: 0 and lei = 1. 

If b is a zero of type 1 and with multiplicity Jl then b occurs in a 
configuration of four distinct zeros, each of multiplicity Jl and of the 
same type. This is true also for both type 2 and type 3 zeros, except 
that in these two cases the configurations are of just two distinct zeros. 

The poles of A(a) have analogous properties. Note however that, in 
view of earlier remarks, poles of type 3 (which lie on the unit circle) 
cannot arise. 

If then b is a zero of multiplicity Jl and of type 1, A(a) can be 
factored: 

A(a) = D(a)h(a)h(a- 1) 

in which h(a) is the polynomial with real coefficients 

h(a) = (a - W(a - b*)1l 

and D(a) has neither poles nor zeros at b, b*, b -1, (b*) - 1. Notice that 
we can always arrange that the roots of the polynomial h(a) lie 
outside the closed unit disc by modifying h(a) and D(a) in the factoriza­
tion if necessary. Indeed 

h(a)h(a- 1) = (bb*fll ii(a)ii(a- 1) 

where 

ii(a) = (a - b- 1)Il(a - (b*)-l)1l). 

If b lies inside the open unit disc then b - 1 and (b*) - 1 lie outside the 
closed unit disc, so the desired factorization can be achieved if we 
replace h(a) by ii(a) and multiply D(a) by (bb*)2 1l. 

Such reasoning applied also to the poles of type 1 and to the poles 
and zeros of type 2 leads to the conclusion that A(a) can be factored 

A(a) = kaP(a - l)q(a + 1)'P(a)G(a)G(a- 1). (2.3.19) 

Here k is a (possibly complex) number and p, q and r are integers. 
G(a), constructed from poles and zeros of types 1 and 2, is a rational 
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polynomial which has real coefficients and which has all its poles and 
zeros outside the closed unit disc. P( a), which arises from zeros of type 
3, is identically 1 or has roots on the unit circle and is of the form 

P(a) = O(a-2cos8k+a- 1)1'k. (2.3.20) 
k 

In this last expression the 8/s are distinct real numbers lying in the 
set (- n, O)u(O, n) and the Jik'S are positive integers. We claim that the 
Jik'S must be even. Otherwise we can arrange by reordering that Ji1 is 
odd. Then A(a) can be factored 

A(a)=(a-2cos81 +a- 1)I'IF(a) 

in which F(a) is a rational function which does not vanish at a = e - i8k • 

Consider now 

A(e- i(81 H)) = 21'1(cos(8 1 + <5) - cos 81)1'1 F(e- i(8,H)) 

as a function of <5 on some neighbourhood of O. Since Ji1 is assumed 
odd, this function changes sign as <5 passes through O. This contradicts 
the non-negativity of the spectral density function; we conclude that 
the Jik'S must be even. 

Since the Jik'S in (2.3.20) are even, we can factor P( a), if it is present in 
(2.3.19), as 

P(a) = Q(a)Q(a- 1) 

in which Q(a) = Q(a- 1). Writing G(a) for Q(a)G(a) we obtain the 
representation 

(2.3.21 ) 

in which G(a) is a rational function with real coefficients which has no 
zeros inside the open unit disc and no poles inside the closed unit disc. 

Because A(a) cannot have poles on the unit circle we deduce from 
(2.3.21) that q, r Z O. From (2.3.18) 

a.e. aEC. 

This identity can be satisfied only if q is even and 2p + q + r = O. But 
then r must also be even and 

aP(a-l)q(a+ l)'=(a-1)Q/2(a+ l)'/2(a- 1 -l)Q/2(a- 1 + l)'/2(-1)Q/2. 

We have shown that 

a.e. aEC (2.3.22) 
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where H(a) is the rational function with real coefficients 
H(a) = (a + 1)r/2 (a _1)q/2 G(a) and f = k( - l)q/2. The facts that both 
A(a) and H(a) have real coefficients and are not identifically zero lead 
us to the conclusion that f is real. 

Let us now note that f must be positive. Since A(e- iw) is a (scalar) 
spectral density function it assumes real, non-negative values. By 
assumption it is not identically zero however and so A(e- i6) > 0 for 
some BE[ - n, + n]. Then 

fIH(e- i6W = fH(e- i6 )H(e i6 ) = A(e- i6 ) > o. 
This inequality implies f> O. 

Since fis positive, we may remove it from (2.3.22) by absorbing 12/2 

into H(a). There results a representation of A(a) of the form (2.3.18) in 
which A(a) has no zeros in the closed unit disc. The proof is complete 
in the scalar case. 0 

Scrutiny of the proof will reveal that we have actually established 
(in the scalar case) rather more than is claimed in the theorem, namely: 
a scalar spectral density function which satisfies the condition of the 
theorem can be realized by an ARMA noise model (2.3.1) in which the 
polynomial B(a) has no zeros in the open unit disc. 

2.4 Stochastic dynamical models 

We now describe a number of important stochastic dynamical 
models. They all conform to the description of Fig. 2.3, namely the 
output supplied by the model can be interpreted as the output to a 
deterministic system S driven by the input, to which has been added a 
noise process {Wk} expressible as the output of a second linear system 
S driven by white noise. It will turn out that all the models which we 
describe in this section are essentially different forms of the same 
model. There is a point none the less in separating them out, since 
different forms of the model suggest different controller design and 
identification procedures. 

2.4.1 General stochastic dynamical models 

According to this model the sequence of r-vector outputs {Yk} and m­
vector inputs {Uk} are related by 

Yk = p(Z-l)Uk + Q(z-l)ek· (2.4.1) 
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Here P(a), Q(a) are r x m, r x r matrices of rational functions in a 
expressible as 

P( a) = p - 1( a)P( a), Q( a) = q - l(a)Q( a). 

In these expressions p(a), q(a) are polynomials in a such that p(O) +- 0, 
q(O) -=I- O. P(a), Q(a) are polynomials in a with coefficients r x m, r x r 
matrices respectively. The driving noise process, {ed, is a collection of 
zero mean, uncorrelated r-vector random variables. We make few 
restrictions on the nature of {ek } at this stage, but will impose 
additional conditions on {ek } in the future as the need arises (e.g. the 
ek's have common covariance matrix, are independent, etc.). 

In accordance with our earlier remarks {Yk} is expressible as the 
sum of the output {yt} from a deterministic linear system given by the 
input: 

yt = P(Z-l)Uk 

and a noise process which is the output {wk } of a linear system driven 
by white noise {ek }: 

Notice that we have taken the ek's to be of the same dimension as 
the outputs. This is not unreasonable since if the noise at the output, 
{wk }, is a wide sense stationary ARMA process then we can assume 
without loss of generality, so far as second order statistics of {wd are 
concerned, that the driving noise has the same dimension as {wd (see 
Theorem 2.3.3). 

2.4.2 ARMAX models 

ARMAX models are obtained by appending a moving average of the 
input to the ARMA noise model of Section 2.3. The 'X' in the label 
ARMAX attached to these models refers to the terminology 'exog­
eneous variable' used in the econometrics literature to mean 'external 
inputs to the system'. The r-vector outputs Yk and m-vector inputs Uk 

are related then by 

A(z -l)Yk = B(z -1 )Uk + C(z -1 )ek • (2.4.2) 

In this equation, A(a), B(a), C(a) are polynomials in a with coefficients 
r x r, r x m, r x r matrices, and A( a) satisfies det A(O) +- O. {ek } is a 
collection of zero-mean, uncorrelated r-vector random variables. 
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2.4.3 Stochastic state-space models 

Stochastic state-space models result from adding noise processes to 
the state and observation equations of the linear system model 
studied in Section 1.2. Thus the r-vector outputs {yd are related to 
the n-vector states {xd by the equations 

Xk + 1 = AXk + BUk + Cek 

Yk = HXk + Gek · 
(2.4.3) 

Here A, B, C, H, G are n x n, n x m, n x I, r x n, r x I matrices 
respectively. {ek } is a sequence of zero-mean uncorrelated I-vector 
random variables, and the initial state Xo is uncorrelated with {ed. 
Note that by superposition X k, Yk can be written as 

where 

and 

X k = xk + xt, 

Yk = Yk + yt 

xt+ 1 = Axt + Buk , x~ = Exo 

yt =Hx* 

Xk+ 1 = AXk + Ceb Xo = Xo - Exo 

(2.4.4) 

.h = HXk + Gek· (2.4.5) 

Referring back to Fig. 2.3 at the beginning of this chapter, we see that 
(2.4.4) and (2.4.5) represent the 'system' and 'noise' models Sand S 
respectively, both in state space form. 

Some covariance calculations for state space models 

Consider the stochastic state space model when the input is zero: 

Xk+ 1 = AXk + Cek 

Yk = HXk + Gek • 

(2.4.6) 

We assume that the ek's are uncorrelated, have zero mean and cov {ek} 
= I for all k. In future chapters we require detailed information about 
the covariance matrices of the state and output processes. We collect 
together the necessary results in the following proposition. 
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Proposition 2.4.1 

Suppose in (2.4.6) that the time set is 7L +, and the initial state Xo has 
mean mo and covariance Po. Then P(k): = COy {xd satisfies 

P(k + 1) = AP(k)AT + CCT, P(O) = Po (2.4.7) 

and 

{
HP(k)HT + GGT, j = 0 

COV{Yk,Yk-j}= HAjP(k-j)HT+HAj-1CGT, j=1,2, ... ,k. 

(2.4.8) 

If A is stable then P(k) ---+ Pas k ---+ CIJ where P is the unique solution of 
the L yapunov equation 

P=APAT+CCT. 

Furthermore if Po = P then P(k) = P for all k;:::: O. The mean 
m(k):=E{xd satisfies 

m(k + 1) = Am(k) 

m(O) = mo. (2.4.9) 

Now suppose that the time set is 7L and that A is stable. In this case 
{xd and {Yk} are widesense stationary processes, 

E{xd = 0, cov{xd = P 

and 

j=O 

j>O. 

Here P is once again the solution to the Lyapunov equation. 

PROOF Suppose the time set is 7L+. The equations (2.4.9) follow 
from taking expectations across the state equation. Defining 
xk : = X k - m(k), .h: = Yk - E {Yd we deduce from (2.4.9) and (2.4.6) that 
{xd, Lvd satisfy (2.4.5). By (2.4.5) 

xk=Ajxk_j+Aj-1Cek_j+ "'+Cek- 1 

for 1 s; j s; k. Since xk _ j is uncorrelated with e k _ j' ... ,ek _ 1 we deduce 
from this equation that 
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and 

E{xkel- j} = Aj-1C. 

It follows that, for 1 s j s k, 

COV{Yk,Yk-j} = E{YkyJ- j} = E{(Hxk + Gek)(Hxk_j + Gek_/} 
= HAjP(k - j)HT + HAj-1CGT. 
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By (2.4.5) and since xk and ek are un correlated, {P(k)} satisfies (2.4.7) 
and 

COV{Yk} = HP(k)HT + GGT. 

we have proved (2.4.7) and (2.4.8). 
Now suppose that A is a stable matrix, let vi! denote the set of n x n 

matrices and define for any DEA'I 

CD 

P(D):= I AkD(ATt (2.4.10) 
k=O 

P(D) is well-defined since for any XE [Rn 

IxT AkD(AT)kXI:S; c.tllxl12 

for some c > 0, AE(0,1) under the stability condition (see 
Appendix D). It is easy to see that P(D) satisfies 

P(D) = AP(D)AT + D. 

Let L be the map from vi! to vi! defined by 

L(P) = P - APAT. 

L can be thought of as a map from [Rn2 to [Rn2 since each matrix can be 
identified with the point in [Rn2 whose coordinates are its n2 entries. L 
is linear and its range is all of [Rn2 since for any matrix D there is a P 
such that L(P) = D, namely P = P(D). But it is a standard result in 
linear algebra that if the range of L is full then its null space (i.e. the set 
of P such that L(P) = 0) consists of only the zero element. Taking 
D = CCT this shows that the Lyapunov equation P = AP AT + CCT has 
unique solution P = P( CCT) and P is non-negative in view of (2.4.1 0). 
The nth partial sum of the right hand side of (2.4.10) coincides with 
P(k) given by (2.4.7) with Po = O. If Po 1= 0 then there is an additional 
term An + 1 P O( AT)n + 1 and this converges to 0 as n -HX). Thus P( k) --t P 
as k --t 00 regardless of the initial condition Po. 

Finally consider the case when the time set is Z. Since A is stable, 
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{xd and {Yd can be expressed as outputs of ARMA models (see 
below). By Proposition 2.3.1 then {x k } and {yd are widesense 
stationary processes. It follows from the state equation in (2.4.6) that 
cov {xd satisfies the Lyapunov equation and therefore, by unique­
ness, cov {x k } = P. We show much as before that, for j 2 1, 

E{xkxr- j } = AjP. 

We now deduce the formulae for the covariance function of {yd from 
the output equation in (2.4.6). 

2.4.4 Initial conditions 

F or each of the preceding models we can take the underlying time set 
to be either 7l. or 7l. + . 

Consider first the situation in which the time set is 7l. (which can be 
viewed as the case when initial data comes in the form of the infinite 
past of {Uk} and {ek}). The output {Yk} of the general stochastic 
dynamical model (2.4.1) is defined by 

Yk= T(Z-l)Ck 

where 

T=[P:QJ], Ck=[::J P=p-lp, Q=q-lQ, 

according to the theory of Section 2.1. This is possible under the 
additional hypotheses that {ek }, {ud have uniformly bounded 
moments of an appropriate order and that the zeros of p(a) and q(rr) 
lie outside the closed unit disc. The output {Yk} of the ARMAX 
model (2.4.2): 

A(Z-l)Yk = B(Z-l)Uk + C(z-l)ek 

is taken in this setting to be the output of the general stochastic 
dynamical model 

Yk = A -1(Z-I)B(z-I)Uk + A -1(z-l)C(z-l)ek 

in the sense just described. The output is well defined if rr -+ det A(rr) 
has all zeros outside the unit disc and if the moments of {ek}, {Uk} are 
suitably bounded. As for the space model (2.4.3): 

X k + 1 = AXk + BUk + Cek 

Yk = HXk + Geb 
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when the time set is 7L, the output Yk is taken to be that of the general 
stochastic dynamical model (2.4.1): 

Yk = p(Z-l)Uk + Q(z-l)ek 

with 
P(a) = aH[I - aA]-lB, Q(a) = aH[I - aA]-lC + G. 

It is not difficult to show that the hypotheses under which (2.4.1) 
defines {Yk} are satisfied if A has all its eigenvalues in the open unit 
disc, and the moments of {ud, {ed are suitably bounded. 

The other case to be considered is that when the time set is 7L +. Here 
the ARMAX model equation (2.4.2) can be solved recursively to yield 
Yk> k = 0,1,,,. (as a function of the inputs Un' U1,,,. and noise 
eo,e1, ... , provided initial data Y-l, ... ,Y-m U-l>''''U- n' 

e _ l' ... , e _ n is supplied). There is no difficulty either with defining the 
output to the state-space model (2.4.3) when the time set is 7L+. The 
state-space equations can be solved recursively given X o as initial 
data. It remains to consider general stochastic dynamical model 
(2.4.1). By extracting the least common multiple g(a) of the poly­
nomials comprising the denominators of entries of P(a) and Q(a), we 
can always express the general stochastic dynamical model equations 
as: 

Yk = g-l(Z-l)P(Z-l)Uk + g-l(Z-l)Q(z-lh 

for some polynomials P(a), Q(a) in a with matrix coefficients. For the 
purposes of computing the output to (2.4.1) when the time set is 71. +, 

the model is treated as the ARMAX model (2.4.2) with 

A(a) = g(a)J, B(a) = P(a), C(a) = Q(a). 

Initial data in the form of Y-l,· '" Y- n, U- 1,,,·, U_,i and e_ 1,,,·, e_,i 
is required, where Ii = max degree {g(a), P(a), Q(a)}. 

The arguments of Section 2.1 applied to the equations 

A(Z-l )Yk = [B(Z-l)iC(z-l)] [~: ] 

establish that our two notions of solutions to the ARMAX model 
equations for the output Yk are compatible to the extent that, if Yk is a 
solution on 7L then Yo, Y l' ... , is a solution to the recursive equations 
specified by 

A(Z-l)Yk = B(Z-l)Uk + C(z-l)ek, kE7L+, 
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when initial data on the Yk variable is suitably chosen. I t is not difficult 
to show that the two notions of solutions are compatible (in an 
analogous sense) for general stochastic dynamical models and state­
space models also. 

2.4.5 Interchangeability of models 

We limit attention to models for which the time set is 7L. As a by­
product of our discussion in the preceding subsection, we see that 
ARMAX models (2.4.2) and stochastic state-space models (2.4.3) can 
always be reformulated as general stochastic dynamical models (2.4.1) 
(under appropriate stability and boundedness assumptions, of 
course). It is clear, too, that a general stochastic dynamical model can 
always be rewritten as an ARMAX model: 

g(z -1 )Yk = P(z -1 )Uk + Q(z -1 )ek 

where the polynomial g(O") is the least common multiple of the 
denominators of P(O") and Q(O"), P(O"), Q(O") are suitable polynomials 
with matrix coefficients. 

In fact it is true that we can pass freely between all the models 
considered (subject to mild qualifications). To confirm this, it remains 
to show that an ARMAX model can be reformulated as a stochastic 
state-space model. This final step is supplied by the next proposition. 

Proposition 2.4.2 

Suppose that the processes {Yk}' {Uk} and {ek} are related by the 
ARMAX model equations 

Yk + AIYk-l + ... + AnYk-n = B 1uk- 1 + ... + Bnuk- n + COek 

+ C1ek - 1 + ... + Cnek -,,, kE7L, 

where AI' ... ' An are r x r matrices, B l' ... , Bn are r x m matrices, 
Co, ... , Cn are r x r matrices. Then there exists some 'state' process 
{xd such that the state-space equations 

o -An 

I - Al Bl 

Yk = [0: ... iI]xk + eb kElL, 

are satisfied by {Uk' Yk, ek}. 

[
Cn ~_~_n_CoJ 

Uk + : ek, 

C1 -A1 CO 
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Here I is the r x r identity matrix. 
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PROOF The ARMAX model equations can be organized as a 
'nested' sum: 

Yk=(-A1Yk-l +B1uk- 1 +C1ek- 1 

+ (- A2Yk-2 + B2uk- 2 + C2ek- 2 

+ ( ... (- AnYk-n + Bnuk- n + Cnek- n).··)+ COek· (2.4.11 ) 

Let us now introduce auxiliary variables defined by the recursive 
relations: 

x~ = - AnYk-l + BnUk- 1 + Cnek- 1 

x~ = - An-1Yk-l + Bn-1Uk-l + Cn-1ek- 1 + X~-l 

xz- 1 = -A2Yk-l +B2Uk-l +C2ek- 1 +xz=i 
and 

xZ = Yk - COek' 

Elimination of x~ , ... ,xZ - 2 from (2.4.12) gives 

x;; = ~ = (- A2Yk-2 + B2uk- 2 + C2ek-2 

+ ( ... ( - AnYk-n + Bnuk- n + Cnek- n) .. ·)· 

Comparing this equation with (2.4.11) we see that 

Substitution of (2.4.13) into (2.4.12) gives 

x~ = - AnXZ-l + BnUk- 1 + (Cn - AnCO)ek-l 

(2.4.12) 

(2.4.13) 

(2.4.14) 

(2.4.15) 

x~=(-An-lXZ-l +x~-1)+Bn-1Uk-l +(Cn-l-An-1CO)ek-l 

Finally, from (2.4.13) and (2.4.15) we have 

The last n equations, together with (2.4.13), can be organized as the 
state-space equations of the proposition. D 

The principal restriction on an ARMAX model 

A(Z-l)Yk = B(Z-l)Uk + C(z-l)ek 
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ek __ 3-I------,~----

Fig. 2.4 

in order that it can be reformulated as a stochastic state space model is 
that B(O) = O. In other words, there must be a pure delay between 
application of a control and its effect on the output. In addition, we 
require that A(O) = I. Since of course it is assumed that det A(O) =F 0, 
this last requirement can always be achieved by transformations. 

Readers may find it helpful to note that the choice of state 
components (for the state-space representation of an AR MAX model) 
which we have adopted in the proof of Proposition 2.4.2 is sum­
marized by the 'analogue circuit' diagram for the ARMAX model 
shown in Fig. 2.4, in which small circles represent multiplication by 
the given constant factor, the symbol L denotes summation. and the 
triangle a unit delay. 

2.5 Innovations representations 

Suppose an output process {Yk} is generated by ARMAX model 
equations (2.4.2): 

Yk + A lYk~ 1 + ... + An)\~" = BOuk + B1Uk~ 1 + ... + B"Uk~" 
+ ek + Clek~ 1 + ... + C"ek~'" 

Here eo, e 1, ... is a sequence of zero-mean, independent random 
variables. The inputs Uo, U 1" .. are taken to be deterministic. Values of 
Y~l, ... ,Y~n'U~l""'U~n,e~l, .... e~n are supplied as initial data. 
In these circumstances it can be shown that the conditional expect­

ation of Yk given Yo' .. ·.Yk~l' written Yklk~I' is 

Yklk 1= - A1Yk~ 1 - ... - AnYk~" + BOUk + ... + BnUk~n 
+ Clek~ 1 + ... + Cnek~1l' 

It follows that 

(2.5.1) 
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This is the 'innovations process', a sequence of zero-mean, independ­
ent random variables which plays a central role in the theory of 
filtering and stochastic control, as we shall see in future chapters. 

Because we are permitted to interpret the noise in the system 
equations (2.5.1) as the innovations process associated with {Yk}' the 
representation of {Yk} provided by (2.4.2) is called the innovations 
representation of {yd. The terminology 'innovations representation' 
is often loosely attached to ARMAX model equations even in the 
absence of assumptions on initial conditions and inputs and on 
independence of the ek's which make the interpretation of {ed as an 
innovations process valid. The closely related general stochastic 
dynamical model equations (2.4.1) are also so named. 

Consider next a stochastic state-space model description (2.4.3) of 
the process {yd, 

Xk+ 1 = AXk + BUk + Cek 

Yk = HXk + Gek • 

This system is said to be in innovations form if 

G is a square non-singular matrix (2.5.2) 

The most obvious consequence of this property is that if the initial 
state Xo is given, then the state Xk can be reconstructed exactly from 
observed inputs and outputs, since 

k=O,I, ... 

Thus, regarded as a 'black box', the only 'uncertainty' in an 
innovations-form model is the value of the initial state. The noise 
process ek is closely related to the so-called 'innovations process' of 
Kalman filtering theory, discussed in Chapter 3, and this is the reason 
for saying that the model is 'in innovations form' if (2.5.2) is satisfied. 

An important consequence of the filtering theory of Chapter 3 is 
that, given a stochastic state-space model description of a process 
{yd, there is essentially no loss of generality in assuming that it 
provides an innovations representation for {yd. This observation 
coupled with the assertion of Proposition 2.4.2 (note that, given an 
ARMAX description, Proposition 2.4.2 provides us with a state­
space description having output equation Yk = HXk + Gek with G = 1) 
leads to the conclusion that ARMAX models and stochastic state­
space models are interchangeable even if we stipulate that the 
stochastic state-space model provides an innovations representation 
of the output. 
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Let us be more precise. Suppose an output process {Yk} is generated 
by the equations of a stochastic state-space model 

xk+ 1 = AXk + BUk + Cek 

Yk = HXk + Gek 

in which A is a stable matrix. Here Un' U1 , ... are assumed to be 
deterministic, Xo and eo, e1 , ... are zero-mean independent random 
variables, and eo, e1 , ... have the same covariance matrix. (No 
assumptions are made here concerning non-singularity of G.) Then, 
for the covariance matrix cov {xo} of Xo appropriately chosen, {Yd is 
generated also by stochastic state-space model equations 

Xk + 1 = AXk + BUk + Cek 

Yk=Hxk+ek , k~O (2.5.3) 

in which {ek} is the innovations process associated with {Yk}, i.e. by 
equations which provide an innovations representation. Even if the 
matrix cov {xo} is arbitrary, (2.5.3) will still describe Yk to a very good 
approximation, for large k. 

These considerations lie behind the fact that, when stochastic state­
space models are adopted in the field of identification (where we are 
interested in external models), attention is usually limited to those 
which provide an innovations representation (2.5.3). An economy in 
the number of parameters specifying the models can usually thereby 
be achieved and no loss of generality is involved. On the other hand, 
stochastic state-space models (general form) (2.4.3) are important too, 
since they arise from internal modelling of systems for which there are 
certain natural choices of state components and interconnections. 

2.6 Predictor models 

We describe now a rather general class of models, models whose main 
value will prove to be their suitability for the formulation of 
identification procedures and analysis of their convergence pro­
perties. The models are called predictor modelst . This class of models 
subsumes in essential respects the stochastic dynamical models of 
Section 2.4. We must assume however that the driving noise is a 
sequence of independent random variables. Rather than present and 
analyse identification algorithms associated with, say, ARMAX 

t The name 'prediction error model' is often used in the literature. 
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models or state-space models individually, we shall for the most part 
work with predictor models and specialize down to individual cases 
for detailed description of results. We will thereby emphasize 
common themes and avoid needless duplication of effort. 

The r-vector output {Yd of a prediction error model at time k is 
related to past outputs and past m-vector inputs Uk - 1 'Uk - 2 ' ... 

according to 
k=O,I, ... (2.6.1 ) 

In these equations yk-l and U k - 1 denote col [Yk-l,Yk-2,"" Yo] and 
col [Uk-I, Uk-z, ... , uo] respectively; fk:lRkr x IRk! -+ W, k = 0,1, ... , 
are given deterministic functions of past inputs and outputs; {ed kEIJ' + is 
a sequence of independent, zero-mean r-vector random variables. 

It is clear that fk(yk -1, Uk - 1) is the expected value of Yk given yk-1, 
Uk - 1, and is therefore the best 'one-step-ahead predictor' in the mean­
square sense (see Proposition 1.1.5). Thus a predictor is built 
explicitly into equations (2.6.1). This accounts for our calling the 
models 'predictor models'. 

Let us now suppose that the noise vectors ek entering into the 
stochastic models of Section 2.4 are independent. Under these 
conditions we substantiate our claim that the class of predictor 
models essentially subsumes these models. This amounts to solving, 
in each case, the one-step-ahead prediction problem. 

Consider the general stochastic dynamical model of Section 2.4 (we 
limit attention to systems in which there is a unit delay in the 
implementation of the input and for which the initial inputs and 
outputs are taken to be zero): 

Yk=P(Z-1)Uk_1 +Q(z-l)ek 

with initial conditions 

k '? 0. 

Uk = 0, Yk = 0, ek = 0, k < 0. 

(2.6.2) 

We suppose that, in (2.6.2), the polynomial Q(O') has coefficients r x r 
matrices and Q(O) = I. This can always be arranged by providing, if 
necessary, fictitious additional noise components of zero mean and 
variance, and by application of linear transformations to the 
disturbances. 

Rearrangement of the system equations gives 

Yk = [I - Q-l(Z-l)]Yk + Q-l(Z-I)P(Z-1)Uk_1 + e_ k 2 0, 

Uk = 0, Yk = 0, k < 0. 
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Notice that [/_Q-I(O)]=0 since Q(O) = I, and we can therefore 
express {Yd as the solution to the predictor model equations 

in which 
Yk = fk(/- I, Uk - I) + ek 

The right-hand side of this equation defines a function of /-1 and 
Uk - I in view of the initial conditions. 

Consider next an ARMAX model (Section 2.4) 

A(Z-I)Yk=B(z-I)Uk_1 +C(z-l)ek k?O 

when we take as initial conditions 

Yk = 0, Uk = 0, ek = 0, k < 0. 

If it is assumed that the ek are independent and have zero mean, 
A(O) = I and C(O) = I then the model can be expressed as a predictor 
model (2.6.1) in which f(/- I, Uk - 1) is the function Yk calculated from 
the recursive equations 

i = 0, 1, ... 

with initial condition 

Yi = 0, Yi = 0, U i = 0, for i < 0. 

Consider finally a stochastic state-space model provided with an 
innovations representation (Section 2.5) 

xk+ 1 = AXk + BUk + Kek 

Yk = HXk + Gek , k? ° 
with initial condition Xo = 0. Here G is a non-singular square matrix. 
This model, too, can be expressed as a predictor model (2.6.1) pro­
vided the ek are independent and have zero mean. Now we take 
the functionfk(/-I,uk- I ) to be Yb where Yk is obtained by solving 
the equations 

x i+ 1 = AXi + BUi + KG-1(Yi - Hx i ) i? ° 
with initial condition Xo = 0, and by setting 



NOTES AND REFERENCES 99 

Notes 

Sections 2.1-2.3. Processes defined through stochastic difference equ­
ations are studied in a number of books; for example, Astrom (1970), 
Hannan (1970) and Whittle (1963). Detailed information about 
various specific ARMA models can be found in Box and Jenkins 
(1976). In our treatment we have emphasized stability aspects in 
preparation for the convergence analysis of identification algorithms, 
which is given in Chapter 5. The spectral factorization theorem, 
Theorem 2.3.2, is proved here only in the scalar case. A proof of the 
theorem when the process considered is vector valued can be found in 
Hannan's book (1970, p. 129). 
Sections 2.4-2.5 We follow Ljung (1974) in interpreting standard 
stochastic dynamical models as special cases of predictor models. For 
material on the detailed structure of stochastic dynamical models 
suitable for identification we refer to some of the literature on 
'canonical forms': Denham (1974), Dickinson (1974), Glover and 
Willems (1974) and Mayne (1972). 
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CHAPTER 3 

Filtering theory 

The stochastic state space model introduced in Section 2.4 is an 
internal model: its states Xk are not observed directly but do 
contribute to the observed outputs Yk as specified by the observation 
equation in (2.4.3). It is natural then to consider the problem of 
forming 'best estimates' of the state Xk give the available data 
(Yo, Yl"'" Yk)' This procedure is known as filtering. There are at least 
three situations in which filtering is required. Firstly, it may be an end 
in itself: this is the case when, as often happens, the state variables x~ 
represent important physical quantities in a system which we need to 
know as accurately as possible even though they cannot be measured 
directly. Secondly, if we wish to control systems described by state 
space models then the natural class of controls to consider is that of 
state feedback controls where the control variable Uk takes the form 
Uk = u(k, xk). If X k is not 'known' then in some circumstances it can be 
replaced by a best estimate Xk produced by filtering; this topic is 
described at length in Chapter 6. Finally, filtering is relevant when we 
wish to replace the state space model by an 'equivalent' external 
model; see section 3.4 below. 

Initially we will consider the filtering or estimation problem in a 
more general setting than that described above, specializing to state 
space models later. The general problem may be described as follows: 
one observes the values of random variables Y1 , ... , Yn and wishes to 
'estimate' the value of another random variable Yo. Here YT: = 

(Yo, Y1 ,···, Yn) is a vector random variable with a given joint 
distribution function F. An estimator is any function g(Y) of the 
observed vector yT: = (Y1 , •.. , y") and this is to be chosen so as to 
minimize the mean square error 

Iff = E[Yo - g(Y)Y (3.0.1 ) 

We have already seen in Section 1.1 that the function g which 
minimizes the mean square error is the conditional expectation 

100 
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E[YoIY] = J:oo YodFYoly(YoIY). 

However, this may be hard to compute and in any case we may only 
know certain parameters of the joint distribution of ¥ rather than the 
function F itself. F or these reasons and others which will emerge later, 
we are led to study the linear estimation problem where the choice of 
estimators g is limited to linear functions, i.e. those of the form 

(3.0.2) 

This is much simpler since we are now just searching for the n-vector 
IXT = (IX I , .•• , IXn) which mininizes (3.0.1) with g given by (3.0.2). Notice 
that in this case 

n 

E[Yo - g(y)]2 = E L (Xi(Xj Yi Yj 
i.j=O 

n 

= L lXilX jE Yi lj 
i.j 

where for notational convenience we have defined lXo = - 1. Suppose 
that all the random variables have zero mean. Then EYi Yj is just the 
(i,j)th entry of the covariance matrix cov(¥), and this shows that in 
order to solve the linear estimation problem we only need to know the 
means ( = 0) and covariances of the random variables. This is much 
more reasonable than requiring that the whole joint distribution 
function be known. (Of course, the theory only applies when all the 
random variables have finite variance, but this is hardly a restriction 
in practice.) 

The solution of the linear estimation problem in principle is quite 
straightforward and in fact a formula for (X is given in Theorem 3.1.1 
below. The key idea is that the best linear estimate can be thought of 
geometrically as the 'orthogonal projection' of Yo onto the observ­
ations Y. Section 3.1 is devoted to explaining this idea and its relation 
to the conditional expectation mentioned above. What remains is to 
develop effective ways of calculating this projection. The main 
application we have in mind is estimating the state vector of the state­
space model of Section 2.4 from the output. This problem has a 
dynamic structure in that the output values Yo, Yl, ... are measured at 
successive instants of time and we wish to 'keep track of' the state 
vector Xk as it evolves. Thus a recursive algorithm is required which 
will take the estimate at time k and, using the new observation h+ l' 
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update it to give the estimate at time k + 1. Such recursive estimators, 
or filters, are discussed in general terms in Section 3.2. We then derive 
in Section 3.3 the Kalman filter equations which provide a recursive 
estimator for the state-space model. Kalman filtering theory is 
applied in Section 3.4 to derive the innovations representation of the 
state-space model mentioned at the end of Chapter 2. 

3.1 The geometry of linear estimation 

To introduce the geometric picture oflinear estimation let us consider 
the problem introduced above with n = 1. Thus (Yo, Y1) are jointly 
distributed zero-mean random variables, and we wish to find the 
number ex which minimizes 

$ = E[Yo -exy1]2 = E(Y6) - 2exE(Yo Yd + ex 2 E(Yi). 

Elementary calculus shows that the right choice is 

E(Yo Y1) 

ex = E(Yi) 

(provided that E(Yi) # 0) resulting in a minimum error of 

2 1 2 
$ = E(Yo) --( 2) (E(Yl Yo)) . 

E Y1 

(3.1.1 ) 

Let (J 0, (J 1, P be the standard deviations and correlation coefficient of 
Yo, Y1 (see Section 1.1.1). Then the best estimator is 

(3.1.2) 

and the error is 

(3.1.3) 

with variance 
$ = (J6(1 - p2). 

Now note the crucial fact that the error Y is uncorrelated with the 
observed random variable Y1 , i.e. 

E(YoYd=O. 

This is easily seen from (3.1.3). It is also easily seen that the value of ex 
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given by (3.1.1) is the only one such that (Yo - IX Yd and YI are 
uncorrelated. 

The geometric picture that goes along with this is as follows: 
Suppose Vo, VI are vectors in the plane which have lengths 0"0' 0"1 
respectively and intersect at an angle () such that cos () = P (see 
Fig. 3.1). The vector Vo can be expressed as the vector sum of its 
projection Vo on to VI and the difference vo = Vo - Vo which is 
orthogonal to VI. The projection Vo is given by 

(3.1.4) 

Comparing (3.1.2) and (3.1.4) we see that if the random variables Yo, 
Y1 are identified with the vectors Vo, VI respectively then the best 
linear estimate Yo corresponds to the projection va ofvo onto VI. The 
inner (or dot) product of the vectors Va and VI is 

VO·V 1 = 0"00" I cosO = 0"00" IP = EYo YI = cov (Yo, Yd· 

Thus the vectors representing the random variables have lengths 
equal to the standard deviations of the random variables and inner 
product equal to the covariance. Notice in particular that if e = 0 or 
o = 7[ then the vectors are colinear and Vo = ± Vo = ± (0" 0/ 0" dv 1. Since 
p = cos 0 the equivalent condition on p is that P = ± 1. But we already 
saw in Chapter 1 that if Yo, YI have correlation coefficient ± 1 then 
they are linearly related: Yo = ± (0"0/0" tl YI . Thus 'linear estimation' 
can be done with zero error, as the geometric picture indicates. 

In order to formalize the above discussion and generalize it to 
higher dimensions we need to review the geometrical properties of [Rd 

considered as a vector space. Elements or vectors x of [Rd are n-tuples 
of real numbers x = (x l' x 2 , ... , xJ Addition and scalar multiplic-
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ation are defined componentwise: x + Y = (Xl + Y1,"" Xd + Yd) and 
(Xx = ((Xx 1, ... , (XXd) for (X E R The inner or dot product of two vectors x, 
y is defined by 

d 

X'Y= L XiYi-
i= 1 

The vectors x and yare orthogonal (x ~ y) if X'y = O. The norm of a 
vector is 

II x II = -J (x·x). 

For i= 1, 2, ... ,d define 

z:=(O, ... ,O, 1,0, ... ,0) (1 in the ith position). 

These are the coordinate vectors. They have the following properties: 

(a) They are normalized and mutually orthogonal: 

(b) They form a basis for [Rd: any x E [Rd can be expressed as x = 
L~ aizi for some coefficients ai· 

It is clear from the definitions that the coefficients ai in (b) are given by 
ai = x·Zi, so that each x E [Rd has the representation: 

d 

X = L (X'Z;)Zi' 
i= 1 

Any set of vectors Zi satisfying (a) and (b) is called an orthonormal 
basis of [Rd. A subspace !f of [Rd is a subset with the property that if 
x, y E!f then (Xx + py E!f for any (x, PER The subspace generated 
or spanned by any collection of vectors u1, ... , Um is denoted by 
!f(u1, •. ·, um) and is the smallest subspace containing the generating 
vectors. It is easy to see that 

It is always possible to construct an orthonormal basis Xl' ... , Xd of [Rd 
such that !f(ub ... ,um)=!f(x1, ... ,Xk) for some k~min{d,m}. This 
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can be done by using the Gram-Schmidt orthogonalization procedure, 
which we describe next. Supppose, to avoid triviality, that 
Iludl>O for some i (otherwise 2'(u1, ... ,um)={0}); we can then 
assume, permuting indices if necessary, that II U1 II > O. Define 

1 
Xl = lfU"J"ul . 

Now suppose that orthogonal vectors Xl' ... ,Xk(l) have been found 
for some number k(l)~min{d,m} such that 2'(U 1 , ••• ,U1)= 
2'(x1, .. ·, Xk(I»). Define 

k(l) 

v: = Ul+ 1 - L (ul+ l· XJXi · 
i= 1 

Then v 1. Xi for i = 1, ... , k(l). If II v II = 0, set k(l + 1): = k(l); otherwise, 
set k(l + 1): = k(l) + 1 and xk(l+ 1) = V III v II. Then Xl' ... ' Xk(l+ 1) are 
orthonormal and 2'(u1 , ... , Ul+ 1) = 2'(x 1,···, Xk(l+ 1). Since clearly 
2'(U 1) = 2'(X 1) we conclude by induction that 2'(U 1 , ... , Um) = 
2'(X1, ... , Xk(m»). By construction k: = k (m) ~ m, and k ~ d since d is 
the maximum number of linearly independent vectors in ~d. If k < d 
then orthonormal vectors xk + l' •.. , Xd can be constructed in a similar 
way so that Xl' ... ' Xd form a basis of ~d. We leave it to the reader to 
supply the details. 

The orthogonal projection v of VE~d onto a subspace il/t: = 
2'( U 1, •.. , Um) is defined by 

k 

V = L (V·Xi)Xi 
i= 1 

where Xl' ... ' Xd is an orthonormal basis such that il/t = 2'(x1,···, xk). 
v can be characterized in the following two equivalent ways. 

(a) v is the unique vector satisfying 

vEil/t 

v-vJ..il/t 

(b) v is the closest point in il/t to v, i.e. 

II v - v II = min II v - U II. 
DEY 

In (a), v - v J..il/t means that (v - v) 1. U for all uE2'. 
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Both (a) and (b) are very easily established using the basis Xl"'" xd , 

but note that the statements themselves do not involve any particular 
choice of basis. For part (b) we have 

v - U = (VI - udxI + ... + (Vk - Uk)X k + Vk+1Xk+l + ... + VdXd 

where Vj = V·X j , Uj = U·X i . Thus 

k d 

II v - U liZ = I (Vi - u;)Z + I v; 
i=l i=k+l 

and this is clearly minimized by taking Ui = Vi' i ~ k. 
Let us denote v = [iJv. Then fY is a projection operator which maps 

each vector in IRd to its projection onto the subspace °Il. We note 
the following properties of the projection operator: 
(a) fY is linear: fY(CiV 1 + fiv z) = Ci,'J1V I + /JfYv 2, Ci, fiE IR 
(b) f!lz =fY (Here f!lzv:=g>(fYv)) 
(c) Hull' is a subspace such that 0/1' =:J 0/1 and .000' is the projection onto 
JIl' then for any VE IRd 

PJ>v = .000(fY'v). 

The first two of these are evident. For (c), suppose that)Il' = 

!/'(u 1'" ., Urn') for some m' > m. By means of the Gram-Schmidt 
procedure we can construct a basis Xl"'" Xd and numbers k, k' with 
k ~ k' ~ d such that 011 = !/'(x 1" .. , x k ) and v7f' = !/'(x 1 , ... , x k .). For 
VElRd, denote Vi = v·X i . Then fY'v = I1' ViX i so that fY(fY'v) = 

I1 ViX i = [iJv. 
Now back to random variables. Suppose as before that Y: = 

(Yo, Y I , ... , Yn)T is a random (n + I)-vector such that for each i 

EYi = 0, var(YJ < 00, 

and denote Q:= cov(Y). We wish to associate these random vari­
ables with vectors Vo,"" Vn in such a way that 

V;'Vj = cov(~, Y) = E~ 1j 

More precisely, let ,Yf denote the set of all linear combinations of the 
random variables Yo,···, Yn, i.e. 

X = {.f Ci j Yj:Ci = (Cia, ... , Cin)ElRn+ I}. 
,=0 

We take the function U, V---> EUV as an 'inner product' for U, V EX. 
Note that EU V is entirely determined by the covariance matrix Q 
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since if U, VE£ then U = aTl' and V = bTl' for some a, bE[Rn+ 1 and 
then EUV=aTQb. We wish to construct a function q>:£--+[Rd for 
some integer d with the following properties 
(a) q> is linear, one-to-one and onto 

(b) qJ is inner product preserving: 

q>(U)'q>(V) = EUV. (3.1.5) 

Such a function q> always exists. Recall from Proposition 1.1.3 that by 
factoring Q in the form Q = AAT we can express Y in the form 

l'=AZ 

where ZT = (Z 1"'" Zd) is a vector of unit variance uncorrelated 
random variables and d ::; n + 1. Now define 

q>(ZJ;= lj 

where ll"'" ld is the coordinate basis of [Rd, and 
d 

q>(aTZ):= L ail j for aE[Rd. 
j= 1 

Since;lt' = {aTZ:aE[Rd} this defines q>(U) for all UE;It'. By construc­
tion, q> is linear and onto, and an immediate calculation shows that 
(3.1.5) holds. In particular if we define Vj:=q>(Y;)=q>(LkaikZd 
then we see that 

V;"Vj = EY;" Yj • 

To check that q> is one-to-one, suppose that q>(U) = q>(V); then 
q>(U - V) = q>(U) - q>(V) = 0 so that E(U - V)2 = q>(U - V)· 
q>(U - V) = O. Recall by the way that E(U - V)2 = 0 
if and only if P[U = V] = 1. Thus this theory does not distinguish 
between equivalent random variables, i.e. if P[U = V] = 1 then 
q>(U) = q>(V). 

The existence of the map q> means that the geometrical pro­
perties of the space £ with 'inner product' EUV and 'distance' 
[E(U - V)2r/2 are identical to those of Euclidean space [Rd. To 
illustrate the utility of this, let·/!, be the subspace spanned by 
VI"'" Vn where Vi = q>(~)and let Vo bethe projection ofvo on to V. Then 

for some constants ()(I"'" ()(., and the corresponding element of £ is 

YO:=q>-l(VO)=()(I YI +"'+()(nYn' 
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Now recall that Vo is the closest point in 11 to vo: 

II Vo - VO II = min II VO - u II· 
UEV 

It follows from (3.1.5) that E(U- vV= 11q>(U)-q>(V)11 2; thus Yo 
satisfies 

( ~ 2 . ( )2 E Yo - yo) = mm E Yo - U 
u 

where the minimum is taken over all linear combinations U = 
~~ (Xi Yi • But this means that Yo solv,:s the linear estimation pr?blem. 
Yo has the property that E[ (Yo - Yo) YJ = 0, i = 1,2, ... ,n, I.e. the 
error Yo - Yo is uncorrelated with the observed random variables 
Y1 , ••• , y" just as in the scalar case. 

We can dispense with explicit mention ofthe map q> and Euclidean 
space [Rd. Just think of the random variables as 'vectors' with lengths 
equal to their standard deviations and 'inner product' given by the 
covariance. Thus two random variables are 'orthogonal' (and we 
write U ..L V) if they are un correlated, and the best linear estimator Yo 
is the 'projection' of Yo onto the 'subspace' Sf( Y l' ... , Yn) spanned by 
Y1 ,· .• , Yn· 

Let us summarize the results we have obtained. At the same time we 
generalize to the vector case, replacing Yo by a p-vector X. 

Theorem 3.1.1 

Let X and Y be random p- and n-vectors respectively, all components 
having zero mean and finite variance. (Here, yT = (Y1 , •.. , Yn).) Then 
for each j = 1, ... ,p there is a unique (up to equivalence) random 
variable Xj such that: 

(a) XjESf(Y) 
(b) Xj - Xj..L Sf(Y). 

XT: = (X 1' ... , X p) is the minimum mean-square error estimate of X 
given Y, i.e. for any f3 E W 

E[(f3T(X _X)]2 = min E[(XTX - uy 
UE.'!'(y) 

If cov(Y) is non-singular then X is given by 

X = E[XyT] [cov(Y)] -1 Y. (3.1.6) 
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REMARK Bya slight abuse of terminology, X is referred to as the 
'projection of X onto £,(Y)'. 

PROOF Only the last part remains to be established. By definition, 
X = A Y for some p x n matrix A. Using the orthogonality relation (b) 
we see that for any f3EW, YElRn 

E[f3T(X - AY)(yTy)] = ° 
i.e. 

This implies that 

E[XyT] - AE[yyT] = ° 
and hence that A = E[xyT] [COV(y)r 1 ifcov(Y) is non-singular. If 
cov(Y) is singular then some components of Yare linearly related and 
it may be possible to express X in several different but equivalent 
ways. 

Random variables with non-zero mean 

Let us consider the same problem as above (with scalar Yo) but 
supposing now that the random variables have possibly non-zero 
means 

i=O,l, ... ,m. 

This situation easily reduces to the zero-mean case. Rather than a 
linear estimator, it is preferable now to use an affine (linear + 
constant) estimator: 

YO =a1 YI + ... + IXnYn+f3. 

We have to choose 1X 1 , ... , IXn' f3 to minimize E[Yo - YoY Minimiz­
ation can be carried out over these coefficients in any order, so let us 
fix 1X 1 , .•• , IXn and minimize first over f3. Define 

U = Yo - a1 Y1 - ... - anYn. 

Then 
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It was shown in Proposition 1.1.1 that this is minimized by taking 

f3 = EU = mo - (Xlm l - .•. - (Xnmn' 

Incidentally, this justifies our previous implicit choice f3 = 0 for the 
zero-mean case. With the above choice of f3 we see that 

E[Yo - YO]2 = E[Y~ - ((Xl Y~ + ... + (Xny~)]2 (3.1.7) 

where Y~ is the 'centered' random variable Y~ = Yi - mi' We now have 
to choose (Xl'"'' (Xn to minimize (3.1.7), but this is the zero-mean 
problem that was solved before. Let P be the covariance matrix of Y, 
now given by 

Pij = E[(Yi - mi)(Yj - mj )]. 

If P is non-singular, then from Theorem 3.1.1 

Yo = (Y - m)T p- l E[(Y - m)(Yo - mo)] + mo (3.1.8) 

where mT = (m l , ... , mn). Notice that the error Yo - Yo always has zero 
mean. 

To get the geometric picture for this case we adopt the rather 
artificial, but convenient, stratagem of adjoining to the observations 
another random variable denoted ~ which takes on the value 1 with 
probability one (thus no new 'information' has been added). Yo can 
then be regarded as a linear (no longer affine) combination of the 
observations: 

Yo = f3~ + (Xl Yl + ... + (Xn Yn 

As before, random variables U, V are regarded as vectors with inner 
product EUV, but note that this is not now the covariance, which is 
E(U - EU)(V - EV). Now U 1. ~ if E(~ U) = EU = 0 and thus if we 
express U as 

U = (EU)~ + UC 

then the first term on the right is the projection of U onto the one­
dimensional subspace spanned by the random-variable t Thus the 
random variables ~,Yo, ... , Yn form a vector space of dimension 
k ~ n + 2 consisting of a (k - I)-dimensional subspace of zero-mean 
random variables (spanned, in fact, by Yg, . .. , Y~) and a I-dimensional 
subspace spanned by ~. The best estimate of Yo is the sum of its 
projection into 2(Yl, ... , Y~) and its projection onto 2(~) and these 
projections are the two terms on the right of (3.1.8), respectively. 
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The normal case 

As pointed out at the beginning of this chapter, only means and 
covariances are required to calculate best linear estimators. If we 
suppose that the random variables involved are jointly normally 
distributed then we get the following result strengthening Theorem 
3.1.1. 

Theorem 3.1.2 

Let X and Y be as in Theorem 3.1.1 but with possibly non-zero means 
and suppose that X and Yare jointly normally distributed. Then the 
best affine estimate of X given Y coincides with the conditional 
expectation E[XI Y]. 

PROOF Consider first the zero mean case. Since X = A Y for some 
matrix A, the random variables (X, X, Y) are jointly normally 
distributed, and (Xi - Xi) is uncorrelated with and hence independ­
ent of Y; for each i, j. Using the properties of conditional expectation 
given in Proposition 1.1.4 we see that, with X = X - X, 

E[XIYJ = E[X + XIYJ 
=X + E[XIYJ 
=X +EX=X. 

If X, Y have non-zero means mx , my, write XC = X - mx , y c = 
Y -my. Then 

E[XI Y] = E[XC + mxl y] = mx + E[XCI Y]. 

It follows from Proposition 1.1.7 that E[XCI y] = E[XCI YC] and the 
latter expression coincides with the best linear estimator. This 
completes the proof. D 

This result shows that in the normal case X is the best estimate of X 
not only in the class of affine functions A Y + b but also in the class of 
all finite-variance functions g( Y). It also shows that the conditional 
distribution of X given Y is normal with mean X and covariance 
cov(X - X). This follows from the fact that X = X + X where X is a 
function of Y and X is independent of Y. We have thus, somewhat 
belatedly, completed the proof of Proposition 1.1.7(e) of Chapter 1. 
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3.2 Recursive estimation 

The idea of recursive estimation arises when random variables 
Y1 , Y2 , . •• are observed sequentially and we wish to process them in 
real time to form successive best estimates of an unobserved random 
variable Yo. At time n we can form the best linear estimate Yo,n of Yo 
given Y1 , ••• , Yn by using formula (3.1.9) (supposing that all means are 
zero and that the covariance matrix Pn = cov(Y1, ... , Yn ) is non­
singular). Note that this involves inverting the n x n matrix Pn• At the 
next time instant we have one more observation, Yn + 1 • How are we to 
compute YO,n+ l? The most obvious way would be to apply the 
same formula again. However, if we do this successively for 
n = 1,2,3, ... , then: 

(a) It is necessary to store the entire observation record as this 
becomes available; and, 

(b) At each time n, an n x n matrix must be inverted. 

Obviously, the computational effort required to do this becomes 
massive even for moderate n. Is it really necessary, at each stage, to 
throwaway the results of all previous calculations, or is there some 
method by which YO,n can be updated using the new observation Yn + 1 

to give Yo,n + l? The simplest form such an updating could take is as 
follows: 

(3.2.1 ) 

i.e. the next estimate is a linear combination of the current estimate 
and the next observation. Only in special cases will a formula such as 
(3.2.1) be possible, but these include important applications such as 
the Kalman filter discussed in Section 3.3. 

In this section we discuss the general relation between successive 
estimates. In view of later applications it is convenient to deal from 
the outset with the vector case. Thus suppose x is an n-vector random 
variable and Yl' Y2, ... are r-vectors of observed random variables.t 

All random variables will be taken to have zero mean and finite 
variance, and to avoid difficulties with non-uniqueness it will be 
supposed that the covariance matrix of the rk-vector l = 
col{Yl'Y2'''Yk} is non-singular for each k. 

tIn accordance with the established notational conventions of Kalman filtering theory 
these are denoted by lower-case letters. 
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Denote by 2(l) the linear subspace spanned by the observations 
up to time k, and by xk the best linear estimate of x given Y\ i.e. the 
projection of x onto 2(l). (Recall the notational conventions for 
projection of vector r.v.s introduced in Section 3.1). 

2(l-') is a subspace of 2(l). Let Pklk-I be the projection of Yk 
onto 2(l-') and Yklk-I the error: Yklk-I = Yk - Pklk-I· The random 
variables {Y~lk-r i = 1,2, ... , r} span the orthogonal complement of 
2(/-') in 2(y ), so that any r.v. Z in 2(/) has a unique orthogonal 
decomposition 

Z=Z,+Z2 

where Z,E2(/-') and Z2 is a linear combination of {Y~lk_"i= 
1, ... ,r}. Take in particular Z=X~; then we claim that Z, =xi-,. 
Indeed, let x~ = Xi - xi be the estimation error at time k. Then 

Xi = xi + xi = z, + (Z2 + xi) 
where Z,E2(/-I) and (Z2 + xi) 1-2(/-1). But we also have 

and again xi-, E2(/-I), X~_I L~(/-'). Since such orthogonal 
decompositions are unique, it must be the case that Z 1 = xi -" as 
claimed. As to Z2, this is the projection of xi onto 2(Yklk-l) and this is 
the same as the projection of Xi onto 2(Yklk-l) since 2(Yklk_l) c 2(/), 
But this projection can be calculated using formula (3.1.9) again. 
Collecting the above results we see that xk can be written in the form 

A _ A E[ -T ](E[- -T ])-'( A ) xk - xk-, + XYklk-1 Yklk-IYklk-1 Yk - Yklk-I . (3.2.2) 

In general this is not a recursive formula for Xk' since P/l1k-1 depends 
on Yt, ... , Yk -I. It is a recursive formula precisely when this de­
pendence factors through Xk-'. Let us examine an important 
example where this occurs. 

Example 3.2.1 

Suppose 

Yk=Hx+Zk 

where H is an r x n matrix and z"z2, ... is a sequence of mutually 
uncorrelated random variables with zero mean and common co va-
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riance COV(Zk) = N > O. We also suppose x and Zk are uncorrelated for 
each k. Thus Yk represents a sequence of 'measurements' of x with 
uncorrelated measurement errors Zk' Let P be the covariance matrix 
of x. 

In this example Yklk-l is the projection of Yk = Hx + Zk onto 
2"(l- 1) and this is the same as the projection of H x on to 2"(l- 1 ) 
since Zk -1 2"(l- 1). Thus 

and (3.2.2) becomes 

xk = Xk-l + K(k)(Yk - HXk - 1) (3.2.3) 

where K(k) denotes the matrix coefficient in (3.2.2). This is a recursive 
formula for xk and it only remains to calculate K(k). We will do this in 
two ways: the 'slick' way specifically adapted to this problem, and by 
use of a general technique which will be useful in connection with the 
Kalman filter in the next section. 

The slick way is to notice that the Yk are interchangeable, in that if 

xk=A1Yl + ... +AkYk 

then all the Ai must be the same, since the correlation structure of the 
random variables would be completely unchanged if any two 
observations Yi and Yj were permuted. Denote by Yk the sample mean 

1 k 1 k 

Yk=- L Yi=Hx+- L zi=Hx-zk· 
ki=l k i=l 

The noise sample mean Zk has covariance Njk and our contention is 
that 

Xk = AYk 

for some n x r matrix A. The orthogonality condition is 

x - xk = (I - AH)x - Azk-LYi = Hx + Zi i = 1, ... , k. 

Since x is uncorrelated with Zi and zb this is equivalent to requiring 
that 

(I - AH)E[xxT]HT - AE[ZkZTJ = o. 
Now E[XXT] = cov(x) = P and E[ZkZTJ = Njk since the Zj are mutu­
ally uncorrelated. The fact that this expression is independent of i 
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confirms the 'interchangeability' argument. Thus the orthogonality 
requirement is: 

and hence A is given by 

[ 1 ]-1 
A=PHT HPHT +kN 

Notice that (HPHT + (1jk)N) is non-singular, since by assumption 
N>O. Thus 

Xk=AYk=1 PHT [ HPHT +1N ]-1(J1 Yk). (3.2.4) 

Comparing this with (3.2.3), we see that the coefficient of Yk is K(k) and 
hence 

(3.2.5) 

The more general method of obtaining this result is to calculate 
K(k) from the expression for it in (3.2.2). Now 

Yklk-l = Yk - Yklk-l = (Hx + Zk) - HXk- 1 
=HXk- 1 +Zk 

where Xk- 1 = x - Xk-l is the error at time k - 1. Thus 

E[Xji~k_lJ = E[xxl_1JHT 

=E[Xk - 1xl_ 1JHT 

(3.2.6) 

since x = Xk-l + Xk-l and Xk- 1 J..Xk- l . We denote P(k -1) = 
cOV(Xk - 1) (the error covariance at time k - 1). Similarly, 

E[Yklk-1Y~k_J = E[(Hxk-l + zk)(Hxk- 1 + Zk)TJ 
= HP(k - 1)HT + N. 

This is non-singular since N > 0, and hence 

K(k) = P(k - 1)HT[HP(k - 1)HT + Nr 1 

It remains to calculate P(k - 1). Subtracting x from both sides of 
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(3.2.2) and using (3.2.6) gives 

Xk=Xk-1 -K(k)(Hxk_1 +Zk) 

= (1 - K(k)H)Xk-1 + K(k)Zk. 

The two terms in this expression are orthogonal since 
Xk-1E2'(X,Z1, ... ,Zk-1). Thus 

P(k) = E[XkXD = (1 - K(k)H)P(k - 1)(1 - K(k)H)T + K(k)NK(k). 
(3.2.7) 

Now substitute for K(k) from (3.2.5). After a little algebra one finds that 
(3.2.7) becomes simply 

P(k) = P(k - 1) - P(k - I)HT[HP(k - I)HT + Nr 1 HP(k - 1). 
(3.2.8) 

Together with the initial condition P(O) = P = cov(x) this provides a 
recursive algorithm for generating P(l), P(2), ... and hence K(k) from 
(3.2.5). In this example one can in fact obtain a closed-form expression 
for P(k) from (3.2.4). Indeed, subtracting x from both sides of (3.2.4) 
and using the fact that Yk = Hx + Zk we see that 

Xk = (1 -PHT [ HPHT +~N J-1 H)X 

[ 1 J- 1 
+PHT HPHT +k,N Zk· 

Again, the two terms on the right-hand side are orthogonal, and 
calculating the sum of their co variances we find that 

Some laborious algebra confirms that this indeed satisfies (3.2.8). 
In this example the recursive estimator (3.2.3) offers no advantages 

over the non-recursive form (3.2.4): in either case the main comput­
ational task at each stage is to invert an r x r matrix, so the general 
problem of having to invert matrices of growing dimensions has been 
avoided. The storage requirements are also similar: in (3.2.4) one 
requires the sample mean Yk at each stage and this can be updated as 
follows: 
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Thus in neither case is it necessary to store the complete observation 
record. In more general problems such as the Kalman filter consi­
dered below, it is usually not possible to obtain simple closed-form 
expressions for the estimator, but the recursive solution may still be 
viable. From the implementation point of view this is perfectly 
satisfactory. The coefficient matrices K(k) can be computed in 
advance and then the 'data processing' consists of on-line implement­
ation of the very simple algorithm (3.2.3). 

3.3 The Kalman filter 

The Kalman filter is a recursive algorithm for estimating the state 
Xk of a state-space model given the values of the observed outputs 
l-l( = YO,Yl 'Y2'"'' Yk-l)' The equations describing the model are 

Xk+ 1 = A(k)Xk + B(k)uk + C(k)Wk 

Yk = H(k)Xk + G(k)Wk' 

(3.3.1 ) 

(3.3.2) 

Here, {Wk} is an I-vector white-noise process with unit covariance 
(Ewkwr = II) and the initial random variable Xo is uncorrelated with 
{wk }, with known mean and covariance mo, Po respectively. The 
coefficient matrices A(k), etc., may be time-varying, as indicated by 
their dependence on k in (3.3.1), (3.3.2). The model is, in this respect, 
more general than that of Section 2.4. We assume that 

(3.3.3) 

(in particular this implies that I ~ r, r being the dimension of Yk)' 
If this were not the case then there would exist vectors ,1, such that 
).TG(k) = 0, so that, from (3.3.2), 

,1,TYk = ,1,TH(k)Xk 

i.e. certain linear combinations of components of X k could be 
measured exactly. Thus (3.3.3) says essentially that all observations 
and linear combinations of observations are 'noisy'. 

The sequence Uk is the m-vector control input. In this section we 
suppose that this is a deterministic sequence. In future sections we shall 
wish to consider feedback controls, where Uk depends on the observed 
outputs Y\ but this presents a more delicate situation, consideration 
of which we defer to Section 6.3 below. 

The example considered in the preceding section is a special case of 
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the model (3.3.1), (3.3.2): take A(k) = In' B(k) = C(k) = 0, H(k) = Hand 
G(k) = N 1/2 (so that r = m). We saw there that the estimators xk could 
be computed recursively, and the same is true for the general state­
space model considered here. The situation is complicated somewhat 
by the fact that the signal being estimated is not constant but is itself a 
stochastic process, and by the possible correlation between signal and 
observation noise. Nonetheless, the derivation of the Kalman filter 
equations follows exactly the same approach as used in the example. 

We denote by xiii the best linear (or affine) estimator of 
Xi given i = (Yo, Yl' ... ' Y), i.e. the projection of Xi onto 2(y i ), and by 
xiii the error (Xi - Xiii)' with similar notation for other random 
variables. It turns out that the most useful form of estimator is the 
'one-step-ahead' estimator xk1k ~ I. 

Theorem 3.3.1 (Kalman filter) 

For the system (3.3.1), (3.3.2) with the above assumptions, the estimator 
Xklk~1 satisfies the recursive equation 

Xk+ 11k = A(k)Xklk~1 + B(k)uk + K(k)[Yk - H(k)Xklk~l] k = 0, 1, ... 
(3.3.4) 

The n x r gain matrix K(k) is given by 

K(k) = [A(k)P(k)HT(k) + C(k)GT(k)] [H(k)P(k)HT(k) 

+ G(k)GT(k)] - 1 (3.3.5) 

where P(k) is the error covariance 

P(k) = E[(Xk - Xklk~I)(Xk - Xklk~ I)T] 

P(k) satisfies the recursive Riccati equation: 

P(k + 1) = A(k)P(k)AT(k) + C(k)CT(k) - [A(k)P(k)HT(k) 

+ C(k)GT(k)] [H(k)P(k)HT(k) + G(k)GT(k)]-1 

. [A(k)P(k)HT(k) + C(k)GT(k)]T (3.3.6) 

P(O) = Po. 
The innovations process 

Vk : = Yk - H(k)Xklk~1 

is a wide-sense white-noise process with covariance function 
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If in addition to the above assumptions (xo, Wo, WI"") are jointly 
normally distributed, so that in particular {wd is a gaussian white­
noise process, then 

REMARKS To implement the Kalman filter, the sequence P(k) is 
computed from the Riccati equation and the corresponding sequence 
of n x r 'gain' matrices K(k) is computed using (3.3.5). All of this can 
be done off-line, i.e. before any observations are taken. Calculation 
of xk1k - 1 can now be done recursively using (3.3.4) as successive 
observations become available. The fact that all the coefficients in 
(3.3.4) can be pre-computed (are not data-dependent) means that the 
amount of on-line signal processing required is very modest, and this is 
important in applications where computing power is at a premium. 
Note, however, that it is assumed that all coefficients appearing in the 
problem - i.e. the matrices A, B, C, H, G as well as the initial state mean 
and covariance mo, Po - are exactly known. 

PROOF Suppose to start with that mo = 0 and Uk = 0 for all k. Then 
EXk = 0 for all k and hence all random variables in system (3.3.1), 
(3.3.2) have zero mean. From (3.3.2) we see thatt 

Pklk-l = HXk1k _1 

since Wk 1- 9'(yk -1), and hence the basic recursive formula (3.2.2) with 
x = Xk gives 

xk1k = xk1k - 1 + E[XkYkTk_l](E[j\lk_1Nk_l])-I(h - Hxk1k _1)· (3.3.7) 

(It will be verified below that COV(Yklk_l) is non-singular). Now 

(3.3.8) 

(this coincides with the innovations process Vk of the theorem 
statement) and hence 

E[XkNk-l] = E[xlx~k_1HT + wiGT)] 

= P(k)HT 

where P(k): = cov(xk1k _ 1). The last equality follows by noting that 
xk.L Wk and that Xk has the orthogonal decomposition Xk = xk1k - 1 + 

t For notational simplicity we write H for H(k), etc., throughout the following argument. 
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Xk' Similarly, 

E[Yklk-INk-l] = HP(k)HT + GGT. 

This is strictly positive definite, and hence non-singular, since 
HP(k)HT ~ 0 and GGT > O. We now have to relate Xk+ll k to 
Xk1k . From (3.3.1) we see that (since Uk = 0) 

Xk+ 11k = AXklk + CWk1k · 

Now Wk .l2(l-1) and hence the best estimate wk1k of Wk given l is 
equal to the best estimate given Yklk-l which, according to (3.1.6), is 

• E[ -T ]E[ - -T ] - 1 -wk1k = WkYklk-l Yklk-lYklk-l Yklk-l' 

Using (3.3.8) we obtain 

E[WkY~k_l] = E[WkWlGT] = GT• 

Combining (3.3.7)-(3.3.10) gives 

xk+lll = A[xk1k _1 + PHT(HPHT + GGT)-lYklk_l] 

+ CGT(HPHT + GGT)-lYklk_1 

(3.3.9) 

(3.3.10) 

(3.3.11) 

which is equivalent to (3.3.4)-(3.3.5). The best estimate of Xo with no 
observations is 0 since Exo = 0 and hence the initial condition for 
(3.3.11) is X01 _ 1 = O. To compute the conditional covariance we use the 
same technique as in the example of the preceding section. Subtract­
ing (3.3.4) from (3.3.1) and using (3.3.8) shows that the error xk1k - 1 

satisfies the recursive equation 

Xk+ 11k = (A - KH)xk1k _1 + (C - KG)wk. (3.3.12) 

We can therefore compute the covariance by using the general results 
given for the state-space model in Proposition 2.4.1 t. Indeed, 
replacing A and C in (2.4.7) by (A - KH) and (C - KG) respectively, 
we see from (2.4.7) that P(k) = cov(xk1k _ 1) satisfies 

P(k + 1) = (A - KH)P(k)(AT - HTKT) + (C - KG)(GT - GTKT). 
(3.3.13) 

Substituting from (3.3.5) the expression for K in terms of P(k), one 
obtains, after a little algebra, the variance equation (3.3.6). 

Finally, suppose Exo = mo =f 0 and that Uk is also non-zero. Then 
m(k) = EXk satisfies 

m(k + 1) = Am(k) + Bu(k) 

m(O)=mo 
t Equation (2.4.7) is valid for time varying models with A = A(k) etc. 

(3.3.14) 
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and 

EYk = Hm(k). 

121 

As shown in Section 3.1, the best affine estimator of X k given 1- 1 is 
now 

Xk1k - 1 = Xklk_l + m(k) 

where x~lk-l is the projection of x" = Xk - m(k) onto 2((yc)k-1). But 
xL y" satisfy the equations 

X"+1 = Ax" + CWk 

x~ =xo-mo 

y,,=Hx,,+Gwk 

so that the computation of Xklk-l is the zero-mean estimation problem 
we have just solved, i.e. x~lk-l satisfies 

Xk+llk = AX~lk_l + K(k)(Yk - HX~lk_d 

(3.3.15) 

Note that 

Yk - HXklk_l = (Yk - Hm(k)) - H(xk1k _1 - m(k» 

= Yk - Hxk1k _1• 

Thus, adding (3.3.14) and (3.3.15), we obtain (3.3.4). P(k) given by 
(3.3.6) is still the error covariance, cov(xk - xk1k - 1), since covariances 
are unaffected by a shift of mean. 

Finally, suppose xo, wo, W 1, ... are jointly normal. Then (Xk, Yk) is a 
normal process, since (3.3.1) (3.3.2) are linear equations, and it follows 
from Theorem 3.1.2 that xk1k - 1 = E[xkll- 1]. 0 

Example 3.3.2 

The example considered in Section 3.2 above is a Kalman filtering 
problem but a somewhat special one in that there are no 'system 
dynamics'. As the simplest example involving dynamics, let us 
consider estimating the autoregression 

(3.3.16) 

given noisy observations 
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Here all quantItIes are scalars and we assume that Uk' Wk are 
uncorrelated unit variance white-noise processes. The initial random 
variable Xo is supposed to have mean and variance mo and Po 
respectively. The Kalman filtering equations (3.3.4)-(3.3.6) become 

A A aP(k) A 

Xk+llk=axklk-l + 1 +p(k)(Yk-Xk1k-t) 

P(k + 1) = a2P(k) + 1- ;~~~~) 
(1 + a2 )P(k) + 1 

P(k) + 1 

(3.3.17) 

It is interesting to note the behaviour of P(k). Figure 3.2 shows the 
evolution of P(k) starting from Po = 2 for a = 1/2, 2. It converges very 
rapidly towards a steady-state value, which in fact is the positive 
solution P* = P*(a) of the algebraic Riccati equation 

P* = (1 + a2 )p* + 1. 
P* + 1 

(3.3.18) 

This solution is given by 

P* = t(a 2 + .J(a4 + 4)) 

(the other solution of (3.3.18) is negative). If Po = P*(a) then P(k) = 

P*(a) for all k and the Kalman filter (3.3.17) is time invariant (has 

5 P(k) 

4 --- - -:;;.=-:0.:-=---------

3 

2 

o~--~--~--~----~--~-----o 2 3 4 5 k 

Fig. 3.2 
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constant coefficients). Otherwise the filter is asymptotically time­
invariant, the gain K(k) converging to the steady-state value K* = 
aP*(a)/(l + P*(a)). This is true even if the state equation (3.3.16) is 
unstable (a> 1). In this case var(xd ---+ ooas k ---+ 00 but the conditional 
variance P(k) remains bounded. One of the curves in Fig. 3.2 shows 
this for a = 2. Now P*(2) = 4.2361 so that the steady-state Kalman 
gain is K* = 1.618. From (3.3.12) the error xklk _1 is given by 

Xk+ Ilk = (a - K(k))Xklk _1 + Vk - K(k)wk· 

For large k, K(k) is close to K* (or exactly equal to K* if Po = P*) so 
that this equation becomes 

Xk+llk=0.382xklk_1 +vk-1.618wk 

which expresses xklk _ I in the form of a stable autoregression. The point 
is that var(xk) = var(xklk _ I) + var(xklk _ I)' and var(xklk _ I) remains 
bounded even through the other two terms do not. Intuitively, the 
observer has enough information to 'track' Xk successfully although it 
is generated by an unstable system. 

Computation of P(k) 

For the general system (3.3.1)-(3.3.2) with time-varying coefficients, 
the Kalman filter is implemented by precomputing the gain sequence 
K(k) and this of course involves calculating the sequence of cova­
riances P(k). In principle this can be done by direct recursion of the 
Riccati equation (3.3.6) but that is not in fact a very good way of doing 
it, since (3.3.6) is numerically ill-conditioned. The three terms on the 
right of (3.3.6) are symmetric and non-negative definite, but the last 
one is subtracted, so there is nothing preventing non-negative 
definiteness of P(k + 1) from being lost, and if this ever happens the 
Riccati equation can become completely unstable. Consider for 
instance the example in Section 3.2. Taking the scalar case with 
N = H = 1, the Riccati equation (3.2.9) becomes 

P(k)=P(k-l)- p 2(k-l) = P(k-1) . 
I+P(k-l) I+P(k-1) 

Thus q(k): = P-l(k) satisfies 

q(k) = 1 +q(k-l). 

Now suppose Po = - 0.1; what happens? The moral is that P(k) must 
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be computed in such a way that successive terms of the recursion are 
intrinsically non-negative definite. The simplest way to do this is to 
use (3.3.5) and (3.3.13): 

K(k) = [AP(k)HT + CGT] [HP(k)HT + GGT] - 1 

P(k + 1) = (A - K(k)H)P(k)(A - K(k)H)T 

+ (C - K(k)G)(C - K(k)G)T. 

This is much better, as now P(k + 1) is expressed as a sum of non­
negative definite terms. 

An alternative approach is to propagate a square root of P(k), i.e. 
calculate matrices W(k) such that P(k) = W(k)WT(k), an idea that has 
been the subject of considerable research. The situation is com­
plicated by the fact that such a factorization of P(k) is not unique and 
therefore a variety of different algorithms is possible. Some 
references to this subject are given in the Notes at the end of this 
chapter. 

3.3.2 Time-invariant systems 

Suppose that the coefficient matrices A, B, C, H, G in the system model 
(3.3.1), (3.3.2) are time-invariant (do not depend on k). The results of 
the above example suggest that we should study the algebraic Riccati 
equation 

P = APAT + CCT - [APHT + CGT] 

. [HPHT + GGTr 1[APHT + CGT]T. (3.3.19) 

If the initial covariance Po satisfies this equation then evidently, from 
(3.3.6), P(k) = Po for all k, and the Kalman filter (3.3.4) is time­
invariant since now K(k), as well as the other coefficients, is a constant 
matrix. Notice that this does not imply that the state process Xk 

(with Uk = 0) is wide-sense stationary. The condition for this was given 
in Proposition 2.4.1 and is 

Po = APoAT + CCT. 

Equation (3.3.19) represents a trade-off between two opposing effects: 
on the one hand the observer is learning more about Xk as more data 
accumulates, but on the other hand the position of Xk may become less 
certain as it moves away from its initial position. The initial 
covariance which satisfies the algebraic Riccati equation is the value 
at which these factors exactly balance, leaving a precisely constant 
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degree of uncertainty as to the position of Xo as measured by the 
estimation error covariance. 

Under what conditions does the algebraic Riccati equation have a 
solution? Can there be more than one solution? It seems clear that the 
answers to these questions must be related to stabilizability and 
detectability properties. Suppose for example that one of the states x~ 
is completely unobserved by the output. Then the best estimate for x~ 
is just its mean Exi, and the mean square estimation error is E(xi -
ExD2 = var(xD. This converges only if xi is stable. The questions of 
existence of solutions to the algebraic Riccati equation, and conver­
gence of the sequence P(O), P(l), ... of matrices generated by the 
Riccati equation (3.3.6), are studied in detail in Appendix B. It is a 
fundamental feature of linear system theory that the same Riccati 
equations appear in connection with a certain optimal control 
problem, the linear regulator problem, which is discussed in Section 
6.1. The properties of these equations are most readily obtained from 
control-theoretic considerations, and we therefore limit ourselves 
here to stating the results and giving some interpretation of them in 
the filtering context. 

We require matrices A, C defined by 

Theorem 3.3.3 

A = A - CGT(GGT)-l H 

C = C[I - GT(GGT )-lG]. 

(a) If the pair (H, A) is detectable then there exists at least one non­
negative solution to the algebraic Riccati equation (3.3.19). 

(b) If further the pair (A, C) is stabilizable then this solution P is 
unique and P(k) ----+ P as k ----+ 00 where P(k) is the sequence 
generated by (3.3.6) with arbitrary initial covariance Po. The 
matrix A - KH is stable, where K is the Kalman gain correspond­
ing to P, i.e. 

K = [APHT + CGTJ [HPHT + GGTr 1. 

PROOF This is Theorem B.I of Appendix B. In Appendix B the 
Riccati equation appears in different notation, appropriate to its role 
in the control problems of Chapter 6. One obtains (3.3.19) by 
identifying coefficients as in Table 6.1. It will be found that A 
corresponds to iF and C to fJT. D 
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Note that the Kalman filter equation (3.3.4) can be written 

(3.3.20) 

The above results say that, under the stated conditions, this will be a 
time-invariant system (i.e. K(k) = K for all k) if P(O) = P, the solution 
to the algebraic Riccati equation. If P(O) i= P then the gain sequence 
K(k) tends to the stationary value K as k -+ 00. Thus the filter is almost 
time-invariant for large K and furthermore the filter is stable in that 
the system matrix A - KH in (3.3.20) is stable. Convergence to the 
stationary state is often rapid, and this justifies the widely employed 
practice of using the time-invariant filter even when P(O) i= P. 

The following remarks are intended to illuminate the role of the 
matrices (,4, C) which appear in the conditions of Theorem 3.3.3. 
Returning to the state-space model (3.3.1), (3.3.2), let us denote 

ek = CWk 

Ik = GWk = Yk - Hxk· 

These are the 'noise' terms appearing in the state and observation 
equations respectively. They are not un correlated - in fact 
cov(ek,lk) = CGT - but ek and II are uncorrelated for k i= I since Wk is 
white noise. The best estimate 12k of ek given fk is give by the general 
formula (3.1.6) as 

and the covariance of the error ek = ek - ek is 

cov(ek) = C[I - GT(GGT)-lG] [I - GT(GGT)-lG]TCT 

=CCT • 

Thus we can express ek in the form 

ek = CVk 

where cov(vk) = I and Vk is (like ek ) uncorrelated with II for all I 
(including 1= k). The state equation (3.3.1) now becomes 

Xk + 1 = AXk + BUk + ek + ek 

= AXk + BUk + CGT(GGT)-l(Yk - Hxk) + CVk 

I.e. 
v T T-l v 

Xk+ 1 = AXk + BUk + CG (GG) Yk + CVk 

Yk = HXk + Gwk · 
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This expresses the system in a form in which the noises appearing in the 
state and observation equations are uncorrelated (at the expense of 
adding an extra 'feedback' term from Yk to Xk + d. The stabilizability 
and detectability conditions stated above refer to the system in this 
form, involving matrices (.4, C, H) rather than the original (A, C, H). 
(Note that detectability of (H,.4) is equivalent to detect ability of 
(H, A).) If CGT = 0 then ek and fk are already uncorrelated and A = A, 
C=c. 

Computation of the solution of the algebraic Riccati equation has 
been the subject of active research and the best algorithms are of 
comparatively recent vintage. It is true that P(k) generated by (3.3.6) 
converges to P but as an algorithm this is not numerically robust. We 
do not discuss this subject here; see the Notes at the end of the chapter 
for further information. 

3.4. Innovations representation of state-space models 

In Section 2.4 it was shown that the state-space model and the 
ARMAX model 

A(Z-l)Yk = B(Z-l )uk + C(Z-l )Wk 

are interchangeable in the sense that the ARMAX model can be 
realized in state-space form, while a state-space model can be recast as 
an ARMAX system by calculating its transfer function. The two forms 
are complementary: the ARMAX model is preferred in system 
identification because of its 'parsimonious parametrization' (as Box 
and Jenkins (1976) put it), while optimal control theory has been 
developed primarily for state-space systems. In this section we discuss 
further the concept of an innovations model, which was already briefly 
introduced in Section 2.5. Recall that the state-space model 

Xk+ 1 = AXk + BUk + CWk 

Yk = HXk + GWk 
(3.4.1 ) 

is in innovations form if the matrix G is non-singular, and that the 
standard state-space realization of the ARMAX model has this 
property. The main result of this section, Theorem 3.4.1 below, states 
that to every state-space model (subject to mild restrictions) there 
corresponds an innovations model with the same external behaviour. 
This result is an important by-product of Kalman filtering theory. It 
implies that, in terms of input-output modelling, the class of 
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innovations-form state-space models is just as rich as that of state­
space models as a whole, a fact which is by no means apparent since 
the innovations model involves fewer parameters and a reduced 
number of noise inputs. 

We consider the system (3.4.1) with time-invariant coefficients A, B, 
etc., and made the following assumptions: 

(a) The matrix A is stable. 
(b) GGT > o. 

(3.4.2) 

Condition (a) does not imply that (,4, C) is stabilizable, or conversely; 
see the example at the end of this section. 

The input -output properties of (3.4.1) under stationary conditions 
were derived in Section 2.4. The state Xk has covariance Q satisfying 

(3.4.3) 

and the equations represent a linear system as shown in Fig. 3.3. Here 
.P is a linear system with transfer function 

Tdz-1)=z-lH(I -z-lA)-lB 

and j\ is a stationary process with covariance function 

_ _ {HQHT +GGT k=l 
COV(Yk'Y,) = HA'-kQHT + HA'-k-1eGT I> k. (3.4.4) 

In accordance with the introductory remarks in Chapter 2, we 
describe this as an external model. 

Now consider the Kalman filter (3.3.3)-(3.3.6) for this system with 
the constant gain K corresponding to a solution P of the algebraic 
Riccati equation (such a solution exists since (3.4.2) (a) implies that 
(H, A) is detectable) P and K satisfy 

Uk 

P = APAT + eeT -(APHT + eGT) 

·(HPHT + GGT)-l(APHT + eGT)T 

K = (AP HT + eGT)(H P HT + GGTr 1 

Yk 

·1 
L 

)f.* J+ ~ 

t 

Fig. 3.3 

>A-

(3.4.5) 

(3.4.6) 
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Recall that the 'innovations process' 

consists of uncorrelated random vectors with covariance 
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(3.4.7) 

(3.4.8) 

Let D denote any r x r square root of this covariance, i.e. any r x r 
matrix satisfying 

(3.4.9) 

Now consider the following state-space model with state ~k' output 11k 
and normalized white-noise input ek (cov(ek) = Ir): 

~k+ 1 = A~k + BUk + KDek 

11k = H~k + Dek· 

(3.4.10) 

(3.4.11) 

Note that this is obtained from the Kalman filter equation (3.3.4) and 
the definition (3.4.7) of the innovations process, with ~k = Xk1k _ P 

11k = Yk and Dek = Yklk- P but in (3.4.10) we are thinking of ek as an 
exogenous white noise driving a state-space model in the standard 
form. This system is called the innovations representation of the state­
space model (3.4.1). 

Theorem 3.4.1 

Suppose conditions (3.4.2) hold; then the state-space models (3.4.1) 
and (3.4.10), (3.4.11) are alternative realizations of the same external 
model. 

PROOF It is clear that the input-to-output transfer functions of the 
two systems coincide since these involve only the matrices A, B, H. It 
remains to show that the output noise covariance of the innovations 
representation coincides with (3.4.4). To calculate this let c;k' ifk be the 
state and output processes in (3.4.10), (3.4.11) when Uk == O. From 
Proposition 2.4.2, the stationary covariance P of c;k satisfies 

P= APAT + KDDTKT 

= APA + (APHT + GGT)(HPHT 
+ GCT)-l(APHT + GGT)T. 

Adding this equation and the algebraic Riccati equation (3.4.5) we see 
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that l' + P satisfies 

(1' + P) = A(1' + P)AT + CCT. 

Thus in view of (3.4.3), 

1'+P=Q. 

Now the two terms on the right-hand side of(3.4.11) are uncorrelated, 
and therefore 

COV(qk) = H1'HT + DDT 

= H1'HT + (HPHT +GGT) 

=HQHT +GGT. 

This shows that COV(qk) = COV(Yk)' It remains to show that 
COV(qk' q,) = COV(Yk, YI) for k i= l. By direct recursion of (3.4.10) we 
see that for I > k, 

C;; = A'-k~k + A'-k-l KDek + f(ek+ 1"", e,-l) 

where f(·) is a linear function of the indicated random variables, all 
of which are uncorrelated with ~k' ek • Thus 

E[iiiiIJ = E[(HA'-k~k + HA' - k- 1 KDek + De,)(IT HT + elDT)] 
=HA'-kpHT +HA'-k-1KDDT 

= HA'-kpHT + HA'-k-1(APAT + CGT) 

=HA'-kQHT +HA'-k-1CGT. 

But this agrees with the expression (3.4.4) for COV(Yk' YI) when I> k. 
Thus models (3.4.1) and (3.4.10) are both represented by Fig. 3.3 
with additive noise whose covariance function is given by (3.4.4); i.e. 
they are the same system in terms of their external behaviour. 0 

It was shown in Section 2.4 that by calculating the transfer 
functions of the models (3.4.1) and (3.4.1 0), (3.4.11) we can express 
them in general stochastic dynamical model form as 

Yk = p(Z-l)Uk + Q(Z-l)Wk 

'1k = P(Z-l)Uk + Q(z-l)ek 

(3.4.12) 

(3.4.13) 

respectively, where P, Q, Q are matrices of rational functions. Q and Q 
are not the same since the dimension of Wk is possibly greater than that 
of ek (it cannot be less, in view of condition (c) of(3.4.2». None the less, 
Theorem 3.4.1 implies that the spectral densities of Yk and '1k with 
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Uk = 0 are the same, so that 
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This shows that the innovations representation is the most efficient 
parametrization of the state-space model in the sense of giving a 
desired output spectral density with a minimal number of uncorre­
lated noise inputs. 

Finally, let us consider representing the (common) input/output 
behaviour of our state-space models in ARMAX form. As shown in 
Section 2.4 this can always be done by factoring out the lowest 
common multiples of the denominators of P, Q and P, Q respectively 
in the general models (3.4.12), (3.4.13). Model (3.4.13) is the better 
choice since the noise dimension is reduced, but the factorization 
procedure is in general a laborious one. We now show that in the 
single input-single output case one can read off the coefficients of the 
corresponding ARMAX model after a simple change of coordinates. 
We need to introduce the additional assumption that (H, A) is 
observable. In a sense this assumption entails no loss of generality 
since, as discussed in Section 1.2, if the system is not observable then it 
is possible to construct a reduced-order observable system with the 
same transfer function. 

Suppose then that (3.4.1) is a single input-single output system 
satisfying conditions (3.4.2) and that the pair (H, A) is 
observable. Referring to Section 2.4, note that the state-space 
representation of the ARMAX model given in proposition 2.4.2 is 
identical in structure to (3.4.10), (3.4.11) but has the additional feature 
that the A and H matrices take a particular form (the so-called 
transposed companion form). However, the general model (3.4.10), 
(3.4.11) can always be put in this form by a change of basis in the state 
space. Indeed, suppose T is any non-singular matrix and define 

Then ~k satisfies 

where 

~k = T-l~k· 

~k+ 1 = A~k + BUk + KDek 

11k = fj~k + Dek 

A = TAT- 1 

B= T-1B 

K= T-1K 

fi=HT 
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We claim that it is possible to choose T so that .4, B are in 
transposed companion form. To achieve this, let w be any n-vector 
such that the matrix 

T:= [w : Aw : A2w: ... : An- 1wJ 

is non-singular. Then 

AT=[Aw A2 w ... AnwJ 

and hence 

° ° 
I ° 
° 

o 

(3.4.14) 

This gets .4 in the appropriate form. We also require HT = 

[0,0, ... , 0, I]. If this is to be satisfied, then by the definition of T, 
and recalling that H is now a row n-vector, the vector w must satisfy 

I.e. 

Hw=O 

HAw=O 

HA n- 2w = ° 
HA n - 1w = 1, 

(fW)T = [0,0, ... ,0, IJ 

where f is the observability matrix: 

f= [~ l 
HA'n-J 

(3.4.15) 

(3.4.16) 

By assumption this is non-singular, and therefore (3.4.16) states that 
(3.4.15) is satisfied if w is the last column of f - 1. It remains to show 
that T defined by (3.4.14) is non-singular with this choice of w. But 
in view of (3.4.15) 
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ro ... 1] 
. * - : 1 

- ~ ... * ... ~ 

(where the stars denote possibly non-zeros elements). Thus J has 
rank n, so that T = r- 1 J is non-singular. This completes the 
identification of the state space and ARMAX models: once the 
innovations representation of the state-space model has been trans­
formed to transposed companion form, the coefficients of the 
corresponding ARMAX model can be read off by referring to the 
state-space realization of the ARMAX model given in Proposition 
2.4.3. In terms of the original model (3.4.1), these coefficients are 
given by 

ai = - [T - 1 A"w Y - i + 1 

bi = [T- 1 B]"-i+ 1 

Co = J(HPHT + CCT) 
Ci = cOai + [T- 1 K]"-i+ 1 

for i = 1,2, ... , n, where [xJ denotes the ith component of the n-vector 
x. 

Finally, it is instructive to consider what happens when (3.4.1) is 
already in 'innovations form'. This occurs when Yk and Wk have the 
same dimension and C is non-singular, so that (3.4.1) becomes 

Wk = C- 1(Yk - HXk) 

Xk+ 1 = AXk + BUk + CC- 1(Yk - Hxk) 

= (A - CC- 1H)xk + BUk + CC- 1Yk. (3.4.17) 

If the initial state Xo is known then the states x 1, x2 , ••• can be 
recovered exactly from the observations by recursion of (3.4.17). If 
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Xo is unknown, start (3.4.17) with an arbitrary initial state ~ and 
let xk be the resulting sequence of states, i.e. 

Xl = (A - CG-1H)~ + Buo + CG- 1yo 

Xz = (A - CG- 1H)x1 + BU 1 + CG- 1Y1 

etc. 

Then ek: = Xk - xk satisfies 

ek+1 =(A-CG- 1H)ek 

eo = Xo -~, 

so that ek ~O as k ~ 00 as long as A - CG- 1 H is stable. 

(3.4.18) 

The following result is obvious by inspection but is worth pointing 
out explicitly. 

Proposition 3.4.2 

Suppose that, in the model (3.4.1), Yk and Wk have the same dimension 
and G is non-singular. Then P = 0 is a solution of the algebraic 
Riccati equation (3.4.5). 

These results help to evaluate the relationship between the various 
conditions used above. Indeed, if G is invertible, then C = 0 and 
A = A - CG -1 H, so that the pair (A, C) is stabilizable if and only if 
A - CG - 1 H is stable. Under this condition the algebraic Riccati 
equation has a unique non-negative definite solution, and we know 
that P = 0 is a solution if G is non-singular. The corresponding 
values of K and D are, from (3.4.6) and (3.4.9), K = CG - 1 and D = G. 
Thus the innovations model (3.4.1 0), (3.4.11) coincides with the 
original model (3.4.1), as it should. For any ~, the sequence xk given 
by (3.4.18) with Xo = ~ forms a sub-optimal estimate of Xk which 
nevertheless has asymptotically zero error covariance. 

This example also helps to elucidate the relationship between the 
conditions of Section 3.3 and those of (3.4.2). If (H, A) is observable 
then pole placement is possible, i.e. the eigenvalues of the matrix 
A + SH can be assigned to arbitrary locations by suitable choice of 
the matrix S. Thus observability of (H, A) does not imply stabi­
lizability of (A, C), which is equivalent to stability of A - CG -1 H, 
in the absence of any restrictions on C and G. 
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The idea of representing stochastic processes in terms of innovations 
or orthogonal components goes back at least to Wold (1938) and 
reaches its furthest development in the papers of Wiener and Masani 
(1958). Prediction problems were tackled simultaneously by Wiener 
(1949) and Kolmogorov (1941). (Wiener's book contains the results of 
previously classified wartime research.) Both of these authors were 
concerned with stationary processes. The time-domain approach 
based on state-space models was initiated by Kalman and Bucy (1960; 
1961). 

The literature on Kalman filtering is now immense. Textbook 
accounts that we have found particularly informative are Anderson 
and Moore (1979), Gelb (1974) and Maybeck (1979). All of these are 
valuable colateral reading in that they cover applications issues not 
discussed in this book. In particular, square root algorithms for 
propagating the conditional covariance matrix are discussed in detail 
in Anderson and Moore and in Maybeck. Anderson and Moore 
also discuss solution of the algebraic Riccati equation; for some of 
the latest work in this area, see Pappas, Laub and Sandell (1980). 
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CHAPTER 4 

System identification 

An implicit assumption in the theory of optimal filtering and control 
is the availability of a mathematical model which adequately 
describes the behaviour of the system concerned. We pointed out in 
Chapter 2 that such models can be obtained from the physical laws 
governing the system or alternatively by some form of data analysis. 
The latter approach, known as 'system identification', is discussed in 
this chapter and is appropriate in cases where the physical mechan­
isms of the system are either highly complex or imprecisely under­
stood, but where the input/output behaviour of the system is 
sufficiently regular to be represented adequately by fairly simple 
models. 

The methodology of system identification involves a number of 
steps: 

(a) Selection of a class of models from which a model to represent the 
system is to be chosen. 

(b) Experiment design: choice of the inputs to be supplied and the 
readings to be taken in the identification experiment. 

(c) Selection of a model on the basis of the experimental data. 
(d) Model validation: this involves checking the adequacy of the 

chosen model in relation to some specific task such as prediction 
or use as the basis of control system design. 

In this chapter we are concerned with the techniques of system 
identification when the models considered are linear discrete-time 
stochastic models of the sort described in Chapter 2. These models 
represent linear time-invariant systems with stationary additive 
random disturbances. Data analysis is then necessarily based on 
statistical techniques. The field of statistical identification is however 
a large one, and it is possible to treat only certain topics in the space 
available here. Attention will be given almost exclusively to the 
problem of how to analyse data from an identification experiment 
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and thereby choose a suitable model from some given, finitely 
parametrized, class of models. This aspect of identification is usually 
called parameter estimation, even though this terminology mislead­
ingly suggests that there is some 'true' parameter value which 
provides a perfect description of the system and which it is our task to 
estimate. In practice we can never achieve a perfect description, and 
the object of identification is merely to furnish a model whose 
response adequately approximates that of the system in significant 
respects. 

Even on the subject of parameter estimation we have been selective. 
Emphasis is given to methods which admit a 'prediction error' 
formulation and consequently there is no mention of correlation 
techniques (such as that of 'instrumental variables') which do not fit 
into this framework. Our models all involve stationary disturbances, 
so we do not discuss non-stationary behaviour - trends and seasonal 
variations - which is so important in econometric time series. Nor do 
we investigate issues of numerical stability. Some references to the 
literature on these and other omitted topics are provided in the Notes 
at the end of this chapter. 

Our object in this chapter is to describe certan important 
parameter estimation methods, and to investigate the quality of the 
estimates in some cases where the analysis is relatively straightfor­
ward. The task of analysing the asymptotic properties of the estimates 
in a general context is undertaken in Chapter 5. 

4.1 Point estimation theory 

Here we describe some classical concepts from point estimation 
theory of relevance to identification. The problem considered in point 
estimation theory is that of estimating the value of some function of 
an unknown parameter given an observation of a random variable x 
whose statistical properties depend on the parameter. 

To be more specific, suppose thatf(·, 0) is a collection of probability 
densities in n variables, parameterized by vectors OED where D is 
some set of q-vectors, and suppose d: IRq ~ IRr is some function of the 
parameter we are interested in, the parameter itself say. A random 
variable x, which has density f(·, 0*) for some unknown O*ED, is 
observed. An estimator for d(O*) is a function g: IRft ~ IRr.1t supplies an 
estimate g(x) of d(O*). We view an estimate g(x) of d(O*) either as a 
random variable, defined as a function of a random variable, or as the 
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function 9 evaluated at the observation of the random variable x, 
depending on context. It is understood that an estimate of d(B*) in 
some sense approximates d(B*). Estimates ofB* are of primary interest 
and we shall often refer to these simply as 'estimates'. 

What is a good estimator of d(B*)? In order to ask this question 
precisely, we introduce the following definitions: 

g(.) is an unbiased estimator for d(B*) if 

Eeg(x) = d(B), for all B 

where Eeg(x) is the expected value of g(x) given than x has the 
probability density fL B), that is 

Eeg(x) = f g(~)f(~, B) d~. 
An unbiased estimate averaged over independent experiments gives 
the correct parameter value, whatever this is. 

It is also desirable that the covariance matrix of g(x) be 'small'. This 
property in itself, however, gives little indication of the quality of an 
estimator: the estimate g(x) = .p, where .p is some fixed vector, has 
covariance matrix the zero matrix and yet it is useless as an estimator 
since it will be biased except in the fortuitous circumstances that 
.p = d(B*). For this reason, bounds on the covariance of unbiased 
estimates are of particular interest. 

Theorem 4.1.1 (Cramer-Rao lower bound) 

Suppose the function fL') defining the collection of probability 
density functionsf(', B), BED, is sufficiently regular. Define the matrix 
Me = {mij} by 

mij = Ee( a~i log f(x, B) a~j log f(x. B)) (4.1.1) 

and suppose that Me is non-singular. Then for an arbitrary unbiased 
estimator g(') of B, we have 

for all BED. 

PROOF Letg(·) be an unbiased estimator of(). Since g(. )is unbiased, 

Ee{g(x)} = B for all B. (4.1.2) 
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This means 

f g(~)f(~, e)d~ = e for all e 

whence 

for all e. 

Under suitable conditions on f and g, we can carry the differenti­
ation with respect to e; operator under the integral sign. There results 
the equationt 

f g(~) :ef(~, e) d~ = I 

which can be written 

for all e 

f g(~) :e(lOgf(~, e))f(~, e) d~ = I for all e. 

or, in terms of the expectation operator corresponding to f(', e), 

EO{ g(x) :0 (log I(x, O))} = I for all O. (4.1.3) 

We now use the fact that IL e) is a probability density to derive 
another relationship. Since 

we can write, under suitable conditions on I, 

f a af T aoI(~,O)d~= ao I(~,O)d~=O for all O. 

Here 0 denotes a column vector of zeros. But then 

f :e(lOg f(~, e))f(~, e)d~ = OT for all e. 

t (j)/j)(})f(~, ()) denotes the row vector with components (Ojj)O;)f(~, ()). We adhere to this 
convention throughout. 
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and this equation can be expressed 

Eo{ :elOg f(x, e)} = OT for all e. (4.1.4) 

Now let us examine the covariance matrix Qo of the composite 
random variable [gT(x),a/aelogf(x,e)JT when x is taken to have 
probability density fL e). By (4.1.2) and (4.1.4) this random variable 
has mean col [e, OJ, so 

Q, ~ E'{l[ :e~o:~~x~e) JJ [(g(X) - O)'::ologf(x, ~ J}' 
(4.1.5) 

It follows from (4.1.3), (4.1.4) and the definition of Mo that 

Qo = [co;Og ~J. 
Now suppose that Mo is non-singular. Since Qo is a covariance matrix, 
Qo is non-negative and therefore 

[I : _Mi1J[cO;g ~J[ _~ilJ=COV09-Mil (4.1.6) 

is non-negative. It follows that 

o 
The regularity hypotheses on the function f(',') referred to in 

Theorem 4.1.1, and those which we tacitly assume concerning the 
'arbitrary' unbiased estimator g('), are such as to justify differentiat­
ing f(',') with respect to the e variable and, where necessary in the 
proof, carrying the e-derivative operator under the integral sign. 

Mo is called Fisher's information matrix. We remark that there is an 
alternative and often more convenient formula than that given in 
Theorem 4.1.1 for the entries mij' namely 

mij = - Eo( a:;e
j 
log f(x, e))­

To check the validity of this formula, note that 

a2 a a a2 f 
f ae.ae .log f = - f ae:og f ae .tog f + Ge.Ge" 

J J l J 1 J 
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Integrating over values of x, we obtain 

Eo( 8:;ej log f) = - Eo( 8~i log f 8~j log f) 

slllce 

f 81f 81 f 
8e.8e. dx = 8e.8e. fdx = O. 
'J 'J 

The quality of an unbiased estimator can be assessed by comparing 
its covariance to the lower bound provided by Theorem 4.1.1. An 
unbiased estimate g(.) is said to be efficient if 

Eo[(g(y) - e)(g(y) - e)T] = Mi 1 for all eED. 

Notice that if g*(-) is an efficient estimator and gl') is an unbiased 
estimator then for any q-vector c, E[cTg(y)] = cTe and we have by 
Theorem 4.1.1, 

var {cTg(y)} = cTEO[(g(y) - e)(g(y) - e)T]c 2 cTMi1c 
= var{cTg*(y)}. 

It follows from this inequality that if an unbiased estimator g*(') is 
efficient, it provides an estimate c T g*(y) of an arbitrary linear 
combination cT(} of the components of () with variance which is a 
minimum as compared with that provided by other unbiased 
estimators. 

Consider now the situation when the parameter ()* is to be 
estimated on the basis of observations of a sequence of random 
variables X1,Xl,'" For n= 1,2, ... ,let x· denote the composite 
random variable x· = col [Xl>"" xn] and let g.(-) be an estimate for 
()* given xn. We say the sequence of estimators {gn(')} is consistent 
if gn(' ) --+ ()* almost surely. 

We now introduce a particularly important kind of estimator. 
Take f(·, e), eED as above. A function eO is a maximum likelihood 
estimator if for every x 

f(x, e(x)) = max f(x, (}). 
!JED 

The maximum may be attained at more than one point, so maximum 
likelihood estimators are not necessarily unique. e(x) has the 
interpretation that it is the value of () which maximizes the probability 
that the random variable x will be in an infinitesimal region about 
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the observed value; very roughly, it chooses the value of 0 which makes 
the observed x 'as likely as possible'. This interpretation is in itself no 
justification for introducing the maximum likelihood estimator, but 
there are in fact excellent reasons for doing so, one of which is the 
following result. 

Proposition 4.1.2 

Suppose as before that the family f(-, e), eED satisfies appropriate 
regularity conditions and that Mo is non-singular for all O. Then any 
efficient estimator is a maximum likelihood estimator. 

PROOF Let g(.) be an efficient estimator, so that 

cov(g(x» = Mil. 

In view of (4.1.5) and (4.1.6) above this means that for any q-vector a, 

Eo[ aT[I: - Mi 1] [a g(x) - 0 J 
ae log f(x, e» J 

{(g(X) - e)T::eIOg f(x, 0) ] [ _ ~il ] a] = 0, 

i.e. 

(4.1.7) 
where 

b = aT [ g(x)- e - Mil(:eIOgf(x,e») T} 
Now (4.1.7) implies that b = ° a.s. for any e, and hence, since a is 
arbitrary, that 

g(x) - 0 = Mi I (:e IOg f(x, e») T a.s., 

i.e. that 

a 
ae log f(x, e) = (g(x) - O)T M 0 a.s. 

Now suppose U(x) is a maximum likelihood estimator. Then 
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log f(x, e) is maximized at e = 8(x), so that 

a ~ ~ T 
ae log f(x, e(x)) = (g(x) - O(x)) M 0 = 0 a.s. 

But this implies that g(x) = 8(x), i.e. the efficient estimator g(.) 
coincides almost surely with the maximum likelihood estimator e(-). 

o 
Proposition 4.1.2 is less far-reaching than it seems at first, since 

efficient estimators only exist in very special circumstances. The main 
justification for the maximum likelihood method lies in its large 
sample properties, which we discuss next. 

Suppose the situation is the same as before except that we now 
observe the values of n independent 'samples' of x, i.e. we observe 
{Xl' ... ' xn} which are independent, each Xi having density function 
f(., e) (the same e for all i). The joint density function is 

n 

fn(x I ,···, xnJ)) = TI f(x;, 0). 
i= 1 

An estimator 8n(·) of e is a function of all the available data 
{xl, ... ,xn}. Since 

E{ aO~;Oj log fn(x 1 ,···, Xn, 0) ] = nE{ aO~;Oj log /(x 1 , 0) 1 
the Fisher information matrix for the n-observation case is just 

M~=nMo 

where Mo is defined by (4.1.1). Thus for any unbiased estimator 
8'(XI'···'Xn), 

(4.1.8) 

With increasing n, more accurate estimation of 0 is in principle 
possible, as indicated by the decreasing lower bound. As before, {J" is 
efficient if equality holds in (4.1.8). A more useful concept, however, is 
that of asymptotic efficiency. Here we consider a sequence of 
estimators 81,82 , ... based on increasing numbers of observations. 
The sequence {en} is said to be asymptotically unbiased if Eoen -+ e as 
n -+ 00 for any O. {en} is asymptotically efficient if for any 0 

n -+ 00. 
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Consider for example the normal distribution with parameters 
OT = (p, v) (the mean and variance respectively) so that 

1 (1 2) f(x,O) = (2nv)l/2 exp - 2v (x - J.l) • 

The inverse of the Fisher information matrix is 

(Mn)-l=!(V 0) 
o n 0 2v2 

and it is easily shown that the maximum likelihood estimators of J.l 
and v are the sample mean and variance x and S2 respectively, given by 

1 n 

X =- LXi 
ni=l 

These statistics have mean and variance as follows (see Kendall and 
Stuart (1979)): 

Ee(x) = J.l 
1 

varo(x) = -v, 
n 

Thus x is unbiased and efficient while S2 is asymptotically unbiased 
and efficient. (Note that varo(s2) is less than the Cramer-Rao lower 
bound, but this is not a contradiction since the lower bound only 
applies to unbiased estimators). It is a remarkable fact that similar 
properties apply to sequences of estimators based on independent 
samples with any family f(-, 0), OED of density functions, subject only 
to regularity conditions similar to those assumed earlier. A full 
statement and proof of the following proposition will be found in 
Kendall and Stuart (1979). 

Proposition 4.1.3 

Let Xl' X2 ... be independent random variables with density function 
f(·,O) and let (In be the maximum likelihood estimator for 0 based on 
{Xl' ... ' Xn}. Then subject to regularity hypotheses, the sequence {Un} 
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is consistent, asymptotically unbiased and efficient. Further, Un is 
asymptotically normally distributed; more precisely the distribution 
of .jn«(Jn - (J) converges to the N(O, M;- 1) distribution as n -+ 00. 

The last statement means that if Fn denotes the distribution 
function of the random variable .jn(Un - (J) and F the normal 
N(O, M;- 1) distribution function then F n(a) -+ F(a) as n -+ 00 for each a 
at which F(') is continuoust . Thus for large n the distribution of Un is 
very close to N«(J, (ljn)M;- 1). This is useful information as it provides 
a precise measure of the accuracy of parameter estimates, at least 
when the sample size is large. 

Our main concern in this chapter is to estimate the parameters of 
dynamical systems such as the ARMA model introduced in Chapter 
2. It is of course an essential property of the ARMA model that the 
successive outputs Yl' Y2 ... are not independent, and analysis of the 
large sample behaviour of maximum likelihood estimates presents a 
much more delicate problem than the 'classical' case considered in 
Proposition 4.1.3. Nonetheless it has been shown in a number of 
papers listed in the Notes at the end of this chapter that 
properties of asymptotic efficiency and normality similar to those of 
the classical case continue to hold. We discuss certain of these results in 
Section 4.4. 

For simplicity we have adopted a framework in this section in 
which a family of probability density functions f(-, (J), (JED, is 
specified. We remark that it still makes sense to speak of 'estimators', 
'unbiased estimators', 'consistent sequences of estimators', etc., even if 
{j(', (J), (JED} is replaced by a family of distribution functions. 

4.2 Models 

In system identification we observe input and output sequences, 
{uo, ... ,uN-d and {YO'''''YN}' of our system and attempt to 'fit' a 
model which best represents the data. Invariably the models consi­
dered are parametric, i.e. selection of a parameter vector (JElRq fully 
specifies a model M«(J). Thus the 'model set' is {M«(J): OED} where D is 
a set of allowable parameter values. Often (J will simply list the entries 
of the matrices involved in the model, but it is possible that these 

tIn the present case F(') is continuous everywhere, being the distribution function of a 
non-degenerate normal distribution. We need the extra generality later. 
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matrices could be given as functions of some (say lower-dimensional) 
parameter O. The parameter 0 will usually not be 'free'; it will be 
restricted to maintain, for example, certain stability properties of the 
models. 

We shall be primarily concerned in our treatment of system 
identification with the (linear, time-invariant) stochastic dynamical 
models introduced in Section 2.4. For purposes of algorithm descrip­
tion and analysis, however, we consider also static models (see below) 
and the predictor models of Section 2.6. 

4.2.1 Static models 

The observed p-vector random variable y is taken to satisfy the 
equation 

y=XO+e. 

Here X is a given deterministic p x q matrix and e is a p-vector 
random variable with zero mean. Choice of 0 specifies the mean value 
of y since Ey = XO. This set-up is known as the 'general linear model' 
in the statistics literature. It covers in particular moving-average type 
stochastic dynamical models of the form 

Yk = B(Z-I)Uk + Wk 

where {Wk} is a white noise sequence, i.e. ARMAX models with 
A(z - 1) = C(Z -1) = I, when the entries of the matrix coefficients of the 
polynomial B(o) are treated as the unknown parameters (see Example 
4.3.1 below and subsequent remarks). 

4.2.2 Stochastic dynamical models 

These are the stochastic dynamical models of Section 2.4 (general 
stochastic dynamical models, ARMAX models and stochastic state­
space models), parametrized by the parameter vector O. 

The general stochastic dynamical model equations relating inputs 
{Uk} and outputs {Yk} are 

(4.2.1) 

Here P 9(0'), Q9(0') are r x m, r x r, matrices ofrational functions in 0' 

expressible as 
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In these expressions P8(a), qo(a) are polynomials with coefficients real­
valued functions of the parameter e which satisfy P8(0) =F 0, q 8(0) =F O. 
P8(a), (2o(a) are polynomials in a with coefficients matrix-valued 
functions of e. {ek } is an r-vector white-noise sequence. (We refer back 
to Section 2.1 for interpretation of the output generated by these 
equations, discussion of initial conditions, etc.) 

The ARMAX model equations are 

A8(z-1 )Yk = Bo(Z-l )Uk- 1 + C8(Z-1 )ek. (4.2.2) 

In these equations, A8(a), Bo(a), Co(a) are polynomials in a with 
coefficients r x r, r x m, r x r matrix functions of the parameter e, and 
A8(a) satisfies det A8(0) =F O. {ek} is an r-vector white-noise sequence. 

Finally, the stochastic state-space model equations considered are 

Xk+ 1 = A(e)Xk + B(e)Uk + K(e)ek} 
H(e) (4.2.3) 

Yk = Xk + ek· 

(an innovations representation has been adopted). Here A(e), B(e), 
K(e), H(e), are n x n, n x m, n x r, r x n matrix-valued functions of e. 
Again {ek } is an r-vector white-noise sequence. 

From the point of view of analysis, general stochastic dynamical 
models, ARMAX models and stochastic state-space models are 
interchangeable, except for details involved in the specification of 
initial conditions (see Section 2.4). Notice, however, that a change 
from one model set description is accompanied by modification ofthe 
definition of the parameter set D in terms of the coefficients in the new 
description. A model set expressed, say, in terms of stable space 
equations in which one matrix entry ranges over an interval will give 
rise to an ARMAX model in which the description of the permissible 
coefficients in P and Q is rather complicated. Simplicity of the 
parameter constraint set will affect ease of implementation, and 
performance, of identification methods. So there may be grounds for 
choosing one model set rather than another. 

4.2.3 Predictor models 

We consider the predictor models of Section 2.6, but we now suppose 
that the predictor function at time k, fk' depends on a parameter e. 
Thus we take the r-vector output Yk to be related to past outputs Yk - 1, 

Yk-l'"'' and past m-vector inputs Uk-I,Uk-2,"" by the equations 

Yk = fk(e;/-I,uk- I) + ek k = 0, 1, ... 

Here /-1 and Uk - 1 denote (as before) col[Yk-I'Yk-2""'Yo] and 
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col [Uk- 1, Uk- 2' ... ' Uo] respectively. fk: IRq X IRk' X IRkm ~ IR', k = 0, 
1, ... , are given deterministic functions of the parameter and past 
outputs and inputs, and {ek } is a sequence of independent, zero­
mean random variables. 

We recall that fk(e; yk-1, Uk-i) is the conditional expectation of Yk 
given 1- 1, Uk - 1, and hence the best 'one-step-ahead predictor' in the 
mean square sense under the assumption, of course, that M(e) is the 
true model. A predictor model then is basically a rule (evaluation of 
the function fk) for predicting the value of Yk given 1- 1, Uk - 1. As we 
have seen, predictor models essentially subsume the stochastic 
dynamical models of the previous subsection provided the driving 
noise vectors are independent. When we reformulate a stochastic 
dynamical model as a predictor model we replace it, in effect, 
by an algorithm for calculating predictions. A typical identification 
procedure involves selection of a parameter value e to minimize in 
some sense the prediction errors, namely the discrepancy between the 
observed output and the prediction of the output supplied by the 
algorithm corresponding to parameter value e. Identification proce­
dures formulated in terms of predictor models, on which we 
concentrate in our study of identification, can be viewed then as 
identification procedures for stochastic dynamical models reduced to 
a family of algorithms, parametrized bye, each of which supplies a 
predictor. 

We have already determined (Section 2.6) the predictors associated 
with the stochastic dynamical models considered here. For the 
general stochastic dynamical model (4.2.1), the predictor functions fk 
take the form 

(where we assume zero initial data, Uk = 0, Yk = 0, k < 0, and take 
Qo(a) such that Qo(O) = I). For the ARMAX models (4.2.2) 

k=0,1, ... 

where Yk is calculated form the recursive equations 

CO(Z-l )Yi = [CO(Z-l) - AO(Z-l )]Yi + BO(Z-l )Ui-1 i=O, I, ... 

(We assume zero initial data, Yk = 0, Yk = 0, ek = 0, k < 0, and take 
Ao(a), Cia) to be such that Ao(O) = Co(O) = I.) For the stochastic state­
space models (4.2.3), 

k=0,1, ... 
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where now 

and Xk is calculated from the recursive equations 

Xi + 1 = A(O)Xi + B(O)ui + K(O)(yi - H(O)Xi)' i ~ 0 

(again we assume zero initial data, Xo = 0) 

4.3 Parameter estimation for static systems 

In this section we describe and analyse techniques for identifying a 
static system. The analysis suffers from the limitation that it is based 
on the hypothesis that the model set considered contains a model 
which perfectly describes the system. We cannot expect in practice 
that this hypothesis is valid. The analysis is none the less significant 
since it is reasonable to suppose that the analysis will give some 
indication of the quality of an estimator when the model set, if it does 
not actually contain a true description, comes close to doing so. 

Let X be a given p x q matrix and let e be a zero-mean p-vector 
random variable. Suppose that the p-vector random variable Y 
satisfies the equation 

Y= XO* +e (4.3.1) 

for some (unknown) q-vector 0*. Further statistical information 
about e may, or may not, be available. In this section we study the 
problem of estimating the parameter 0* (and also, possibly, statistical 
properties of e), given an observation of y. The problem then is to 
choose a model from the model set described by the equations 

y=XO+e 

as the parameter 0 ranges over IRq, when it is known that some 
parameter value (0 = 0*) provides a true description of the system. 

Of course, parameter estimation for dynamical systems is of primary 
interest in this chapter and, before proceeding, we give an example 
illustrating the extent to which consideration of static models is 
relevant to dynamical systems. 

Example 4.3.1 

Consider scalar ARMAX models of the form 

Yk + a1Yk-l + ... + anYk-n 

=b1Uk-l +···bmUk-m+ek k=1, ... ,N. 
(4.3.2) 
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Here we treat Yo,···, Y -n+ 1 and UO,"" U- m+ 1 as initial conditions. 
The ei are zero-mean random variables. The model parameter is the 
vector of coefficients a 1 , ... , an, b1,···, bm • 

The equations (4.3.2) can be expressed as a single vector equation 

Y = X8 + e 

in which p = N, q = n + m,Y = col(Yl'" "YN)' e = col(e 1 , ... ,eN), 8 = 

col(a 1,· •. , an, b1 ,··· bm) and 

X= l-Yo . .. -Y-n+l 

-Yl' -Y-n 

- ~N-l .•• - ~N-n 
(4.3.3) 

We have limited ourselves here to treatment of the scalar case. A 
reduction of a vector ARMAX model to a static model of the form 
(4.3.1) can be performed along similar lines. 

It is clear from this example that estimators, procedures for 
selection of model order, etc., devised for static models translate into 
corresponding estimates, etc., for dynamical models of the sort 
described in Section 2.4. 

Notice that the matrix X, given by (4.3.3), depends on the random 
variable Yl"'" YN and is therefore, in general, random. X is 
deterministic, however, in those situations when al"'" an can be 
taken zero, i.e. when the dynamical system has a moving-average 
description. Much of the analysis of this section is based on the 
assumption that X is a known deterministic matrix (or at least that X 
is the realization of a matrix random variable which is independent of 
e). It should be borne in mind, then, the analysis is directly relevant 
only to rather special dynamical systems. 

4.3.1 Least squares estimation of static systems 

A natural approach to the problem of estimating 8* in the model 
(4.3.1) is to choose an estimate which minimizes some measure of the 
discrepancy, or error, between the observation of y and the value of Y 
which the model predicts in the absence of disturbances. A particular­
ly appealing estimate is one which minimizes the sum of squares of the 
components of the error, because we can expect it to be analytically 
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and computationally tractable. Such an estimate minimizes 

O-t! f IYi - t XijOjl2 
2i =1 j=l 

(the xij are the components of the matrix X). In vector notation this 
function becomes 

A slight refinement of such an estimate is one which minimizes the 
function f: 

f(O) = 1(y - X(WQ(y - X(}), (4.3.4) 

in which Q is some symmetric, non-negative matrix. Choice of Q will 
depend on our judgement about the relative importance of different 
components of the error, or other considerations. 

A least squares estimate (J of 0* (corresponding to Q) is one which 
achieves the minimum of f defined by (4.3.4). 

Notice that, once the matrix Q is fixed, the problem of determining 
a least squares estimate is a purely deterministic one and does not 
involve statistical information about y. 

We observe that the gradient of the function f at () is 

f'((}) = [XTQX(} - XTQyy. 

It is now shown that the condition f'(fJ) = 0 fully characterizes the 
least squares estimate (J. 

Proposition 4.3.2 

Let Q be an arbitrary symmetric, non-negative p x p matrix. A least 
squares estimate of 0* (corresponding to Q) exists. (J is a least squares 
estimate if and only if 

PROOF For any 0, (JElRq we can write 

f(O) - f(&) = - yTQX(O - &) +tOTXTQXO-t&TXTQX& 
= (0 - &)T[ _ XTQy + XTQX&] 

(4.3.5) 

+t(O-&lXTQX(O-&), (4.3.6) 

after some rearrangement. (The right-hand side of (4.3.6) will be 
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recognized as the expansion of f as a finite Taylor series about &, 
namely 

f(O) - f(&) = f'(&)(0 - &) + t(O - &)T f"(&) (0 - &)). 

Suppose that & satisfies (4.3.5). Since XTQX ~ 0, it follows from 
(4.3.6) that f(O) ~ f(&),for all OE~q. In other words, (4.3.5) is a sufficient 
condition for & to be a least squares estimator. 

Suppose that U does not satisfy (4.3.5); then [ - XTQy + XTQX&] = 
~ for some non-zero vector ~. Choose 0 = & - IX~, for IX > O. 
From (4.3.6), 

f(O) - f(&) = -IXWI 2 + tIX2~TXTQX~. 

It is clear that for IX sufficiently small, f(O) - f(&) < O. So {j does not 
minimize f. We have shown that (4.3.5) is also a necessary condition. 

It remains to show that there exists some {j satisfying (4.3.5). For 
this purpose we introduce the symmetric, non-negative square root of 
the matrix Q (see Appendix D). Suppose in contradiction that (4.3.5) 
does not have a solution. This means that the vector X T Qy does not lie 
in the subspace {XTQXO:OE~q}. Then there exist a q-vector ~ such 
that 

But 
~TXTQXO = 0, 

We conclude from (4.3.7) that Ql/2X~ ~O. It follows that 

~TXTQX~= IIQl/2X~112~O. 

(4.3.7) 

(4.3.8) 

This contradicts (4.3.8). Equation (4.3.5) therefore has a solution. 
o 

The equations (4.3.5), are called the normal equations for the least 
squares estimate. They have a unique solution 

{j = (XTQX)-l XTQy 

if and only if XTQX is non-singular. A sufficient condition for non­
singularity of X T QX is that Q is positive definite and X has full 
column rank. In this case, for arbitrary, non-zero ~ E ~q, X ~ + O. But 
then ~TXTQX~ = (X~)TQ(X~) > O. It follows that XTQX is a positive 
definite, and therefore a non-singular matrix. 

Suppose that Q is positive definite. A least squares estimate U then 
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has a geometric interpretation in terms of orthogonal projections. 
The function (U,V)~UTQV defines an inner product on Iffiq which we 
write <',' )Q. The normal equations (4.3.5) may be written in terms of 
the inner product 

<Xi'Y - XB)Q = 0, i = 1, ... , q. (4.3.9) 

In these equations XI'"'' Xq are the columns of X. The Xi span the 
range of X and xlJ lies in the range of X. Equations (4.3.9) mean 
therefore that xlJ, the value of y predicted by lJ in the absence of 
disturbances, is the orthogonal projection of the observation y onto 
the range of X, with respect to <',' )Q. 

4.3.2 Statistical properties of least squares estimates 

We now examine statistical properties ofleast squares estimates lJ of 
the parameter 0* in the system equations under the assumption that e 
is a zero-mean, second-order random variable. 

The following results establish that least squares estimators are 
very good estimators (at least when the weighting matrix Q is suitably 
chosen). 

Proposition 4.3.3 

Suppose that the matrix XTQX is non-singular. Then 

Eo{ lJ(y)} = e, for all e, (4.3.10) 

where Eo denotes expectation under the hypothesis that e is the 'true' 
parameter value. 

PROOF Under the assumptions, lJ is unique and is given by 

lJ = (XTQX)-I xTQ(Xe + e). 

But e has zero mean so, E{~} = (XTQX)-l xTQxe = e. 0 

The proposition asserts that under the conditions which make it 
uniquely defined, the least squares estimate is unbiased. 

The covariance of the least squares estimate is easily calculated: 

Proposition 4.3.4 

Suppose that the matrix Q is non-singular. Then 

cov {lJ(y)} = (XT QX) - I XT QRQX(XT QX) - I (4.3.11) 
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in which R is the covariance matrix of e. 

PROOF O(y) - e* = (XTQX)-l XTQ(XO* + e) - 0* 

= (XTQX)-l XTQe. 
Since 0 is an unbiased estimator, it follows that 

cov {U(y)} = E[XTQXr 1 X TQeeTQX(XTQX)-l 

= (XT QX) - 1 XT QRQX(XT QX) - 1. 0 

Given an estimate 0 of the parameter e* it is natural to estimate the 
arbi trary linear combination e T 0* ofthe com ponen ts of 0*, defined by 
the vector e, by the same linear combination of the components of 0, 
namely eTO. The procedure yields the estimate 0i of 0i' in particular. 
The next two results assert that estimates induced in this way by the 
least squares estimates for 0* have minimum variance, provided the 
weighting matrix is suitably chosen; the variance is minimal com­
pared with that of arbitrary linear unbiased estimates or, in the case 
that the disturbance vector e is normally distributed, compared with 
arbitrary unbiased estimates. 

Theorem 4.3.5 (Gauss-Markov) 

Suppose that 
cov {e} = (12:E 

for some positive number (12 and some non-singular p x p matrix :E. 

Suppose also that X has linearly independent columns. Let e be the 
least squares estimate for e* in the system (4.3.1), corresponding to a 
choice of weighting matrix 

Q = 1:- 1• 

Then for any q-vector e, eTe has minimum variance in the class of 
linear unbiased estimators for eT ()*. 

PROOF Notice first of all that, under the hypotheses on X and 1:, 
XT:E -1 X is a non-singular matrix, so we can speak unambiguously of 
the least squares estimate. 

The estimator cTOO is obviously linear. It is unbiased since 
ElJeTO(y) = eTEIJO(y) = eT() for all (), by (4.3.10). 

We must show then, given t/J(.) any other linear, unbiased estimator 
for eTe, 

var {t/J(y)} - var {eTO(y)} ~ O. 
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Since the estimator t/J is linear, there exists a p-vector e such that 

and since it is unbiased 

Eot/J(y) = cTfJ, 

From (4.3.12) and (4.3.13) 

for all y 

for all fJ. 

EO{eT(XfJ + e)} = cTfJ, for all fJ. 

Since e has zero mean, 

eTXfJ = cTfJ, 

This is only possible if 

for all fJ. 

Now, 

var{t/J} = E[eTy - cTfJ*J2 

since t/J(.) is an unbiased estimator for cTfJ*, 

= E[eTXfJ* + eTe - eTXfJ*Y 

by (4.3.12) 

= E~TeeT~ = q2~T~~. 

It follows from Proposition 4.3.4 that 

var {t/J(y)} - var {cT&(y)} = q2[ ~T~ ~ - r~tJ 

in which 

r =CT(XT~-lX)-lXT~-l. 
Substitution of (4.3.14) and (4.3.16) into (4.3.15) gives 

var {t/J(y)} - var {cTO(y)} = q2~T[~ - DJ~ 

in which 

D = X(XT~-lX)-lXT. 

We can check, however, by direct expansion that 

[~- D] = [~- D]T~-l[~ - D]. 

We have shown that 

(4.3.12) 

(4.3.13) 

(4.3.14) 

(4.3.15) 

(4.3.16) 

var {",(y)} - var{cTO(y)} = q2~T[~ - DJT~-l[~ - DJ~. 
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This last expression is non-negative, since L - 1 is a non-negative, 
symmetric matrix. We have shown that CT~(y) has minimum variance. 

o 
If the disturbance vector is normally distributed, then the least 

squares estimator has 'minimum variance' over the classt of unbiased 
estimators, linear or not, for a suitable choice of weighting matrix. 
This is proved by showing that the least squares estimator is efficient. 

Theorem 4.3.6 

Suppose that e'" N(O, /1 2L) for some number /1 2 and some non-sin­
gular p x p matrix L. It is assumed that X has linearly independent 
columns. Let (j* be the least squares estimate for fJ* in the system 
(4.3.1) corresponding to a choice of weighting matrix Q = L -1, and let 
",(.) be an arbitrary unbiased estimator (not necessarily linear). 

Then for any q-vector c, 

var{cT(j(y)} ~ var {cT",(y)}. 

PROOF Under the hypothesis that fJ is the true parameter value, we 
have that y = XO + e, e '" N(O, /12 L ), and consequently the probability 
density p(yJfJ) of y is: 

1 {I T -1 } 
p(yJfJ) = (2n/12)P/2(det L)I/2 exp - 2/12 (y - XfJ) L (y - XfJ) . 

So 

log p(yJ fJ) = -log {(2n/12)p/2(det L)I/2} 

_ (2/12)-I(y _ XfJ)TL -1(y - XO) 

Fisher's information matrix Me = - o2jo02Iogp(yJO) can now be 
calculated: 

Me = /1-2(XTL -1 X) 

(see Section 4.1). By theorem 4.1.1, 

cov {I{!} ~ /12(XTL - 1 X) - 1. (4.3.17) 

However, since the weighting matrix is L -1, we see from formula 

tWe are somewhat vague here about the class of comparison estimators; it comprises 
those estimators for which the Cramer-Rao lower bound is valid. 
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(4.3.11) that 

(4.3.18) 

We deduce from (4.3.17) and (4.7.18) that 

var(cTlJ(y)) = cT cov {8(y)}c ~ cT cov {t/J(y)}c = var {cTt/J(y)}, 

the desired inequality. o 

4.3.3 Estimation of the variance of the noise components 

Suppose that the observed random variable y satisfies the static 
system equation 

y = X()* + e 

in which e is a p-vector with components uncorrelated, zero-mean 
random variables with common variance (12. As usual y is a p-vector 
random variable, and ()* is a q-vector. It is assumed that X has full 
column rank and p > q. 

Suppose (12 is unknown. A plausible estimate for (12 is 

!(y - XI'J)T(y - xl}) 
p 

in which lJ is the least squares estimate of ()* given y: 

lJ = (XTX)-l XT y. (4.3.19) 

Indeed the expression (4.3.19) is the sample variance of the ei under 
the assumption that (J coincides with the true parameter value. The 
fact that lJ is used in the expression introduces a bias into the estimate. 
This can however be corrected by a simple scaling: 

Proposition 4.3.7 

0- 2 defined by 

(4.3.20) 

in which lJ is given by (4.3.19), is an unbiased estimate of (12. 

PROOF By (4.3.19) 

(y - Xl})T(y - xl}) = (y - X(XTX)-I XT y)T(y - X(XTX)-I XT y) 

= yT(lp - X(XTX)-l XT)(Ip - X(XTX)-I XT)y 
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(I p denotes the P x P identity matrix) 

= yT(lp - X(XTX)-lXT)y 

= trace {(I p - X(XT X( 1 XT)yyT} 

by properties of the trace operator 

= trace {(lp - X(XTX)-lXT)(XO* + e)(XO* + e)T}. 

Since the trace operator is linear it commutes with the expectation 
operator and so 

E[y - Xt1]T[y - xt1] 

= trace{(Ip - X(XTX)-lXT)(XO*O*TXT + 0'2Ip)}. 

However, (I p - X(XT X) -1 XT)(XO*O*T XT) = 0, so 

E[y - Xt1]T[y - xt1] = 0'2 trace{Ip - X(XTX)-l XT} 

= 0'2[p - trace {X(XT X)-l XT} J 
= 0'2[p - trace {(XT X) - 1 XT X} J 
= 0'2 [p - trace I qJ 
= 0'2[p _ q]. 

It is clear from this equation that (j2 given by (4.3.20) is an unbiased 
estimate of 0'2. 0 

4.3.4 Maximum likelihood estimation for static systems 

Suppose again that the observed variable y satisfies the static system 
equation 

y=XO* + e. 

We derive equations satisfied by maximum likelihood estimates of 
0* and of the unknown satistics of the disturbance e, when e '" N(O, I:) 
and I: is non-singular. 

If 0 were the true parameter value we would have y '" N(XO, I:). The 
likelihood function p(yIO, I:) is therefore 

P(yIO, I:) = [(2n)P det I:r 1/2exp{ - t(y - XO)TI: -l(y - XO)T}. 

The log likelihood function is 

log p(yIO, I:) = - ~log 2n - tlog det I: - t(y - XO)TI: - l(y - XO). 

(4.3.21) 
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The maximum likelihood estimates are obtained by maximizing 
the log likelihood function over the unknown parameters following 
substitution of the observation in place of the y variable. 

Case 1 (l: known) 

In this case the maximum likelihood estimate (J coincides with the 
least squares estimate, corresponding to weighting l: -I: 

(J = (XTl:- 1 X)-I XTl:-1y. 

To see this, we need merely note that (J, which maXImIzes the 
expression (4.3.21) for given l: and observation y, minimizes the least 
squares criterion 8--+!(y - X8)Tl: -l(y - X8). 

Case 2 (l: partially known) 

When only partial information about l: is available we can expect that 
estimation of the unknown parameters and statistics (8* and l:) will 
no longer reduce to a least squares problem and numerical methods 
will be required. In illustrating the kind of analysis which is possible, 
we consider here only the case when X = col {X 1, ... , X N} and l: = 
diag{A*, ... ,A*}, in which A* is an unknown non-singular matrix. 
When Xl = X 2 = ... = X N, this case corresponds to estimating 8* 
and A * in the model 

when it is known e '" N(O, A *), given N independent observations 
Y I, Y2, ... , YN of the vector y. Here it is possible at least to derive 
coupled equations satisfied by estimates (J, A, if they exist and A is 
invertible, which have a rather natural form. These express (J as the 
maximum likelihood estimate of the unknown parameter when the 
covariance matrix is taken to be A and they express A as the sample 
covariance of e, based on the assumption that the unknown 
parameter is (J: 

~ T~ 1 ~ 1 
[ 

N J- 1 N 
8 = k~1 Xk A - Xk k~l XkA - Yk 

~ 1 ~ i5\ i5\T 
A = N kf-I (Yk - Xkll}(Yk - Xkll) . 

(4.3.22) 

(We have partitioned y=col{YI' ... 'YN} compatibly with 
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COI{X1, ... ,XN}.) Indeed, by equation (4.3.21), (U,A) minimizes 

N 

J(O,A) = tN log det A + t L (Yk - XkO)TA -l(Yk - XkO). 
k=l 

The fact that U minimizes the least squares criterion lJ-+J(lJ, A) leads 
to the first equation in (4.3.22). The estimates also satisfy 

a ar. J(U, £) = o. (4.3.23) 

We can evaluate this partial Jacobian with the help of the following 
identities from matrix calculus (see Appendix D.4): 
(d/dQ) log det Q = Q -1, on the space of n x n non-singular matrices 
Q and, for any vector a, 
(d/dQ)aTQ-1a= _Q-1aaTQ-1, on the space ofn x n non-singular 
matrices Q. From (4.3.23) we deduce that 

tNA -l-tA -1[ f (Yk- X kt1)(Yk- X kt1)T]A -1 =0 
k=l 

which implies the second equation in (4.3.22). 

Case 3 (r. = (12], (12 unknown) 

This is an instance of Case 2 in which the estimates can be determined 
analytically. We deduce from (4.3.22) that 

U=(XTX)-lXTy and u2 =!(y-Xt1)T(y-Xt1). 
p 

In view of Proposition 4.3.7, the maximum likelihood estimate of 
(12 in case 3 is biased, though the percentage bias will be small for p 
much larger than q. 

4.3.5 Model order selection 

Suppose that a dynamical system is described by scalar ARMAX 
model equations of the form 

k = 1, ... ,p (4.3.24) 

together with initial data uo, ... , U_ q+ 1. Here the ek are zero-mean, 
independent gaussian random variables with common variance (12. 

As we have observed (Example 4.3.1), the problem of estimating the 
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parameters b1 , ••• ,bq can be reformulated as that of estimating the 
vector parameter 0* in the static model 

y = xO* + e 

given observations of y, when we take Y=COI(Yl' ... 'Yp), 0*= 
col(b 1 , ••• ,bq), e=col(e1 , ... ,ep) and 

[:: ::: ::~:J X=. .. 

~P-l ••. up·_ q 

We refer to the integer q as the order of the model. So far we have 
concerned ourselves with estimating the unknown parameters when 
the model order is pre-set. What model order should we adopt when 
this is not fixed beforehand? We now study this question. 

One obvious procedure is to fix the model order at some large 
number. This might seem reasonable since, if q is increased in 
equation (4.3.24), the equation still describes the response of the 
dynamical system (when the added parameters are set to zero.) 

There are disadvantages in this procedure, however. The models 
that result will be unnecessarily complicated. Also, we can expect that 
an increase in model order will lead to an increase in the variances of 
the significant components of the least squares parameter estimates 
and consequently to a reduction in the reliance we can place upon 
them. These considerations make desirable more sophisticated 
procedures in which the model order is estimated from the 
observations. 

Henceforth we study the model order selection problem only in 
relation to the static model (4.3.1). It is assumed that E{e} =0, 
cov{e} = (12/, X is a known p x q matrix with linearly independent 
columns, p > q and 0* is the vector of parameters to be estimated 
from observations of y. 

Let an integer d, O::S; d ::s; q, be given. Our problem is that of 
deciding, on the basis of observations, when the hypothesis 

0: = 0:- 1 = ... = O:-d+ 1 = 0 (4.3.25) 

should be rejected. 
We shall describe some statistical tests of hypothesis (4.3.25). These 

involve the X2 and F distributions, defined as follows. 
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Let k1 , k2 be positive numbers. A random variable is said to have a 
X2(k 1) distribution if it can be expressed as a sum of squares of k1 
independent random variables each with distribution N(0,1). 

A random variable v is said to have a F(k1, k2) distribution if it can 
be expressed: 

v = ~: I ~: 
in which S1' S2 are independent random variables with distributions 
X2(k 1) and X2(k2) respectively. 

It is convenient also to define X2(0) to be the distribution of the 
degenerate random variable taking value 0, almost surely. 

Analytical definitions of the distributions can be given, but we shall 
find these implicit definitions easier to work with. Percentiles ofthese 
distributions are tabulated in books of statistical tables. Some 
representative functions are illustrated in Fig. 4.1. 

For large values of k2, if v has an F(k1, k2) distribution, then to 
a good approximation k1 v has a X2(k 1) distribution. ~ 

Let lJ be the least squares estimate of 8*, and let lJ be the least 

squares estimate under hypothesis (4.3.25). B is calculated as 

B=col(8o,0, ... ,0), 8o =(X6X o)- 1X6Y 

o 
(b) 

2 3 

Fig. 4.1 (a) Probability density function of x2(k) for k = 4, 8; (b) Probability 
density function of F(4, 8). 
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in which X 0 is the p x (q - d) matrix obtained from X by removing the 
last d columns. 

Define 
(4.3.26) 

in which 

8(0) = Y - XO, OelRq• 

We refer to a function of the observed data as a statistic. The stati­
stic S(D) - S(iJ) measures the increase in the minimum of the least 
squares criterion when we decrease the number of parameters from q 
to q - d.1t is natural to reject hypothesis (4.3.25) if S(iJ) - S(iJ) is large, 
since then a significantly better fit to the data can be achieved by the 
higher-order model. The following proposition brings together 
results necessary for formulating a test along these lines. 

Proposition 4.3.8 

Suppose that for some integer d, 0 ~ d ~ q, hypothesis (4.3.25) is true. 
(In the case d = 0, no restrictionsAare placed upon 0*). Let Obe the least 
squares estimate of 0*, and let 0 be the least squares estimate A under 
hypothesis (4.3.25). Let S(lJ) be defined by (4.3.26). Then (f, S(ff), 
S(iJ) - S(/1) are independent, and 

(112)-lS(iJ) '" X2(P - q), (112)-1(S(U) - S(iJ) '" X2(d). 

Notice that, when d takes the value 0, the proposition says that, if 
no hypothesis (4.3.25) is imposed, 0 and S(iJ) are independent and 
(112) - 1 S2( iJ) '" X2(P - q). We shall make use of this fact when we come 
to the calculation of confidence regions. 

PROOF We shall deal first of all with the case 0 < d < q. Take once 
again X 0 to be the matrix X in which the last d columns have been 
replaced by zero columns. 

We observe that, by the nature of least squares estimates, 

(y - xiJ) is orthogonal to the range of X (4.3.27) 
and 

(y - xU) is orthogonal to the range of X o. (4.3.28) 

Properties (4.3.27) and (4.3.28) imply that 

X(O- b) is orthogonal to the range of X 0, (4.3.29) 
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since X(tJ- ~ can be expressed as the sum of(y - X~ and - (y - xl1) 
and both terms in the sum are orthogonal to the range of X o. 

We have, from (4.3.27), 

Ily - XOl1 2 = II(y - xl1) + X(tJ- ~112 = Ily - XtJI12 + IIX(tJ- ~112. 
This equation can be expressed as 

S(~ - S(l1) = IIX(8 - 011 2. (4.3.30) 

Let bl , ... , bp be an orthonormal basis for [RP with the properties: 

(a) The vectors bl> ... ,bq - d span the range of Xo, 
(b) The vector b q _ d + 1 , ... , b q are orthogonal to the range of X ° and 

such that bl , ... , bq span the range of X; and, 
(c) The vectors bq + 1'"'' bp are orthogonal to the range of X. 

Such vectors can be chosen since the columns of X are linearly 
independent. 

Let B:=(b l : ... :hp) and set 

We deduce from the fact that the columns of B form an orthonormal 
basis for [RP, that 

BT =B- l . 

Notice also that, since e'" N(O, (J21), 

cov {v} = E[BTeeTBJ = (J2BTB = (J2I 

and so v '" N(O, (J21). 
Consider the following decomposition of e: 

e = y - Xf)* = (y - xl1) + X(tJ- iJ) + X(O - f)*). 

Multiplying through by BT and using (4.3.31), we obtain 

(4.3.31 ) 

v = BTe = B- l (y - xl1) + B- 1 X(tJ- iJ) + B- 1 X(O - f)*). 
(4.3.32) 

Now the mapping x -+ B- 1 x transforms the coordinates W.r.t. the 
standard basis into a coordinates W.r.t. the basis bl , ... , bp • By (4.3.27), 
(y - xl1) is orthogonal to b l , ... , bq and so 

B- l (y - XtJ)EgEW: ~1 = ... ~q = O}. 

By (4.3.29), X(tJ- iJ) lies in the range of X but is orthogonal to the 
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range of X 0 and so 

B- I x(8-I1)EgEW:¢1 = ... =¢q-d=¢q+1 = ... =¢p=O}. 

Since X(U - 8*) lies in the range of X 0 

B- I X(U-8*)EgEW:¢q_d+1 = ... =¢p=O}. 

It follows from these properties, together with (4.3.31) and (4.3.32), 
that 

BT(y - X8) = (0, ... ,0, vq + I"", Vp)T 

BT X(8 - 0) = (0, ... ,0, vq-d+ I"'" v q , 0, ... , O)T 

BT X(U - 8*) = (VI"'" vq - d , 0, .. Y. 
By (4.3.31) and (4.3.34) 

(4.3.33) 

(4.3.34) 

(4.3.35) 

S(I1)-S(8) = IIX(8-11)11 2 = IIBTX(8-0)11 2 = f vr 
i=q-d+1 

(4.3.36) 

By (4.3.31) and (4.3.33), 
p 

S(8) = Ily - X811 2 = IIBT(y - X8) 112 = L vr (4.3.37) 
i=q+ I 

By (4.3.31) and (4.3.35) 

{J = 8* + (XTX)-I XTX({J - 8*) = ()* + (XTX)-IXTBBTX({J - 8*) 

= (XT X) -I XT B(v l , ... , vq, 0 .. O)T. (4.3.38) 

Since the Vi are independent and have common distribution N(O, (12) 
we deduce from (4.3.36) and (4.3.37) that 

(1-2(S(11) - S(8)) '" X2(d) and (1-2S(8) '" X2(p - q). 

Finally, we note that (4.3.36), (4.3.37) and (4.3.38) imply that S(I1)­
S(8), S(8) and 8 are independent. 

This completes the proof when 0 < d < q. It remains to consider 
d = 0 and d = q. Obvious modifications to our earlier arguments, in 
which we now select VI"'" Vq to span the range of X, give the 
assertions of the properties in these cases also. 0 

The case when (T2 is known 

The proposition tells us that the statistic (1-2[S(11) - S(8)] has 
the distribution X2(d) under hypothesis (4.3.25). Let k~ be the 
upper IX-percentile of the X2(d) distribution, i.e. if x '" X2(d), the event 
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X ~ ka has probability a. Then the probability that the event 

(4.3.39) 

will occur when (4.3.25) is true, is a. 
There is therefore good evidence for rejecting hypothesis (4.3.25), 

if the inequality (4.3.39) holds for some pre-set value of a (0.05, say).· 

The case when (12 is not known 

In this case we use the property that 

S(O) - S(iJ)1 S(iJ) ~ F(d _) 
d (p - q) ,p q, (4.3.40) 

if hypothesis (4.3.25) is true. 
Let ka now denote the a-percentile for the F(d,p - q) distribution. 

The event 

S(O) - S(iJ) 1 S(iJ) > k 
d (p _ q) a 

(4.3.41) 

has probability a if (4.3.25) is true, and there is good evidence for 
rejecting hypothesis (4.3.25) if (4.3.41) holds for some pre-selected 
value for a. 

In typical applications to modelling of dynamical systems, p (which 
is related to the number of data points) will be large and the model 
orders considered will be small. Tests based on the property (4.3.40) 
suggest a procedure for selecting model order in such situations. 

Let S. be the minimum of the least squares criterion over vectors 
of parameters of dimension n, n = 1,2, ... 

Since p is assumed large and q/p small, the distribution F(1, p - q) 
closely approximates X2(1). We deduce from Proposition 4.3.8 that, if 
n is a possible model order, 

)/Sn+ 1 
(Sn - S.+ 1 -p-

has approximately the X2(1) distribution. 
The 0.05 percentile for X2(1) is approximately 4. There are grounds 

then for rejecting n as a possible model order, at approximately a 
5% risk level, if the inequality 

S.+1 
S.-Sn+1>K-­

p 

is satisfied in which the coefficient K takes value 4. 
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~--~--~----~--~----L---_n 
A 

Fig. 4.2 

Consider now the graph of So against n (see Fig. 4.2). These 
observations suggest that an estimate n of the model order be chosen 
to satisfy 

So 
Sfi-l - S" > K-, 

p 

for some pre-set value of K (4, for example). 

(4.3.42) 

Before we leave the topic of model order selection, we point out 
an interesting interpretation of the inequalities (4.3.42). We can 
view SO' n = 1, ... , p as a uniform discretization of a continuously 
differentiable function g: [0, 1J --+ IR. By this we mean 

n= 1,2, ... ,p. 

Now (S"_l - S,,)/(l/p) is a finite difference approximation to 

d 
--g 

dx 

at x = nip. The condition (4.3.42) can be expressed approximately 
in terms of g: 

d 
dx g(x) 

- {iR) - Klx~n/p = ° 
or 

d 
dx [logg(x) + KXJ Ix~,;/p = 0. 
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We recognize this last equation as a necessary condition for the 
function 

x -+ log {g(x)} + KX (4.3.43) 

to achieve a minimum at x = filp. The property that the function 
(4.3.43) achieves its minimum at x = filp can be expressed in terms 
of Sn:fi minimizes 

K 
n-+log{Sn} +-n. 

p 

Since p is fixed, we can alternatively take fi to minimize A(n) where 

A(n) = log USn} + Rn 

in which R = Kip. 

These formal calculations justify a loose interpretation of fi as the 
model order minimizing the criterion function A(n) for a pre-set 
value of R. The function A(n) is customarily referred to as a criterion 
of Akaike type for selection of model order. See Section 4.8 for 
further discussion. 

4.3.6 Accuracy of estimates 

Let the observed vector y satisfy the static system equation 

y=xe* + e 

in which we assume e "" N(O, (12 J). Suppose that the p x q matrix X 
has full column rank, and p> q. 

Let {J be the least squares estimate of 0* given y: 

{J = (XTX)-l XTy. 

The trustworthiness of the estimated components {Ji can be 
gauged from an a-confidence region for (Ji; this is an interval I(U), 
which depends on the estimate {J, and has the property that the 
event {OtEI;(U)} occurs with probability a. 

We provide a-confidence regions in the cases that (12 is, and is not, 
known. 

Case 1 ((12 known) 

Since the estimate {J is linear, unbiased and has covariance matrix 
(12(XT X) -1, and since e is a vector of jointly normally distributed 
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random variables, 

(J ~ N(8, a2(XT X) -1). 

It follows that, for i = 1, ... ,q, 

(Ji ~ N(();, a2cii) 

in which {cij} = (XT X) -1. Since XT X is a positive definite matrix, 
the Cii will all be positive, and 

((Ji - 8t)/j(a2ci;) ~ N(O, 1). 

We can use this property to construct a confidence region. Let kp 
be the upper f3/2 percentile for the distribution N(O, 1). Then 

((Ji - kpj(a2cii), (Ji + kpj(a2cii}) 

is a (1 - f3) confidence region for 81, i = 1, ... , q. This is the case 
since the normal density function is symmetric. 

Case 2 (a 2 unknown) 

When a2 is unknown, a realization of (JJj(a2cii) is no longer 
available. It is natural in this situation to construct regions from the 
statistic (Ji/ j (e2Cii)' in which e2 is the unbiased estimate of a2, 

e2 = (p _ q)-llly _ X(J11 2 

provided in Section 4.2. (See Proposition 4.3.7.) 
At this stage we must introduce another distribution: given a 

positive integer k, a random variable v is said to have the t(k) 
distribution if it can be expressed 

d 
v = .j(e/k) 

in which d and e are independent random variables with distributions 
N(O, 1) and X2(k) respectively. Percentiles for these distributions are 
tabulated in books of statistical tables. 

Now, for i= 1, ... ,q, 
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We know that 

o. - O~ J( 2 I) '" N(O, 1). 
(J Cji 

Proposition 4.3.8, applied when d = 0, tells us that (f; is independent 
of Ily-x{f112 and 

1 
zlly - x{fl12 '" X2(p - q). 
(J 

IJ follows from these properties and definitions of the t-distribution 
that 

(f; - Or /JrJ2 '" t(p _ q). 
Jc;; 

(4.3.44) 

Let kp be the upper PI2 percentile for the distribution t(p - q). 
Since the associated probability density function is symmetric, it 
follows from (4.3.44) that 

({f; - kpJ(rJ2C;;), (f; + kpJ(rJ2C;;) 
is a (1 - p) confidence region for (f;, i = 1, ... , q. 

4.4 Parameter estimation for dynamical systems 

A great variety of parameter estimation techniques for dynamical 
systems have been proposed. Most of these share the following 
ingredients: 

Observations are available of the r-vector output Yk' k = 0,1, ... , N 
and the m-vector input Uk' k = 0, I, ... , N - 1 of a dynamical system. 

A set M of models is specified. The models in M are parametrized 
by a q-vector e, which ranges over a set D. The model in M 
corresponding to choice of parameter e is denoted by M(e). 

A real-valued function VN of the parameter 0 and of the data 
yN, UN - 1 is also specified. V N, which is a measure of the discrepancy 
between the observed outputs and those predicted by the model on 
the basis of earlier inputs and outputs, is called the identification 
criterion. 

The parameter estimation problem is that of selecting a model 
from M which best matches the data according to the identification 
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criterion. It amounts to finding a parameter value which minimizes 
8 ~ VN(8, yN, UN -1). Different parameter estimation techniques will 
result from changing the specification of M, VN and choice of 
numerical scheme for determining the minimizing value of 8. 

4.4.1 Prediction error formulation 

A particularly important class of parameter estimation techniques 
is formulated in terms of the predictor models of Section 4.2: 

1'(8 k-l k-l) Yk = J k ; y ,u + ek, k=O,1, .... (4.4.1) 

To emphasize the point that, if the data were realizations of the 
processes generated by application of the input to the model (4.4.1) 
then ik(8; i-I, Uk-I) would be the conditional expectation of Yk, 
given i- 1, Uk - 1, we adopt the hat notation ,A" customarily used 
to denote estimates given past outputs and inputs and write 

Pi8) = ik(8; i- 1, Uk-I). 

We also write si8) for the error in the prediction of Yk provided by 
Pk(8), namely 

(4.4.2) 

The sequence {sk(8)} is commonly called the sequence of 'residuals' 
or 'prediction errors' associated with the model (4.4.1). 

It is natural to assess the quality of the model according to the 
accuracy of its predictors Yk(8), and to choose therefore the identi­
fication criterion to be a function of the prediction errors. A versatile 
identification criterion is defined in terms of: 

(a) A sequence of functions {lk,.)} from the space IRq x IRr to the 
space of d x d matrices, and, 

(b) A real valued function h(') with domain the space of d x d 
matrices. 

The identification criterion is 

(4.4.3) 

in which 

(4.4.4) 
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Common choices of identification criterion of this form are: 

VN(e;yN,UN-l)=~ f EJ(e)WkEk(e) 
N k=l 

(4.4.5) 

in which {Wd is a given set of positive definite weighting matrices, 
and 

VN(e;yN,uN- 1) = de{ ~ Jl Ek(e)El(e) 1 (4.4.6) 

Choice (4.4.5) corresponds to selecting a model to mInImize a 
weighted sum of squares of the prediction errors, and choice (4.4.6) 
to selecting a model by the maximum likelihood method, as we shall 
see. 

Recall that the predictor model description covers the stochastic 
dynamical models of Section 2.4 when the noise vectors are assumed 
independent. Let us illustrate compution of the prediction errors 
(and hence the identification criterion via (4.4.3) and (4.4.4)), in the 
case that (4.4.1) is a reformulation of the ARMAX model equations 

k = 0, 1,... (4.4.7) 

with zero initial conditions (Yk = 0, Uk = O,ek = O,fork < 0). We suppose 
that the polynomials Ae(O'), Cia) in 0' are such that Ae(O) = CiO) = l. 
In these circumstances, as was shown in Section 2.6, the predictors 
Pk(e) are given by 

k = 0,1, ... 

The prediction errors EiO) = Yk - Pie) corresponding to (4.4.7) are 
therefore 

k = 0, 1, ... 

The prediction errors can be computed then by recursive solution 
of the difference equations 

k = 0, 1, ... 

with zero initial conditions (Ek(e) = 0, Yk = 0, Uk = 0 for k < 0). 

4.4.2 Least squares parameter estimation 

Least squares parameter estimation methods for dynamical systems 
are methods in which a model is chosen to minimize a weighted 
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sum of squares of the prediction errors, {ek}' defined by 
(4.4.2). We seek then a value of fJ which minimizes the identification 
criterion VN: 

Here the weighting matrices Wk are symmetric, positive definite 
matrices chosen to reflect the relative importance attached to the 
different components of the prediction. 

The least squares method for given weighting matrices admits a 
prediction error formulation in which we choose the functions hand 
11"", IN defining the identification criterion 

to be 

for k= 1,2, ... and h(-)=trace {.}. 

Consider now scalar ARMAX models of the form 

k=O.l •... 

with zero initial conditions (Yk = 0, Uk = 0, k < 0). Here 

Ae(Z-l) = 1 + alz- l + ... + anz- n, Be(Z-l) = blz- l + ... + bnz-n 

and ek, k = 1,2, ... , is a sequence of zero-mean independent random, 
variables. The vector fJ of unknown parameters, made up of the 
coefficients a l , ... , an' b l , ... , bn, is to be estimated from observations 
of yN, UN-l. As we have already noted, the prediction errors are 

k= 0, 1, ... (4.4.8) 

The problem of minimizing the identification criterion 
VN(.,yN, uN-l): 

N 

VN(fJ;yN,UN- l )= L el(fJ)ek(fJ) 
k=l 

in which ek(fJ) is given by (4.4.8) can be expressed explicitly as that 
of minimizing Ily - XfJI1 2 over fJ, where 
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and 

[

-Yo 

X = -.Y1 

- ;N-1 

- Y - 1 ... - Y - n + 1 I Uo 
I 

-YO .. ·-Y-n+2 I U1 

I 
I 

-YN-2"'-YN-n IUN-1 
I 

U-1 ... u_m+1

J UO'" U- m+2 . . . 

UN-2'" UN - m 

In this case the parameter estimation procedure is equivalent to 
application of least squares estimation, as described in Section 4.3, 
to the static model 

y=XO+e 

obtained from reformulation of the model equations as in 
Example 4.3.1. If X has full column rank, the least squares estimate 
is given then by 

4.4.3 Maximum likelihood estimation for dynamical systems 

Consider again predictor models: 

k= 1, ... ,N. (4.4.9) 

We now permit e1, ... ,eN to be random variables whose joint 
probability density functions are specified functions of the unknown 
parameter (J. Assume that the inputs U1, ••• , UN are independent of 
e1, ... ,eN' Let P(XN, ... ,xtl0,uN- 1) be the joint probability density 
function of yN given (J and UN - 1 (assumed to exist). Maximum 
likelihood estimates of the unknown parameter are those values of ° which maximize VN(', yN, UN -1): 

VN(O,yN, UN- 1) = P(YN"" ,ytl0, UN- 1) 

(in which Yt> ... , YN are observations of the output). 
Let us examine maximum likelihood estimates in more detail 

under the following additional assumptions: for k = 1,2, ... 

(a) ek has zero-mean and is normally distributed with non-singular 
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covariance matrix (we write the covariance matrix Ak), (4.4.10) 
and, 
(b) ek is independent of ell 1 =1= k, for 1 = 1, ... ,N. (4.4.11) 

Denote by p(xkl ... ,xjll-l,uN-l,8) (or, briefly, p(xk, ... , 
xjll- l)) the probability density function of Yk' ... 'Yj given l-1, 
UN - \ 1 ~ j ~ k ~ N. It follows from our assumptions that P(Xk 1/- 1) 
exists for k = 1, ... , N, and is given by 

p(xkl/- l ) = [(2n)' det Akr 1/2exp{ - HXk - Yk(8)II~k-l} 

in which, as usual, Yk(8)=ik(8;/-I,Uk- I). We have used 
the notation "llxllP" for "XTpX". Bayes' rule tells us that 
P(XN,XN_1IyN- 2) also exists and is given by 

p(xN, XN_I lyN- 2) = p(xNIYN-l = XN- l ' yN-2)p(XN_1IyN- 2) 

= p(xNlyN- l )P(XN- tI yN- 2) (4.4.12) 

(when XN- l replaces YN-l in yN- l ). 
We deduce from (4.4.12) and repeated application of Bayes' rule 

that p(xN, ... ,xjlyj-l) exists for j=N-l, ... ,l and the likelihood 
function P(YN' ... 'YlluN- I,8) is given by 

N 

p(y N, ... , Y I 1 UN - 1, 8) = TI p(y k 1/- I, Uk -1, 8) 
k=l 

= (2 n) - Nr/2(det AN ... det AI) -1/2 

·exp ( - ttl IIYk - Yk(8) II~.:J 
The log likelihood function is therefore 

N-l Nr 1 ~ 
10gp(YN,"·,Yllu ,8)= -Tlog2n-2kf-llogdetAk 

-! f II Yk - Yk(8) II ~k-l. 
2k=1 

Since maximizing the likelihood function is equivalent to minimizing 
minus the log likelihood function, we conclude that maximum 
likelihood estimates are those values of the parameter 8 which 
minimize the identification criterion 

N N 

L(8) = L IIsk(8)"~kl(6) + L logdetAk(8) 
k=l k=l 
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where once again the ek(O) are the prediction errors. We have added 
an argument 0 to Ak to emphasize that it too can depend on the 
unknown parameter. 

We shall now give further information about maximum likelihood 
estimates in three cases. 

Case 1 (Ak known) 

Assume that Ak is known and Ak > 0, k = 1, ... ,N. In this case, 
maximum likelihood estimates are values of 0 which minimize 

1 N 

V1(0) = N k~lllek(O)llik-l. (4.4.13) 

Case 2 (Ak = a2L, L known) 

Assume that the distributions have common covariance matrix a2L, 
in which L is a fixed positive definite matrix and a2 is an unknown 
positive parameter to be estimated. We can arrange that the vector 
of unknown parameters takes the form col(t/t, ( 2 ) in which t/t is a 
vector comprising the other unknown parameters. Assume that the 
parameter constraint set has the form 15 x (0, (0) for some set 15. 
In this case maximum likelihood estimates are values of t/t and a2 

which minimize 

Case 3 (Ak = L, L unknown) 

Let the disturbances have common covariance matrix L. Suppose 
that the unknown parameter vector comprises the components of 
L and other unknown parameters assembled to form the vector tIt. 
We assume that the parameter constraint set is of the form {(t/t, L): 
OED, L > O} for some set D. In this case the maximum likelihood 
estimates are values of (0, L) which minimize 

1 N 
V3(t/t,L)=- I Iltit/t)lli- 1 +logdetL 

N k=l 
(4.4.15) 

The following result tells us that, in each case, the parameter 
estimation problem reduces to that of minimizing an identification 
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criterion of the form 

I/J -+ h( ~f lk(l/J; ek(I/J))) (4.4.16) 

for appropriate choices of the functions h(') and 1('''''). In other 
words, the problem admits a prediction error formulation. 

Proposition 4.4.1 

Consider the problem of obtaining maximum likelihood estimates 
of the unknown parameters in the model (4.4.9), under the 
assumptions (4.4.10) and (4.4.11). Let the special cases 1,2, and 3 be 
as described above. We have: 

Case 1 (Ak known) e is a maximum likelihood estimate if and 
only if e minimizes the identification criterion (4.4.16), when we 
choose h(·)=trace{·} and lk((},e) = eeTA;;l, k= 1, ... ,N. 

Case 2 (Ak = a2L, L known) (~, 8'2) is a maximum likelihood 
estimate if and only if 

(a) ~ minimizes the identification criterion (4.4.16) when we choose 
h(·)=trace{·}, lk(l/J,e)=eeTL- l , k= 1, ... ,N; and, 

(b) 

(r is the dimension of the output vector.) 
Case 3 (Ak = L, L unknown) (~, !) is a maximum likelihood 

estimate if and only if 

(a) ~ minimizes the identification criterion (4.4.16) when we choose 
h(·)=det{·}, lk(l/J,e) = eeT, k= 1, ... ,N, and, 

(b) 

PROOF Case 1 In view of the fact that eTAe = trace {eeTA}, the 
proposition (in this case) merely restates the property that e 
minimizes the function Vl defined by (4.4.13). 

Case 2 Since log det( a2L) = rlog a2 + log det L, we see that 
(t/J,8'2) minimizes V2 given by (4.4.14) if and only if t/J, 8'2 minimizes 

the function ("', ( 2 ) -+ (a2 ) - 1 [ ~ pi ek( "') II i-I] + rlog a2 over 
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D X (0, CfJ). This last property is equivalent to 

(a) tP minimizes 1/1 -{ ~pl ek(l/I) 112 } and, 

(b) 6"2 minimizes 0-2 ~(0-2)-1 [~ ~ Ilek(tV) Iii-I] + rlog 0-2• 

However the function 0-2 ~ (0- 2) - 1 e + r log( 0-2):(0, CfJ) ~ IR (for e ~ 0, 
r ~ 0) has no stationary point if c = 0, and a unique stationary point 
0- 2 = elr, at which the function achieves its minimum value, if e > O. 
The proof is completed by applying this result when 

e = ~ ~ Ilek(tP)IIi-l. 

Case 3 (tV,~) minimizes V3 given by (4.4.15) if and only if 
! = Q - 1 and (tV, Q) minimizes the function 

g(l/I, Q): = trace {Q V(I/I)} -log det Q 

over (I/I,Q)ED x {Q:Q = QT,Q > o}. Here 

1 
V(I/I): = N ~ ek(l/I)e[ (1/1). 

These conditions are equivalent to 

tV minimizes J(I/I): = min {g(l/I, Q):Q = QT, Q > o} 
over the subset of D on which J(.) is defined, (4.4.17) 
Q minimizes Q~g(I/I,Q) over {Q:Q=QT,Q>O} and 
!=Q-l 

Let us investigate J(.) introduced in (4.4.17). The domain of J(.) 
comprises those 1/1 such that the minimum of Q ~g(l/I, Q) is achieved 
over {Q:Q=QT,Q>O}. Fix such a 1/1. 

We shall require the following identities from matrix calculus (see 
Appendix D.4): 

a 
as logdet S = S-l 

on the space of n x n non-singular matrices S, and, given any n x n 
matrix D, 

a 
as trace {SD} = D 

on the space of n x n matrices S. Using these identities we deduce 
that the stationary points of the function Q ~ g(l/I, Q) on {Q: Q = QT, 
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Q > O} are those Q which satisfy 

V("v)_Q-i =0. 

It follows that Q = (V("v))-i and V("v) > o are necessary conditions for 
Q to minimize Q -+ g("v, Q) over {Q: QT, Q > O}. Since these necessary 
conditions define a uniquematrixQ(provided V(t,V) > 0) we will be able 
to conclude that thematrix(V(t,V»-l actually minimizes Q -+ g(l/I, Q)on 
{Q:Q = QT, Q > O} if we can show that(when V(I/I) > 0), Q-+g(l/I, Q) 
achieves a minimum on {Q:Q = QT,Q > O}. We prove existence of a 
minimizing element. Bearing in mind that an arbitrary symmetric 
positive definite matrix can be factored as a product of positive definite 
symmetric matrices (Appendix D.1) we see that it suffices to show that, 
given a symmetric positive definite matrix W, the minimization 
problem: 

minimize F(H):= trace {WHH} -logdet {HH} 
over symmetric positive definite-matrices H 

has a solution. 

(4.4.18) 

Let 11'lltr and 11'11 denote the trace and spectral matrix norms 
respectively, (see Appendix D.2). 

By the equivalence of norms, there exists (X> 0 such that 1IPlltr ~ 
alIFII, for all matrices P, of fixed dimension. We shall use the facts 
that IIPII 2 is the maximum eigenvalue of pTp and that, for Pi a 
non-singular matrix, IIP l Pl1 ~IIPlill-iliPli. 

Take H an arbitrary symmetric r x r matrix. We have 

trace{WHH} = trace{Wi/2HHWi/2} 

= trace {(Wi/2 H)(Wi/2 H)T} = II Wi/2 HII~ 

~ a211 Wi/2HII2 ~ a211W- i/211 -211HII2. 

Since det {H H} is the product of eigenvalues {A;} of H H, 

log det {HH} = log {n,l.J ~loglmax,l.l 
i i 

= rlog IIHI12. 

It follows from these inequalities that 

F(H) ~ all W- i/211211H112 - rlog IIHII2. 
We see that 

lim F(H) = + 00 and lim F(H) = + 00. 
IIH//-O IIH/I-oo 
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In consequence, there exists [) > 0 such that the infimum of the 
minimization problem (4.4.18) is unaltered by addition of the 
constraint: 

[) - 1 ~ II H II ~ [). 

But the r x r matrices H which are symmetric, positive definite, and 
satisfy these inequalities form a closed bounded set. The function 
F(·) is continuous and, by Weierstrass' theorem, achieves its 
minimum on this set. Problem (4.4.18) has a solution then. 

Summing up, we have shown that, given any IjJd5, the function 
Q -+g(ljJ, Q) achieves its minimum on {Q:Q = QT, Q > O} if and only 
if V(IjJ) is non-singular, in which case the minimum is achieved at the 
unique point (V( 1jJ)) - 1. It follows that the domain of thefunction J(.) 
of (4.4.17) is {IjJE15:V(IjJ) is non-singular} and 

J(IjJ) = trace {I} -log det(V(IjJ)) -1. 

Since, however, -log det(V(IjJ)) - 1 = log det V(IjJ) and the logarithmic 
function is monotone, minimization of J is equivalent to mini­
mization of J(IjJ): = det V(IjJ) over {IjJE15: V(IjJ) > OJ. The infimum 
of J is clearly unaltered if we take the domain of J to be to all of 
15. It follows that conditions (4.4.17) can be expressed in the desired 
form: 

and 

lfJ minimizes det ( ~ ~ eke IjJ )el( 1jJ) ), 

~ L ek(lfJ)el(ljJ) is non-singular 
Nk 

4.4.4 Asymptotic distributions of parameter estimates 

Consider again selection procedures which admit a prediction error 
formulation. Here we select a model defined by a parameter UN which 
minimizes the identification criterion 

8 -+ h( ~ kt1 [k(8, ei8)) ) 

Let us examine how we might assess the quality of the estimate UN' 
Recall that, since the outputs are random variables, the estimate 
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which is some function of the inputs and outputs is also a random 
variable. Ideally then we would like to know the probability 
distribution of (jN' 

While the task of calculating the probability distribution of (jN is a 
formidable one except in highly restrictive circumstances (for example 
when the dynamic models can be reformulated as static models and 
conditions are satisfied under which the theory of Section 4.3 is 
applicable), we might hope at least to obtain estimates of the 
asymptotic distribution of (jN as N -+ 00. It turns out that this is 
possible; parameter estimates supplied by prediction error schemes 
have similar properties (notably consistency and asymptotic norm­
ality) to those of maximum likelihood estimates based on independ­
ent samples of a random variable, summarized in Proposition 4.1.3. 

Suppose that the limit _ (1 N ) V(e) = lim h - L Elie, ek(e)) 
N-oo N k~l 

(4.4.19) 

exists for each e and that, for N sufficiently large, the estimates (jN are 
confined to some closed ball B in parameter space such that t : 

02 -
ee2 V(e) > M for all eEB. (4.4.20) 

Then, provided certain mild conditions are satisfied (we shall be 
precise about such conditions in Chapter 5), 

(IN -+ e* a.s. 

where e* minimizes V"(e) over B. (This follows from Theorem 5.2.1 
since the limit (4.4.19) is assumed to exist, and the convexity 
hypothesis (4.4.20) ensures the V(e) has at most one minimizer over B). 

We can interpret e* as a parameter value associated with a model 
which best approximates the system as measured by some kind of 
average value of the identification criterion in the limit as N -+ 00. An 
asymptotic analysis of the probability distribution of (jN is possible if 
e* merely provides an approximation of the system (see Ljung and 
Caines, 1979). But we examine here the limiting distribution only in 
situations where e* provides a true description of the system in the 
following sense: 

{ek(e*)} is a sequence of zero mean, independent random 
variables with common covariance matrix ~o. (4.4.21) 
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We focus attention on the least squares identification criterion 

1 N 
J1(O;N) = N k~1 eI(O)Wek(O) (4.4.22) 

(here W is a given weighting matrix) and the identification criterion 
which results from formulation of maximum likelihood estimation as 
a prediction error scheme: 

J iO; N) = de{ ~ J1 ek(O)eJ(O) 1 (4.4.23) 

Proposition 4.4.2 

Consider either the identification criterion (4.4.22) or (4.4.23) and let 
0* be as above. Let r/liO)( = {(r/lk(O»ij}) be the gradient of the 
predictions: 

k = 1,2, ... , and suppose that {r/lk(O*)} is a stationary process. Define 

P 1(W) = [Er/lI(O*)Wr/lk(O*)r 1 [Er/lI(O*)Wl:o Wr/lk(O*)] 

-[Er/lI(O*)Wr/lk(O*)] -1 (4.4.24) 

and 

(4.4.25) 

Then under certain conditions, described in (Ljung and Caines 
(1979», the distribution of N1/2(UN - 0) converges to the N(O, G) 
distributiont as N -+ 00, where G = P 1(W) if the identification criterion 
is J 1(0; N) and G = P 2 if the criterion is J 2«(); N). 

PROOF See Ljung and Caines (1979). 

We have seen in Section 4.3 how knowledge of the probability 
distribution of the parameter estimate permits us to construct 
confidence regions for the true parameter value. In the same spirit we 
can use properties such as those described in Proposition 4.4.2 to 
estimate confidence regions here too in a dynamic setting. Of course, 
since these estimates of confidence regions are based on the asympto-

tThis mode of convergence is defined following Proposition 4.1.3. 
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tic behaviour of (fN we can expect them to be useful only when N is 
large. 

The expressions (4.4.24) and (4.4.25) for the limiting covariance 
matrices P1(W) and P2 cannot be evaluated exactly, but we can 
approximate them by related expressions whose values can be 
computed. For example we can replace l:o by the estimate fo: 

1 N 

to= N k~1 ek«(fN)en(fN) 

and replace the action ofthe expectation operator by sample averages 
about (fN' Thus we use in place of P 1 (W) and P 2 the matrices 1'1 (W) 
and 1'2: 

P 1(W) = Q(W) -1Q(Wto W)Q(W)-1 

and 

P2 = (Q(t;;-1»-1. 

Here Q(.) is defined by 

1 N 
Q(S) = N k~1 I/In(fN)SI/Ik«(fN)' 

It is convenient that the gradients ofthe prediction {I/Ik«(fN)} are often 
available anyway as a byproduct from application of the algorithm 
used for numerical minimization of the identification criterion. 

Results on the asymptotic distribution of estimates are significant 
not only as regards error analysis, but have a bearing on experiment 
design and questions of identification criterion selection too. 

Consider the least squares identification criterion (4.4.24). We 
might ask, what is the best choice of W in the sense that the variances 
oflinear combinations of components of the estimates are minimized 
in the limit as N ~ oo? Here we are helped by the following lemma. 

Lemma 4.4.3 

Let Z be an n x m matrix of second order random variables, and 
let l: and W be symmetric n x n matrices. Suppose that l:, E(ZTWZ) 
and E(ZT~ -1 Z) are positive definite. Then 

(EZTWZ)-1(EZTW:EWZ)(EZT WZ)-1 ~ (EZT:E- 1Z)-1, 

and equality holds if W = ~ -1. 
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PROOF That equality holds when W = L -1 is obvious. Since L 
(and therefore L -1) is positive definite, it follows that 

E[(aTZT + bTZTWL)L- 1(Za + LWZb)] ~ 0 

for all n vectors a and b. Now, for arbitrary b, the left hand side is 
minimized by a = - (EZTL - 1 Z) -1(EZTWZ)b. From this choice of a 
there results 

bT[(EZTWLWZ) - (EZTWZ)(EZTL-lZ)-l(EZTWZ)]b ~ O. 

The lemma is proved by setting b = (EZTWZ) -le, for arbitrary e. 

o 
It is evident from the lemma and equation (4.4.24) that, for the 

least squares identified criterion (4.4.22), greatest accuracy is 
achieved, in the sense that the covariance matrix of Nl/2(ON - 0*) is 
minimized (with respect to the usual partial ordering of positive 
semidefinite matrices) in the limit as N ~ 00, if the weighting matrix 
is chosen to be the inverse of the covariance matrix of the innovations, 
LO' What is more, estimates provided by the identification criterion 
(4.4.22), which arises in maximum likelihood estimation and for which 
knowledge of LO is not required, have accuracy, in the limit as 
N ~ 00, that ofleast squares estimates corresponding to a best choice 
of weighting matrix. These properties, somewhat akin to the 
asymptotic efficiency of maximum likelihood estimates for in­
dependent observations, make maximum likelihood estimates very 
attractive in dynamical system identification. 

We conclude this section by indicating why we can expect the 
limiting covariance matrix of the estimate to be as given in 
Proposition 4.4.2 in one special case. The case considered is that when 
the output is scalar valued, var{ ef(O*)} = 0"6, and the following least 
squares identification criterion is adopted: 

(4.4.26) 

For simplicity we take 0 to be scalar valued. 
Provided {jN is interior to the parameter constraint set, we have 
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By the mean value theorem applied to :e VN(8) then, 

a aZ ~ 
a8 VN(8*) = 0 + a8z VN(YN)(8N - 8*). 

Here YN is a point on the line segment joining 8* and (jN.1t follows that 

N 1/2((jN - e*)f = (:;2 VN(YN)) -2 N( :8 VN(8*) y. 
In view of this equation, and since (jN -+ 8* a.s., it is not implausible 
that N 1/2((jN - e*) should have variance, in the limit as N -+ 00, 

[:;2 V(8*)]-2 ;~~ NE(:e VN(8*)Y· 

However, for the identification criterion here considered (4.4.26), 

aZ -(ll*) _ az l' 1 ~ (2(ll*)) 
;wZ V!l - :::lllZ 1m - L. E Sk !l 
uu uu N --> co N k = 1 

(It is assumed that the operations just carried out are valid). The first 
term under the summation is zero by assumption (4.4.21) and since 

az 
aez sk(8*) 

is a function of {sj(8*),j < k}. By stationarity then, 

:;2 V(8*) = 2Et/lr(8*) 

where t/lk is as defined in Proposition 4.4.2. Note also that, for N a 
positive integer, 

N E( :8 VN(B*)) Z = 4E[ ~ tN~ sj(8*) :8 Sj(8*)Sk(B*) :8Sk(8*) ] 

= 4E(sl(8*))E(t/ll(8*)) = 40'~E(t/ll(B*)). 

Once again we have appealed to assumption (4.4.21) and noted that 8 
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derivatives of eWJ*) are functions of {epJ*),j < k}. The variance of 
N1/2((jN - 8*), in the limit as N ~ 00, is therefore 

(}6/E[tP~(e*)] 

in accordance with Proposition 4.4.2. 

4.5 Off-line identification algorithms 

Prediction error parameter estimation techniques involve minimiz­
ation of an identification criterion e ~ J(e). In special cases (see 
Example 4.3.1) a closed-form solution can be found to this minimiz­
ation problem. For others, typically those involving models with 
correlated disturbances, we must resort to numerical search proce­
dures to find a minimizing parameter value. 

4.5.1 A modified Newton-Raphson algorithm 

Suppose that the identification criterion J is twice continuously 
differentiable, and that the parameter values are unconstrained. The 
Newton-Raphson algorithm generates a sequence of parameter 
values {e(k)}, given a starting value e(O), by means of the recursion 

e(k+ 1) = e(k) - [~~~ (e(k)) ] -1 a:e
T (e(k)). k = 1,2, ... (4.5.1) 

Here the row vector aJ /ao denotes, as usual, the gradient of J. 
a2J/ae2 is the matrix of second partial derivatives {a 2J/aoi aOj } (the 
Hessian of J). If the Hessian is positive definite at (J, a minimizing 
value of the parameter, then it is known that 

lim sup II e(k) - (JII/II e(k-1) - (J11 2 < 00 
k--> 00 

for any starting value 0(0) sufficiently close to fJ; that is, the 
method has local 'second-order convergence' properties. A natural 
variant on this algorithm which can be expected to perform 
satisfactorily even when e(O) is not close to a minimizing value is the 
following: let J"(e) be an approximation to the Hessian at e which is 
symmetric and positive definite. The recursion (4.5.1) is replaced by a 
one-dimensional search in an approximate 'Newton-Raphson' direc­
tion, namely 
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where rxk is chosen to minimize 

rx -t1[ fj<k) - rx(J"(O(k»))-l ~~ (O(k») ] 

over rx ~ O. Second-order expansion of J about O(k) reveals that, 
whatever 0(0), the value of identification criterion is reduced at each 
step, provided the gradient 

oj (O(k») 
00 ' 

is non-zero. Since J"(O(k») approximates the Hessian, it is reasonable 
to suppose that the method will have the desirable second-order 
convergence properties associated with Newton-Raphson algor­
ithms, and that (4.4.2) will rapidly generate a parameter value at 
which aJ/ao is small. 

This scheme is particularly attractive for prediction error methods 
because, in important cases, the derivatives up to second order are 
easily calculated and a suitable approximation to the Hessian naturally 
suggests itself, as we now show. 

Take the predictor models M(O), OEik~q of Section 4.2, 

k=O,I, ... 

in which the fk are given functions and the ek are zero-mean 
independent random variables. We assume that the fk are twice 
continuously differentiable in their arguments. 

We shall consider identification criteria which arise, respectively, in 
least squares and maximum likelihood parameter estimation, namely 

J 1 (e) = trace { W D( e) } 

in which W is a given positive definite matrix, and 

J 2(0) = logdet {D(e)}. 
Here 

1 
D(e) = N ~>k(O)enO), in which 

ek(O) = Yk - fbk- 1; Uk- 1, 0). 

Straightforward calculations give the first partial derivatives of J 1 : 

oj 1 ( 2 ) ~ T Oek 
aei (e) = N kf-l ek(e)W aOi (e) i = 1, ... ,q. 
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As for the first partial derivatives of J 2 we have 

aJ2 { d aD } 
ae; (e) = trace dD [log det D(e)] ae; (e) 

= trace {D- 1(e) ~ ~ (~~:(e)Gr(e) + Gk(e) ~~~ (0)) } 

by the matrix calculus identity, Lemma D.4.4, of Appendix D, 

2 NaT 

= N L Gne)D-l(e)~(e). 
k~ 1 aOi 

Also, 

and 

a2 J 2 _ 2 ~ aGr _ 1 aGk 2 ~ T _ 1 a2 Gk 
aeiaej - N kf-l aei (e)D(e) aej (0) + N kf-l Gk(O)D(e) ae;aej (e) 

2 ~ ~ T 1 [ aGT aGI T ] 
- N2 kf-llf-l Gk(e)D- (0) Gl(O)ae;(O) + aei(O)Gde) 

. D -l((}) ~~k((}). 
J 
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We have used Lemma D.4.2. of Appendix D in calculating 
a2 J 2/ae;a(}j' It is assumed here that D(O) is non-singular. The first and 
second partial derivatives of Gk((}) which appear in these expressions 
can be calculated from the formulae 

aGk((}) = _ afk( k-l. k-l e) 
a(}. ae. Y ,U , , , 

and 

Suitable approximations J'{((}) and J;(e) to the Hessians in these cases 
are given by 
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{J;( O)} ij = ~ f oel (O)D( 0) - 1 oek (0). 
N k=1 OOi oOj 

These choices of J'{(O) and J;(O) are positive semi-definite, and can be 
made positive definite by addition of a term rxI, rx > 0, if necessary. 
Notice that, in replacing the derivatives by their approximations, we 
have ignored the terms 

2 N 02e 
N kf:1 enO)W OOiO~j (0) 

2 ~ T -1 02ek 

N kf-1 ek(O)D(O) OOiOOj (0) 

and 

To justify these approximations, let us suppose that the data is actually 
generated by the predictor model when the parameter 0 takes value 0*. 
Under mild assumptions on f and the noise {ek}, it is possible to show 
that the omitted terms all tend to zero, as N -+ 00, almost surely, when 
0= 0*. It is reasonable to assume then that the terms will be small 
when N is large and O(k) is close to 0*. Proof involves application 
of the Ergodic theorem, Theorem 1.1.15 and use ofthe facts that, for 
k = 1,2, ... , ek(O*) = ek, whence for 1 < k, ek(O) is independent of el(O*), 
and for 1< k, ek(O*) is independent of 

oel(O*) and ':J°0~~01 .(0*). 
OOi v IV J 

4.5.2 The generalized least squares algorithm 

The generalized least squares algorithm is a more specialized algorithm 
for identifying parameters in certain models involving correlated 
disturbances. The algorithm is more widely applicable than this, but 
for the sake of simplicity, we describe it in connection with the class of 
scalar models 

k=O, ... ,N 
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in which the disturbances ~k are generated by the equations 

k=O, ... ,N. 

We take zero initial conditions (Yk = 0, Uk = 0, ~k = ° for k < 0). 
Here the polynomials A(O'),B(O') and F(O') take the form 

A(O') = 1 +a10'-1 + ... +anO'-n 

B(O') = b10'-1 + ... + bnO'-n 

and 
F(O') = 1 + i 10'-1 + ... + inO'-n. 

The ek are independent random variables. The coefficients 
a1, ... , an' b1, .. ·, bn, il'"'' in make up the entries of the unknown 
vector parameter f) to be identified. 

A parameter value is sought which minimizes the least squares 
criterion 

1 N 

N Jl e~(f)) (4.5.2) 

in which the ek(f)) are the prediction errors corresponding to the 
parameter value f). 

Calculations similar to those performed in connection with the 
ARMAX model equations (4.4.7) give the prediction errors ek(f)) as 

ek(f)) = A(Z-1 )F(Z-I)Yk - B(z -1)F(z -1 )Uk• (4.5.3) 

The parameter estimation problem is therefore that of minimizing 
(4.5.2) over f) when ek(8) is given by (4.5.3). 

A minimization scheme is suggested by the observations that, if 
either the ii or both ai and bi are fixed, then the prediction errors are 
linear functions of the remaining free parameter coefficients, and the 
minimization problem over these components can be solved in closed 
form. 

If the ii are fixed, the prediction errors eif)), k = 1,2, ... , are given by 

ek(f)) = A(Z-I)Yk - B(Z-l)Uk , k = 1,2, ... , (4.5.4) 

in which the Yk and Uk are calculated from the data and the /; according 
to 

k =0, 1, ... 

On the other hand, if the ai and bi are fixed then 

ek(f)) = F(z -1 )Sk (4.5.5) 
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in which the 8k are calculated from the data and the ai and bi according 
to 

8k = A(Z-l)Yk - B(Z-l)Uk' 

The closed-form solutions to the problems of minimizing (4.5.2) when 
Bk(O) is defined by (4.5.4) and Yk, Uk are known, and when ek(O) is defined 
by (4.5.5) and the ek are known, are provided by the least squares theory 
of Section 4.4 (under the assumption that the normal equations in 
question have a unique solution). 

It is natural then to minimize the criterion (4.5.2) alternately over 
the Ii and then over the ai and bi' This idea is the basis of the generalized 
least squares algorithm. 

The polynomial F o(Z -1) with leading coefficient unity, is chosen 
arbitrarily. (A common choice is F O(Z-l) = 1). Sequences of poly­
nomials {Fiu)}, {Aiu)}, {(Biu)} with coefficients the unknown 
parameters, are then generated recursively as follows. For j = 1,2, ... , 

(a) The polynomials Aiu) and Biu) are chosen to have coefficients 
which minimize (4.5.2) where the ek( 0) are given by (4.5.4) and where 

Yk=Fj _ 1(z-1)Yk,Uk = Fj _ 1(z-1)Uk, k~O 

Yk = 0, Uk = 0 k < 0 

and, 
(b) The polynomial Fiu) is chosen to have coefficients which minimize 

(4.5.2), where eM) is now given by (4.5.5) and where 

8k = Aiz-1)Yk - Biz-1)Uk, k ~ 0 

8k =0, k <0. 

The recursion is terminated when the change in parameter values 
between iterations becomes insignificant; the coefficients of the current 
Aiu), Biu), Fiu) provide the parameter estimate. 

4.6 Algorithms for on-line parameter estimation 

In many applications, parameter estimates are required on-line, in 
the sense that we must obtain estimates based on data available at 
time N before new data comes in at time N + 1. This is the case, for 
example, when adaptive control schemes are implemented, because 
then the control strategy to be applied at a particular time depends 
on the parameter estimates at that time. 
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The parameter estimation algorithms of Section 4.5 are often 
infeasible for such applications because the calculations involved 
cannot be completed sufficiently quickly. The algorithms we now 
consider are devised to overcome this difficulty; they update the 
parameter estimates to take account of new data in a computation­
saving manner. For the sake of simplicity, attention is restricted to 
algorithms for single input, single output systems. 

4.6.1 The recursive least squares algorithm 

We consider scalar ARMAX models of the form 

Yk+aIYk-1 + ... +anYk-n=bIUk-1 + ... +bmuk-m+ek, 

k=0,1, ... 

with zero initial conditions (Yk = 0, Uk = 0, for k < 0). 
Here eO,e l , ... are zero-mean independent random variables. The 

vector of unknown parameters 0 is [a l , ... , an> bl , ... , bmY 
Let UN be the estimate based on data yN, UN- I up to time N 

obtained by minimizing the least squares criterion 

1 N 

VN(O) = N kf:1 e~(O) 
in which the ek(O) are the prediction errors. These, we recall, are 
obtained from the equation 

eiO)=Yk+aIYk-1 + ... +anYk-n-bIUk-1 -'" -bmUk-m, 

k=1,2, ... 

We have seen in Section 4.4 that UN is given by 

UN = (X~XN)-IX~ YN. 
Here 

and 

(It is assumed that X~X N is non-singular). 

(4.6.1) 

At time N + 1, YN+I and UN (and hence XN+I) become known. 
The least squares estimate which takes account of this new inform­
ation is 
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We shall show that (IN+l can be determined from (IN, UN and 
YN+l given the matrix PN, 

PN=(X~XNrt, 
by means of simple calculations. 

But we first take note of a matrix identity known as the matrix 
inversion lemma. 

Lemma 4.6.1 

Let A be an n x n matrix and let b, e be n-vectors. Suppose that A 
and A + beT are non-singular and that 1 + eTA -lb =F 0, then 

(A + beT)-1 = A-I - (1 + eTA -lb)-1 A -lbeT A-I. 

PROOF We have merely to check that 

(A -1 - (1 + eTA -lb)-1 A -lbeTA -1 )(A + beT) 

is the identity matrix. But this matrix is expressible as 

I +A- 1beT -(I-eTA- 1b)-I(A- 1beT +A-lb(eTA-lb)e~ 

=1 +A- 1beT -(1 +eTA- 1b)-I(1 +eTA- 1b)A- 1beT =1 0 

Bearing in mind our assumption that X1X N is non-singular, we 
readily confirm that the hypotheses are satisfied when we set 
A = X~XN and b = e = Xn+1. It follows that 

PN+1 = (X~+IXN+l)-1 = «X~XN) + XN+1x1+1)-1 

= [I - (1 + X~+ 1 PNXN+ 1)-1 PNXN+ lx1+ dPN· 
We deduce that 

(IN+ 1 = PN+ lX~+ lYN+ 1 = PN+ I(X~YN + XN+ lYN+ 1) 

= [I -(1 + X~+1PNXN+l)-1 PNXN+ lx1+ 1] 

. PN(X~YN + XN+1YN+l) 

=PNX~YN+(1 +X~+IPNXN+l)-I[(1 +X~+IPNXN+l) 
'PNXN+IYN+l - PNXN+IX~+ IPNX~YN 
- PNXN+IX~+lPNXN+ lYN+ 1] 

=PNX~YN+(1 +X~+lPNXN+l)-lpNXN+l 

'[YN+l -X~+IPNX~YN] 

= (IN + (1 + X~+ IPNXN+ lr 1 PNXN+ I[YN+ 1 - X~+ 1 (IN]' 

by Lemma 4.6.1. 
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These relationships can be expressed 

UN+1 =UN+KN+1BN+1(UN) 

in which BN+ 1(UN) is the prediction error associated with UN: 

BN+1(UN)=YN+1 -X~+1UN 
and 

together with 
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(4.6.2) 

(4.6.3) 

(4.6.4) 

PN+1 = [I -(1 + X~+1PNXN+1rl PNXN+1x1+1]PN, (4.6.5) 

Equations (4.6.2)-(4.6.5) determine the least squares estimate 
UN + 1, given data up to time N + 1, as a function of UN the least 
squares estimate given data up to time N, the new data YN+l, UN 
and the matrix P N, and generate the matrix P N + 1 in preparation for 
the next updating of the parameter estimate. These equations define 
the recursive least squares algorithm. The starting value for the 
recursion (4.6.5) is Po = (X~XO)-l. We see that PN is updated by 
means of a Riccati equation. 

Each step of the algorithm involves only matrix multiplication; 
inversion of the matrix P N + 1, required for the corresponding 
non-recursive algorithm, is avoided. 

We see that the least squares procedure for ARMAX models with 
uncorrelated disturbances can be expressed in a manner suitable for 
on-line use. The on-line algorithm gives the same sequence of 
estimates as we would obtain by applying the procedure each time 
new data comes in. Off-line parameter estimation algorithms for 
models which permit correlated disturbances can often be adapted 
to give on-line algorithms too, provided certain approximations are 
made. A typical on-line algorithm which arises in this way has the 
following characteristics: the estimate UN based on data up to time 
N is used as an initial value for one iteration of the associated off-line 
algorithm based on data up to time N, and approximations are 
introduced by means of which the gradients of the identification 
criterion at time N + 1, and other useful variables, can be simply 
calculated from the gradients of the identification criterion at time 
N. It is assumed that, although the approximations will result in 
poorer estimates for each N, their effect will become small for large 
N. A number of algorithms of this kind are now described. 
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4.6.2 A recursive Newton-Raphson algorithm 

We recall the modified Newton-Raphson algorithm of Section 4.5 
as applied to scalar predictor models when a least-squares identi­
fication criterion 

1 N 
J N(O) = - L 8~(0) 

N i=1 

is adopted. Here the 8k(0) are the prediction errors 

k= 1,2, ... ,N (4.6.6) 

associated with the model M(O). 
Given data yN, UN -1 and an estimate, 0old' the algorithm supplies 

a revised estimate, 0new, according to the rule 

II II -1 oJ~ 
Onew = !lold - exHJ!lOld) 00 (Oold)' (4.6.7) 

Here 

oJN(O) 
ao ' 

the gradient of J N with respect to 0, is 

oJN 2 N 

00 (0) = N i~1 8k(0)t/lk(0). 

In this expression the row vectors {t/lk(O)} are defined by the 
equations 

k= 1, ... ,N. (4.6.8) 

H N( 0), an approximation to the Hessian of J N at 0, is given by 

HN(O) = ~ kt1 t/ll(O)t/lk(O) 

and ex is a suitable positive number. (It is assumed that Onew given 
by (4.6.7) will lie in the parameter constraint set.) 

Suppose that a parameter estimate OJ has been calculated on the 
basis of data Yj, uj - 1 for j = 1, ... , N - 1. Further data YN, UN-1 now 
becomes available. Formula (4.6.7) suggests that we choose a new 
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estimate eN to be 

o 0 0 )-1 aJ~ N= N-1 -rtNHN( N-1 aiJ(ON-d. 

Here {rtN} is a suitable sequence of positive numbers. 
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(4.6.9) 

This expression must be approximated if it is to be of use for 
on-line calculations. One characteristic which makes it unsuitable 
is that it involves the prediction errors, the 8k(eN - 1), and their 
gradients the IjJk(ON-1)' These processes are obtained by solving the 
equations (4.6.6) and (4.6.8) all of which depend on 0N-1 and, except 
in special cases, knowledge of prediction errors and their gradients 
for previously considered parameter values does not simplify the 
calculations. Such simplification is achieved, however, if 8k(eN -1) 
and IjJk(eN- 1), for k = 1, ... , N, are approximated by the vectors, 
written 8k and IjJ k' which result when, for k = 1,2, ... , eN _ 1 is replaced 
by the currently available estimates 0k-1 in both of the recursive 
equations (4.6.6), (4.6.8). The column vectors {8k} and row vectors 
{ljJk} are then defined by 

1'( k-1 k-1 e ) 
8k=Yk-JkY ,U ,k-1, k = 1,2, ... (4.6.10) 

and 
./, a fk ( k - 1 k - 1 e ) 'I'k=-8(jY ,U , k-l, k=1,2, ... (4.6.11) 

Introduction of {ljJk} provides us with a convenient new approxi­
mation, 2RN , to the Hessian, where 

1 N 

RN:=N L IjJlljJk' 
k~l 

Notice that application of the matrix inversion lemma (Lemma 4.6.1) 
as in the derivation of the recursive least squares algorithm, results 
in recursive equations for PN:=(NRN)-l, namely 

PN= [I -(1 + IjJNPN-lljJ~)-lpN-11jJ~IjJNJPN-1' 
Consider now approximation of the gradient 

aJN 
ae (ON-d· 

If eN - 1 actually minimized, I N - 1 then we would have 

aJN - 1 (e )=0 ae N-1 
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and it would follow that 
iJJN 2 N 
iJ(J ((IN-l)= N k~l ek((JN-dl/lk((JN-l) 

2 
= NeN(ON-l)I/IN(ON-l). 

In view of this, even if 0N-l is not minimizing, (2/N)eN((JN-l)I/IN((JN-l) 
is a natural choice of approximation for 

iJJN 
iJO (ON-d· 

Furthermore (2/N)eN(ON-dI/lN(ON-l) itself can be approximated 
by (2/ N)eNI/I N. 

These approximations substituted in place of H N(ON _ d and 

iJJN 
iJO ((IN-l) 

in (4.6.9) lead to the updating formula 

°N=ON_l-(aN/N)RNl I/l1eN· 

Expressed in terms of P N, the formula becomes 

(IN=(JN-l -aNPNI/I~eN (4.6.12) 

in which, we recall, 

PN= [I -(1 +I/INPN-lI/l1)-lPN-lI/l1I/1NJPN-l· (4.6.13) 

Equations (4.6.10)-(4.6.13) define the recursive Newton-Raphson 
algorithm. Solution of the recursive equations requires a suitable 
starting value Po, a positive definite symmetric matrix, and an initial 
estimate 00 of the vector parameter. 

For {aJ, Po and 00 appropriately chosen, and for the models 
considered in the derivation of the recursive least squares algorithm, 
the recursive Newton-Raphson algorithm is in fact the same as the 
recursive least squares algorithm. In this case the approximations 
coincide with the true values of the variables concerned. 

4.6.3 The recursive generalized least squares algorithm 

Consider now scalar stochastic dynamical models 

A(z= :)Yk = B(Z-l)Uk + ~k} 
F(z )~k = ek 

k=O,I, ... 

with zero initial data (Yk = 0, Uk = 0, ~k = 0, for k < 0). 
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Here {ed is a sequence of independent, zero-mean random 
variables. The polynomials A(a), B(a) and F(a) are of the form 

A(a) = 1 + a1 a + ... + anan, 

B(a) = b1 a + ... + bnan, 

F(a) = 1 + f1a + ... + fnan. 

We take a1, ... ,am b1, ... ,bm f1, ... ,fn as the unknown parameters. 
For convenience we divide them up to form two vector parameters 
1/1 = (a 1,· .. , am b1,···, bn)T and Y = (f1"" ,fn)T. 

Let us recall the generalized least squares algorithm for de­
termination of estimates given data yN, UN - 1 (see Section 4.5). The 
underlying idea is that, if either 1/1 or Y is fixed then the value of the 
other parameter, Y or 1/1, which minimizes the mean square of the 
residuals 

can be obtained by solution of the normal equations for a simple 
least squares problem involving uncorrelated disturbances; after 
} iterations of the algorithm, when estimates I/Ij, Yj have been 
determined, the next iteration yields estimates I/Ij+ l' Yj+ 1 where I/Ij+ 1 

minimizes I/I-tJN(I/I,y) and Yj+1 minimizes y-tJN(l/Ij+1,Y), 
One way in which the algorithm can be modified for on-line use 

is to couple it with the recursive least squares algorithm and to 
introduce certain approximations. Suppose that estimates I/!N, YN 
based on data yN, UN - 1 are available and new data YN + 1, UN comes 
in. One iteration of the generalized least squares algorithm, applied 
with I/IN' YN as initial values, gives estimates If/, y which minimize 
I/I-tJN+1(I/!'YN)' y-tJN+1(lf/,y). In order to apply the recursive least 
squares algorithm to determine If/, y we require the solution of two 
Riccati equations. These equations, determined at each step by the 
most recent estimates YN, If/ of the parameters Y and 1/1 must be solved 
over the time interval 1 to N + 1. The computational burden of 
updating the parameters is reduced if we take as new estimates I/IN+ l' 
YN + 1, approximations to If/, y, instead of If/, y themselves, calculated 
from solutions to two approximating Riccati equations, determined 
at each time step}, not by the most recent parameter estimates YN, 
I/IN+1, but by the estimates Yj' I/Ij+l available at time}; in order to 
calculate the parameter estimates I/IN+l' YN+l we need only advance 
the solutions to the approximating Riccati equations by one step, 
since the solutions at time N are available from calculation of !{IN' YN' 
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The recursive generalized least squares algorithm updates esti­
mates in this way. A more detailed description of the algorithm is 
as follows: Vectors tTlo, Yo and positive definite matrices Po, Qo are 
supplied as starting values. tTlN' YN' PN' QN' N = 1,2, ... are then 
calculated by the formulae 

ifJN+ 1 = tTlN + K N+ 1(YN+ 1(YN) - X~+ 1tT1N) 

K N+ 1 = (1 + X~+1PNXN+1)-1 PNXN+1 

PN+1 = [I - (1 + X~+1PNXN+ 1r1pNXN+1X~+ 1]PN 
in which 

Yk(YN) = F N(Z -1 )Yk, 

UiYN) = F JZ- 1)Uk, 

k = N - n + 1, ... , N + 1 

k=N -n+ 1, ... ,N + 1 

XN+1 = [- YN(YN)' - YN-1(YN)'···' - YN-n+1(YN), 

UJYN)'···, uN- n+ 1(YN)]T 

and F N(O") is the polynomial with coefficients entries of YN together 
with 

YN+ 1 = YN + LN+1(rtN+ 1 tTlN+ 1) - ~~+ dN) 

LN+1 = (1 + ~~+1QN~N+1)-1QN~N+1 
QN+ 1 = [I - (1 + ~1+ 1QN~N+ 1)-1QN~N+ 1 ~1+ 1]QN 

in which 

rtk(tTlN+ 1) = AN+ 1(Z-1)Yk - BN+ 1(Z-1)Uk> k = N - n + 1, ... , N + 1 

~N+1 = [-'1JtTlN+1)' ... ' -'1N-n+1(tTlN+1)]T 

and AN+1(O")' BN+1(O") are the polynomials with coefficients 
entries of tTlN+ 1. 

4.6.4 The extended matrix algorithm 

This is another algorithm which permits 'correlated disturbances'. 
We describe the form it takes for scalar ARMAX models: 

k=0,1, ... 

with zero initial data (Yk = 0, Uk = 0, ek = 0, for k < 0). 
Here ek is a sequence of zero-mean, independent random variables. 

The polynomials A(o), B(u) and C(u) are of the form: 

A(O") = 1 + a10" + ... + anO"n, 

C(O")= 1 +c10"+ ... +cnO"n. 
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and the coefficients a1, ... ,am b1, ... ,bm C1"",Cn make up the vector 
e of unknown parameters. 

Suppose that at time k we had knowledge of past disturbances 

eJ,j -( k. Then we could write the ~y~tem @qu~tion& 
(4.6.14) 

in which 

was a known vector. Past disturbances merely have the role of 
additional inputs to the system in this hypothetical situation, and 
the least squares parameter estimation problem takes a form to 
which the recursive least squares algorithm is applicable. 

Of course past disturbances are not known and it is therefore 
necessary to estimate them. An estimate ek of the disturbance ek 

based on past parameter estimates (Jj, j < k, and data available up 
to time k together with an estimate xk of the regression vector Xk 

are easily obtained by solving the recursive equations 

and 
ej=Yj-xJ(Jj-l 

j=1,2, ... 

The extended matrix algorithm is the algorithm which results from 
applying the recursive least squares algorithm for the model equation 
(4.6.14) when Xk replaces Xk' 

A vector Uo and a positive definite, symmetric matrix Po is 
supplied. UN' P N, N = 1,2, ... are then calculated according to the 
formulae 

(IN+l = (IN + KN+1eN+ 1 

K N+ 1 =(1 +X1+1PNXN+l)-lPNXN+l 

PN+ 1 = [I -(1 + X1+1PNXN+l)-1 P NXN+IX1+1]PN 

in which 

k = N - n + 1, ... , N + 1 
and 

4.7 Bias arising from correlated disturbances 

It is a straightforward matter to apply maximum likelihood esti­
mation methods (for Gaussian disturbances) or least squares methods 
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when the models considered are described by vector difference 
equations: 

A(Z-l)Yk = B(Z-l)Uk_l + Wk, 

when the coefficient matrices of the polynomials A(a) and B(a) to 
be estimated are unconstrained and when the disturbance sequence 
{wk} is zero-mean uncorrelated; as we have seen, the identification 
problem reduces to minimization of a quadratic functional, and it 
can therefore be solved in closed form. When the disturbances {wk} 

are not uncorrelated but are modelled, say, by 

Wk = C(z-l)ek 

in which {ek } is a sequence of uncorre1ated random variables and 
the coefficient matrices of the polynomial C(a) are to be estimated, 
then the identification procedures give rise to minimization problems 
involving non-quadratic objective functionals, and for this reason 
their implementation is a much more formidable task. 

In the circumstances one might be tempted to estimate parameters 
under the hypothesis that the disturbances were uncorrelated, even 
if there were reason to doubt the hypothesis. However, this is not 
advisable because we can expect that disturbance correlation will 
give rise to biased estimates. The following simple example illustrates 
the point. 

Suppose that a dynamical system with scalar input and output is 
described by 

(4.7.1) 

and that the disturbances Wk are generated by 

(4.7.2) 

Here {ek } is a sequence of zero-mean uncorrelated random 
variables with uniformly bounded fourth-order moments. a and c 
are given real numbers and lal < 1. We assume that the variance 
of ek, which we write Ree(O), is positive and does not depend on k. 

The least squares estimate aN of a, given data for times k = 1, ... ,N 
and calculated without regard to the correlation of the disturbances 
is: 
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Now it is not difficult to show that, under our assumptions on {ek }, 

there exist constants c > 0, AE(O, 1) such that for dk taken as either 
Y~-l or YkYk-l, k = 1,2, ... , we have 

cov{dl,dl+S}sdS for t,szO. 

It follows from the ergodic theorem (Theorem 1.1.15) that 

1 N 

N Jl Y~ -1 ~ Ryy(O) a.s. 

and 

where 
Ryy(O)=EY~_l and Ryy(1) = EYkYk-l' 

The number Ryy(O) is positive. We deduce that, a.s., aN is defined 
for all N sufficiently large and 

A Ryy(1) 
aN~--

Ryy(O) 
as N ~oo, a.s. (4.7.3) 

The asymptotic value of the estimate of a is now compared with 
the true value. From (4.7.1) and (4.7.2), 

YkYk-l =aY~-l +(ek+cek-l)Yk-l, kEZ 

and 

Ykek=aYk-lek+(ek+cek-l)ek, kE7L. 

Taking expectations and noting that ek is uncorrelated with ek - 1 

and Yk-l we conclude that 

Ryy(l) = aRyy(O) + cRye(O) 

and Rye(O) = Ree(O) where RyiO) = E{Ykek}' It follows from these 
equations and (4.7.3) that 

A ReiO) 
aN~a + c Ryy(l) , as N ~oo a.s. 

We see that an asymptotic bias is present of cRee(O)/Ryy(1). This will 
be zero only if c is zero, that is, only if the disturbances are 
uncorrela ted. 

One situation in which we can disregard correlation of the 
disturbances and still obtain unbiased estimates is when the system 
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and model equations involve no autoregressive terms, or in other 
words take the form 

Yk = B(Z-l)Uk + Wk 

Least squares estimates of the matrix coefficients of B(a) will be 
unbiased even if {wk } is a correlated sequence. Indeed, the analysis 
of least squares estimation for static models provided in Section 4.3 
is applicable (see Example 4.3.1) and this establishes that the 
estimates are unbiased even with a finite number N of data points 
(see Proposition 4.3.2). We can expect though that the estimates (for 
each N) will have larger variance when correlation of the disturbances 
is disregarded than when allowance is made for it in the estimation 
scheme. 

4.8 Three-stage least squares and order determination for 
scalar ARMAX models 

This section concerns parameter estimation for scalar ARMAX 
systems 

(4.8.1) 

in which {ek} is a normal white noise sequence with variance a 2• 

We have seen above that maximum likelihood estimation of the 
parameters A, B, C, a 2 is in general a nonlinear minimization 
problem but that if C(z - 1) = 1 then it reduces to least squares 
estimation of A and B which, computationally, is a very much simpler 
task. A similar reduction applies if C(z -1) is any known stable 
polynomial. To see this, write (4.8.1) as 

A(Z-l) B(Z-l) 
C(z-l)Yk=C(z-l)uk+ek (4.8.2) 

and define filtered sequences Yk' Uk as follows 

Then Yk' Uk satisfy 

C(Z-l)Yk = h 

C(Z-l )uk = Uk' 

A(Z-l)Yk = B(Z-l)Uk + ek 

(4.8.3) 

and we can estimate A, B by least squares, as before but using the 
filtered data (Yb Uk) in place of the original data (h, Uk)' 
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When C(z - 1) is unknown it is natural to consider replacing the 

nonlinear maximization of the lIkelihood by a sequence of least 
squares operations in which the data is filtered as in (4.8.3) but with 
the 'true' C replaced by some estimate. This, indeed, is the idea 
behind the Generalized Least Squares algorithm described in 
Section 4.5. Another algorithm along the same lines is the so-called 
three-stage least squares algorithm, described as follows. It is 
assumed that a data sequence {Yk' Uk' k = 1,2, ... , N} is given. The 
degrees of the polynomials A(z - 1), B(z - 1), C(z - 1) and an integer p 
(p = 10 is a typical value in applications) are pre-specified. 

Three-stage least squares algorithm (Mayne and Firoozan (1982)) 

(a) Estimate the parameters in the model 

d(Z-1)Yk = 24(Z-1)Uk 

by least squares. Here 

d(Z-1)= 1 +1X1Z- 1 + ... +lXpZ- P 

24(Z-1) = {Jo + {J1Z-1 + ... + (Jpz-p. 

(b) Form the residual sequence 

tk = d(z-1)Yk - 81(z-1)uk (4.8.4) 

where .91, iJ are formed from the parameter estimates of part (a). 
(c) Estimate the parameters in the model 

(4.8.5) 

by least squares. Denote the estimates AI' 131, C1. 

(d) Filter the data through C1(Z-I), giving filtered data Yk> Uk> ek: 

C 1 (z - 1 )Yk = Yk 

C1(Z-I)Uk = Uk 

C1(z-1)ek = tk· 

(e) Re-estimate the parameters in (4.8.5) replacing Yk, Uk' tk by 
Yk, Uk,ek' This gives the final estimates ,42' 132, C2. 

As its name suggests, the algorithm involves just three least squares 
estimations, in contrast to the generalized least squares algorithm 
where filtering and least squares estimation are repeated until some 
criterion is satisfied. 
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Steps (a)-(c) of the algorithm are clearly motivated as follows: 
denote do = AIC and f!J o = BIC. Then (4.8.2) becomes 

d O(Z-1)Y1 = f!JO(Z-l)Uk + ek. 

This gets rid of the unwanted C(z - 1), but do, !!J 0 are now infinite­
degree polynomials. We therefore truncate them to polynomials d, 
!!J of pth degree where p is 'large'. The residuals 8k given by (4.8.4) 
then approximate the noise sequence ek> enabling us to estimate A, B 
and C by least squares. For the final steps (d) and (e) we behave as 
if C 1 were the 'true' value, filtering the data to remove noise 
correlation. 

The three stage least squares algorithm is justified, apart from the 
above motivation, by its large sample behaviour in case the data is 
actually generated by an ARMAX system (4.8.1) with known order 
and constant but unknown parameters Ao, Bo, Co. 

Consider first the no-input case in which the data {Y1'···' YN} 
is generated by the ARMA system 

Ao(z-l)Yk=CO(z-l)ek. (4.8.6) 

It is assumed that Ao and Co have no common factors and that the 
zeros of (f -+ Ao( (f) and (f -+ Co( (f) all lie outside the closed unit disc. 
The model set is the set of ARMA models 

A(Z-l)Yk = C(z-l)ek, 
where 

A(Z-l)= 1 +a1z- 1 + ... +anz- n 

C(Z-1) = 1 + C1Z- 1 + ... + CIZ- I, 

with parameter vector OT = (a 1, ••• , am Cr, ... , c/). The parameter 
vector corresponding to the true system Ao, Co is denoted 00 . 

For a given data set the parameter estimate {J given by the 3-stage 
least squares algorithm (i.e. containing the coefficients of the 
estimated polynomials A2 ,C2) depends both on the length N of 
the data sequence and the degree p of the polynomial d(Z-l) used 
in step (a). We write it (J(N,p). Mayne and Firoozan (1982) 
demonstrate the following large sample properties. 

Proposition 4.8.1 

Under the conditions stated above: 

(a) For each p there is a vector O(p) such that 

lim (J(N, p) = O(p) a.s. 
N-oo 
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(b) lim O(p) = 00 , 
p~oo 
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The result says that for any fixed p the parameter estimates may be 
asymptotically biased (O(p) +- (0 ) but the bias O(p) - 00 can be made 
arbitrarily small by choosing p sufficiently large. The proof of 
Proposition 4.8.1 is complicated and we must refer the reader to the 
original paper for this. The paper also contains important results 
relating to the large-sample distribution of IJ(N,p) which show that 
this estimator is asymptotically efficient, i.e. it has properties similar 
to those of the classical maximum likelihood estimator described in 
Proposition 4.1.3. 

Proposition 4.8.1 also holds for ARMAX systems if the input 
sequence {Uk} satisfies a condition of 'persistent excitation'. This 
condition is discussed below in Chapter 5. 

Since the bias O(P) - 00 disappears as p -+ 00 it seems that if p is 
allowed to increase with N then a sequence of estimators converging 
to the true value might be obtained. Thus we take p = p(N) for some 
increasing function p(.) and ask whether p(.) can be chosen so that 
IJ(N, p(N)) -+ 00 a.s. This question has been investigated by Hannan 
and Kavalieris (1983), who show that indeed IJ(N, p(N)) -+ 00 a.s. if 

lim sup p(N) -g - > O. ( 10 N)1/2 
N~oo N 

Thus in particular the choice p(N) = (N jlog N)1/2 would suffice. With 
this choice, p(100) = 5, p(104) = 33. For a given data set of fixed 
length the appropriate choice of p depends on the positions of the 
zeros of CO(Z-l) (which are, of course, not known in advance). Since 
the polynomial d(Z-l) in step (a) of the algorithm is intended to 
approximate AO(Z-l)/CO(Z-l) it is clear that a relatively small value 
of p will suffice if the zeros of Co(z - 1) are well inside the unit circle. 
In practice a value of p in the range 10-15 seems adequate in many 
applications, but the method may be expected to run into trouble 
if CO(Z-l) is only marginally stable. 

Order determination 

In the three-stage least squares algorithm as described above the 
orders I, n of Co and Ao are assumed known. It has recently been 
shown by Hannan and Rissanen (1982) that a modification of the 
algorithm will supply consistent estimates of I and n and of the 
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parameter vector e. Before describing this, we discuss model order 

determination in somewhat more general terms. 
Model order selection for the static least-squares problem was 

discussed in Section 4.3. Models of successively higher order are 
fitted and the correct order is identified by a statistical test based 
on the rate of decrease with model order n of the residual sum of 
squares function SN(n,8) = eT(8)e(8) (see Proposition 4.3.8 et seq.). It 
was pointed out that this test could be interpreted as selecting those 
values of n, 8 which give the absolute minimum of a function AN(n, 8) 
defined by 

AN(n,8) = log S N(n, 8) + Kn (4.8.7) 

for some constant K. The statistical testing theory is only valid for 
static models, but a similar procedure is often used for determining 
the order of dynamical models such as the ARMA model (4.8.6). 

Criteria of the form (4.8.7) were introduced by Akaike (1969), and 
are called Ale criteria (IC for 'information criterion'). They represent 
a quantitative formulation of the so-called 'principle of parsimony' 
in model-building, namely that, other things being equal, the model 
with the smallest number of parameters should be preferred. In 
(4.8.7), 10gSN(n,e) decreases with increasing n but the second term 
Rn imposes a penalty for introducing more parameters. By choosing 
(n,8) to minimize AN(n, 8) we achieve a trade-off between accurate 
model-fitting (small SN(n,8)) and parsimony of parametrization 
(small n). The relative weights are controlled by the constant K. 

A slightly different approach to order determination starts from 
the maximum likelihood method. For concreteness we discuss this 
in the context of the ARMA model (4.8.6) although the ideas apply 
more generally. If the disturbance sequence {ed is normal with 
mean 0 and unknown variance (Jz then the likelihood function is 

Z 1 (1 ~ Z8) LN(I, n, e, (J ) = (2 Zt/z exp - -2 2 L ek () . 
1W (J k=l 

As indicated, it depends on the orders n, I of A(z - 1) and C(Z - 1), on 
the parameters 8T = (a 1 , .•• , an, C 1, ... , C,), on the noise variance (Jz 

and on the number N of data points. As before we denote 

N 

SN(8) = L ef(8). 
k=l 

Parameter estimates are obtained by maximizing LN over the range 
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of allowable parameter values. We cannot, however, regard 1 and n 
as parameters and estimate them in this way: clearly mineSN(8) 
decreases as nand 1 increase (since the minimum is being taken over 
a larger set) and thus the 'maximum likelihood' estimates of n, 1 
will be whatever largest value we regard as allowable. Several authors, 
including Akaike (1977), Rissanen (1978) and Schwarz (1978) have 
examined this situation and concluded, independently and by widely 
differing arguments, that the appropriate quantity to be maximized 
IS 

As in the case of the AIC criterion, the BIC criterion introduces a 
linear penalty for increasing the number of parameters. The weighting 
of this penalty is however dependent on the number N of data points. 
Let us denote by (fN and a~ the maximum likelihood estimates 
of 8 and (J2 (for fixed n, I, N). Then it is easily checked that 

a~ = ~ SN((fN) 

and that 

Thus maximizing BIeN is equivalent to minimizing 

A 10gN 
10g(J~ + (l + n)~. (4.8.8) 

The exact arguments advanced in favour of this procedure need not 
detain us here, particularly since these arguments do not directly 
imply any optimality properties of the estimates f, fi produced. 
Instead we introduce a family of criteria 

where c(N) is an increasing function of N (thus (4.8.8) is the special 
case with c(N) = log N). We estimate I, n, 8, (J2 by minimizing He, 
where n,l are limited by n::;; ii(N), 1::;; ~N). Here ii, r are a priori 
upper bounds, possibly depending on N. We now ask how the 
function c(N) should be chosen to obtain various desirable properties 
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for the corresponding estimates. Properties which might be required 
are: (a) high probability of selecting the correct model order for finite 
data sets, or (b) consistency, i.e. asymptotically correct choice of 
I, n, e, (J2 as N ~ 00. No theory is available for (a), but Hannan (1980) 
shows that consistency holds for certain choices of c(N) including 
the choice c(N) = log N corresponding to the BIC criterion. 

Let us now return to the three-stage least squares parameter esti­
mation algorithm. Since this is intended as an approximation to the 
maximum likelihood method, it is natural to suppose that it might 
be combined with the order determination methods outlined above 
to yield consistent estimates of model order and parameters. Such 
a result has been demonstrated by Hannan and Rissanen (1982), for 
ARMA models (see also Hannan and Kavalieris (1983)). The 
three-stage least squares algorithm is as stated before (with Uk == 0), 
except that step (c) is replaced by (c'). 

(c') For each (n, I) calculate 

1 N 
0';,/ = inf- I (A(Z-l)Yk - C(Z-1)€k)2 

8 N k=l 

where ()T=(a1, ... ,amc1, ... ,c,). Choose fl,f in the range 
o ~ n ~ ii(N), 0 ~ I ~ l(N) to minimize 

-2 c(N) 
log (In,/ + (l + n)N' 

Denote by A 1 (z - 1), C 1 (z - 1) the least squares estimates of A(z - 1), 
C(z - 1) with orders fl,f respectively. 

Hannan and Rissanen (1982) show that consistent estimates of n, I, e 
are obtained under the same conditions as before if we take 

ii(N) = l(N) = (log N)P. (4.8.9) 

Here b, f3 are arbitrary strictly positive constants. This is a satisfying 
result because it means that the entire identification procedure, 
including model order determination, can be carried out by a simple 
combination of least squares estimators. Many computer packages 
incorporating least squares estimation are available. Undoubtedly 
the results stated above apply to ARMAX models if the input is 
persistently exciting. 

Computational experience of this method is reported by Hannan 
and Rissanen (1982) and by Kountzeris (1984) using simulated data. 
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The method works well except when Ao{z -1) and Co{z - 1) almost 
contain common factors (in which case any identification method 
would have difficulty in deciding whether a cancellation had taken 
place or not). The order p of the AR used in step (a) seems not to 
be critical. Kountzeris (1984) reports that for data sets of length N 
between 500 and 1500 a value of b between 1.5 and 2.5 maximizes 
the frequency of correct order selection (upwards of 80% in straight­
forward cases). In applications, the upper bounds ii, T would 
normally be set at an a priori fixed value rather than being calculated 
from some formula as they are in (4.8.9). 

Application of the above procedures to real data has so far not 
been investigated in any detail. Here we must drop the assumption 
that the data is generated by a 'true' ARMA model and regard the 
problem as that of selecting (n, I, 0) to give a 'best' model according 
to some criterion such as minimizing prediction error taking into 
account errors of model estimation. The same procedure may be 
used, but possibly some different function c(N) might be appropriate. 
Exactly how this function should be chosen in a 'prediction error' 
context remains a subject for future research. 

Notes 

System identification is a field with a multidisciplinary base which 
has been in a state of active development for twenty years. It is not 
surprising then that it has generated an extensive literature. For an 
overview of the field, and a source of references, we refer the reader 
to the book by Goodwin and Payne (1977), the survey by Astrom 
and Eykhoff (1971) and tutorial papers in a special issue of 
Automatica (1981). A comprehensive account, including treatment 
of non-stationary models and many practical details of data analysis, 
is given by Box and Jenkins (1976). Further material on important 
topics in systems identification not entered into in this book can 
be found in Goodwin and Payne (1977) (experiment design, proce­
dures for estimating time-varying parameters and other topics), in 
Soderstrom and Stoica (1980) (the instrumental variables technique) 
and Gustavson et al. (1977), Clark (1976) and Hannan et al. (1980) 
(unique parametrization and model class selection). 
Section 4.1 Detailed coverage of point estimation theory is provided 
in a number of books on statistics (Kendall and Stuart, 1979, for 
example). 
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Section 4.3 For refinements and extensions of the theory of least 
squares and of maximum likelihood parameter estimation see 
(Kendall and Stuart (1979) and Rao (1965). Note that the normal 
equations of least squares theory are often ill-conditioned. Robust 
procedures for their solution are described in Golub (1965). Our 
approach in this section to estimation of model order is a classical 
one (Lehman, 1959). 
Sections 4.2 and 4.4 The idea of formulating stochastic models as 
predictor models and of interpreting least squares and maximum 
likelihood procedures for dynamical systems as prediction error 
methods, which provides the framework for these sections, has been 
emphasized by Ljung (1978), and Caines (1976), though it is implicit 
in earlier literature. Proof of results on the asymptotic distributions 
of parameter estimates described in Section 4.4.4 are to be found in 
Ljung and Caines (1979). 
Section 4.5 The modified Newton-Raphson algorithm was proposed 
by Astrom and Bohlin (1965). The generalized least squares algorithm 
(in a slightly different form) was devised by Clarke (1967). 
Section 4.6 It is known that direct implementation of the recursive 
least squares algorithm can give rise to numerical instability. For 
modifications of the algorithm which are robust see Hanson and 
Lawson (1969). The recursive generalized least squares algorithm is 
due to Hastings-James and Sage (1969). The extended matrix method, 
first described in Panushka (1968), was proposed independently by 
a number of authors and a variety of names have been given to it, 
including Panushka's method and the approximate maximum likeli­
hood method. There is evidence that the method can give estimates 
which are not consistent (Ljung et at., 1975). For a full treatment of 
recursive identification algorithms and their implementation we refer 
to the recent book of Ljung and Soderstrom (1983). 
Section 4.8 A procedure involving the first two stages of the three­
stage least squares algorithm was introduced by Durbin (1960); the 
algorithm as given is due to Mayne and Firoozan (1982). 

The development of order determination methods is outlined with 
references in the main body of this section. The asymptotic distri­
bution of order estimates given by the AIC criterion has been 
calculated by Shibata (1976). 

The algorithms we have given are for off-line identification. 
Recursive counterparts of these algorithms, suitable for on-line use, 
are given by Mayne, Astrom and Clark (1984) and by Hannan and 
Rissanen (1982). 
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CHAPTER 5 

Asymptotic analysis of prediction 
error identification methods 

Chapter 4 provided for the most part merely a description of 
identification methods for dynamical systems. It is true that if we limit 
attention to simple moving-average models with uncorrelated dis­
turbances and if we assume that the system is describable within the 
model set, then the models can be reformulated as static models to 
which the analysis of Section 4.3 is applicable and we can deduce 
certain properties of the estimates. However, the question remains 
open of how good are the estimates when more complicated models 
are considered, or when the model set does not contain a description 
of the system. The analysis which follows is centred on this question. 

Ideally, we want precise information about the quality of an 
estimate which results from applying an identification method to data 
up to termination time N. Except in very restrictive circumstances, 
analysis of estimates based on a data record of finite length is quite 
intractable. However, it is not so difficult to investigate asymptotic 
properties of the estimates in the limit as N -+ 00; this is our more 
modest objective. The results of the analysis suggest what estimates 
would be obtained from an application of an off-line identification 
algorithm, or from application of an on-line algorithm which 
approximates the off-line one, as N -+ 00. Of course, a major 
shortcoming of our theory is that, by the nature of asymptotic 
analysis, it does not tell us how large N must be for the theory to give a 
reasonable picture of the parameter estimates based on a data record 
of length N. 

The chapter is organized with the interests partly in mind of readers 
who wish to understand the results without following all details of the 
proofs. A central role is played in the analysis by a general 
convergence theorem, Theorem 5.2.1. While the significance of 
Theorem 5.2.1 is easily grasped, its proof is rather intricate. In the 
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body of the chapter we explore the implications of Theorem 5.2.1. A 
proof of the theorem is provided in Appendix A. 

5.1 Preliminary concepts and definitions 

A number of definitions associated with a general formulation of 
prediction error identification methods will now be given. These 
definitions will be convenient when we come to state the hypotheses 
under which the analysis applies. 

There are basically three ingredients in the description of a 
prediction error identification method: the system which generates 
the data, the model set, and finally the identification criterion which 
governs selection of the model. It is helpful at the outset to consider 
these individually. 

5.1.1 The system 

The system is the source of two stochastic processes, the r-vector 
output process {Yk} and the m-vector input process {ud. Realization 
of these processes (up to time N in the case of {Yk} and up to time 
N - 1 in the case of {ud ) constitute the data at time N. 

Our aim is selection of a model whose response is a good 
approximation to that of the system, as a result of analysis of the data. 
What kind of assumptions need to be made about the system for this 
to be possible? We think of the system as defined by a family of 
recursive equations driven by a sequence of independent random 
variables, the disturbances. These equations, the system equations, 
incorporate feedback relationships which generate the input. They 
supply the input and the output at time k as a function of the 
disturbances which enter the system after an arbitrary, earlier time I, 
and of the state at time I, which summarizes the effect on the 
subsequent response of disturbances occuring at, or before, time l. 
Now we can expect that analysis of the data will supply a good model 
only when the state at time I, which is not observed, does not have a 
predominant effect on the response at times much later than k. 
Insensitivity of the subsequent response to the state at time 1 is a 
characteristic of stable systems. It is natural therefore in the analysis 
of identification methods to assume at the very least that the system is 
stable. 

A notion of stability, suitable in the context of identification, is 
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suggested by properties of linear models in which a 'stable' transfer 
function relates the disturbances {ek } and the outputs {Yk}: 

Yk = d(~(lrl T(z-l}ek , k~Z. 

Here the ek are uniformly bounded in fourth moment. T(o) is a matrix 
of polynomials in a and g(a) is a polynomial in a such that the zeros of 
a --+ g(a) lie outside the closed unit disc. If Yk,/> k = I, 1+ 1, ... , is the 
output when disturbances ej , j = 1,1- 1, ... ,are ignored (we take this 
to mean that they are set to zero) then we know from Proposition 
2.1.2 that there exist constants c > 0, AE(O, 1) such that 

EIIYk - Yk,1114 ~ d k - l, k ~ I. (5.1.1) 

If the ek are independent, then Yk,l is a function of el + 1, ... , ek but Yk,l is 
independent of ek , k ~ I. 

The inequality (5.1.1), augmented by an analogous inequality for 
the input, is taken as defining system stability. 

Definition 5.1.1 

The system which generates the data is said to be stable if there exist 
independent random variables {vd kEZ and constants CE(O, (0), AE(O, 1) 
with the following properties: Yk' Uk are functions of Vk' Vk- 1 ' ... for 
k = 0,1, ... and given integers k, I, with k ~ I ~ 1, random variables 
Yk,l' Uk,l can be found which are functions of VI +1 'VI + 2 ' ... ' Vk and are 
such that 

EllYk - Ydl 4 ~ d k- l 

Elluk - Uk,II1 4 ~ d k- l• 

(It is understood that Yk,k = 0, Uk,k = ° so that the inequalities imply, in 
particular, that EIIYkl1 4 ~ C, Ellukl14 ~ c). 

Generally speaking, the random variables {vk } are interpreted as 
disturbances entering the system. The random variables Yk.1 and Uk,l are 
in such circumstances usually chosen to be the output and input 
generated by the system equations when we set the disturbances to zero 
for time k ~ I. 

Since our definition of stability was motivated by properties oflinear 
models we would expect that, at the very least, systems describable by 
linear models of Chapter 2, which are stable in the customary sense, 
would also be stable in the sense of Definition 5.1. t. This is the case, as 
we now show. 
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Consider a linear dynamical system with feedback, in ARMAX form: 

A(Z-l)h = B(Z-1)Uk_1 + C(z-l)ek 

D(Z-l)uk=E(z-l)Yk+Wk' kEZ. 

or having the state-space description 

Xk+l = AXk + BUk + Kek, 

Yk=Hxk+ek, 

Uk = MXk + Wk> 

(5.1.2) 

(5.1.3) 

In (5.1.2), A(a), B(a), C(a), D(a), E(a) are polynomials with coefficients 
r x r, r x m, r x r, r x m, r x r matrices respectively. In (5.1.3), 
A, B, K, H, Mare n x n, n x m, n x r, r x n, m x n matrices respectively. 

In either case we assume that the disturbances, ek, wj,k,jEZ are 
independent and there exists a constant c such that 

all kEZ. (5.1.4) 

Proposition 5.1.2 

Suppose (5.1.4) is satisfied the system {h, Uk} is stable if either 

(a) {Yd, {Uk} are generated by ARMAX equations (5.1.2), det A(O) 1- 0, 
detD(O) 1-0 and the zeros of a~det[A(a)-aB(a)D-l(a)E(a)] 
and a ~ det D( a) lie outside the closed unit disc; or, 

(b) {Yk}' {ud are generated by state-space equations (5.1.3), and the 
eigenvalues of A + BM are contained in the open unit disc. 

We mention that the hypotheses in Proposition 5.1.2 assure stability 
of the closed-loop transfer functions through which the inputs and 
outputs are expressed in terms of the disturbances. In view ofthe theory 
of Section 2.1 then, we may take equations (5. 1.2), or (5.1.3) to define the 
outputs and inputs as fourth-order random variables, under the 
hypotheses. 

PROOF Let us take the independent random variables {vk } required 
for verification of stability to be 

Vk =(::), kEZ. 

Formal manipulation of the transfer functions associated with system 
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(5.1.2), or with system (5.1.3),gives the following expression for Yk and Uk 

in terms of the composite disturbance vectors Vk : 

In the case of ARMAX description, 

S( (J) = .4- l( (J) [(J B((J)D -l( (J): C((J)] 

and 

T((J) = D-1((J)[E((J)S(0') + (1:0)] 

in which 

.4((J) = (A((J) - (JB((J)D-1((J)E((J)). 

In the case of a state-space description, 

S((J) = [HW-1((J)B:HW-1((J)K + /] 
and 

in which 

W((J) = [0'/ - (A + BM)]. 

It is not difficult to deduce from the hypotheses that, in either case, 
S((J) and T((J) are expressible as 

S((J) = S((J)-lS((J) and T((J) = t((J)-lT((J) 

in which S((J), T((J) are matrices with entries polynomials in (J, and s(O'), 
t((J) are polynomials with the properties that the zeros of (J --+ s((J) and 
(J --+ t( (J) lie outside the closed unit disc. 

By the theory of Section 2.1, equations (5.1.2), or equations (5.1.3), 
define the outputs and the inputs as fourth-order random variables. 

For given I ~ 1 define Yk.l and Uk.l by 

Yk.l = S(z -1 )Vk.l and Uk•l = T(z - 1 )Vk,l 

in which 

Notice that Yk,l and Uk,l are functions of V, + l' V, + 2, ... , Vk 
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It follows from Proposition 2.1.2 that there exist constants 
AE(O, 1), c 1 > 0 such that 

:S:: CZ),k-l, k z I 
where C2 = C 1 c(1 - A) - 1. Here c is the constant of hypothesis (5.1.4). 

We deduce from these properties of the random variables hi' Uk•1 

that the system is stable. D 

5.1.2 The model set 

A family of models is supplied, members of which are specified by a 
vector parameter 0 which ranges over a subset D of IRq. The model 
corresponding to the parameter value 0 is written A(O). 

We shall assume that the models A( 0) can be formulated as predictor 
models of the type considered in Section 4.2: 

r(8 k-1 k-1) Yk = Jk ; Y , U + ek, k= 1,2, ... 

Here, as previously, l-l denotes {Yk-1'Yk-2,""Yo} and Uk- 1 de­
notes {Uk-1,Uk-2""'Uo}' {ek} is a sequence of independent zero­
mean random variables. For k=1,2, ... ,fk(·;·;): IRqxlRrkx 
IRmk -+ IRr is a deterministic function. 

Selection of a predictor model amounts to selection of the 
predictors, the ik(O;', '). We shall consider parameter estimation 
schemes which involve minimization of a function of the predictors 
evaluated at the data. It is natural to limit attention to models for which 
data in the distant past has littleefTect on the current prediction; this will 
mean that all data will make a significant contribution to choice of the 
model and not just the early data. The precise conditions we shall 
impose on the models are suggested by those which the linear models of 
Chapter 2 can be expected to satisfy. These conditions are embodied in 
the following definition. 

Definition 5.1.3 

The predictors associated with the family of models {A(O): OED} are 
uniformly stable if D is compact, and there exist constants c > 0, 
AE(0,1) and an open neighbourhood £i) of D with the following 
properties: 
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(a) () -+ J,.((}; (l.k-1, 13k- I ) is continuously differentiable on ~ for arbit­
rary vectors (l.k-\Pk-l and fQf k= 1121111 

(b) Ilfk(O; 0"-1, Ok-1) II ~ c for all ()E~, k = 1,2, ... (here Ot-l denotes 
zero vectors of appropriate dimensions) and 

(c) Forqk taken to be the function fk' and also the function (8/8()fk, we 
have 

k-l 
~c L ;.k-S[II(l.s-a.11 + IIPs-lfsll] 

s=o 

r b't t k-l ( » pk-l -k-l i1k-l lor ar 1 rary vec ors (I. = (l.k _ 1 , •.• , 01:0 , ,01: , P , 

k = 1,2, ... 

Built in to the definition of a uniformly stable family of predictors is 
the requirement that the parameter constraint set D be compact. The 
constraints on the parameter () which define D may be seen as 
safeguards introduced into the identification algorithm under con­
sideration which restrict the size of the estimates and steer them away 
from values for which the predictors are barely stable. These 
safeguards may be purely notional; we can expect that ifthe system is 
stable and ifthe system can be closely approximated by a model, then 
unconstrained minimization of the identification criteria will yield 
estimates which are confined to some set D with properties as 
described in Definition 5.1.3. 

Let us examine conditions under which model sets comprising 
stochastic dynamical models of Chapter 2 yield uniformly stable 
predictors. Consider predictors J,.(O;·,·) associated with a family of 
ARMAX models: 

Ao(Z-I)Yk = BO(Z-I)Uk_1 + Co(z-l)ek 

Yk = 0, Uk = 0, ek = 0, 
k~O 

k<O 

or associated with a family of state-space models: 

xk+ 1 = AOXk + Bouk + KOek, k ~ 0 

Yk = HOXk + ek, 

xo=O. 

k~O 

(5.15) 

(5.1.6) 

In either case, {ek} is a sequence of independent, zero-mean random 
variables, and 0 ranges over an open set §) which contains the 
compact set D of permitted parameter values. 
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In (5.1.5), Ao(o), Bo(O"), Co(o) are polynomials in 0" with matrix 
coefficients whose entries are continuously differentiable functions in 8 
on fJJ. We assume that 

Co(O) = Ao(O) = I. 

In (5.1.6), Ao,Bo,Ko,Ho are matrices whose entries are continuously 
differentiable functions in 8 on fJJ. 

The predictors associated with the models (5.1.5) are 

fk( 8; ak -1, 13k - 1) = Yk' k = 1, 2, ... 

where the Yk are obtained from the recursive equations 

Co(z - 1 )Yk = z[ Ciz - 1) - Ao(z - 1) ]ak _ 1 + Biz - 1 )f3k - 1 , 

k=0,1, ... 

Yk = 0, ak = 0, 13k = 0, k < 0. 

The predictors associated with the models (5.1.6) are 

fk(8;ak-1,f3k- 1) = HOXk, k= 1,2, ... 

in which the Xk are obtained from 

Xk+ 1 = AOXk + BOf3k + Ko(ak - Hoxd, 

xo=O. 

(These formulae were derived in Section 2.6.) 

Proposition 5.1.4 

k=0,1, ... 

The predictors associated with the family of models {A(8):8ED} are 
uniformly stable if either: 

(a) The models are the ARMAX models (5.1.5) and, for each 8ED, the 
zeros of O"--+detCo(O") lie outside the closed unit disc; or, 

(b) The models are the state-space models(5.1.6) and,foreach 8ED, the 
eigenvalues of Ao - KoHo lie in the open unit disc. 

PROOF (a) Here we consider ARMAX models (5.1.5). By 
hypothesis, the zeros of 0" --+ det Co( 0") lie outside the closed unit disc. 
for all 8ED. The coefficients of the polynomial CiO") are continuous in 
8 on the open set fJJ which contains D, and the determinant function is 
continuous. We can deduce therefore from the compactness of D that 
there exist a bounded open set f0 which satisfies 

Dc: f0 c: fJJ, 
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and e > ° such that the zeros of (J ~ det Co((J) lie in the set {(JEte: I(JI > 
1 + e} for all eEgfi. We make this choice of gfi. 

The first two conditions in Definition 5.1.3 are obviously satisfied, 
and we attend only to the third. 

Let ak- 1 (=(ak_l, ... ,ao)),pk-l and ak-t,fJ"-l be two pairs of 
vectors at which fk(e;·,·) is evaluated, and let ej be an arbitrary 
component of the parameter e. 

It is easy to show that A fk defined by 

ffk( e; ak - 1, pk - 1) - fie; ak - 1, fJ" - 1 ) J 
AJ;.= a a ' 

_ f' (e. k - 1 Uk - 1) __ f' (e' -k - 1 7.1k - 1) ae. J k , a , f' ae. J k , a , f' 
J J 

is generated by the recursive equations 

Co(z-l)Afi = Ao(z-1)(ai_1 - ai- 1) + BO(Z-l)(Pi_l - Pi-l) 

i = 0, 1, ... 

in which 

and 

Afi = O,ai = ai = O,Pi = Pi = 0, 

Bo((J) = [ aBo((J) ] 
-::;--e B o( (J ) 
o j 

i<O (5.1.7) 

By (5.1.7) and in view of the special structure of Co, Afk can be 
expressed in terms of the composite vectors Yi: 

Yi = col(a i - ai' Pi - Pi), i = O, ... ,k - 1 

Yi =0, i <0 

as 
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Here 

go(a) = (det Co(a))2 

and G o( a) is a polynomial in (J whose coefficients depend continuously 
on 8. 

By construction, the zeros of (J~go((J) are contained in {(JEC: 
I(JI> I + c} for all 8E2&. Since 2& is bounded, the coefficients of Go 
remain in bounded sets as 8 ranges in 2&. We now apply Proposition 
2.1.2 when we identify {ed with the deterministic sequence { ... 0, 0, 
Yo, Y 1, ... } and set d = 1. We conclude that there exist constants c > 0 
and AE(O,l), which do not depend on 8E2& or k, such that 

k-l 

II Afk II ~c L Ak-illy;!I. (5.1.8) 
i=O 

We can assume that, in these inequalities, the norms are so chosen 
that II Yi II = II rti II + II Pi II· Bearing in mind the definition of Afk and Yi, 
we deduce from (5.1.8) that the third condition of Definition 5.1.3 is 
satisfied for our chosen A and some c > O. 

(b) The case of state-space models can be treated in exactly the 
same way, following reformulation of the state-space equations as 
ARMAX equations. This is possible since the hypotheses on the state­
space models imply that the associated ARMAX models satisfy the 
conditions of part (a). D 

5.1.3 The identification criterion 

Prediction error formulation of an identification method requires 
specification of a sequence of functions ikL .), k = 1,2, ... , from the 
space IRq x IR' to the space of d x d matrices, and a real-valued function 
h(') with domain the space of d x d matrices. 

Let yN, UN - 1 be data at time N. Let ck(8), k = 1,2, ... be the 
prediction errors associated with model .,tt(8): 

k = 1,2, ... 

We seek a parameter value which minimizes the identification 
criterion 

in which 



5.2 ASYMPTOTIC PROPERTIES 

and 

225 

It is convenient to collect together under the following definition 
those properties shared by the commonly used identification criteria. 

Definition 5.1.5 

The identification criterion is said to be quadratically bounded if h(') 
is a continuous function and there exist an open neighbourhood 
!!} of the parameter constraint set D and a constant c > 0 with the 
properties: 

(a) The functions lk(·'·)' k = 1,2, ... are continuously differentiable 
on !!} x IRr 

(b) Illk(O, 0) II ~ c, for all OE!!}, k = 1,2, 00. 

(c) 11:c:1k(O,C:) II ~cllc:ll, for all OE!!}, C:ElRr, k= 1,2'00' 

and; 

(d) II:OliO,c:)11 ~cllc:112, for all OE!!}, C:ElRr, k= 1,2'00' 

Examples of quadratically bounded identification criteria are the 
least squares criterion 

VN(O,yN,uN-l)=~ f c:nO)Wkc:k(O) 
N k=l 

in which the weighting matrices Jv" are uniformly bounded; and the 
criterion 

which, we recall, arises in connection with maximum likelihood 
identification methods when the disturbances are assumed to be 
gaussian (see Section 4.4). 

5.2 Asymptotic properties of the parameter estimates 

Let ON minimize the identification criterion 

o~ VN(O;yN,uN- 1 ) 
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associated with data yN, UN- 1 at time N. (IN then is a parameter 
estimate obtained under ideal circumstances when exact criterion 
minimization is possible. 

We consider the problem of characterizing the set into which the 
estimate (IN converges as the length N of the data record tends to 
infinity. 

In the event that the limit 

lim EVN((J;yN,uN- 1) (5.2.1) 
N-->oo 

exists for all (JED, we might expect that, as N -+ 00, (IN converges 
into the set 

{(J: lim EVN((J; yN, UN -1) = min lim EVN(I/I; yN, UN - 1)} (5.2.2) 
N--> 00 "'ED N--> 00 

almost surely. This would mean that the identification method 
supplies a parameter value which minimizes the expected value of 
the identification criterion in the limit as N -+ 00. 

The description we now give of the asymptotic properties of (IN 
involves a limiting set which has the general features of the set (5.2.2), 
but differs from it in two respects. Firstly, EVN((J;yN,uN- 1), which 
can be written Eh(QN(8;yN,uN- 1)), is replaced by h(EQN(8;yN, 
UN - 1)). This means that, in the absence of further assumptions, we 
sacrifice the interpretation of the limiting set as a set of parameter 
values which minimize, in the limit, the expected value of the original 
identification criterion. Secondly, we make allowance for possible 
non-existence of the limit 

lim h(EQN((J;yN,uN- 1)) 
N-+ 00 

by introduction of the 'lim inf' operation. 

Theorem 5.2.1 

Suppose that the system which generates the data is stable, the 
predictors associated with the model set are uniformly stable, and 
the identification criterion is quadratically bounded. Then 

a.s., as N -+ 00, 

where 

D[ = {(J: max lim inf[h(EQN(O)) - h(EQN(I/I))] = O}. (5.2.3) 
"'ED N-+oo 
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Convergence is understood in the sense that, almost surely, for 
every e> 0 there exists N such that, for all N > N, the set 
{O: 10 - ONI ~ e} nD[ is non-empty. 

PROOF See Appendix A. D 

We refer to Definitions 5.1.1, 5.1.3 and 5.1.5 for explanation of 
the terms 'stable' system, 'uniformly stable' predictors and 'quad­
ratically bounded' criterion. 

The theorem is important because of the ease with which it can 
be applied to give more explicit information about the limit set in 
special situations of interest. A number of such applications will 
shortly be given. 

To illustrate the connection between the set D[ and the set (5.2.2), 
let us suppose that the function h(') is linear and that the limit (5.2.1) 
exists, for any OED. Under these assumptions the expectation 
operator and the action of h commute and we have, for given OED, 

max lim inf [h(EQN(O; yN, UN- l )) - h(EQN(t/!; yN, UN- l ))] 
"'ED N--+oo 

= lim EVN(O;yN,uN- l )-min lim EVN(t/!;yN,uN- l ). 
N--+oo "'ED N--+oo 

It is clear from this equation that the two sets D[ and (5.2.2) coincide. 

5.3 Consistency 

An indication that an identification scheme will perform satisfactorily 
is provided by the property that, if the data is assumed to be generated 
by a system which, asymptotically, is indistinguishable from a model 
in the model set considered, then the parameter estimate ON will 
converge into the set of parameter values associated with such 
models. This is the property of consistency. 

We shall interpret the notion that the data is generated by a system 
asymptotically indistinguishable from one of the models as meaning 
that the set DT , defined by 

DT = {OED: lim ~ f EllYk - Yk(O) 112 = o}, (5.3.1) 
N--+ooN k=l 

is non-empty. Here Yk is the conditional expectation of Yk given 
Yk-l'Yk-2"" and Uk- l 'Uk- 2'···, and Yk(O) is the (one-step-ahead) 
predictor associated with model .,I{(O), evaluated at the data. 
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According to this interpretation, we assess a model by the quality 
of its predictors and view Pk as the best predictor of Yk given 
knowledge of the true system. The model A(O) and the system are 
taken to be asymptotically indistinguishable if the mean square 
difference between the predictors supplied by A(O) and those 
available if the system were known is zero in the limit as the number 
of data points tends to infinity. 

For the sake of simplicity we now limit attention to identification 
criteria which arise in least squares estimation, 

and in maximum likelihood estimation based on assumptions of 
gaussian disturbances, namely, 

(see Section 4.4). 
When such criteria are adopted, and when the system is asymptoti­

cally indistinguishable from a member of the model set, a more 
refined description of the limiting set can be given than that in 
Theorem 5.2.1. 

Proposition 5.3.1 

Suppose that the data is generated by a stable system and the 
predictors associated with the model set are uniformly stable. 
Suppose also that DT (given by (5.3.1)) is non-empty, that 

lk(O,e)=eeT, for k= 1,2, ... ,OeIRQ, eelRP, 

and either 
h(' ) = trace( .) (5.3.2a) 

or 
h(-) = det(·), (5.3.2b) 

and there exists b > 0 such that 

fork=1,2, ... (5.3.3) 

Then 
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Proof of the proposition requires the following estimate on the 
determinant of the sum of two symmetric matrices. 

Lemma 5.3.2 

Let A, B be symmetric n x n matrices. Suppose that A is positive 
definite and that B is non-negative definite. Then 

det(A) 
det(A + B) ~ det(A) + A () trace {B}. 

n max A 

Here AmaAA) denotes the maximum eigenvalue of A. 

PROOF Let A 1/2 be a positive definite square root of A (see 
Appendix D.l). By the properties of the determinant function 

det(A + B) = det(A 1/2(1 + A -1/2 BA -1/2)A 1/2) 

= det(A 1/2)det(J + A - 1/2 BA -1/2)det(A 1/2) 

= det(A)det(1 + A -1/2 BA -1/2) 
n 

= det(A) TI (1 + dJ 
i= 1 

Here the di are the eigenvalues of A -1/2 BA -1/2. 

(5.3.4) 

Since the trace of B is equal to the sum of the eigenvalues of B, 

Amax(B) ~ trace {B}/n. (5.3.5) 

Let y be an eigenvector of B corresponding to Amax(B) and choose x 
such that y = A -1/2X. Then, since for a symmetric matrix S 

zTSz 
Amax(S) = ~a; W 

and the maximum is achieved at any eigenvector corrresponding to 
Amax(S), we have 

zTA -1/2BA -1/2z 
1 (A -1/2BA -1/2) -
"max - ~:; IIzl12 

xTA -1/2BA -1/2X 
~-------=---­

IIxll2 
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But the eigenvalues di, i = 1, ... , n, are non-negative; it follows that 

n (1 + d;) ~ 1 + Am.x(B). 
i Am.x(A) 

We deduce now from this inequality, (5.3.4) and (5.3.5) that 

det(A) 
det(A + B) ~ det(A) + A trace { B}. 0 

n m.x(A) 

PROOF OF PROPOSITION 5.3.1 The identification criterion is (in 
either case (5.3.2a) or (5.3.2b)) quadratically bounded, the system is 
stable and the predictors are uniformly stable. It follows from 
Theorem 5.2.1 then that ON converges, a.s., into the set D] (see (5.2.3)). 
Take OED/. We shall show that 

liminf{~ f IIYk - }\(O)11 2 } = 0 (5.3.6) 
N-+CIJ N k =1 

and thereby prove the proposition. 
We define Vb k = 1,2, ... by 

vk = Yk - Yk· 

Then, for k = 1, 2, ... , and Ij!ED 

Eck(lj!)eJ(lj!) = E[Yk - Yk(lj!)] [Yk - Yilj!)]T 

= E[Yk - y(lj!) + vk] [Yk - Yk(lj!) + Vk]T 

by definition or Vk 

= E[Yk - Yk(Ij!)][Yk - Yk(Ij!)]T + Evkvr (5.3.7) 

since Vk has zero mean and is uncorrelated with l-I, Uk - 1. 

Suppose first that (5.3.2a) is true. Take t/J to be any point in D. Then 
since OED/> 

o ~ lim inr{trace (E ~ f ek(O)ek(O)) 
N-+CIJ N k =1 

- trace ( E ~ kt1 ek(lj!)eJ(t/J)) } 

= lim inr{ trace (N1 f E[Pk - Yk(O)] [Pk - Yk(O)]T) 
N-+oo k= 1 

- trace(~ f E[Yk - Yk(Ij!)][Yk - Yk(t/J)]T)} 
N k=l 
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by (5.3.7) 

=liminf{~ f EIIYk-Yk(8)11 2 _ N
1 f EIIYk-Yk(t/!)11 2 }. 

N-+oo Nk=l k=l 

(5.3.8) 

Since DT is non-empty, by assumption, we may choose !/I EDT· Then 

exists and is zero. It follows from (5.3.8) that 

O~liminf{~ f EIIYk- Yk(8)11 2 }. 
N-+rIJ N k=l 

We have shown (5.3.6), as required. 
Now suppose that (5.3.2b) is true. Again take tjJ an arbitrary vector 

in D. In this case we deducefrom the hypothesis 8ED/l and (5.3.7), that 

o ~ li~~f {det E ~ ktl ek(8)en8) - det E ~ Jl ek(tjJ)entjJ)} 

= lim inf{det (SN(8) + PN) - det (SN(t/!) + PN)} 
N-+oo 

where 

and 

This inequality can be written 

liminf {det(SN(8) + PN) - detPN - .'IN(t/!)}:S; 0 (5.3.9) 
N-+oo 

in which .'IN(tjJ)=det(SN(t/!)+PN)-det(PN)· 
We now choose tjJED T . It is easy to show that SN(tjJ)--+O as N --+ 00. 

Since {PN } is a bounded sequence (the Vk have uniformly bounded 
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second order moments, remember) and the function det(·) is con­
tinuous, we have that the functions L --+ det(L + P N) are continuous at 
zero, uniformly in N. It follows that 

lim AN(t/I) 
N .... Cf) 

exists and is zero. Equation (5.3.9) therefore implies 

lim inf {det (SN(8) + PN) - det PN} sO. 
N .... Cf) 

(5.3.10) 

However, in view of hypothesis (5.3.3) and the uniform bounded­
ness of the second moments of the Vb there exist a, fi > 0 such that 
det(Pd<a and Amax(Pk»fi, k= 1,2, ... We deduce from Lemma 
5.3.2 that there exists also some c > 0 such that 

det { S N( 8) + P N} - det P N :2 c trace {S N( 8) } 

= c[ ~Jl IIYk - }\(8) 112 ] for N = 1,2, ... 

From this inequality and (5.3.10) it follows that 

lim inf{~ f. IIY - }\(8) 112} s o. 
N .... co Nk~l 

We have shown that (5.3.6) is true. o 
Consistency properties of identification schemes which involve a 

variety of model sets can be deduced from Proposition 5.3.1, when the 
system is describable by a model in the model set. We find, typically, 
that a scheme is consistent provided the closed-loop system which 
generates the data is stable, the models supply uniformly stable 
predictors and that an additive term in the input is 'persistently 
exciting'. 

A persistently exciting input {wk , k E £'} is one which, loosely 
speaking, is sufficiently varied that the resulting data provides as 
much information about the input/output characteristics of stable 
linear systems on which it acts as consideration of all possible inputs. 
The precise form that our definition of a persistently exciting input 
takes is suggested by consideration of least squares identification of 
the parameters a l , ... , aM in the system described by the equations 

k=I,2, ... , (5.3.11) 

from observations of {Yk} and knowledge of the inputs, here written 
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{ wd. {ed is a sequence of zero-mean, uncorrelated, random variables 
with common variance (T2((T2 > 0). The least squares estimate G(N+ 1) of 
the unknown parameters a with components a1, ... , aM' based on 
N + 1 data points, is unbiased and has covariance 

where 

(5.3.12) 

(These properties are deduced from the results of Section 4.3.) 
A sufficient condition that the estimates G(N) converge to the true 

parameter values in mean square, and therefore that the input/ 
output characteristics of the system are fully determined in the limit as 
N -t 00, is that there exists (j > 0 such that 

1 N - L wk(M)wI (M) 2 M 
N i=l 

(5.3.13) 

(in the sense of the usual ordering of symmetric matrices), for all N 
sufficiently large. For then, given arbitrary ~EIRM, the variance ~TLN~ 
of the estimate ~T G(N) of ~T a is bounded by (T211 ~ 112/ b N, and this last 
number tends to zero as N -t 00. 

Existence of a number b > 0 such that (5.3.13) holds is a suitable 
defining property for a persistently exciting input relevant to simple 
models with the description (5.3.11); for more complex systems it is 
often necessary to modify the definition and require that (5.3.13) holds 
for arbitrary M. 

Definition 5.3.3 

Let wk, kEZ, be a sequence of vector random variables with uniformly 
bounded second moments. For any integer M 2 1, we define wk(M) by 
(5.3.12). The sequence {wk} is said to be a persistently exciting sequence 
of order M if there exist b > 0 and No> 0 such that 

1 N - L EWk(M)w[(M) 2 M, 
N k=l 

for N2No. (5.3.14) 

It is said to be persistently exciting of infinite order if there exists b > 0 
with the following property: corresponding to any integer M 2 1, 
an integer No can be chosen such that (5.3.14) is satisfied. 
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Notice that we have defined sequences of random variables which 
are persistently exciting; this is with a view to considering inputs 
which involve, possibly, a random component. Of course the 
definition subsumes that of persistently exciting deterministic 
sequences. 

We see that any sequences {Wk} ofzero-mean, independent vector 
random variables with uniformly bounded second-order moments is 
a persistently exciting (stochastic) sequence of infinite order, provided 
there exists b > 0 such that EWkWr 2: M, for all k sufficiently large. Ifwe 
assume in addition that the sequence {Wk} has uniformly bounded 
fourth-order moments, then realizations of {Wk} define persistently 
exciting deterministic sequences of infinite order, almost surely (this 
last assertion can be deduced from Theorem 1.1.15 and the fact that a 
countable intersection of probability-one events is a probability-one 
event). Recursive procedures which generate persistently exciting 
deterministic sequences are also available. 

The following lemma provides a direct connection between the 
notion of a persistently exciting input as we have defined it and 
the property that the input uniquely determines the input/output 
characteristics of stable systems on which it acts. 

Lemma 5.3.4 

Let L(a) be an r x m matrix of rational functions in a. It is assumed the 
zeros of the denominator of each entry of L(a) lie outside the closed 
unit disc. Let {Wk}kEl be a sequence of m-vector random variables 
which have uniformly bounded second-order moments, and suppose 
that 

1 N 
liminf- L Ell L(Z-l)Wk 112 = o. 
N-oo Nk=l 

(5.3.15) 

Then L(a) is identically zero if either of the following conditions is 
satisfied: 

(a) L(a) can be expressed as a polynomial in a: 

L(a) = Lo + Ll a + ... + LMaM 

of degree M and {wk } is a persistently exciting sequence of 
order M. 

(b) {wd is a persistently exciting sequence of infinite order. 
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PROOF (a) Suppose that L(a) = Lo + L1a + ... + LMaM and {wd is 
persistently exciting of order M. In this case 

L(Z-l )Wk = L(M)Wk(M) 

in which L(M) = [Lo:L1 : ... :LM]and wk(M) = col [wk, Wk - 1' .. ·' Wk- M]. 
For k= 1,2, ... , 

r 

= L IT wk(M)wk(M)li· 
i= 1 

In this last expression, Ii denotes the ith column of LT(M). It follows 
that 

By the persistent excitation hypothesis, however, there exist b > 0 and 
No such that 

1 N 
- L Ewk(M)wnM) ~ M, for N ~ No· 
N k=l 

For N ~ No, then, 

1 N r M 

N k~l EIIL(z-1)wk I1 2 ~ b J11Tli = bJo IILdI 2 . ( 5.3.16) 

Here, IILil1 denotes the trace norm (trace[LiLTJ)1/2. By (5.3.15) and 
(5.3.16) 

which implies that L(a) = Lo + L1a + ... + LMaM = O. 
(b) Now suppose that {wk } is a persistently exciting sequence of 

infinite order. Let {Li} be the coefficients in the formal expansion of 
L(a) about a = 0: 

00 

L(a) = L Liai. 
i=O 

Bearing in mind that the Wk have uniformly bounded second-order 
moments, we can deduce from Proposition 2.1.2 that there exist 
constants c > 0 and AE(O, 1), such that for arbitrary k, J, K, 

(5.3.17) 
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Given an integer M > 0, L(z - 1 )Wk can be written as the sum of two 
terms 

M 00 

L(Z-l)Wk = L Liwk-i + L Liwk-i· i=O i=M+l 
Writing L~oLiWk-i simply as L, we have 

EIIL(z-1)wk I1 2 = E IIJo r + 2E[ (JJ T C=t+J ] + Elli=t+l r 
~Elli~r -2( Ellitoryl2( Elli=t+lrY I2 

by Schwarz's inequality 

~EIIJo LiWk-ir _2d(M+l)12. 

by (S.3.17). It follows that, for N = 1,2, ... , 

~ f EIIL(z-1)WkI1 2 ~~ fEll f Liwk_il12 _2d(M+l)'2. (S.3.18) Nk=l Nk=l i=O 

{Wd is a persistently exciting sequence of infinite order and so is 
certainly of order M; in consequence there exist b > 0 (b does not 
depend on M) and No> 0 such that (S.3.14) is true. We deduce, using 
the arguments of part (a), that 

~ kt E II ito Liwk-i r ~ b itoilLdl2 for N ~ No (S.3.19) 

It follows from (S.3.1S), (S.3.18) and (S.3.19) that 

Taking the limit M -+ 00 and remembering that b does not depend on 
M, we deduce that 

00 

L IILdl 2 =0. 
i=O 

It follows that L(O') = Ir;oLiO'i = o. o 
It is clear from this lemma that, if Ll (a) and L2(O') are stable transfer 
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functions, ifwk is a persistently exciting sequence of infinite order, and 
if L1(z-1)Wk and L2(z-1)Wk are sufficiently close in the sense that 

1 00 

liminf- L EjjL1(z-1)wk -L2(z-1)Wk jj2=O, 
N-+oo N i=O 

then Ll =L2. 
Finally we prove a representative theorem on consistency. Here 

ARMAX models are considered: 

AO<Z-l)Yk = BO<Z-l )Uk- 1 + Co(z-l)ek. 

Associated with each model are transfer functions Ao(·) - 1 Bo(·) and 
Ai 1 (. )Co<· ) which relate the outputs to the inputs and disturbances. 
The theorem asserts that the estimates provide, in the limit, the 
correct transfer functions. (We view two transfer functions as the same 
if their values coincide wherever they are both defined). This is clearly 
the best that can be achieved from a procedure which involves 
processing input/output data. 

Theorem 5.3.5 

Consider a system described by the ARMAX equations 

AO(Z-1)Yk=Bo(Z-1)Uk _ 1 +Co(z-l)ek' kEZ 

in which Ao(u), Bo(u), Co(u) are polynomials with matrix coefficients. 
The ek are independent, zero-mean random variables which have 
uniformly bounded fourth-order moments and are such that 

for kEZ 
for some 0/ > o. 

Suppose that the control Uk is generated by linear feedback acting 
on land Uk - 1 with an additive disturbance, Wk> independent of ej , 

jEZ: 
H(Z-l)Uk = F(Z-l)Yk + Wk (5.3.20) 

and that the Wk have uniformly bounded fourth-order moments. Here, 
H(u) and F(u) are polynomials with matrix coefficients. 

Let the predictors be calculated on the basis of models 
{vH(O):OED}: 

Ao(Z-l)Yk = BO(Z-1)Uk_1 + Co(z-l)ek, k = 0,1, ... 

h=~ ~=~ ~=~ k<O 
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in which A(a), B(a) and C(a) are polynomials with matrix coefficients 
continuously differentiable in () on some open set ~ containing D, a 
compact set. 

We assume the following. 

Conditions on the identification criterion: 

1 N 
VN((}) = - L Ilek((}) 112 

N k= 1 

or 

VN((}) = det~[ f ek((})el((})] 
N k=1 

in which ek((}) is the prediction error associated with vI/((}). 

Stability of the closed loop system: 

The zeros of a ~ det(Ao(a) - aBo(a)H-l(a)F(a)) and of a~det H(a) 
lie outside the closed unit disc. 

Uniform stability of the predictors: 

Ce(O) = I, Ae(O) = I and the zeros of a ~ det Cia) lie outside the closed 
unit disc for all (}ED. 

The true system can be represented within the model set: 

Ae;; 1(. )Be'O = Ao 1(. )BoO and Ae;; 1(. )Ce.O = Ao 1(. )CoO 

for some (}*ED. 

Persistent excitation: 

The disturbance Wk is a persistently exciting sequence of infinite order. 

Then 

ON~ {O:A; 1(. )Bk) = Ao 1(. )BoO 

and A;I(·)Ck)=Aol(·)CO(-)}' a.s. 

as N ~ 00. 
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PROOF We first check that asymptotic analysis of ON is covered by 
Proposition 5.3.1. In view of Propositions 5.1.2 and 5.1.4 the system 
which generates the data is stable, and the predictors are uniformly 
stable. The hypotheses on the identification criterion imposed in 
Proposition 5.3.1 are also true since ek = Yk - ~k and, by assumption, 
eker ~ (1.1, kEZ, for some (1. > O. 

Proposition 5.3.1 will be applicable then if we can show that 

lim ~ f EllYk - ~k(O*) 112 = 0 
N .... oo N k=l 

(5.3.21) 

for this will mean that the set DT defined by (5.3.1) is non-empty. 
Now ~k is given by 

Yk = (I - Co 1 AO)Yk + z - 1 Co 1 Bouk (5.3.22) 

(for simplicity we have written Ao in place of AO(Z-l), etc.). The 
predictors ~k(O) supplied by .It(O), OED, are 

Yk( 0) = (I - Ci 1 AO)(Yk - ~k) + z - 1 Ci 1 Bo( Uk - 11k) (5.3.23) 

and 

The presence of the terms ~k' 11k in this last equation is due to our 
choice of zero data values prior to time k = 0 for the purpose of 
calculating the predictors. 

By hypothesis, Air 1 Bo" = Ao 1 Bo, Air 1 CO" = Ao 1 Co. Since 
Co((1) is invertible for some (1 (Co(O) = I, remember), it follows that 
Cir 1 Ao" = Co 1 Ao. But then Cir 1 Bo" = Co 1 Bo since 

Cir 1 Bo" = Cir 1 Ao"Air 1 Bo" = Co 1 AoAo 1 Bo = Co 1 Bo. 

Subtracting equation (5.3.23) from equation (5.3.22) therefore gives 

~k - ~k(O*) = (I - Cir 1 AO")~k + z-lCir 1 Bo"11k' (5.3.24) 

Now the Yk are uniformly bounded in second moment since the 
closed-loop system is stable. Because the roots of (1-+ det H((1) lie 
outside the closed unit disc and the Wk are uniformly bounded in 
second moment, it follows from Proposition 2.1.2 that the Uk given by 
the feedback equation (5.3.20) are also bounded in second moment. 
Since the 11k and ~k are zero for k ~ 0, and since the zeros of 
(1-+det CO"((1) lie outside the closed unit disc, it follows from 
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Proposition 2.1.1 applied to equation (5.3.24) that 

EIIA- Yk(8*)112~O as k-+OCJ. (5.3.25) 

The property (5.3.21) is then true and we can apply Proposition 5.3.1. 
This gives 

where 

D[={8:liminf~ f EIIYk-Yi8)11 2=O}. 
N-+oo N k=l 

Take 8 an arbitrary point in D[. We shall complete the proof by 
showing that Ai 1 Bo = Ao 1 Bo and Ai 1 Co = Ao 1 Co. 

Substitution of the feedback control equation into the system 
equation gives 

Yk = Mek + MWk-l (5.3.26) 

where M=(Ao-z-lBoH-lFrlCo, M=(Ao-z-lBoH-lF)-l 
BoH- l and 

Uk = H-lFMek + H-l(I +z-lFM)wk. 

We also have from (5.3.22) and (5.3.23) that 

Yk - Yk(8) = KOYk - LOUk-l + dk 

where Ko = Ci lAo - Co lAo, Lo = Ci 1 Bo - Co 1 Bo 
and 

dk = (I - Ci l AO)~k + Ci l Borlk-l' 

The reasoning that led to (5.3.25) gives 

Elldkl12~O as k~OCJ. 

Now 

211KoYk - LOUk-l + dk l1 2 ~ II KOYk - LOUk_111 2 - 211dk l1 2 

(5.3.27) 

(5.3.28) 

(5.3.29) 

by properties of the Euclidean norm. It follows from (5.3.28) that 

2EIIYk - Yk(8) 112 ~ EllKOYk - LOUk _ l I1 2 - 2Elldk l1 2 
= EII(Ko - z-lLoH-lF)MekI12 

+ Ell [(Ko - Z-l LoH- 1 F)M - LoH-l] Wk_111 2 
- 2E II dk II 2 (5.3.30) 

(we have used equations (5.3.26) and (5.3.27) and also the fact that {ek} 
is a zero-mean sequence, independent of {Wk})' 
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Since OED]> 
lim inf EllYk - Yk(O) 112 = o. 

k-oo 

It follows from (5.3.29) and (5.3.30) that 

lim inf Ell (K9 - Z-l L9H- 1 F)Mek11 2 = 0 
k-oo 

and 
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(5.3.31) 

lim infEl1 [K9 - z- l L9H- 1 F)M - L9H- 1]wk_111 2 = o. (5.3.32) 
k-oo 

The ek are independent, zero-mean random variables such that 
cov {ek } > aI, kEZ, for some a> 0, and, in consequence, they 
define a persistently exciting sequence of infinite order. We deduce 
from (5.3.31) and Lemma 5.3.4 that 

(K9 - z- l L9H- 1 F)M = O. 

However, M(a) is invertible for some a (in fact M(O) = I). It follows 
that 

(5.3.33) 

But then, by (5.3.32) 

lim inf EIIL9H-1wk_1112 = o. 
k-oo 

Since {wd is a persistently exciting sequence of infinite order we can call 
upon Lemma 5.3.4 again, and deduce that L9H - 1 = O. However H(a)is 
invertible for some a, and we conclude that L9 = O. Equation (5.3.33) 
now gives K9 = O. Recalling the definition of L9 and K9, we see that 
Co 1 A9 = Co 1 Ao and Co 1 B9 = Co 1 Bo. But A9(a) and C9(a) are 
invertible for some a; it follows that 

Ai 1C9 = (Ci 1 A9)-1 = Ao 1CO 

and 
Ai 1 B9 = (A01COC01)B9 = Ao 1COCO 1 Bo = Ao 1 Bo. 0 

Analogous properties of identification schemes which involve 
models in state space form can be derived from Proposition 5.3.1 by 
reformulation of the state-space models as ARMAX models; the 
conditions on the matrices in the state-space models which must be 
imposed in order that the corresponding ARMAX models satisfy the 
hypotheses of Proposition 5.3.1 are essentially those appearing in 
Propositions 5.1.2 and 5.1.4. 
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5.4 Interpretation of identification in terms of 
system approximation 

The basis of consistency analysis is the hypothesis that the system is 
describable within the model set. Yet, strictly speaking, imposition of 
this hypothesis is seldom justified. In typical applications the system 
has a very complicated structure. One can expect of a model no more 
than that it reproduces, sufficiently accurately, certain significant 
features of the system. (This is not to dismiss consistency analysis: a 
method which cannot select a correct model when the model set 
contains the true system description is unlikely to be a good one, and 
consistency analysis therefore gives us grounds for ruling out certain 
methods, at the very least.) 

An important issue then is behaviour of identification methods 
when the model set does not include the system description. We might 
hope that, in these circumstances, the model selected is a best 
approximation, in some sense, to the system. This is the gist of the 
following proposition. It gives conditions under which, in the limit, 
the identification method supplies a model which best approximates 
the system, for the given input, in the sense that the mean square 
difference between predictors, Yk, based on knowledge of the true 
system and predictors, Yk(lJ), based on the models, is a minimum. 

Proposition 5.4.1 

Suppose that the system which generates the data is stable and that 
the models provide uniformly stable predictors. Suppose also that the 
identification criterion VN is the least squares criterion 

1 N 
VN(lJ) = N k~l enlJ)ek(lJ), N= 1,2, ... , 

and the limit 

(5.4.1) 

exists for every lJeD. Then 

lJN-+{lJ:W(lJ)=min W(t/I)} a.s. 
"'eD 

PROOF By Theorem 5.2.1, lJN converges, almost surely, into the set 

DI = {lJ:max (lim inf~ f (EenlJ)ek(lJ) - Eent/l)ek(t/I))) = a}. 
"'eD N-.oo N k= 1 
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But for any OED, 

where Vk = Yk - Yk and 

Ellel(O)ek(O) 112 = EllYk - MO) 112 + Ellvkl12, 
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since Vk has zero mean, and is uncorrelated with Yk - Yk(O). From this 
equation and from existence of the limit (5.4.1), for arbitrary OED, we 
deduce that the inclusion OED/ can be equivalently stated: 

J~~ ktlllYk - MO) 112 ~ J~~ Jl EllYk - yit/J) 11
2 , 

for all t/JED. ON behaves then as claimed. D 

The hypothesis that the limit (5.4.1) exists, for each OED, is a 
reasonable one when the system is time-invariant and driven by a 
disturbance which is a stationary process, and when the input takes 
the form oftime-varying linear feedback (defined through parameters 
which have limits as time tends to infinity) together with an additive 
disturbance which is stationary. 

We stress that the proposition states that the identification 
methods, under appropriate conditions, select a modelA( 0*) which is 
a best approximation to the system, in a certain natural sense, merely 
for the particular input considered. It does not claim that the model 
A(8*) is a good approximation for arbitrary inputs. Indeed, the 
modeIA(8*) and the system could be ill-matched for inputs differing 
from that of the identification experiment and in consequence A(O*) 
could be quite unsuitable for the application intended. This point is 
illustrated by the phenomenon of self-tuning (see Chapter 7), which 
we now discuss. 

The problem considered is that of identifying parameters to select a 
model, with a view to designing a feedback controller which, when 
applied to the system, results in as small an output variance as 
possible.t We suppose that the system is describable within the model 
set to ·the following extent: 

(a) The model set contains a model which correctly describes the 
deterministic part of the system; but; 

(b) The models are driven by disturbances which are not correlated, 
even though the disturbances driving the system are correlated. 

tMimimum variance control is studied in Sections 7.1 and 7.3. 
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Two approaches to tackling the problem suggest themselves. The 
first is to separate the tasks of identification and control implement­
ation. Here, a model vIt(O*) is selected on the basis of an identification 
experiment in which data is obtained by applying an input suitable for 
identification purposes, say a persistently exciting input, to the 
system. A controller is then chosen, which is a minimum-variance 
controller with respect to vIt(O*), and applied to the system. The 
second approach is to combine identification and control implement­
ation. Stated more precisely, the approach is to select, at time k, a 
model vIt(Ok) on the basis of data Y\ Uk-l, to calculate a minimum­
variance controller for vIt(Ok)' to implement this control to obtain 
yk+ 1 and Uk' and so on. 

In each of these two approaches two 'crimes' are committed. We 
implement a control which, in the first place, is designed for a model in 
which the disturbances are uncorrelated when in fact the disturbances 
in the system are correlated, and which, in the second place, is 
designed on the basis of biased estimates of the parameters in the 
deterministic part of the system. (The bias here results from a 
disregard of the disturbance correlation in the system; see 
Section 4.7.) 

It is not surprising then that the first approach, separate identific­
ation and control implementation, typically gives rise to biased 
estimates and to a control with poor properties. The second 
approach, integrated identification and control, also gives rise to 
biased estimates. What is, at first sight, remarkable is that the second 
approach can supply, in the limit as k -+ 00, a control which is optimal, 
in the sense that the corresponding output of the system has minimum 
variance. This behaviour, cancellation of errors from two different 
sources, is the self-tuning phenomenon. 

Some light is shed on the phenomenon by Proposition 5.4.1. 
Suppose that the parameter estimates Ok obtained from the second 
approach converge (we write the limit B). If the control is chosen 
according to a minimum variance strategy then, in the limit, Yk(B) is 
zero. Proposition 5.4.1 indicates that Ell Yk - Yk(B) 112 will be as small 
as possible. But 

Ell Yk - Yk(B) 112 = E IIYk 112 = E IIYk 112 - Ell vk 112. 

Here the Vk'S are the prediction errors based on knowledge ofthe true 
system and do not depend on the control. Consequently the model 
selected in the limit gives rise to a control strategy which minimizes 
EIIYkI1 2• 
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On the other hand, Proposition 5.4.1 has little bearing on the first 
approach, where the identification and control implementation 
phases are separated. Here, according to Proposition 5.4.1, the 
predictors associated with the model vH((}*) selected will be close to 
those associated with the true system for the input used in the 
identification experiment. However, if a control law is now selected to 
make the predictors for vH((}*) zero, and if the resulting input is 
different from that ofthe identification experiment, we can come to no 
conclusions about the variance of the output for this input. 

Notes 

The asymptotic analysis of this chapter is limited to investigation of 
subsets in parameter space into which estimates obtained from off­
line prediction error identification schemes converge in the limit as 
the number of data points tends to infinity. For purposes of 
estimating confidence intervals it is desirable also to have information 
about the asymptotic distributions of the estimates: a proof of 
asymptotic normality of the estimates, essentially the framework of 
this chapter, is given in Ljung and Caines (1979), as discussed in 
Section 4.4.4. Study of the asymptotic properties of estimates supplied 
by on-line identification algorithms, which we do not enter into in this 
book, is the subject of much recent research (see, e.g. Kushner and 
Clarke (1978), Ljung (1977) and Solo (1979)). 

The development of this chapter follows that in Ljung's important 
paper (1978). The consistency results of Section 5.3, which apply when 
the model set contains a true description of the system, have 
antecedents in a list of papers extending over many years on the 
consistency of the maximum likelihood method, in the contexts of 
independent samples, of time series analysis and of stochastic 
dynamical systems. Some references to this earlier literature are 
Caines (1976), Dunsmuir and Hannan (1976), Hannan (1973), Ljung 
(1976), Wald (1949), Walker (1964) and Whittle (1961). 
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CHAPTER 6 

Optimal control for state-space 
models 

This chapter concerns optimal control problems for the state-space 
models discussed in Chapters 2 and 3. The state and observation 
processes Xk and Yk are given respectively by the equations 

Xk + 1 = A(k)Xk + B(k)uk + C(k)Wk 

Yk = H(k)Xk + G(k)wk 

(6.0.1) 

(6.0.2) 

where Wk is a white-noise sequence. We now wish to choose the 
control sequence Uk so that the system behaves in some desirable way. 
We have to settle two questions at the outset, namely what sort of 
controls are to be allowed (or, are admissible) and what the control 
objective is. 

The simplest class of controls is that of open-loop controls which are 
just deterministic sequences uo, U1 , .•. , chosen a priori. In this case the 
observation equation (6.0.2) is irrelevant since the system dynamics 
are entirely determined by the state equation (6.0.1). As we shall see in 
Section 6.1, open-loop controls are in some sense adequate for non­
stochastic problems (Wk == 0). Generally, however, it is better to use 
some form of feedback control. Such a control selects a value of Uk on the 
basis of measurements or observations of the system. We have 
complete observations if the state vector Xk can be measured directly, 
and, since the future evolution of the system depends only on its 
current state and future controls and noise, the natural form of 
control is then state feedback: Uk = Uk(Xk). The functions ul), uz(-), . .. 
are sometimes described as a control policy since they constitute a 
decision rule: if the state at time k is x, then the control applied will be 
U = uk(x). Again, the observations Yk are irrelevant in this situation. In 
the case of noisy measurements or partial observations, however, Xk 
cannot be measured directly and only the sequence Yo, Yl'"'' Yk is 
available. Feedback control now means that Uk is determined on the 

247 
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basis of the available measurements: Uk = uk(Yo, Y 1, ... , Yk)' In this case, 
since Yk is not the state of the system, one generally does better by 
allowing dependence on all past observations, not just on the current 
observation Yk' Finally, we shall assume throughout that the control 
values are unconstrained. It would be perhaps more realistic to 
restrict the values of the controls by introducing constraints of the 
form Iukl s 1. While this causes no theoretical difficulties, it would 
make the calculation of explicit control policies substantially more 
difficult. 

We now turn to the control objective. In classical control system 
design the objectives are qualitative in nature: one specifies certain 
stability and transient response characteristics, and any design which 
meets the specification will be regarded as satisfactory. The 'pole 
shifting' controllers considered in Chapter 7 follow this general 
philosophy. Here, however, our formulation is in terms of optimal 
control. The idea is as follows: the class of admissible controls is 
specified precisely and a scalar performance criterion or cost function 
C(u) is associated with each control. We can then ask which control 
achieves the minimum cost; this control is optimal. Once the three 
ingredients (system dynamics, admissible controls and cost criterion) 
are specified, determination of the optimal control is in principle a 
purely mathematical problem involving no 'engineering judgement'. 
Indeed, optimal control theory has often been criticized precisely on 
these grounds. It may well be that a control which is theoretically 
optimal is subjectively quite unsatisfactory. If it is, this will be because 
the system model is inadequate or because the cost criterion fails to 
take account of all the relevant features of the problem. On the other 
hand, a more realistic model or a criterion which did include all the 
relevant features might well lead to an impossibly complicated 
optimization problem. As usual, the true situation is a trade-off 
between realistic modelling and mathematical tractability, and this is 
where the engineering judgement comes in. 

In this chapter we shall study linear regulator problems, where the 
cost criterion is given by 

(6.0.3) 

The number N of stages in the problem is called the time horizon and 
we shall consider both the finite-horizon (N < (0) and infinite­
horizon (N = (0) cases. Further discussion of the cost function C N(U) 
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will be found in Section 6.1. It implies a general control objective of 
regulating the state Xk to 0 while not using too much control energy as 
measured by the quantity ul FT Fuk • Note that the quantity in square 
brackets in (6.0.3) is a random variable and we obtain a scalar cost 
function (as required for optimization) by taking its expected value, 
which is practical terms means that we are looking for a control policy 
which gives the minimum average cost over a long sequence of trials. 

The optimization problem represented by equations (6.0.1 )-( 6.003)is 
known as the LQG problem since it involves a linear system (6.0.1), 
(6.0.2), a quadratic cost criterion (6.003) and gaussian or normal white­
noise disturbances in the state-space model. (For reasons explained 
below, {wk } is assumed here to be a sequence of independent normal 
random variables rather than a 'wide-sense' white noise as generally 
considered in previous chapters.) It is sufficiently general to be 
applicable in a wide variety of cases and the optimal control is 
obtained in an easily implemented form. It also has, as we shall see, 
close relations with the Kalman filter. 

In addition to the standard linear regulator as defined above we 
shall study the same problem with discounted costs: 

CP(u) = E[:t: III DXk + FUk 112 + pNX~QXN ] 
where p is a number, 0 < p < 1. There are important technical reasons 
for introducing the discount factor p, but there is also a financial 
aspect to it. Suppose that money can be invested at a constant 
interest rate r% per annum and one has to pay bills of £ao, £a1 , ••• 

each year starting at the present time. What capital is needed to 
finance these bills entirely out of investment income? Since £ 1 now is 
worth £(1 + 0.01 r)k in k years' time, the amount required is Lk akl 
where p = (1 + 0.01 r) -1 and this is one's total debt capitalized at its 
present value. In particular, a constant debt of £ a/year in perpetuity 
can be financed with a capital of 

00 

£ L al=£a/(I-p). 
k=O 

An important feature of this result is that while the total amount of 
debt is certainly infinite, it nevertheless has a finite capital value. 
Similarly, in the control problems, the discount factor enables us to 
attach a finite cost (and therefore consider optimization) in cases 
where without discounting the cost would be + 00 for all control 
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policies. Of course it is not realistic to assume that interest rates will 
remain constant for all time, and a more subjective interpretation of 
CP(u) is simply to say that it attaches small importance to costs which 
have to be paid at some time in the distant future. 

In the three sections of this chapter we discuss the linear regulator 
problem in three stages. First, in Section 6.1 we consider the 
deterministic case when Wk = O. M any of the 'structural features' of the 
LQG problem are already present in this case, and the optimal 
control turns out to be linear feedback: Uk = - M(k)Xk for a precom­
putable sequence of matrices M(k). This same control is shown in 
Section 6.2 to be optimal also in the stochastic case with complete 
observations, the effect of the noise being simply to increase the cost. 
Finally we consider the 'full' LQG problem in Section 6.3 and show 
that the optimal control is now - M(k)xk1k _ 1 where xk1k - 1 is the best 
estimate of the state given the observations, generated by the Kalman 
filter. This results demonstrates the so-called 'certainty-equivalence' 
principle: if the state cannot be observed directly, estimate it and use 
the estimate as if it were the true state. We also discuss an idea of 
somewhat wider applicability known as the 'separation principle'. 

6.1 The deterministic linear regulator 

6.1.1 Finite time horizon 

In this section we consider control of the linear system 

Xk+ 1 = A(k)Xk + B(k)uk (6.1.1) 

for k = 0,1, ... , N with a given initial conditionxo. We wish to choosea 
control sequence u=(uO,u1,oo.,UN- 1) so as to minimize the costt 

N-l 

IN(u)= L IID(k)Xk+F(k)UkI12+X~QXN' (6.1.2) 
k~O 

Here D(k), F(k) are matrices of dimensions p x n, p x m respectively 
and Q is a non-negative definite symmetric n x n matrix. It will 
be assumed throughout that the m x m matrices FT(k)F(k) are strictly 
positive definite, which implies in particular that we must have p ~ m. 

We shall also study various infinite-time problems related to 
(6.1.1)-(6.1.2), i.e. consider what happens as N ~ 00. 

tWe denote the cost by J N in the deterministic case, reserving eN for the average cost in 
the stochastic problem. 
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The cost function J N(U) is somewhat different from that convention­
ally employed in treatments of this subject. The more usual form of 
cost function is 

where Q(k), R(k) are symmetric non-negative definite matrices (strictly 
positive definite in the case of R(k)). This has more intuitive appeal 
since the terms involving Xk penalize deviation of Xk from 0 while 
L ur R(k)uk is a measure of control energy. Thus the control problem is 
to steer Xk to zero as quickly as possible without expending too much 
control energy; energy expenditure can be penalized more or less 
heavily by appropriate specification of the matrices R(k). This cost 
function is, however, a special case of (6.1.2): take p = n + m and 

where Ql/2(k), Rl/2(k) are any 'square roots' of Q(k), R(k), i.e. satisfy 
(Ql/2(kW Ql/2(k) = Q(k)(and similarly for Rl/2(k)). Such square roots 
always exist for non-negative definite symmetric matrices, as shown 
in Appendix D, Proposition D.1.3. 

We prefer the cost function (6.1.2) because of its extra generality, 
but more importantly because it connects up naturally with the 
formulation of the Kalman filter given in Chapter 3. This will become 
apparent below. 

The control problem (6.1.1)-(6.1.2) can in principle be regarded as 
an unconstrained minimization problem. For a given sequence 
U = (uo, Ul , ... , UN-i) and initial condition xo, the corresponding Xk 
sequence can be computed from the state equations (6.1.1): 

Xl = A(O)xo + B(O)uo 

X 2 = A(l)xl + B(l)Ul 

= A(l)A(O)xo + A(l)B(O)uo + B(l)u l , etc. 

Substituting in (6.1.2), we obtain J N(U) explicitly as a function of 
the mN-vector u=col{uO'ul, .. ,UN - l } and one could now use 
'standard' hill-climbing techniques to find the vector u* which 
minimizes J N(U). This would, however, be a very unsatisfactory way of 
solving the problem. Not only is the dimension mN very large even for 
innocuous-looking problems, but also we have thrown away an 
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essential feature of the problem, namely its dynamic structure, and 
therefore calculation of the optimal u* would give us very little insight 
into what is really happening in the optimization process. 

A solution method which uses in an essential way the dynamic 
nature of the problem is R. Bellman's technique of dynamic pro­
gramming. Introduced by Bellman in the mid-1950s, dynamic 
programming has been the subject of extensive research over the 
years and the associated literature is now enormous. We propose to 
discuss it here only to the extent necessary to solve the problem at 
hand. The basic idea is, like many good ideas, remarkably simple, and 
is known as Bellman's principle of optimality. Suppose that u* is an 
optimal control for the linear regulator problem (6.1.1 )-( 6.1.2), that is 
to say, 

for all other controls u = (uo, U1, . .. , UN -1)' Let x~ = xo, x!, .. . , xt be 
the corresponding state trajectory given by (6.1.1) with Uk = ut. Now 
fix an integer j, 0:::;; j < N, and consider the 'intermediate' problem of 
mllllmlzlllg 

N-l 

IN)uW)= L IID(k)Xk+F(k)ud2+X~QXN 
k = j 

over controls u(j) = (Uj,Uj + 1, ... , UN- 1), subject to the dynamics (6.1.1) 
as before with the 'initial condition' 

The intermediate problem is thus to optimize the performance of 
the system over the last N - j stages, starting at a point xj which 
is on the optimal trajectory for the overall optimization problem. 
The principle of optimality states that the control u*U) = 

(uj, uj+ 1" .. , ut _ 1) is optimal for the intermediate problem. Put 
another way, if u* is optimal for the overall problem then u*(j) is 
optimal over the last N - j stages starting at xj. The reason for this is 
fairly clear: if u*U) were not optimal for the intermediate problem then 
there would be some sequence u(j) = (uj , Uj + 1,···, UN -1) such that 

J (uU») < J .(u*U»). N,j\ N,} 

Now consider the control Uo defined as follows: 

k<j 
k?j 
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and let x2 be the corresponding trajectory. Then x2 = xt for k s} and 
hence 

j-l 

IN(UO) = L IID(k)xt + F(k)utI12 + I N.il7(j)) 
k=O 

j-l 

< L IID(k)xt + F(k)ut 112 + J N,/U*(j)) 
k=O 

= IN(u*). (6.1.3) 

But this contradicts the supposition that u* is optimal. Thus u*(j) 
must be optimal for the intermediate problem, as claimed. 

In the preceding argument, the system started in a fixed but 
arbitrary state XO' However, there is nothing special about the 
initial time zero: the same argument implies that if {xt, ut, k ~ j} is 
an optimal control-trajectory sequence for the intermediate problem 
starting at Xj = x (arbitrary) then {xt, ut, k ~ j'} is optimal for the 
further intermediate problem starting at Xj = xJ for any j' between} 
and N-1. 

The principle of optimality is turned into a practical solution 
technique as follows. Let Vj(x) be the minimum cost for the 
intermediate problem starting at Xj = x. This is known as the value 
function at time }. Then taking j' =} + 1, the above argument 
indicates that Vj ought to satisfy 

J.j(x) = min [IIDU)x + Fu)v1l2 + Vj + 1 (AU)x + BU)v)] (6.1.4) 
v 

the minimum being taken over all m-vectors v. Essentially, this comes 
from calculations similar to (6.1.3) above. If Xj = x and control uj = v 
is applied, then: 

(a) The cost paid at time} is IIDU)x + FU)v 112. 
(b) The next state is Xj+ 1 = AU)x + BU)v. 

Thus Vj + l(AU)x + BU)v) is the minimal cost for the rest of the 
problem if control value v is applied at stage }. So certainly 

Vj(x) s II D(j)x + F(j)v 112 + V;+ 1 (A(j)x + B(j)v) (6.1.5) 

and this holds for any value of v. On the other hand, if {xt, ut} is 
optimal over the last N - } stages starting at xj = x, then the principle 
of optimality indicates that 

N-l 

VI(x1) = L IID(k)xt + F(k)ut 112 + xtT Qxt 
k=/ 
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where I is either j or j + I, and this shows since xj = x that 

Jj(x) = IIDU)x + FU)uj112 + Vj + 1(AU)x + BU)uj). (6.1.6) 

Now (6.1.5) and (6.1.6) together imply that (6.1.4) holds. 
Equation (6.1.4) is known as the Bellman equation and is the basic 

entity in discrete-time dynamic programming since it enables the 
optimal control u* to be determined. Note that at the terminal time N 
the value function is 

(6.1.7) 

since no further control is possible and one has no choice but to pay 
the terminal cost of xTQx. Applying (6.1.4) with j = N - 1 gives 

VN- 1(X) = min [IID(N - l)x + F(N -1)v112 
v 

+ (A(N -I)x + B(N -I)V)TQ(A(N - l)x + B(N - l)v)] 

and hence determines VN- 1(X). Now using (6.1.4) again we can cal­
culate VN - 2> VN - 3, ... , Yo· By definition, Vo(xo) is then the minimal 
cost for the overall problem starting at state xo. From (6.1.5) and (6.1.6), 
the optimal control uj isjust the value of v that achieves the minimum in 
(6.1.4) with x = xj. 

Before proceeding any further let us consolidate the discussion so far. 
We have used the principle of optimality to obtain the Bellman 
equation (6.1.4) and this suggests the procedure outlined above for 
obtaining an optimal control. Having arrived at this procedure, 
however, we can verify that it is correct by a simple and self-contained 
argument; this will be given below. Thus the principle of optimality is 
actually only a heuristic device which tells us why we would expect the 
Bellman equation to take theform it does; it does not appear in the final 
formulation of any results. One could present the theory without 
mentioning the principle of optimality at all, but this would involve 
pulling the Bellman equation out of the hat, and readers would be left 
wondering - at least, we hope they would be left wondering - where it 
came from. 

Theorem 6.1.1 (Verification theorem) 

Suppose VN- 1(X), VN- 2(X), ... , Vo(x) satisfy the Bellman equation 
(6.1.4) with terminal condition (6.1.7). Suppose that the minimum in 
(6.1.4) is achieved at v = uJ(x), i.e. 
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IIDU)x + F(j)uJ(x) 112 + Vj+ l(A(j)x + BU)uJ(x)) 

..:;; IID(j)x + F(j)vI12 + Vj+ l(A(j)x + BU)v) 
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for all m-vectors v. Now define (xt, un recursively as follows: 

X6 =Xo ( 6.1.8) 

ut = u~(xt) } 
X* A * + Bu* k = 0, 1, ... , N - 1. k+ 1 = xk k 

(6.1.9) 

Then u* = (U6,"" U~-l) is an optimal control and the minimum cost 
is Vo(xo). 

PROOF Let u=(uO,""UN- 1) be any control and XO, ... ,XN the 
corresponding trajectory, always with the same initial point Xo' Then 
from (6.1.4) we have 

Hence 

N-l 

VN(XN)- Vo(xo) = L (v,,+l(Xk+l)- Vk(Xk)) 
k=O 

N-l 

~ - L IID(j)xj+F(j)UJ2. 
k=O 

Since VN(XN) = X~QXN this shows that 

Vo(xo) ..:;; J N(U), 

(6.1.10) 

(6.1.11) 

(6.1.12) 

On the other hand, by definition, equality holds in (6.1.10) and hence in 
(6.1.11) when Xj=xj, uj=uj, so that 

(6.1.13) 

Now (6.1.1 2), (6.1.13) say that U* is optimal and that the minimal costis 
Vo(xo)· 0 

Two remarks are in order at this point: 
1. Note that the optimal control is obtained in feedback form, i.e. xt 

is generated by 

xt+ 1 = A(k)xt + B(k)u~(xn 
where u~(·) is a pre-determined function. (See Fig. 6.1(a).) One could in 
principle obtain the same cost Vo(xo) by calculating the ut sequence 
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(a) 

u: ~ System ~Xk* 
(b) 

Fig. 6.1 (a) Feedback control; (b) Open loop control. 

explicitly and applying it inopen 100p(Fig. 6.1(b)) but sucha procedure 
has serious disadvantages. Using the dynamic programming appro­
ach, we have in fact not only solved the original overall control problem 
but have solved all the intermediate problems as well: an argument 
identical to that given above shows that the control ut generated by 
(6.1.9) with any initial condition xj = x is optimal for the control 
problem over the last N - j stages starting at Xj = x. Thus iffor some 
reason the system gets 'off course' the feedback controller continues to 
act optimally for the remaining stages of control. On the other hand, the 
values ut calculated for the open-loop control of Fig. 6.1 (b) are based 
on a specific starting point Xo and ifthis is erroneous or if an error occurs 
at some intermediate point then the ut sequence will no longer be 
optimal. 

2. Nothing so far depends on the quadratic nature of the cost 
function (6.1.2). Similar results would be obtained for any scalar cost 
function of the form 

N-l 

J~(u) = L /(k, Xk, Uk) + g(XN)' (6.1.14) 
k=O 

We have seen above that the basic step in solving the optimal control 
problem is to calculate the value functions VV-l(X)"", Vo(x). With 
general cost functions J'(u) as in (6.1.14) this involves an immense 
amount of work since the whole function Vk(') has to be calculated and 
not just the value Vk(x) at some specific point x. The advantage of the 
quadratic cost (6.1.2) is that the value functions take a simple 
parametric form and can be computed in an efficient way. Indeed, the 
value functions are themselves quadratic forms, as the following 
result shows. 
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The solution of the Bellman equation (6.1.4), (6.1.7) for the linear 
regular problem (6.1.1), (6.1.2) is given by 

k = 0, 1, ... ,N (6.1.15) 

where S(O), ... , S(N) are symmetric non-negative definite matrices 
defined by (6.1.20) below. The optimal feedback control is 

where 
uJ(x) = - MU)x 

MU) = [BTU)SU + l)BU) + FTU)FU)]-l 

. [BTU)SU + l)AU) + FTU)DU)]. ( 6.1.16) 

We see that the optimal controller has a very simple structure, 
namely linear feedback of the state variables. The notation uJ for 
optimal control is used for consistency with the discounted cost case 
to be discussed below. 

PROOF Note that the result is certainly true at k = N since VN(x) = 

xTQx. To show that it holds for k < N we use backwards induction: 
supposing (6.1.15) holds for k = j + 1 we show that it holds for k = j. 
Taking ~+ l(X) = xTS(j + l)x, the Bellman equation (6.1.4) becomes 

~(x) = min [IID(j)x + F(j)vI12 + (xT AT(j) + vTBT(j)) 
v 

'S(j + l)(A(j)x + B(j)v)]. (6.1.17) 

The quantity in square brackets on the right-hand side is equal to 

vT(BTS(j + l)B + FTF)v + 2XT(ATS(j + l)B + DTF)v 

+ xT(ATS(j + l)A + DTD)x (6.1.18) 

where we temporarily write B(j) = B, etc. Now if R is a symmetric 
positive definite matrix and a an m-vector then 

(v + a)TR(v + a) = vTRv + 2aTRv + aTRa 

i.e. 

vTRv + 2aTRv = (v + a)TR(v + a) - aTRa. 

Clearly this expression is minimized over v at v = - a and the 
minimum value is - aT Ra. In order to identify this with the first two 
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terms in (6.1.18) we require 

R = BTS(j + I)B + FTF 

Ra = (BTS(j + I)A + FTD)x. 

Now by assumption FT F, and hence R, is strictly positive definite, and 
therefore a is specified by 

a = R -l(BTS(j + I)A + FTD)x. 

Thus the right-hand side of(6.1.17) is equal to 

xT[ATS(j + l)A + DTD - (ATS(j + l)B + DTF) 

R-1(BTS(j+ l)A+FTD)]x. (6.1.19) 

Hence Vj(x) = xTSU)x where SU) is given by the expression in the 
square brackets in (6.1.19) and SU)zO by (6.1.17). Thus Vk(x) is a 
quadratic form, as in (6.1.15), for all k = 0, 1, ... , N. Note from the 
above analysis (specifically from (6.1.19)) that the matrices S(k) can be 
computed recursively backwards in time starting with S(N) = Q. In 
fact, writing out (6.1.19) in full we see that the S(k) are generated by 

S(N) = Q 
S(j) = AT(j)S(j + 1)A(j) + DT(j)D(j) - (AT(j)S(j + 1)B(j) 

+ DT(j)F(j))(BT(j)S(j + I)B(j) + pT(j)F(j))-l 

. (BT(j)S(j + l)A(j) + FT(j)D(j)) 

j = N - 1, N - 2, ... , O. (6.1.20) 

Applying the dynamic programming results, the optimal feedback 
control is the value of v that achieves the minimum in (6.1.16), and this 
is equal to - a, so that 

u](x) = _[BT(j)S(j+ I)B(j) + FT(j)F(j)]-l 

. [BT(j)S(j + l)A(j) + FT(j)D(j)]x. 

This completes the proof. 

Filtering/control duality 

D 

A very important feature of the above result is its close connection to 
the Kalman filter discussed in Section 3.3. Equation (6.1.20) is a 
Riccati equation of exactly the same type as that appearing in the 
Kalman filter equations, with the distinction that (6.1.20) evolves 
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backwards from a terminal condition at time N whereas the filtering 
Riccati equation (3.3.6) for the estimation error covariance P(j) 
evolves forward from an initial condition at j = O. The Kalman gain 
K(j) is related to P(j) in exactly the same way that the control gain 
M(j) is related to S(j), except for transposition. Specifically, the 
correspondence between the two problems is as shown in Table 6.1. 

Table 6.1 

Filtering 

(time) j 
A(j) 
H(j) 
C(j) 
G(j) 
P(j) 
K(j) 

Control 

This means that if we take the filtering Riccati equation (3.3.6), make 
the time substitutionj --+ N - j and relabel A, H, C, G as AT, BT, DT, pT 

respectively, then we get precisely (6.1.20). The same relabelling 
applied to the expression (3.3.5) for K(j) produces MT(j). Thus the 
Riccati equations (6.1.20) and (3.3.6) are the same in all but notation. 
This will be very important when we come to consider various 
properties of the Riccati equation, since its solution can be regarded 
interchangeably as the value function for a control problem or the 
error covariance for a filtering problem, and various facts can be 
deduced from one or other of these interpretations. 

Discounted costs 

Let us now specialize to the time-invariant system 

Xk+ 1 = AXk + BUk (6.1.21) 

(i.e. A(k) = A, B(k) = B for all k) and consider minimizing a discounted 
cost of the form 

N-l 

J~(u) = L pkllDxk + PUkl12 + pNX~QXN (6.1.22) 
k=O 

where D, P, Q are fixed matrices and p is the discount factor 
(0 < p ~ 1). This is actually a special case of the preceding problem (take 
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D(k) = l12D, F(k) = ll2F and replace Q by pNQ); but there is another 
way of looking at it which provides a little more insight. Write 

N-1 
J~(u).= L lllDxk + FUkll2 + pNX~QXN 

k=O 

N-1 
= L IIDpkl2xk + Fll2ukll 2 + pNX~QXN 

k=O 

N-1 
= L IIDxf + Fufll 2 + X~TQX~ 

k=O 

where we have defined 
xf:= ll2Xk 

uf:= ll2Uk · 

Multiplying (6.1.21) by p(k+ 1)/2 gives 

p(k+1)/2 Xk+1 = pl/2All2Xk + p1/2Bll2Uk 
I.e. 

(6.1.23) 

(6.1.24) 

(6.1.25) 

where AP: = p1/2 A, BP: = p1/2 B. But (6.1.23)-(6.1.25) constitute a time­
invariant linear regulator problem in standard non-discounted form. 
The optimal control is therefore 

uf= -(BpTSP(k+ l)BP + FTF)-1(BpTSP(k+ l)AP+FTD)xf 

=: - MP(k)xf 

where SP(k) is the solution of (6.1.20) with A replaced by p1/2 A and B 
replaced by pI/2 B. In view of (6.1.24) the optimal control Uk is 
expressed in terms of the 'real' state Xk by 

Uk = - MP(k)Xk' 

Thus the discounted cost problem is solved simply by taking the 
undiscounted problem and making the substitutions A ---. p1/2 A, 
B ---. pI/2 B. 

6.1.2 Infinite-time problems 

In this section we will continue to assume that the system and costs 
are time-invariant, i.e. the matrices A, B, D, F do not depend on the 
time, k. 

In many control problems no specific terminal time N is involved 
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and one wishes the system to have good 'long-run' performance. This 
suggests replacing (6.1.2) by a cost 

00 

J oo(u) = L IIDxk + FukV (6.1.26) 
k=O 

It is not obvious that the problem of minimizing J oo(u) subject to 
the dynamics (6.1.1) makes sense: it might be the case that J oo(u) = 
+ 00 for all controls u. Note, however, that the problem does make 
sense as long as there is at least one control u such that J CX)(u) < 00. A 
simple sufficient condition for this is that the pair (A, B) be stabilizable, 
i.e. there exists an m x n matrix M such that A - BM is stable. Taking 
for u the feedback control Uk = - Mxk , the system dynamics become 

X k + 1 = (A - BM)xk · 

Now since A - BM is stable, it follows from Proposition D.3.1, 
Appendix D, that there exist constants c > ° and aE(O, 1) such that 

II X k II S; cak II Xo II 
Since II (D - F M)x II S; K II x II for some constant K, the cost using 
control U is 

00 

J oo(u) = L II (D - FM)xk 11 2 

k=O 

00 

S; K2 L IIxkl12 
k=O 

00 

S; c2 K211 Xo 112 I a2k 

k=O 

= c2K211 Xo 11 2/(1- a2 ). 

Thus with any stabilizing control, the norm of Xk decays sufficiently 
fast to give a finite total cost. We will therefore assume henceforth that 
the pair (A, B) is stabilizable. 

If ~(x) is the value function at time k for the infinite-time problem 
then it seems likely that ~ does not actually depend on k, since, there 
being no 'time horizon' and the coefficients being time-invariant, the 
problem facing the controller is the same at time k as at time zero, 
except for some change in the initial state. Recalling the Bellman 
equation (6.1.4), this suggests that the value function V == ~ should 
satisfy 

V(X) = min [IIDx + Fvl12 + V(Ax + Bv)]. (6.1.27) 
v 
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Note this is no longer a recursion but is an implicit equation which 
mayor may not be satisfied by a particular function V. 

Proposition 6.1.3 

Suppose that Vis a solution of (6. 1.27) such that Vis continuous and 
V(O) = O,t and that u1(x) achieves the minimum on the right, i.e. for all 
vectors v, 

II Dx + Fu 1(x) 112 + V(Ax + Bu 1(x)) ~ II Dx + Fv 112 + V(Ax + Bv). 

Suppose also that u1 is a stabilizing control in the sense that II X k II 
-+ 0 as k -+ 00, where Xk is the trajectory corresponding to ul, i.e. 

Xk+ 1 = AXk + Bu1(Xk)· 

Then u1(x) is optimal in the class of stabilizing controls. Equation 
(6.1.27) has the quadratic solution V(x) = xTSx if and only if S satisfies 
the algebraic Riccati equation (6.1.29) below, and in this case the 
corresponding control is 

where 
(6.1.28) 

PROOF Let {Xk,Uk} be any control/trajectory pair such that Ilxkll 
-+ 0 as k -+ 00 and write 

Thus 

N-1 

V(XN) - V(xo) = L V(Xk+ 1) - V(Xk) 
k=O 
N-1 

~ L IIDxk + Fukl1 2 

o 

N-1 

(from (6.1.27)). 

V(xo) ~ L IIDxk + Fuk l1 2 + V(XN)· 
k=O 

Now by the assumptions on V and Xb V(xN) -+ 0 as N -+ 00 and hence 

00 

V(xo)~ L IIDxk + Fukl1 2 = Joo(u). 
k=O 

The same calculations hold with = replacing ~ when U = u1, and this 

t A natural requirement since if x = 0 the control Uk = 0 is plainly optimal. 
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shows that 

V(xo) = J oo(U 1) = min J oo(u). 
u 
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Thus u1 is optimal in the class of stabilizing controls (those for which 
II Xk 11--+ 0 as k --+ 00, Xk being the corresponding trajectory.) 

Since the value function for the finite-horizon problem is a 
quadratic form, let us try a solution to (6.1.27) of the form xTSx where 
S is a symmetric non-negative definite matrix. From (6.1.19), the 
minimum value on the right of (6.1.27) is then 

xT[ATSA + DTD - (ATSB + DTF)(BTSB + FTF)-l(BTSA + FTD)Jx 

and V(x) = xTSx is therefore a solution of (6.1.27) if and only if S 
satisfies the so-called algebraic Riccati equation (ARE): 

S = ATSA + DTD - (ATSB + DTF)(BTSB + FTF( l(BTSA + fID). 
(6.1.29) 

If S satisfies this then certainly V(x) = xTSx is continuous and 
V(O) = O. The corresponding minimizing u1 is given as before by 

u1(x) = - Mx 
where 

M = (BTSB + PF)-l(BTSA + FTD). D 

If the matrix A - BM is stable then Ilxkll--+O as k --+ 00 where 

xk+ 1 = AXk + Bu 1(Xk) = (A - BM)xk· 

The above proof thus shows that if S satisfies (6.1.29) and A - BM is 
stable then the control u l(Xk) = - M Xk is optimal in the class of all 
stabilizing controls. An important feature of this result is that the 
optimal control is time-invariant (does not depend explicitly on k), 
although time varying controls are not in principle excluded. 

It is evident from Proposition 6.1.3 that the infinite time problem 
hinges on properties of the algebraic Riccati equation. These are 
somewhat technical and a full account will be found in Appendix B. 
Let us summarize the main results. The conditions required on the 
coefficient matrices A, B, D, F are as follows: 

(a) The pair (A, B) is stabilizable. 
(b) The pair (15, A) is detectable, where 

A = A - B(P Fr 1 FT D 

15 = [I - F(PF)-l PJD. 

(6.1.30) 
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The first of these conditions is a natural one since, as remarked before, 
it ensures the existence of at least one control giving finite cost. The 
motivation for condition (b) is less obvious, though it does seem clear 
that some condition involving D and F, in particular concerning the 
relation between states X k and 'output' Dxk , is required to justify 
limiting attention to stabilizing controls. Condition (b) takes the 
simpler form 

(b') (D, A) is detectable, 

when PD = 0; this is the case alluded to at the beginning of this 
section, in which the cost takes the form 

IIDxk + Fuk l1 2 = xlDTDxk + ulFTFuk · 

Under conditions (6.1.30), the argument given in Appendix B shows 
that there is a unique non-negative definite matrix S satisfying the 
algebraic Riccati equation, that A - BM is stable, where M is given by 
(6.1.28), and that the control U l(Xk) = - M Xk is optimal in the sense of 
minimizing 1 «)(u) over all control-trajectory pairs (Xk' Uk) satisfying 
the dynamic equation (6.1.1). (The less precise argument summarized 
in Proposition 6.1.3 only shows that U1(X) minimizes 1 <Xl(u) over all such 
pairs satisfying Ilxkll->O as k-> 00.) 

The relation between the finite and infinite-time problems is also 
elucidated in Appendix B. In fact it is shown that under conditions (a) 
and (b), 

S = lim S( - k) (6.1.31) 
k---+ ex:: 

where S( - 1), S( - 2), ... is the sequence of matrices produced by the 
Riccati equation (6.1.19) with S(O) = Q where Q is an arbitrary non­
negative definite matrix. Now xTS( - k)x is the minimal cost for the k­
stage control problem (6.1.1 )-(6.1.2) with terminal cost xl Qxk . In view 
of (6.1.31) we see that as the time horizon recedes to infinity, the cost of 
the finite-horizon problem approaches that of the infinite horizon 
problem, whatever the terminal cost matrix Q. Q is unimportant 
because II X k II will be very small for large k when the optimal control is 
applied. 

Generally, in the finite-horizon case, the optimal control Uk = 

- M(k)Xk is time-varying. If, however, one selects Q = S as the 
terminal cost, where S satisfies the algebraic Riccati equation, then 
S(k) = S for all k, so that the time-invariant control Uk = - MXk is 
optimal, and this is the same control that is optimal for the infinite­
horizon problem. The situation is somewhat analogous to that of a 
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transmission line terminated by a matched impedance. With this 
termination the line is indistinguishable from one of infinite length. In 
the control case, if the terminal cost is xr SXk the controller is 
indifferent between paying it and stopping, or continuing optimally 
ad irifinitum. In either case the total cost is the same, so it is reasonable 
to describe S as the 'matched' terminal cost matrix. 

Finally, let us consider the infinite-time discounted cost problem, 
where the cost function is 

00 

J~(u) = L lllDxk + FUk11
2 • 

k=O 

Proceeding exactly as in the finite-horizon discounted case, we 
conclude that the optimal control is 

Ut:(Xk) = - MPxk · 
Here 

MP = (BPTSPBP + FTF)-l(BPTSPAP + FTD) 

and SP is the solution of the algebraic Riccati equation with A and B 
replaced by AP and BP respectively, where 

The conditions for existence of a solution SP to the modified equation 
are the appropriately modified version of (6.1.30) above, namely 

(c) (AP, BP) is stabilizable. 
(d) (15,AP) is detectable (AP = p1/2 Ii). 

(6.1.32) 

Note that if U is any n x n matrix with eigenvalues )'1"'" An then the 
eigenvalues of p1/2 U are p1/2 A1, . .. , p1/2 An since if Xi is an eigenvector 
corresponding to Ai then 

(6.1.33) 

Thus AP - BP M = p1/2(A - BM) is stable if A - BM is stable. 
Similarly lip - (p 1/2 N)15 = p 1/2(A - N D) is stable if A - N 15 is stable. 
Thus conditions (6.1.30) imply conditions (6.1.32), so that SP exists for 
any p ~ 1 if conditions (6.1.30) are satisfied. However, taking U = A 
and U = A in (6.1.33) we see that,for sufficiently small p, AP and AP are 
both stable and, a fortiori, (AP, BP) and (15, AP) are stabilizable and 
detectable respectively. Thus an optimal solution to the discounted 
cost infinite-time problem always exists if the discount factor p 
sufficiently small. An optimal control with finite cost can, however, be 
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obtained without discounting if the rather mild conditions (6.1.30) are 
met. This contrasts with the situation in the stochastic case consi­
dered in the next section, where discounting is always necessary to 
obtain finite costs in infinite-time problems. 

This concludes our discussion of the deterministic optimal regu­
lator problem. We need it as a stepping-stone to the stochastic case 
and also to isolate the duality relationships which connect the Riccati 
equations which arise here and in the Kalman filter. In Appendix B, 
the asymptotic behaviour of the Riccati equation is investigated by 
methods which rely heavily on its control-theoretic interpretation. 
But, thanks to the duality properties, these results apply equally to tell 
us something about asymptotic behaviour of the estimation error in 
the Kalman filter. 

In recent years, techniques based on the linear/quadratic optimal 
regulator have become an important component of multivariable 
control system design methodology. It is outside the scope of this 
book to discuss such questions, but some references will be found in 
the Notes and References at the end of this chapter. The essential 
advantage of the linear/quadratic framework in this connection is 
that arbitrary dimensions m and p of input Uk and output DXk are 
allowed, whereas techniques which attempt to generalize the classical 
single-input, single-output methods are seriously complicated by the 
combinatorial fact that there are rp transfer functions to consider, one 
from each input to each output. A subsidiary advantage of the 
linear/quadratic framework is that time-varying systems are handled 
with relative ease. 

6.2 The stochastic linear regulator 

In this section we consider problems of optimal regulation when the 
state equation includes additive noise, as in the state-space stochastic 
model discussed in Section 2.4. Thus Xk satisfies 

(6.2.1) 

where {wd is a sequence of I-vector random variables with mean 0 and 
covariance I. We will assume in this section that Wk and Wj are 
independent (rather than merely uncorrelated) for k =1= j. The initial 
state Xo is a random vector independent of Wk with mean and 
covariance mo, Po respectively. We suppose that the state Xk can be 
measured directly by the controller, so that controls will be feedback 
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functions of the form Uk = Uk(Xk). The obJectlve 1s to m1n1m1ze the cost 
criterion 

CN(U) = E[:t~ IID(k)Xk + F(k)ukI1 2 + X~QXN 1 
The value function Jt}(x) at time j for this problem is the minimum 
value of 

Ej •x [:t; IID(k)Xk + F(k)uk I1 2 + X~QXN ] 
where E j.x denotes the expectation given that the process starts off at 
Xj = x (a fixed vector in [R"). If Xj = x and the control value uj = v is 
applied then the next state is 

xj+ 1 = A(j)x + B(j)v + C(j)Wj 

and, by definition, the minimal remaining cost for the rest of the 
problem from timej + 1 to N is Jt}+ l(Xj+ 1)' This, however, is now a 
random variable since xj+ 1 is determined partly by Wj' The expected 
minimal remaining cost is obtained by averaging this over the 
distribution of Wj' giving a value of 

EWj+ l(A(j)x + B(j)v + C(j)w). 

Thus the minimum expected cost starting at Xj = x, if control uj = v is 
used, is the sum of this and the cost IID(j)x + F(j)vI12 paid at time j. 
This suggests that Jt}(x) should satisfy the stochastic Bellman 
equation 

Jt}(X) = mine IID(j)x + F(j)vI1 2 + EJt}+ 1 (A(j)x + B(j)v + C(j)w)] 
v 

(6.2.2) 

where again E means averaging over the distribution of Wj with x,v 
fixed. At the final time N no further control or noise enters the system, 
so that 

(6.2.3) 

As before, (6.2.2)-(6.2.3) determine a sequence of functions 
WN, WN - 1, .•• , Wo by backwards recursion. And, also as before, we do 
not rely on the above heuristic argument to conclude that these 
functions are indeed the value functions for the control problem, but 
provide independent direct verification. 
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Proposition 6.2.1 

Suppose that WN, ... , Wo are given by (6.2.2), (6.2.3) and that uJ(x) is 
the value of v that achieves the minimum in (6.2.2). Then the feedback 
control ut = U~(Xk) minimizes the cost CN(u) over the class of all 
feedback control policies. 

PROOF Let Uk(Xk) be an arbitrary feedback control and let Xk be the 
process given by (6.2.1) with Uk = Uk(Xk). Then 

N-1 

WN(XN) - Wo(xo) = L (~+ 1 (Xk+ 1) - ~(Xk)) 
k=O 

so that 

N-1 

E[WN(XN) - Wo(Xo)] = L E[~+ l(Xk+ 1) - ~(Xk)] (6.2.4) 
k=O 

In calculating the expectations on the right we are entitled to 
introduce any intermediate conditional expectation. We therefore 
write 

E[Wk+ l(Xk+ 1) - Wk(Xk)] = E{ E[Wk+ l(Xk+ d - Wk(xk)lxk]}· 
(6.2.5) 

Now, given Xk, Wk(Xk) is known and xk+ 1 is given by 

Xk+ 1 = A(k)Xk + B(k)Uk(Xk) + C(k)wk· 

The first two terms on the right are known and the third is a random 
vector independent of Xk. The conditional expectation of Wk+ l(Xk+ 1) 
is therefore given by 

E[Wk+ l(Xk+ l)lxk] = EWk+ l(A(k)Xk + B(k)Uk(Xk) + C(k)Wk) 

where the expectation on the right is taken over the distribution of Wk 
for fixed Xk. Now, using (6.2.2) we obtain 

E[Wk+ l(Xk+ 1) - Wk(xk)lxk] = EWk+ 1 (A (k)Xk + B(k)Uk(Xk) 

+ C(k)wd - Wk(Xk) 

;:::: - II D(k)Xk + F(k)Uk(Xk) 112. (6.2.6) 

Combining (6.2.4)-(6.2.6) shows that 

N-1 
E[WN(XN) - Wo(Xo)] ;:::: - E L IID(k)xk + F(k)uixk) 112 

k=O 
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and hence, since WN(XN) = X~QXN' that 

EWo(xo)::;; CN(u). 
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(6.2.7) 

On the other hand, the same argument holds with equality instead of 
inequality in (6.2.6) when uk(x) = u~(x), so that 

EWo(xo) = CN(U 1 ). (6.2.8) 

Now (6.2.7) and (6.2.8) say that u1 is optimal. o 
The proof actually shows a little more than is claimed in the 
proposition statement. Indeed, since Wo(xo) is only a function of xo, 
the expectation in (6.2.8) only involves the (arbitrary) distribution of 
the initial state Xo. In particular, if Xo takes a fixed value, say xo, with 
probability one, then the corresponding optimal cost is just Wo(.xo). 
Thus Wo(xo) should be interpreted as the conditional optimal cost 
given the initial state Xo. The overall optimal cost is then obtained by 
averaging over xo, as in (6.2.8). A similar interpretation applies to Wkl 

namely Wk(x) is the optimal cost over stages k, k + I, ... , N con­
ditional on an initial state Xk = x. 

The solution of (6.2.2) is related in a simple way to that of the 
'deterministic' Bellman equation (6.1.4). In fact, 

Wk(x) = xTS(k)x + lJ.k 

where S(N) = Q, S(N - 1), ... , S(O) are given by the Riccati equation 
(6.1.20) as before, and rxk is a constant, to be determined below. Note 
that if Wk+ t(x) = xTS(k + l)x + ()(k+ t then for fixed x, v, 

EWk+1(A(k)x + B(k)v + C(k)wk) 

= (A(k)x + B(k)v)TS(k + I)(A(k)x + B(k)v) 

+ 2E(A(k)x + B(k)v)TS(k + 1)C(k)wk 

+ Ewl CT(k)S(k + 1 )C(k)wk + ()(k + 1 

= (A(k)x + B(k)v)TS(k + I)(A(k)x + B(k)v) 

+ tr[CT(k)S(k + 1)C(k)] + lJ.k+ 1 

where the last line follows from the facts that EWk = 0, cov(wk) = I. 
Notice that the final expression is identical to that obtained in the 
deterministic case except for the term tr[CT(k)S(k + 1)C(k)] + ()(k+ 1, 

which does not depend on x or v and hence does not affect the 
minimization on the right-hand side of (6.2.2). Thus if Wk+ 1 (x) = 
xTS(k + l)x + ()(k+ 1 then the induction argument as used in the 
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deterministic case shows that 

Wb) = xTS(k)x + lik + 1 + tr[CT(k)S(k + 1)C(k)]. 

But WN(x) = XTQX, i.e. liN = 0, so working backwards from k = n we 
see that 

N-l 

lik = L tr[CTU)SU + I)CU)]' 
j=k 

Summarizing, we have the following result. 

Theorem 6.2.2 

For the stochastic linear regulator with complete observations, the 
optimal control is 

where M(k) is given by (6.1.16), i.e. is the same as in the deterministic 
case. The minimal cost is 

N-l 

CN(UO) = ml;S(O)mo + tr[S(O)PoJ + I tr[CT(k)S(k + l)C(k)]. 
k=O 

(6.2.9) 

PROOF The optimality of u1 follows from Proposition 6.2.1. As to 
the cost, we note that 

Wo(x) = xTS(O)x + lio 

is the conditional minimal cost given that the process starts at Xo = x. 
Taking the expectation over the distribution of Xo, and usmg 
Proposition 1.1.3(b), we obtain (6.2.9). D 

Note that only the mean mo and covariance Po of the initial state 
are needed to compute the optimal cost, so it is not necessary to 
suppose that Xo is normally distributed. The important feature of the 
above result is that the matrices S(k) and M(k) do not depend on the 
noise coefficients C(k), so that in particular the optimal control is the 
same as in the deterministic case. Thus adding noise to the state 
equation as in (6.2.1) makes no difference to the optimal policy, but 
simply makes that policy more expensive. Indeed, if the system starts 
at a fixed state Xo (so that mo = Xo and Po = 0) then the additional cost 
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is precisely 

N-1 

L tr[CT(k)S(k + l)C(k)]. 
k=O 
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Let us now consider the discounted cost case. We will assume for 
simplicity of notation that the coefficient matrices A, B, D, F are time 
invariant but, with later applications in mind, time variation will be 
retained for C(k). Thus the problem is to minimize 

E( :t: lllDxk + Fuk l1 2 + pNX~QXN). 
We use the same device as before, namely rewriting the cost as 

ECt: IIDxf + Fufl1 2 + xf QX~) (6.2.10) 

where xf = ll2Xb uf = ll2Uk . Multiplying (6.2.1) by p(k+ 1)/2 shows 
that xf, uf satisfy 

(6.2.11) 

where AP = pl/2 A, BP = pl/2 B, CP(k) = p(k+ 1)/2C(k). Now (6.2.10) and 
(6.2.11) give the problem in non-discounted form. As noted above, the 
optimal control does not depend on CP(k); applying our previous 
results it is given by 

uf(x) = - MP(k)x 

where MP(k) is defined as in Section 6.1 above. The corresponding 
cost is, from (6.2.9) 

N-1 

C~(uP) = mI;SP(O)mo + tr[SP(O)Po] + L tr[CPT(k)SP(k + l)CP(k)] 
k=O 

N-1 

= mI;SP(O)mo + tr[SP(O)Po] + L l+ltr[CT(k)SP(k + l)C(k)]. 
k=O 

The importance of the discount factor becomes apparent when we 
consider infinite-horizon problems. Suppose that conditions (6.1.30) 
are met and that SP is the solution to the algebraic Riccati equation 
with coefficient matrices AP, BP. Such a solution exists for any p ~ 1. 
Now consider the N-stage problem as above, with terminal cost 
matrix Q = SP. This is the 'matched impedance' case, discussed at the 
end of Section 6.1, for which SP(k) = SP for all k. Thus the optimal 
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control is the time-invariant feedback 

UP(Xk) = - MPXk 

and the cost over N stages is 

N-l 

(6.2.12) 

C~(uP)=m6SPmo+tr[SPPo]+ L pk+ltr[CT(k)SPC(k)]. 
k=O 

(6.2.13) 

Note that if p = 1 (no discounting) and C(k) == C is constant, then 
C~ -t 00 as N -t 00 and hence the infinite-time problem has no 
solution (all controls give cost + (0). This is not surprising. The 
reason that finite costs could be obtained in the deterministic case was 
that Ilxkll converged to zero sufficiently fast that 

was finite. However, in the present case Ilxkll does not converge to zero 
because at each stage it is being perturbed by the independent noise 
term Cwk , and the controller has continually to battle against this 
disturbance to keep II X k II as small as possible. If, however, p < 1, then 

lim C~ = m6SPmo + tr[SPPo] + ~-tr[CTSPC]. (6.2.14) 
N~oo 1-p 

Thus any amount of discounting, however little, leads to a finite 
limiting cost. One can show, by methods exactly analogous to those 
used in the previous section, that the time-invariant control uP given 
by (6.2.12) does in fact minimize the cost 

C~(u) = EC~o lllDxk + FUk112) (6.2.15) 

and that the minimal cost is precisely the expression given in (6.2.14). 
As to the conditions required, recall that if (A, B) is stabilizable then 
(AP, BP) is stabilizable for any p::; 1; thus 

(a) If conditions (6.1.30) are satisfied then the infinite time discounted 
problem is well-posed, and has the above solution, for any p < 1. 

(b) If either of conditions (6.1.30) fails then we must take P < Po where 
Po is such that (AP, BP), (15, AP) are stabilizable and detectable 
respectively for any P < Po. Generally, Po < 1. 
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If C(k) is not constant then exactly similar results apply as long as 

00 

L pk+ltr[CT(k)SPC(k)J < 00 
k=O 

and this will certainly be the case for any p < 1 as long as the elements 
of CT(k) are uniformly bounded, i.e. there is some constant Cl such that 
for all i,j, k, 

lC(k)i) ~ cl · 

This, in turn, is always true if the C(k) sequence is convergent, i.e. 
there is a matrix C such that C(k) -+ C as k -+ 00. The same control is 
optimal but there is in general no closed-form expression, as in 
(6.2.14), for the minimal cost, which is now 

00 

m&SPmo + tr[SP P oJ + L pk+ 1 tr[CT(k)SPC(k)]. (6.2.16) 
k=O 

Let us now consider minimizing the average cost per unit time, 

(6.2.17) 

As before we assume that all coefficients are constant except for the 
noise matrices C(k) which are supposed to be convergent: C(k) -+ Cas 
k -+ 00. This is needed in the next section. 

The limit in (6.2.17) mayor may not exist for any particular control 
u, but it certainly does exist for all constant, stabilizing controls, i.e. 
controls of the form uf = - KXk where A: = A - BK is stable. For 
then the closed-loop system is 

xk+ 1 = AXk + C(k)wk 

and we know by a slight extension of results in Section 2.4 that 
Q(k): = cov(xk) -+ Q where Q satisfies 

Q = AQAT + CCT. 

Thus 
1 N 

CaJuK ) = lim - L tr[(D - FK)Q(k)(D - FK)TJ 
N-->oo N k=O 

= tr[(D - FK)Q(D - FK)T]. 

If the pair (A, B) is stabilizable then a stabilizing K exists and the 
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problem of minimizing Caiu) is meaningful. We now show that Cav(u) 
is minimized by the control Uk = - MXk where M is given by (6.1.28). 
This is the same control policy that is optimal for the deterministic 
infinite-time problem. 

Theorem 6.2.3 

Suppose conditions (6.1.30) hold. Then, among all controls u for 
which Caiu) exists and Ell Xk 112 remains bounded, the minimal 
cost is achieved by the control ui(x) = - Mx where M is given by 
(6.1.28). The minimal value of the cost is 

Cav(u1) = tr[CTSC] 

where S is the unique solution of the algebraic Riccati equation 
(6.1.29). 

PROOF It is shown in Appendix B that A - BM is stable, so that 
Jav(u 1) exists. Let S be the solution of the ARE (6.1.29) and consider 
the N-stage problem of minimizing 

CN(u) = E[ :t~ IIDxk + Fukl1 2 + X~SXN ] 
This is the 'matched terminal cost' problem for which, from 
Theorem 6.2.2, control u1 is optimal. Thus for any control u, 

N-l 

CN(u) ~ CN(U 1) = m6Smo + tr[SPo] + L tr[CT(k)SC(k)]. 
k=O 

(6.2.18) 
Thus 

as long as the left-hand limit exists. But if Cav(u) exists and Ellxkl12 is 
bounded, then 

lim ~CN(U) = Cav(u) + lim ~E[X~SXN] = Cav(u), 
N-+ooN N-+ooN 

This shows that u1 is optimal. From (6.2.18) its cost is 

1 N-l 

Cav(u1) = lim - L tr[CT(k)SC(k)] = tr[CTSC]. 0 
N-+oo N k=O 
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The control ut = - MXk is not the only optimal control for the 
average cost per unit time problem. Indeed, for any integer j we can 
write 

Now for any given control Uk' 

E[jtlIIDXk+FUkIIZ] 

is a fixed number not depending on N. Thus the first limit is zero, and 
since (N - j)/N -> 1 as N -> 00, 

Cav(u) = lim --.E L IIDxk + Fuk l1 2 • 
1 [N-l J 

N~ooN-J k=j 

The expression on the right is the average cost from time j onwards 
starting in state x j , and its minimal value does not depend at all on 
what controls Uk were used for k < j. Thus any control of the form 

Uk = {arbitrary, 
-Mxk , 

k<j 
k >· -J 

is optimal. Thus the average cost criterion is only relevant when one is 
mainly concerned with 'long-run performance'; the idea is that the 
system settles down to a statistically stationary state in which an 
average of precisely tr[CTSC] is added to the cost at each stage, 
and this is minimal. There is, however, nothing in the cost criterion 
which specifies just how long this settling-down period is supposed 
to last. The discounted cost formulation has the opposite effect: it 
emphasizes performance during some initial interval the length of 
which is effectively specified by the discount factor. In this case the 
optimal control is unique. Another advantage of discounted costs 
is that the stabilizability /detectability conditions can always be met 
by sufficiently rapid discounting, whereas with average costs little 
can be said if the original system matrices (A, B, D) do not satisfy 
these conditions. 
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6.3. Partial observations and the separation principle 

We now consider control problems associated with the full state­
space model 

Xk+ I = A(k)Xk + B(k)uk + C(k)wk 

Yk = H(k)Xk + G(k)Wk· 

(6.3.1) 

(6.3.2) 

As before, the initial state Xo has mean and covariance mo, Po and 
is uncorrelated with Wk. In this case the state X k cannot be measured 
directly, but 'noisy observations' / = (Yo, YI'···' Yk) are available at 
time k. Thus the control Uk will be a feedback function of the form 

Uk = uk(/). (6.3.3) 

This is the 'full LQG problem'. The difficulty here is, of course, that 
knowledge of / does not (except in special cases) determine Xk exactly, 
and the current state X k is just what is needed for controlling the 
system at time k. We deal with this by replacing the state-space model 
(6.3.1), (6.3.2) by the corresponding innovations representation. As 
discussed in Section 3.4, this provides an equivalent model in the form 

Xk+ l1k = A(k)xk1k _ 1 + B(k)uk + K(k)Vk 

where the innovations process Vk is given by 

Vk = Yk - H(k)xk1k _1 

so that Yk satisfies 

( 6.3.4) 

(6.3.5) 

Yk = H(k)xk1k _1 + Vk· (6.3.6) 

The Kalman gain K(k) is given by (3.3.5). The new 'state' of the system 
is Xk1k _ I and this is determined exactly by /-1. We thus reduce the 
situation to one in which the state is known, and can then apply the 
results of the previous section to determine optimal control policies. 
First, however, the status of the innovations representation (6.3.4), 
(6.3.6) must be clarified. We do this before continuing with our 
discussion of optimal control problems in Section 6.3.2 below. 

6.3.1 The Kalman filter for systems with feedback control 

In the derivation of the Kalman filtering formulae in Section 3.3 it was 
assumed that {wk } was a weak-sense white noise (Wk and WI uncorrela­
ted for k =I l) and that {Uk} was a deterministic sequence. Under these 
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conditions xklk - 1 given by (6.3.4) is the best linear (more precisely, 
affine) estimator of Xk given l-l, and the input/output properties of 
the model (6.3.4), (6.3.6) are identical to those of the original model 
(6.3.1), (6.3.2). Now, however, we wish to consider controls Uk which 
are not deterministic but which are feedback functions as in (6.3.3). 
Further, there is no reason why uk(l) should be a linear function of l. 
Suppose in fact that this function is nonlinear. Combining (6.3.3)­
(6.3.5), we see that Xklk -1 satisfies 

xk+lIk = A(k)xklk _1 + B(k)uk(l) + K(k)(Yk - H(x)xklk _1)· (6.3.7) 

Given the sequence yj = (Yo, Yl,'" ,y), one can use this equation for 
k = 0, 1, ... ,j to compute Xj+ lIi' Thus xj + 1lj is a function of yi, say 

xj + Ilj = giyi)· 

Now gj is a nonlinear function, due to the nonlinearity of Uk in (6.3.7). 
So xj + Ilj cannot possibly be the best linear estimator of Xj+ I given yi, 
as it would be were Uk deterministic. To get round this apparently 
awkward fact, we use the alternative interpretation of the Kalman 
filter, namely that if the Wk are independent normal random vectors 
and Xo is normal, then xj + Ilj is the conditional expectation of xj + I 

given yj. The advantage of this formulation is that there is no 
requirement that a conditional expectation should be a linear function 
of the conditioning random variables. 

Theorem 6.3.1 

Suppose that, in the model (6.3.1), (6.3.2), Xo, Wo, WI'''' are normally 
distributed and that Uk is a feedback control as in (6.3.3). Let xklk - 1 be 
generated by the Kalman filter equation of Theorem (3.3.1). Then 

(6.3.8) 

The innovations process (6.3.5) is a normal white-noise sequence. 

PROOF The proof relies on Proposition 1.1.6 which shows that 

if yj, yj are random vectors which are related to each other in a one-to­
one way, i.e. there are functions hj' hj- I such that 

yj = h iyi), yi = h j- I (yj). 
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As in Section 3.4, let us write the state X k in (6.3.1) as X k = xk + xt, and 
correspondingly Yk = Yk + yt, where Xk' xt, Yk' yt satisfy: 

Xk+_l = A(k)~k + C(k)Wb Xo = Xo - rno} 

Yk = H(k)Xk + G(k)wk 

xt+ 1= A(k)xt + B(k)uk(yk), X6 = rno } 

yt = H(k)xt· 

(6.3.9) 

(6.3.1 0) 

Equations (6.3.9) are linear, so that Xk+ I' Yk are zero-mean normal 
random vectors for all k. xt+ I and yt are random vectors which 
depend on yk since uk(yk) = ukW + y*k). Applying the standard 
Kalman filter results from Section 3.3 we see that Xk+ Ilk: = E[Xk + lit] 

satisfies 

(6.3.11) 

where K(k) is given by (3.3.5). We cannot obtain (6.3.4) immediately by 
adding (6.3.11) to (6.3.10) because the conditioning random variable is 
t and not yk as required. However, yk and yk are equivalent in the 
sense mentioned earlier. Indeed, plainly from (6.3.10), xt, and hence 
yt, is determined by yk-l =(YO'YI""'Yk-I)' Thus 

Yk = Yk - yt =:hk(yk). 

Conversely, suppose yk = (Yo, Yl"'" Yk) is given; then Yk is deter­
mined. We show this by induction. Suppose that for j = 0, 1, ... , k 
there are functions fj such that 

(6.3.12) 

Then given yk we can calculate Yj' 0 S j s k, and hence yt+ I, using 
(6.3.10). But now 

- * f (-k+l) Yk+1 =Yk+l + Yk+1 =:Jk+1 Y 

Thus (6.3.12) holds for j = k + 1. At time zero, 

Y6 = H(0)X6 = H(O)rno 

and rno is known, so that 

Yo = H(O)rno + Yo =:fo(Yo)· 

Thus (6.3.12) holds for all j, and f j = hj- 1 • 

This argument shows that yk and yk are obtained from each other in 
a one-to-one fashion, and hence that 

xk+ llk = E[xk+ llyk] = E[xk+ 11yk]. 
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Now xt+ 1 is a function of yk, so that 

E[xt+ Ill] = xt+ l' 

Combining these relations, we obtain 

E[Xk+ Ill] = E[xt+ 1 + xk+ Ill] 
* '" = X k + 1 + X k+1Ik ' 

Adding the equations (6.3.10) and (6.3.11) shows that Xk+ 1Ik : = 

E[xk + Ill] satisfies (6.3.4). Thus (6.3.4) is indeed the Kalman filter 
when Uk is afeedback control, as long as the disturbance process Wk is 
a normal white-noise process. As regards the innovations process Vk, 

note that 

Vk = Yk - H(k)xklk _ 1 

= Yk + yt - H(k)(xt + xklk - 1) 

= Yk - H(k)xklk _ 1• 

Thus Vk coincides with the innovations process corresponding to the 
control-free system (6.3.9). It is therefore a normal white-noise process 
with covariance 

as in Section 3.4. 

(6.3.13) 

D 

It is perhaps worth pointing out that, even if Wk is a normal white­
noise process, the state process Xk is not necessarily normal, since 
(6.3.1), (6.3.2) determine X k as a possibly nonlinear function of W k - 1• 

However, the conditional distribution of X k given l-1 is normal, since 
Xk has the representation 

* '" ~ Xk = Xk + xklk - 1 + X klk - 1 

= xklk - 1 + xklk - 1 

where xklk - 1 = Xk - xklk - 1 is a normal random vector with mean 0 and 
covariance P(k) given by (3.3.6). Thus the conditional distribution of 
Xk given l -1 is N(xklk _ P P(k)). 

6.3.2 The linear regulator problem 

Let us now return to the control problem of choosing Uk to minimize 
the cost 

CN(u) = E( :t: IID(k)Xk + F(k)uk I1 2 + X~QXN ). (6.3.14) 



280 OPTIMAL CONTROL FOR STATE-SPACE MODELS 

This is the same form of cost as in Section 6.2 but a different class of 
controls is involved. In this section we shall consider feedback 
controls of the form 

( 6.3.15) 

rather than uk(/) as discussed above. Controls (6.3.15) are of course a 
sub-class of those previously considered - we are now insisting that 
the control Uk should depend on the observations Yj for times j up to, 
but not induding k, whereas previously dependence on Yk also was 
allowed. This restriction is introduced for two reasons. Practically, it 
means that 'instant' data processing is then not required: at time k we 
record the new observation Yk, and apply the control uk(l- 1) which 
can be computed somewhat in advance since it does not depend on Yk. 
Mathematically, controls (6.3.15) are related, as will be seen below, to 
our formulation of the Kalman filter as a predictor, giving the best 
estimate xk1k - 1 of X k given /- 1. Analogous results can be obtained for 
controls uk(l), but these involve the Kalman filter in the form which 
computes the current state estimate xk1k ' and this is somewhat more 
complicated. 

The cost CN(u) in (6.3.14) is expressed in terms involving the state 
variables X k ; we wish, however, to use the innovations representation 
(6.3.4) in which the state variable is xk1k - 1• The first task is therefore to 
re-express CN(u) in a way which involves xk1k - 1 rather than Xk, and 
this is done by introducing conditional expectations as follows: 

CN(u) = ECt~ E[ IID(k)Xk + F(k)ukI1 2 1/- 1 ] 

+ E[X~QXNlyN-l]). 

Now Xk can be expressed in the form 

Xk = xk1k - 1 + xk1k - 1 

(6.3.16) 

where xk1k - 1 is a function of /-1 and the estimation error xk1k - 1 is 
independent of /-1 with distribution N(O, P(k)). We can simplify the 
terms in (6.3.16) using this fact and properties of conditional 
expectations. The last term is: 

E[X~QXNlyN-l] = E[(xN1N _1 + XNIN_l)TQ(XNIN_l + XNIN_l)lyN-l] 

= x~IN-1QXNIN-l + E[x~IN_1QXNIN_1IyN-I] 
= x~IN-1QXNIN-l + tr[P(N)Q]. 
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Similarly the kth term in the sum becomes 

E[(D(k)xk1k _1 + F(k)Uk + D(k)xk1k _/ 

'(D(k)xk1k _1 + F(k)uk + D(k)Xklk_l)ll-l] 

= IID(k)xk1k _1 + F(k)uk 112 + tr [P(k)DT(k)D(k)] 
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where we have used the fact that Uk is a function of /-1. Thus 

N-l 
+ L tr[D(k)P(k)DT(k)] + tr[P(N)Q]. (6.3.17) 

k=O 

This expresses CN(u) in a way which involves the state xk1k - 1 of the 
innovations representation. The important thing to notice about this 
expression is that the first term is identical to the original expression 
(6.3.14) with Xk replaced by xk1k - 1' and that the remaining two terms 
are constants which do not depend in any way on the choice of Uk' 
Thus minimizing CN(u) is equivalent to minimizing 

E( :t: IID(k)xk1k _1 + F(k)uk I1 2 + X~IN-IQXNIN-l) (6.3.18) 

where the dynamics of xk1k - 1 are given by (6.3.4), namely 

xk1k - 1 = A(k)Xklk_l + B(k)uk + K(k)Vk' (6.3.19) 

Since the innovations process Vk is a sequence of independent normal 
random variables, the problem (6.3.18)-(6.3.19) is the standard 
'completely observable' regulator problem considered in the previous 
section. All coefficients are as before except for the 'noise' term K(k)Vk 
in (6.3.19). However, it was noted in Section 6.2 that the optimal 
control for the linear regulator does not depend on the noise 
covariance. Therefore the optimal control coefficients are the same as 
in the completely observable case. We have obtained the following 
result: 

Theorem 6.3.2 

The optimal control for the noisy observations problem (6.3.1), 
(6.3.2), (6.3.14) is 

uf = - M(k)Xklk_l (6.3.20) 
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where M(k) is given as before by (6.1.16). The cost of this policy is 

N-l 
CN(tJ1) = m'&S(O)mo + tr[P(N)Q] + L tr[D(k)P(k)DT(k) 

k=O 

+ G(k)GT(k))KT(k)S(k + 1)]. 

+ K(k)(H(k)P(k)HT(k) (6.3.21) 

PROOF Only the expression (6.3.21) for the optimal cost remains to 
be verified. We use the expression (6.2.9) for the completely observable 
case. First, note that the initial condition for (6.3.19) is deterministic: 
X01 _ 1 = O. Next, consider the contribution of the 'noise' term K(k)Vk' 
Define 

Vk = [H(k)P(k)HT(k) + G(k)GT(k)] -1/2Vk 

(the inverse exists since by our standing assumptions G(k)GT(k) > 0). 
From (6.3.13) we see that E[vkvn = 1, so that vk is a normalized white­
noise process, and (6.3.19) can be written 

xk+l1k = A(k)xk1k _ 1 + B(k)Uk + K(k) [H(k)P(k)HT(k) + G(k)GT(k)]I/2Vk. 

This is now in the standard form of (6.2.1) with a new 'C-matrix' 
K[HPHT + GGT] 1/2 and we can read off the optimal cost from 
(6.2.9). Remembering that the two constant terms from (6.3.17) must 
also be included, we obtain (6.3.21). 0 

Let us summarize the computations needed in order to implement 
the control policy described in Theorem 6.3.2. They are as follows: 

(a) Solve the matrix Riccati equation of dynamic programming 
backwards from the terminal time to give matrices S(N), ... , S(O): 

S(k) = AT(k)S(k + l)A(k) + DT(k)D(k) 

- [AT(k)S(k + I)B(k) + DT(k)F(k)] 

[BT(k)S(k + l)B(k) + FT(k)F(k)]-1 

[BT(k)S(k + l)A(k) + FT(k)D(k)] 

S(N) = Q. 

This determines the feedback matrices 

M(k) = [BT(k)S(k + l)B(k) + FT(k)F(k)]-1 

[BT(k)S(k + I)A(k) + FT(k)D(k)]. 

(6.3.22) 

(b) Solve the matrix Riccati equation of Kalman filtering forwards 
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from the initial time to give matrices P(O), . .. , P(N): 

P(k + 1) = A(k)P(k)AT(k) + C(k)CT(k) - [A(k)P(k)HT(k) + C(k)GT(k)] 

H(k)P(k)HT(k) + G(k)GT(k)]-1 

[H(k)P(k)AT(k) + G(k)CT(k)] 

P(O) = Po. (6.3.23) 

This determines the Kalman gain matrices 

K(k) = [A(k)P(k)HT(k) + C(k)GT(k)] [H(k)P(k)HT(k) + G(k)GT(k)] -1. 

It is important to notice that these computations refer independ­
ently to the control and filtering problems respectively, in that (a) 
involves the 'cost' parameters Q, D(k), F(k) but not the 'noise' 
parameters Po, C(k), G(k), whereas the converse is true in the case of 
(b). 

The property that the optimal control takes the form zF(k) = 

- M(k)x k1k _ 1 where M(k) is the same as in the deterministic or 
complete observation cases, expresses the so-called 'certainty­
equivalence principle' which, put in another way, states that, 
optimally, the controller acts as if the state estimate xk1k - 1 were equal 
to the true state Xk with certainty. Of course, the controller knows that 
this is not the case, but no other admissible strategy will give better 
performance. 

That M(k) is unchanged in the presence of observation noise is 
entirely due to the quadratic cost criterion which ensures that the cost 
function for the problem in innovations form is, apart from a fixed 
constant, the same as that in the original form. On the other hand, the 
fact that the intermediate statistic to be computed is xk1k - 1' regardless 
of cost parameters, is a property which extends to more general forms 
of cost function. To see this, recall that whatever admissible control is 
applied, the conditional distribution of X k given i-I is N(x k1k _ 1, P(k)). 
Now suppose that the cost to be minimized takes a general form 
similar to (6.1.14), i.e. 

CN(u) = E( :t: I(k, Xk , Uk) + g(XN)) 

where I and g are, say, bounded functions. Introducing intermediate 
conditional expectations, we can express CN(u) as 

CN(u) = E( :t~ E[I(k, Xk' uk)li- 1] + E[g(xN)lyN-l] ). 
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The conditional expectation can now be evaluated by integrating 
with respect to the conditional distribution. This gives 

and 

where 

Thus 

E[l(k, xk , uk)ll- 1 ] = ~k, xk1k - 1' Uk) 

~k, X, u) = f ~n l(k, z, u) (2n)nI2(de:(p(k)))1/2 

·exp((z - X)Tp-1(k)(z - x)) dz 

A A f 1 
g(x) = ~n g(z) (2n)"/2(det(P(N)))1/2 

·exp((z - X)TP-1(N)(z - x)) dz. 

(6.3.24) 

The problem (6.3.19), (6.3.24) is now in innovations form and can be 
solved by dynamic programming. Define functions Wo, ... , WN by 

WN(x) = g(x) 

Wk(x) = min {~k, x, v) + E(V)Wk(Ax + Bv + K(k)vk) 
v 

k= N -1, ... ,0 (6.3.25) 

where E(v) denotes expectation taken over the distribution ofvk , which 
is N(O,HP(k)HT + GGT). Let a1(k,x) be a value of v which achieves 
the minimum in (6.3.25). Then the optimal control is 

af = a1(k, xk1k - 1) 

with minimal cost 

CNW) = Wo(mo)· 

This can be checked by the same sort of 'verification theorem' proved 
earlier. Thus is this general problem the 'data processing' still consists 
of calculating Xk1k - 1 via the Kalman filter, but the control function 
a1(k, x) is not related in any simple way to the control function u1(k, x) 
which is optimal in the case of complete observations. 



6.3 PARTIAL OBSERVATIONS 285 

r-------,----.~ 

r-----------, 
I ~ I 

4-14--1 Kalman filter 

L - - - - - - - __ J Controller 

Fig. 6.2 

In summary, we see that the optimal controller separates into two 
parts, a filtering stage and a control stage as shown in Fig. 6.2. The 
filtering stage is always the same regardless of the control objective. 
This is the separation principle. The certainty-equivalence principle 
applies when a1(k, Xk) is the optimal completely observable control, 
but this is a much more special property which holds only in the 
quadratic cost case. 

These results point to a general cybernetic principle, namely that 
when systems are to be controlled on the basis of noisy measurements 
the true 'state' of the system which is relevant for control is the 
conditional distribution of the original state given the observations. 
Note that in the LQG problem this is completely determined by xk1k - t 

since the conditional distribution is N(xk1k_1' P(k)) and P(k) does not 
depend on the observations. Thus the Kalman filter in effect updates 
the conditional distribution of X k given yk- 1. The problem can be 
solved in an effective way because ofthe simple parametrization of the 
conditional density and the fact that there is an efficient algorithm -
the Kalman filter - for updating the parameter x k1k - 1• More general 
problems typically involve extensive computation due to the lack of 
any low-dimensional statistic characterizing the conditional 
distributions. 

6.3.3 Discounted costs and the infinite-time problem 

In this section we will assume that the system matrices A, B, H, C, G 
are time-invariant, that D(k) = l/2 D, F(k) = l/2 F, and that Q is 
replaced by pNQ for some p < 1, so that the cost function becomes 

C~(u) = E[ :t~ III DXk + FUk 112 + pNX~QXN 1 
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In view of the 'separation property', the Kalman filter matrices P(k), 
K(k) are unaffected by the discount factor p. By specializing the 
preceding results, or by using an argument involving x~, u~ as in 
Section 6.2, one can verify that the control which minimizes C~(u) is 

Ap _ MP(k) A Uk - - xklk~l 

with MP(k) as before. The cost corresponding to uP is 

C~(uP) = m'6SP(O)mo + pN tr[P(N)Q] 
N~ 1 

+ L pktr[DP(k)DT 

k=O 

Thus if a discount factor is introduced, the filtering computation (b) is 
unchanged while, in the control computation (a), A and B are replaced 
by p1/2 A, p1/Z B respectively. 

Turning now to the minimization of the infinite-time cost, 

C~(u) = E[Jolll DXk + FUkII Z } 

we have to consider the asymptotic properties of both Riccati 
equations (6.3.32) and (6.3.23). The conditions required are as follows 

where 

(~'~)} stabilizable 
(A,C) (6.3.26) 

(15, A)} 
(H,A) 

A = A - CGT(GGT)~ 1 H 

C = C[I - GT(GGT)~1G] 

detectable 

A = A - B(FTF)~ 1 FTD 

15 = [I - F(FTF)~ 1 FT]D. 

These conditions simplify under the additional conditions, assumed 
at the outset in most treatments of LQG control, that CGT = 0 (no 
correlation between state and observation noise) and FTD = 0 (no 
'cross-term' in the cost criterion). Under these conditions, A = A = A, 
C = C and 15 = D; thus conditions (6.3.26) stipulate that the system be 
stabilizable from either the control or the noise input, and that it be 
detectable either via the output HXk or via the 'output' DXk appearing 
in the cost function. 
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According to the results in Appendix B, conditions (6.3.26) 
guarantee that the algebraic Riccati equations corresponding to 
(6.3.22), (6.3.23) have unique non-negative definite solutions S, P 
respectively and that the solutions of (6.3.22), (6.3.23) converge to S, P 
for arbitrary non-negative definite terminal condition Q and initial 
condition Po respectively. The optimal control for the infinite-time 
problem can now be obtained by applying the results of Section 6.2 
concerning the completely observable case. Indeed, the innovations 
representation is, as above, 

Xk+ 11k = AXk1k _ 1 + BUk + C(k)Vk (6.3.27) 

where Vk is the normalized innovations process and 

C(k) = K(k) [HP(k)HT + GGT]1/2. 

Note that, as k -t 00, 

C(k) -t C = K[HPHT + GGT]1/2. 

where P is the solution of the algebraic Riccati equation and K the 
corresponding Kalman gain. As in (6.3.17) the cost expressed in terms 
of xk1k - 1 is 

C~(u) = E[k~/k II DXk1k - 1 + FUk 112] + k~/k tr[DP(k)DT] 

(6.3.28) 

and the final sum is finite since tr[DP(k)DT] -ttr[DPDT] as k-t 00. 

We now apply the results of Section 6.2 to the infinite-time completely 
observable problem constituted by (6.3.27), (6.3.28), and conclude that 
the optimal control is 

(6.3.29) 

with cost, as in (6.2.16), 

00 00 

m'6SPmo + I pH 1 tr[CT(k)SPC(k)] + I pktr[DP(k)DTJ. 
k=O k=O 

Substituting for C(k) gives the final cost expression 

00 

C~(ap) = m'6SPmo + I l[DP(k)DT 

k=O 
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Appearances to the contrary, uf given by (6.3.29) is not a constant­
coefficient controller since the gain K(k) in the Kalman filter depends 
on P(k) which is not constant unless Po happens to be equal to the 
stationary value P. A simpler control algorithm is obtained if K(k) is 
replaced by its stationary value K = [APHT + CGT] [HPHT + 
GGT] - 1, that is we apply the control value 

(6.3.30) 

where Zk is generated by 

zk+ 1 = AZk - BMPZk + K(Yk - Hzk) 

(6.3.31) 

(this is the Kalman filter algorithm with P(k) replaced by P). Of 
course, Zk is in general not equal to xk1k - 1• Control vP is not optimal for 
the discounted cost problem, but VI is optimal in the sense of 
minimizing the average cost per unit time, 

(6.3.32) 

As remarked earlier, this criterion is insensitive to the behaviour ofthe 
process for small k; and, for large K, Zk and xk1k - 1 are practically 
indistinguishable. 

Theorem 6.3.3 

Suppose conditions (6.3.26) hold. Then the control VI given by 
(6.3.30), (6.3.31) with p = 1 minimizes CaJu) in the class of all output 
feedback controls such that Cav(u) exists and Ell xk 112 is bounded. The 
minimal cost is 

(6.3.33) 

PROOF It follows from the arguments above and Theorem 6.3.2 
that the control u1 of (6.3.20) is optimal for Cay and that its cost is 
given by the expression in (6.3.33). Thus it remains to show that VI is 
admissible and that its cost coincides with that of 11 1. 

Define ~k: = X k - Zk' Recalling that Yk = HXk + GWk and hence that 
Yk - HZk = H(xk - Zk) + GWb we see that the joint process (Zb ~k) 
satisfies: 
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[Zk+1J [A - BM KH J[ZkJ [ KG ] 
~k+l = 0 A-KH ~k + C+KG Wk 

-[ZkJ -=:A ~k + Cwk • (6.3.34) 

Under conditions (6.3.26) both A - BM and A - KH are stable. This 
implies that A is stable since the eigenvalues of A are those of 
(A - BM) together with those of (A - KH). Thus the covariance 
matrix Bk of (Xk' ~k) is convergent to B satisfying B = ABAT + CCT. 
Since Xk = ~k + Zk> this shows that Ell Xk 112 is bounded and CavW) 
exists. Note that 

DXk + FIJi = D[ ~:J 
where D = (D - FM, D), so that 

CavW) = tr[DBDT]. 

The process 11k: = col {x k1k -\, xk1k - 1} satisfies (6.3.34) with A and C 
replaced by A(k) and C(k) obtained by substituting K(k) for K in A 
and C. Denote r(k): = cov (11k). Then r(k) satisfies 

r(k + 1) = A(k)r(k)AT(k) + C(k)CT(k) 

We know that r: = lim r(k) exists and that 

Cav(U') = tr[DrDT]. 

(6.3.35) 

Taking the limit as k -+ 00 in (6.3.35) we see that r satisfies r = 
Ar AT + CCT, i.e. r = B. This completes the proof. 0 

Finally, a remark on the stabilizability and detectability conditions 
(6.3.26). The conditions on (A, B), (15, A) ensure that SP, the solution to 
the 'discounted' algebraic Riccati equation, exists for any P < 1, but if 
these conditions are not met then SP may only exist for P < Po for 
some Po < 1. According to the separation principle, however, 
discounting has no effect on the Riccati equation (6.3.23) generating 
P(k) so that no weakening of the conditions on (A, C) and (H,A) is 
possible. The reason for this minor asymmetry in the problem is of 
course that, while we are free to select the cost function coefficients D, 
F in any manner we choose, their counterparts C and G in the filtering 
problem are part of the system specification. 
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As in the complete observations case, little can be said about the 
average cost problem if conditions (6.3.26) are not met. 

Notes 

Dynamic programming was introduced in its modern form by 
Bellman (1957). Recent texts describing various aspects of it include 
Bertsekas (1976) and Whittle (1981). The linear regulator problem 
was solved by Kalman (1960) who also noted the filtering/control 
duality. For references on properties of the Riccati equation and the 
algebraic Riccati equation, see Chapter 3. The use of linear/quadratic 
control as a design methodology for multivariable systems has been 
pioneered by Harvey and Stein (1978); see also Kwakernaak (1976). 

The 'certainty-equivalence principle' was first enunciated in the 
economics literature, by Simon (1956). The 'separation principle' is 
clearly presented (for continuous-time systems) in Wonham (1968) 
and is also discussed in Fleming and Rishel (1975). The stochastic 
linear regulator is discussed in one form or another in most texts on 
stochastic control, including Bertsekas (1976) and Whittle (1981). 
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CHAPTER 7 

Minimum-variance and self-tuning 
control 

In Chapter 6 we have studied LQG control system design for state­
space models. Since ARMAX models can be realized in state-space 
form, the results apply equally to ARMAX models. In either case, it is 
supposed that the parameters of the model are precisely known. On 
the other hand, we have presented in Chapter 4 techniques for 
identifying unknown systems from input/output data. Is it possible to 
combine these techniques and design controllers for 'unknown' 
systems involving some kind of on-line combination of identification 
and control? The general area to control system design for imperfectly 
known (and possible time-varying) systems is known as adaptive 
control and has been the subject of extensive study over many years. 
In this chapter we do not attempt any overall coverage of this area 
(which would require at least a whole book in itself) but restrict 
ourselves to discussing two key ideas - minimum-variance control and 
self-tuning regulators - which are closely related to the material of the 
preceding chapters. Both of these ideas are in their present form due 
to K.J. Astrom and co-workers (1970,1973) and have since burgeoned 
into a minor industry (quite literally, in that computer controllers 
incorporating these concepts are now commercially available). We 
also discuss the related ideas of pole-shifting regulators, which retain 
more links to classical control system design, and were introduced by 
Wellstead and co-workers (1979). Within the confines of a short 
chapter it is only possible to present the main theoretical results and 
we must refer the reader elsewhere for their ramifications in the 
context of practical control system design. 

This chapter is concerned with regulator (minimizing output 
variance) and control (minimizing tracking error) for single-input 
single-output systems described by ARMAX models. The minimum­
variance (m.v.) regulator can be viewed as the limiting case of LQG 
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control when the cost for control energy is reduced to zero. The result 
is an extremely simple algorithm which, when it works, can provide 
effective regulation. There are cases, however, in which the m.v. 
regulator involves excessive use of control energy or even a loss of 
stability. In these cases one must resort to the 'full' LQG control (or 
some sub-optimal approximation to it) which gives better control at 
the expense of a vastly increased computational load. These topics are 
discussed in Section 7.1, and in Section 7.2 pole-shifting regulators are 
introduced; here the concept of 'optimality' is abandoned in favour of 
a qualitative specification of desired response expressed in terms of 
pole locations. In Section 7.3, adaptive versions of these algorithms 
are discussed. It is a remarkable fact that a combination of simple 
least-squares estimation and m.v. control can give a system whose 
long-run performance is as good as that which could be obtained if 
the system parameters were known exactly. The same is true for some 
classes of pole-shifting regulators. These algorithms must, however, 
be modified somewhat if one wishes to prove that the parameter 
estimates will actually converge under reasonably general conditions. 
We present one such algorithm, due to Goodwin, Ramadge and 
Caines (1981) in Section 7.4; a proof of convergence is given in 
Appendix C. This is a landmark result in stochastic adaptive control; 
much current research is based on similar ideas. 

7.1 Regulation for systems with known parameters 

7.1.1 Minimum-variance control 

The minimum-variance controller is a simple scheme for regulating 
the output of an ARMAX model by a predictive cancellation 
procedure. The system model is given in standard ARMAX single­
input, single-output form as 

A(z - 1 )Yk = Z - r B(z - 1 )Uk + C(z - 1 )wk. (7.1.1) 

Here {wd is a white noise sequence with variance (J2 and' 

A(Z-I)= 1 +a 1z- 1 + ... +anz-n 

B(Z-I)=bo+b 1z- 1 + ... +b,,_,z-(n-r) 

C(Z-I)= 1 +C 1Z- 1 + ···+cnz-n. 

t For convenience we suppose in this section that A, Z - r Band C have the same degree n. 
Some coefficients may vanish. 
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The number of steps of delay between input and output is r, so that 
bo =1= 0 by definition. A and C are assumed to be stable and it is 
supposed that r ~ 1; we shall comment below on the conditions 
required for B. The control objective here is regulation, i.e. we want to 
make the output Yk as small as possible. 'Minimum variance' means 
that we seek to minimize Ey~ at each k. The key to minimum-variance 
control is the so-called predictor form of the ARMAX model. 
Consider first the control-free case Uk = 0 with time set 7L. Then 
according to the discussion in Chapter 2, the output Yk of the 
ARMAX system (7.1.1) is a stationary process which can be written as 
an infinite-order moving average: 

Yk = Q(Z-1)Wk = qOWk + q1 Wk- 1 + ... 
where Q(Z-1)=C(Z-1)/A(z-1). The sum converges in quadratic 
mean. The model is invertible, in that Wk can be recovered from past 
outputs Yk' Yk - 1 , ... by the formula 

Wk = [Q(Z-1)]-1 Yk . 

Let us consider the r-step-ahead prediction problem of forming the 
best linear approximation at time k to Yk+,' We can write 

,-1 <Xl 

Yk+, = L qjWk+,- j + L qj+,wk- j 
j=O j=O 

where the two terms on the right are uncorrelated and the second is 
'known' at time k. Take a general predictor in the form 

<Xl 

X = L (l-jwk _ j' 
j=O 

Then the mean square error is 

E[Yk+, - XY = (J2 tt: qJ + ito (qj+, -!Xl} 

and this is minimized by taking !Xj = qj+" so that LO qj+,wk- j is the 
best predictor, usually denoted Yk+rlk' What remains is to develop an 
effective way of computing Yk+rlk given that what we observe is {yd, 
not {wk }. The following proposition provides the solution. 

Proposition 7.1.1 

There are unique polynomials F(Z-1), D(Z-1) of degrees r -1, n - 1 
respectively, such that 

C(Z-1) = A(Z-1 )F(Z-1) + z-'D(Z-1). (7.1.2) 
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PROOF F and D are obtained by equating coefficients of z- j for 
j= l, ... ,(n+r-l) in (7.1.2). Write 

F(Z-I) = 1 + flZ-1 + ... + fr_lZ-/r-l) 

D(Z-I)=do+d1z- 1 + ... +dn_1z-(n-l). 

Then we obtain 

Cl = a1 + fl 
C2 = a2 + aJl + f2 

Cr-l =ar- l +ar- 2fl + ... +al fr-2 + fr-l 

Cr = ar + ar- l f1 + ... + al fr-1 + do 

0= anfr-l + dn- l . 

The first (r - 1) of these equations determine fl'" ., fr-1 recursively 
and the last n determine do, ... , dn - 1 • 0 

U sing the expression (7.1.2) for C(z - 1) in (7.1.1) (still with Uk = 0) we 
obtain 

-1 D(z-l) 
Yk+r = F(z )Wk+r + A(Z-l) Wk 

-1 D(Z-1) 
=F(z )Wk+r+ C(Z-1)Yk' 

The best predictor is thus 

A D(z-1) 
Yk+rlk = C(Z-1) Yk 

with prediction error 

r-1 
(J2 L ff 

j=O 

(the coefficients f1'''''/r-1 coincide with Q1,· .. ,qr-1 and fo= 
Qo = I). Notethatthis provides a verysimplewayofcaIculatingYk+rlk: it 
is the output of the ARMA system 

C(Z-1 )Yk+rlk = D(Z-1)Yk 

driven by Yk' (Here, Z-l A+rlk = Yk-I +rlk-1') 
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Let us now return to the controlled case with Uk -+ 0. A little algebra 
using the identity (7.1.2) shows that the system equation (7.1.1) can be 
written in the form 

and, since F has degree r - 1, 

F(z-I)Wk+r=Wk+r+ flWk+r-l + ... + fr-1Wk+l. (7.1.4) 

Now suppose that the control Uk is a linear function of present and 
past outputs Yk' Yk -1 .... In view of (7.1.4), the first two terms on the 
right of (7.1.3) are uncorrelated with F(z - 1 )Wk +" and hence 

2 (B(Z-I)F(z-l) D(z-I))2 -1 2 
EYk+r=E C(z-l) Uk+ C(Z-I/k +E(F(z )Wk+.). 

This expression is minimized by taking 

B(Z-I)F(z-I)Uk + D(Z-l)Yk = 0, 

I.e., 

Uk = - B(z I)F(z l)Yk· 

(7.1.5) 

(7.1.6) 

(7.1.7) 

This is the minimum-variance (m.v.) control law. One of its advantages 
is that it is extremely easy to compute on-line, since the recursion 
(7.1.6) expresses the current control value Uk as a linear combination 
of a finite number of past u/s and y/s. If the minimum-variance 
controller is applied then the controlled process Yk satisfies the 
equation 

Yk = F(z - 1 )Wk> 

so that Yk is a moving-average process of order r - 1. Its variance is 

Eyt = U6 + ff + ... + f;_I)(J2. 

Example 7.1.2 

Let us consider the system 

(l +az- 1)Yk=Z-2uk +(l +CZ-1)Wk (7.1.8) 

with (J2 = 1. In this case F = 1 + (c - a)z-l, D = - a(c - a), and the 
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minimum-variance controller is 

a(c - a) 
Uk= 1 +(c-a)z-lYk, 

the output variance then being 

Ey~ = n + ii = 1 + (c - a)2. 

(7.1.9) 

(7.1.10) 

An obvious drawback of the minimum variance controller is that it 
cannot be used if B has unstable zeros t (such systems are often called 
non-minimum phase systems). Indeed, since with m.v. control {Yk} 
satisfies Yk = F(Z-l )Wk we see from (7.1.7) that {Uk} is given in terms of 
the disturbance sequence {wd by 

D(Z-l) 
Uk = - B(Z-l) Wk 

If B has unstable zeros which are not cancelled by those of D then 
var (Uk) ~ 00. One can easily see the mechanism of this instability by 
considering the deterministic system Yk + Yk-l = Uk - 2Uk_l'lf Yo = 1 
and Uo = 0 then the control sequence Uk = 2k- 1 gives Yk = 0 for 
k ~ 1; progressively larger control values are required to cancel out 
the effect of previous controls. Of course such a control policy is 
totally unacceptable but is not excluded by our formulation because 
the control values are uncosted. 

For minimum-phase systems (B has no unstable zeros), the m.v. 
controller gives a control process {ud which is asymptotically 
stationary; but this process may still have very large variance. An 
example is given in Section 7.1.3 below. 

Minimum-variance controllers can also be designed with the 
objective of tracking a given (non-random) reference signal Yt. 
Indeed, subtracting yt+r from both sides of (7.1.3) we can write, as in 
(7.1.5), 

* 2 _ (B(Z-l)F(Z-l) D(Z-l) *)2 
E(Yk+r-Yk+r) -E C(z-l) Uk+C(Z-l)Yk-Yk+r 

+ E( F(Z-l)Wk+r y, 
giving the modified m.v. controller recursively as follows: 

B(Z-l)F(z-l)Uk = C(z-l)yt+r - D(Z-l)Yk' 

tWe say zeros of a function P(tr) are stable (unstable) if they lie outside (inside) the 
closed unit disc. Likewise we define stable and unstable poles. 
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As before, the error variance is 
,-1 

(J2 I ft. 
o 

297 

The most frequently encountered practical case of this is yt == y* (a 
constant 'set point'). 

In many circumstances the m.v. controller is a satisfactory 
practical device. For a specific system with known parameters it is 
very easy to compute the coefficient ofthe m.v. controller; if these turn 
out to give an adequate stability margin then this design will provide 
effective contro1. If not, then some form of control costing must be 
incorporated but this involves a substantial increase in the amount 
of computation required. The main use of the m.v. controller in its 
simplest form is in fact in connection with self-tuning control as 
discussed in Section 7.3. 

7.1.2 The minimum-variance regulator with control costs 

The m.v. controller for the system (7.1.1) minimizes Ey~ simulta­
neously for all k and hence minimizes the long-run average cost 

1 N 
lim N L Ey~ 

N .... oo k=1 

or the discounted cost 

with 0 < p < 1; in fact these quantities take the minimal values f* and 
pf*/(1 - p) respectively, where 

,-1 

f* =(12 Ln. 
k=O 

With control costing such simultaneous minimization is no longer 
possible since each Uk contributes to the output at several different 
times. Consider the cost function 

1 N 
J(u) = lim E- L (y~ + AuD. (7.1.11) 

N .... oo N k=1 

When A = 0 control is uncosted and the minimizing u will be the m.v. 
controller. When A > 0 we have a quadratic cost functional, and since 
the system equation (7.1.1) is linear the minimization of J(u) is an 
LQG problem of the sort considered in the previous chapter. The 
parameter A can be adjusted so as to penalize more or less severely the 
use of control energy. 
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In order to apply the LQG theory we have to realize the ARMAX 
model in state-space form. The standard realization as given in 
Chapter 2 is 

where 

A= 

C= 

X k + 1 = AXk + BUk + CWk 

Yk = [0, ... , 0, 1 ]Xk + Wk 

0 -an 
-an- 1 

B= 

0 1 -a1 

en -an 

Cl - a l 

(7.1.12) 

bn- r + 1 

b1 

0 

0 

However this realization is not quite the appropriate one here since a 
state feedback control Uk = KXk gives a control Uk depending only on 
Wk-to Wk - 2, ••• , wo, whereas the m.v. controller (for example) depends 
on Wk, Wk - to •.. , Woo We should therefore include Wk as a state variable 
attimek.Definevk : = Wk + 1 andx~: = Wk. Then the state equations canbe 
written in the form 

[ ~:: :J = [ ~ ~ ] [~: ] + [ ~ ]uk + [ ~ }k 

[x~J Yk=[l,O, ... ,O,I] Xk . 
(7.1.13) 

With this realization, controls in state feedback form Uk = KXk (where 
xl = (x2,xD) are sufficiently general to cover the minimum-variance 
controller as a special case. 

The reader will object at this point that the correct class of controls 
for this problem is not state but output feedback and therefore that 
the solution is that obtained in Section 6.3 for the partially observable 
case, involving a Kalman filter to estimate the unobserved states. 
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Recall, however, that the realization (7.1.12) is in innovations form, 
which means that the only uncertainty is in the initial state Xo (if this is 
known then the remaining states can be calculated exactly from the 
output) and consequently that the asymptotic estimation error 
covariance is zero. If we wished to minimize an infinite-time 
discounted cost then it would indeed be necessary to include a Kalman 
filter to provide accurate estimates of the initial state. But to minimize 
the average cost criterion (7.1.11) it is optimal, as shown in 
Section 6.3, to apply the optimal LQG control with the Kalman filter 
covariance set to its steady-state value, and this is equivalent to state 
feedback in the present context. 

Denote by if, 13, C the matrices in the state equation (7.1.13) and let 
H: = [1,0, ... ,0,1]. The cost J(u) can be written in standard form as 

1 N 
J(u) = lim - L IDxk + Fukl

2 

N ... ooNk=l 
(7.1.14) 

where 

The algebraic Riccati equation for the problem (7.1.13)-(7.1.14) is 
now given by (6.1.29) as 

S = ifTsif + HTH _ 1 ifTS1313TSif 
(BTSB + J.) 

(7.1.15) 

and the optimal control is 

u~ = -MXk (7.1.16) 
where 

M = (13TS13 + ),)-l13TSA. 

These conclusions are valid under conditions (6.1.30), namely that 
(if,13) be stabilizable and (D, if) detectable. It is easily checked that 
these conditions hold, in view of the fact that A is stable. 

Use of control (7.1.16) is guaranteed to give a stable closed-loop 
system and to minimize J(u). Computation of u~ is, however, not 
elementary, since the algebraic Riccati equation (7.1.15) must be 
solved, and the form of the solution gives, it must be admitted, very 
little insight into the optimization process. In fact, u~ given by (7.1.16) 
reduces to the minimum-variance controller when J. = O. (Recall that 
the conditions ensuring closed-loop stability are not met when A = 0, 
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so the m.v. control may be unstable). Rather than showing this in 
general it is perhaps more illuminating to examine Example 7.1.2 
agam. 

For this example the state space realization (7.1.13) is 

(7.1.17) 

Let us denote the elements of the symmetric matrix S as 

Then the algebraic Riccati equation (7.1.15) becomes 

53] [ 2 J [(c-a)2 55 = 56-545~A (c-a) 
56 -a(c-a) 

[1 0 1J + 0 0 0 . 
1 0 1 

(c - a) 
1 

-a 

- a(c - a)] 
-a 
a2 

These six simultaneous equations are very easily solved when ), = 0, 
the solution then being 54 = 1 and 

SI =(c-a)2s4 + 1 

S2 = (c - a)s4 55 = - a54 

S6 = 1 + a2s4 

(7.1.18) 

(we retain the s4-dependence here for later use). The control given by 
(7.1.16) is then 

U? = a(c - a, 1, - a)xk. 

Referring to (7.1.17) we see that in this realization x? = wk , xl = u? - I, 

xl = Yk - wk, so that 

u? = a((c - a)wk + U?_I - a(Yk - wd) 

= a(cwk + U?_I - aYk)' 

Multiplying both sides by (1 + cz- I ) and using the basic ARMAX 
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relation (7.1.8), we obtain 
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(I +cz- l)uf=ac(1 +cz-l)wk+a(1 +CZ-l)z-lu~-a2(1 +CZ-I)Yk 

= ac[(1 + az - I )Yk - Z - 2uf] 

+a(l +cz- l)z-luf-a 2(1 +CZ-I)Yk 

= az-Iuf + a(c - a)Yk. 

But this shows that 

° a(c-a) 
uk =(1+(c-a)z I/k 

which is the same as the m. v. controller (7.1.9). The cost of control UO is 
J(UO) = CTSC = SI = 1 + (c - a)2 which coincides with the expression 
given at (7.1.10). 

The algebraic Riccati equation is also easily solved when). > O. We 
find that 

S4 = HI - ),(1 - a2 ) + J[().(1- a2 ) _1)2 + 4)']}, (7.1.19) 

and that the sJor i =1= 4 are given by (7.1.18) in terms of S4. As)' ~ 00, S4 

converges to 1/(1 - a2 ) so that the optimal cost converges to 
(c - af /(1 - a2 ) + 1. Not surprisingly, this is precisely the steady-state 
variance of the system (7.1.8) with Uk == 0: as ). ~ 00, control energy 
becomes so expensive that the optimal policy is not to use any control 
at all. Calculations similar to the above show that the optimal control 
u~ corresponding to a given A Z 0 is given by 

A aic-a) 
Uk = 1 ( ) I Yk + c - a;. z 

(7.1.20) 

where a;.: = as4/(s4 + A), resulting in the following closed loop system 
description: 

1 +(c-a))z-I !. a)Jc-a) 
Yk = 1 + (a _ a;.)z-I Wb Uk = 1 + (a _ a;.)z-l Wk· 

There are stable transfer functions since I a - a;.1 < 1 for all A Z o. Note 
that it is not a requirement of the theory that the transfer function 
relating {un to {Yd in (7.1.20) be stable; it may not be (take 
a = - 0.75, c = 0.75 and )" sufficiently small, for example). 

7.1.3 Minimum-variance control by frequency-domain methods 

Consider a control given in transfer function form by 

(7.1.21) 
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where R(Z-l) is such that A(z-l)=A(z-l)+z-rB(z-l)R(z-l) has 
stable zeros. The closed-loop system (7.1.1) is then 

A(Z-l)Yk = C(Z-l)Wk. 

Thus {yd is (asymptotically) a stationary process with spectral 
density function 

(7.1.22) 

The performance index (7.1.11) is equal to E(yf + Auf) where {Yk} is 
this stationary process and this can be calculated directly in terms of 
'P: the spectral density of {ud is IR(eiwW'P(eiw) and hence using 
expression (2.3.10) we see that 

J(U)=-21.f 'P«()(1 + AR«()R(C1m- 1d( 
m r 

(7.1.23) 

(here r is the unit circle in the complex plane). Thus an equivalent 
formulation of the optimization problem is: choose R so as to 
minimize J(u) given by (7.1.22), (7.1.23). This has been studied in a 
recent paper by Burt and Rigby (1982). They consider a slightly more 
general formulation than the above. The system model is given in 
transfer function form as 

Z-rB(Z-l) 
Yk = A(z 1) Uk + Xk (7.1.24) 

where Xk is a stationary noise process with known spectral density 
<I>(eiw). (7.1.1) is a special case of this with <I>(eiw) = 
C(eiw)C(e-iw)/A(eiw)A(e-iw), but it is not necessary for Xk to be 
generated by a finite-dimensional system in this way. The control Uk is 
given by (7.1.21) and one wishes to minimize 

E(yf + Avf) 
where 

Vk = K(Z-1)Uk 

and K is a rational function in z - 1. This form of cost provides 
some additional flexibility: for example, if K(z -1) = 1 - z - \ then 
Vk = Uk - Uk - 1 and we penalize changes in control value rather than 
the absolute value. 

With control Uk = - R(Z-1)Yk the system model (7.1.24) becomes 
(we will often suppress the Z-1 dependence of A(Z-1), etc., in the 
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following) 

A 

Now define 

Then 
AG 

R = B(l-z rG)" 

and 
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(7.1.25) 

Since G and R are in one-to-one correspondence, one can equally well 
regard G as the transfer function to be selected. The constraints on G 
are that it should be stable and that its zeros should include all the 
unstable zeros of B, so that G takes the form 

G(z-l)=H(z-l) n (1-PiZ - 1) 

IPil>l 

where H is stable and Pi are the zeros of B. Since Uk = - RYk = 
- (AG/B)Xk' this ensures that {ud is an asymptotically stationary 
process, as required to evaluate the cost (7.1.23). Burt and Rigby show 
that the G which satisfies these conditions and minimizes E(y~ + AV~) 
is given by 

G(Z-l)= B~Z-l) 1 f z-vJ 'P(C 1)B(C)cr+v- 1 dC. 
'P(z- )N(z- )v=o r N(C) 

(7.1.26) 

In this expression '1'( C - 1) and N( C - 1) are the stable spectral factors of 
$ and BB+AKAKA respectively, i.e. 'P(C 1) and N(C 1) have all 
poles and zeros within the unit disc and 

'P(Z-l )'P(z) = $(Z-l) 

N(Z-l)N(z) = B(Z-l)B(z) + AK(z-l)A(z-l)K(z)A(z). (7.1.27) 

It is clear that when A>O, K=l and 'P(Z-l)=C(Z-l)!A(z-l) the 
control given by (7.1.25), (7.1.26) must coincide with the optimal LQG 
controller (7.1.16), since these are the unique solutions to equivalent 
problems. It is a matter of computational convenience which solution 
is adopted: essentially the choice is between solving the algebraic 
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Riccati equation (7.1.15) or performing the spectral factorization 
(7.1.27). If K =1= 1 the solution can still be obtained by LQG theory but 
further augmentation of the state vector is necessary in order to 
produce Uk as an output. 

When A = ° and B has stable zeros it is possible to show directly that 
(7.1.25)-(7.1.26) coincide with the minimum-variance controller, for 
then N = Band 

G(Z-I) = ~ f z-v~f 'I'(C 1Kr+v-l d(. (7.1.28) 
'I'(z )v=o 2m r 

We know that this choice of G minimizes Ey~ where 

Yk+r=(l-z- rG(z-I))Xk+r 

=Xk+r- G(z-I)Xk' 

But this means that G(z -1 )Xk is the minimum mean square error 
predictor of Xk +r given Xb Xk - 1, ... and this fact precisely characterizes 
the m.v. controller. 

To illustrate the above points, let us consider again Example 7.1.2 
where the system is given by 

(1 +az- 1)Yk=Z-2uk +(1 +CZ-1)Wk' 

Here A = 1 + az-l, B = 1, r = 2 and Xk = [(1 + cz-1)/(1 + az-1)]wk; 
thus qJ(Z-I) = (1 + cz- 1 )/(1 + az- 1 ) as long as lei < 1. From (7.1.28) 
the G for the minimum variance controller is 

G(Z-l)= 1 +az- 1 f z-v_1_J 1 +cC l C+1d(. 
l+cz- 1 v =0 2ni rl+aC I 

Using the method of residues, we find that the vth term in the sum is 
z-V(c-a)(-a)v+l and hence that the sum is 

00 _ a(c - a) 
-a(c-a) L (_az- 1)v= -1 . 

v=o (1 + az ) 

Thus G(Z-I) = - a(c - a)/(l + cz- 1); from (7.1.24) the corresponding 
R is R(Z-I)= -a(c-a)/(l +(c-a)z-I), and this is the m.v. 
controller. 

With A> 0, one has to compute N(z -1). This is a first-degree 
polynomial; denoting it N(Z-I) = .Jy (1 + {3z -1) we see from (7.l.'27) 
with K = 1 that 

y(1 + {3z - 1)(1 + {3z) = 1 + ),,(1 + az -1)(1 + az). 
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Solving for y, p we find that 

Y =S4 + y, p = Aa/(s4 + A) 
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where S4 is given by (7.1.19). We can now compute G and R as before, 
and after a lot of laborious algebra we find that R(z - 1) = 

-a;.(c-a)/(l + (c-a;.)z-l), in agreement with (7.1.20). 
Finally, we should point out that there may be significant 

advantages in using the modified m.v. controller (A> 0) even when 
simple m.v. control gives a stable closed loop system. Sometimes the 
modified controller expends vastly less energy to give an output 
variance only slightly greater than that of the strict m.v. controller. 
This is illustrated by Burt and Rigby for the system 

z-l(l + 1.3z- 1 +0.75z- 2) 0.435 
Yk= (1-1.157z 1+0.81z 2) Uk+l_0.9z-1Wk 

which is stable and minimum phase. The variance of the uncontrolled 
system is Ey~ = 1. Figure 7.1 shows Ey~ plotted against Eu~ for 
optimal controllers with values of A increasing from 0 to 00. Under 
m.v. control Ey~ = 0.19 and Eu~ = 1.6. (Point T in the figure.) When 
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A = CfJ we have Ey~ = 1 since the optimal control is then Uk = 0, as 
discussed earlier. But consider point P on the curve, where Eu~ 
= 0.16, Ey~ = 0.23: as compared to m.v. control, the control energy 
has been reduced by a factor of 10 for an increase in output variance of 
only 15%. Thus the m.v. controller is using enormous amounts of 
energy to squeeze the last 15% of performance out of the system. 

7.2 Pole/zero shifting regulators 

As we have seen above, minimum-variance regulation has certain 
disadvantages in respect of stability and excessive use of control 
energy, which can be overcome by the use of LQG-based regulators. 
The latter, however, have themselves two severe drawbacks: firstly, 
they are hard to compute, and secondly, they do not have the 'self­
tuning property' discussed in Section 7.3 below. For these reasons it is 
worth investigating different sorts of regulator design, based on 
'classical' control system design rather than optimal control theory. 
The objective of 'optimality' in a well-defined sense is abandoned in 
favour of obtaining qualitatively satisfactory closed-loop system 
behaviour. For a time-invariant linear system the response is entirely 
determined by the closed-loop transfer function, i.e. by the positions 
of the poles and zeros of the closed-loop system, and the objective of 
classical control system design is to locate these in positions corre­
sponding to satisfactory dynamic response. This is a subject with 
many ramifications and we content ourselves here with presenting 
some algorithms for pole and zero shifting for the ARMAX model 
(7.1.1). These are algorithms on which self-tuning controllers can 
successfully be based, as will be shown in Section 7.3. 

The basic ARMAX model is, as before 

(7.2.1 ) 

In this section and subsequently we wish to have a little more 
flexibility about the degrees of the polynomials A, B, C. These will 
now be denoted nA , nB , nc and may all be different (as opposed to the 
values n, n - r, n assumed previously). The corresponding predictor 
model is 

B(Z-1)F(z-1) D(z-1) -1 
Yk+,= C(z 1) Uk+C(Z-1)Yk+ F(Z )Wk+,. (7.2.2) 

The polynomial F always has degree (r - 1) but for the degree nD of D 
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there are two cases: 

ifnc ~ nA + r - 1 

ifn£l ~ nl t r - r 
Controls are determined by dynamic feedback as follows: 

H(Z-l) 
Uk = J(Z-l) Yk 

Here 

H(Z-l)=h +h z-l+"'+h z-nH o 1 nH 

J(Z-l) = 1 + j1Z-1 + ... + jnJz-n~ 
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(7.2.3) 

Combined with (7.2.2) this gives the closed-loop system description 

[J(C - z-rD) - z-rBFH]Yk = JFCwk. (7.2.4) 

The objective now is to choose H, J so that this coincides with a 
specified Wk-to-Yk transfer function Z(Z-1 )/T(Z-1), or alternatively so 
that the output spectral density is the specified function 

Z(e-iw)Z(eiW) 
T(e-iw)T(eiw) . 

For this it is necessary, from (7.2.4), that 

Z[J(C - z-rD) - z-rBFH] = JFCT. (7.2.5) 

Equating the coefficients of zO, z -1, z - 2, ... on either side of (7.2.5) 
gives us a set of linear equations for the controller coefficients hi, ii, 
and conditions must be such that there is at least one solution to this 
set of equations. We discuss below a few specific cases. 

One could equally well compute the closed-loop system directly 
from the original system (7.2.1) together with control (7.2.3) and this 
would give a condition similar to (7.2.5) but expressed in terms of A, B, 
C, rather than B, C, D, F. The reason for preferring the predictor form 
is that it is the normal parametrization of the system used in self­
tuning control. 

7.2.1 Minimum-variance control 

Under m.v. control the closed-loop system is Yk = F(z -1 )Wk i.e. Z = F, 
T = 1. Thus (7.2.5) is satisfied if 

DJ +BFH=O 
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so that 

1 
H=--D 

bo 
1 

J=-BF 
bo 

(we normalize so that jo = 1). Evidently the appropriate degrees are 

When T = 1 the transfer function ZIT can be thought of as having 
all its poles at infinity. An alternative to this is to use a so­
called 'detuned' m.v. control, introduced by Wellstead et al. (1979) in 
which some of these poles are placed elsewhere than at infinity, 
giving a transfer function FIT for some non-degenerate T. Experi­
mental evidence in Wellstead et al. shows that this can produce 
'better' system response than strict m.v. control, though of course 
under steady-state conditions the output variance will be increased. 
Detuned m.v. control is particularly simple to apply ifthe polynomial 
T takes the form 

Then (7.2.5) becomes 

JC - z-r[JD + BFH] = JC[1 + z-rT*]. 

The coefficients of Z-i for i < r agree automatically and we merely 
require that 

which is satisfied by 

JD+BFH=JCT* 

1 
H= --(D-CT*) 

bo 

1 
J = bo BF. 

Tliis differs from m.v. control only in the replacement of D by 
D - CT*. In the 'white-noise case' C(Z-l) = 1, important for self­
tuning, we obtain simply 

1 
H= --(D- T*) 

bo 
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and the degree of His nH = nA - 1 assuming, as is usually the case, 
that nT* ~ nD • 

7.2.2 Pole-shifting regulators 

As the name implies, the objective of a pole-shifting regulator is to 
place the closed-loop poles in positions determined by a specified 
polynomial T while leaving the zeros to be determined by the design 
algorithm. In particular, an effective algorithm is obtained if we 
set Z = J (i.e. the closed-loop zeros are the poles of the control 
transfer function), in which case (7.2.5) reduces to 

(7.2.6) 

The degrees of the three polynomials in this equality must generically 
agree. Denoting the common degree by q, we have (assuming that 
nc~ nA + r-l) 

q = nJ + nA + r - 1 = nB + 2r - 1 + nH = r - 1 + nc + nT • 

The number of unknown parameters hi,ji is nH + nJ + 1, so that for 
solvability we must have 

q ::; nH + nJ + 1. 

One choice which satisfies this with equality is 

nH =nA -l 

nJ = nB+r-1. (7.2.7) 

Then q = n A + nB + 2r - 2 and the degree nT of the specified poly­
nomial T is limited by 

nT ::; nA + nB + r - 1 - nco 

The values given by (7.2.7) are in fact the only values such that (7.2.6) 
has a unique solution. Obtaining this solution represents a consider­
able computational burden since the q equations involved are not in 
triangular form. In Wellstead et al. (1979) some special structures are 
introduced for which the computational problem is somewhat 
reduced. 

7.3 Self-tuning regulators 

The most important property of the minimum-variance controller 
and some pole-shifting regulators is that it is possible to apply them in 
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a simple and effective way to systems described by the ARMAX 
model (7.1.1) with unknown parameters. 

In general, controlling systems with unknown parameters is a 
formidable task. In some situations it may be possible to identify the 
system off-line, using the techniques described in Chapter 4. Then a 
controller can be designed using the parameters of the fitted model 
(assuming that these are time-invariant). Often, however, it is not 
feasible to isolate a system for off-line experimentation, and some 
form of joint estimation and control must be employed. The most 
thorough-going approach to this would be to regard both estim­
ation and control as part of an overall optimization problem. 
Suppose the parameter vector 8 = (a 1 ,···, anA' bo,··· bnB, Co,···, cnc) of 
the model (7.1.1) is regarded as a random vector with a known prior 
density function, independent of the system noise Wk. We can then 
adjoin to the state-space realization (7.1.13) an additional constant 
state 8k satisfying 

(7.3.1 ) 

and consider the control problem for the joint system (7.1.13), (7.3.1) 
of choosing a control Uk depending only on the observations Yk' 
Yk-l' ... so as to minimize, say, the average cost criterion (7.1.14) 
where the expectation is taken over the joint distribution of (8, Wo, 
W 1 , •• • ). Generally, such a problem is impossibly complicated: the 
system is no longer linear since products of the state variable appear 
in (7.1.13), so the LQG theory of Chapter 6 does not apply. In 
particular, it cannot be expected that any straightforward form of 
separation principle will hold. For these reasons, attempts to solve the 
overall optimization problem generally have to be abandoned. 

In these circumstances, a very natural idea is to adopt a 'certainty­
equivalence' approach, consisting of the following steps: supposing an 
estimate (Jk of 8 is available at time k, we apply the control Uk which 
would be optimal if (Jk were the true parameter value. The output Yk + 1 

is observed and the estimate (Jk updated to (Jk+ 1. Now the procedure is 
repeated. Thus the parameters are estimated recursively and at each 
stage a controller is designed assuming that the current parameter 
estimate is actually the true value. 

Such a procedure will never be optimal in the sense of, say, 
discounted cost, but may be optimal in the sense oflong-run average 
cost per unit time or some other asymptotic sense. We say that a 
procedure has the self-tuning property if its performance coincides 
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with the performance that would be obtained ifthe system parameters 
were known exactly. This statement will be made more precise in 
the context of specific cases examined below. Note that it is not part 
of the self-tuning property that the parameter estimates should 
converge to their true values; this may not be necessary. 

In designing a proposed self tuning algorithm one has to choose: 

(a) A class of models to represent the system, 
(b) An estimation procedure, 
(c) A control algorithm. 

One's first thought is that the class of models should be one 
including the 'true' system and that the estimation procedure should 
be one that gives consistent parameter estimates for this class of 
models. In the case of the ARMAX model (7.1.1), this would mean 
using, say, recursive maximum likelihood identification, which in­
volves a very substantial amount of real-time computation. This first 
thought, however, ignores the effect that the control algorithm might 
have on the estimation. It is a striking fact, uncovered by Astrom and 
Wittenmark (1973), that in some circumstances a combination of 
simple least-squares estimation and minimum-variance control has 
the self-tuning property. This is true even if the system is represented 
by (7.1.1) where C(Z-l) has degree nc > 0, when least-squares estim­
ation would be expected to give biased estimates. The effect of the 
control algorithm is somehow to 'un bias' the estimates. This is a very 
attractive result since, least squares being by far the simplest form of 
recursive identification, it opens up the possibility of designing self­
tuning controllers of very modest computational complexity. 

In this section we shall discuss self-tuning control based on least­
squares estimation for a system represented accurately by the 
ARMAX model (7.1.1) where the system order and time delay, but not 
the parameter values, are known. The control algorithms will be 
minimum-variance regulators or pole-shifting controllers of some 
sort. Of course it is generally unrealistic to suppose that the system 
order is known a priori; we will comment on this further below. 

In this section we are not concerned with establishing convergence 
of self-tuning algorithms, but rather with examining what happens if 
convergence takes place, i.e. investigating whether the limiting system 
then has the self-tuning property. Below we study some properties of 
least-squares estimation and give in Proposition 7.3.2 a general 
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condition for self-tuning. This is then applied to various specific 
control algorithms. 

A self-tuning algorithm with guaranteed convergence is presented 
in Section 7.4. 

7.3.1 Some properties of least-squares estimation 

In the special case when C(Z-l) = 1 the predictor form (7.1.3) of the 
ARMAX model (7.1.1) can be written as 

Yk+r = d(Z-l )Yk + 86'(Z-l )uk + Bk+r (7.3.2) 

where d = D, fJI = BF and Bk = F(z -1 )Wk' The polynomials d and 
86' have degrees m and I respectively, where 

(7.3.3) 

We write 
d(Z-l) = 1 + 1X1Z- 1 + ... + IXmZ-m 

fJI(Z-l) = /30 + /31Z-1 + ... + /3,Z-'. 
Now suppose that Uk is generated by feedback from Yk through a 
transfer function HjJ, i.e. 

H(z-l) 
Uk = J(Z - 1) Yk (7.3.4) 

withjo = 1. We suppose that Hand J have no common factors. Then 
the closed-loop system becomes 

L(z -1 )Yk = J(z -1 )Bk (7.3.5) 

where 
(7.3.6) 

For compatibility we suppose that the degree of Hand J are 

and 

so that the degree of L is in general 

nL=I+m+r. 
We now regard (7.3.2) as a model set and estimate the parameters 

lXi' Pi by ordinary least squares. (This is a convenient way of 
parametrizing the system since many control algorithms are more 
directly related to d and fJI than to the original parameters A, B, C: 
for example the minimum-variance controller is given simply by 
fJluk = - dYk)' Write the observations for k = 0 to N in the standard 
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least-squares form as Y = X(} + e, i.e. 

[ Y'] [0 Y-1 ... y-. Uo U- 1 ... U_,] 
Y';l = ~l ~o Yl-m U1 Uo U1 - 1 .. . . .. .. . . .. .. . 
Y,+N YN YN-l YN-m UN UN - 1 UN-I 
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lXo 

+[~'~] IXm 

Po 
e,+N 

PI 
The starting values Yk> Uk for k < 0 will not be important. The normal 
equations characterizing the least-squares estimates tXi' Pi are 
(l/N)XTy = (l/N)XTXiJ, or 

1 
N l:YkYk+r 

1 
-l:Yk-mYk+r 
N 

1 
-l:ukYk+r 
N 

(7.3.7) 
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The factor liN is introduced so that all the coefficients are sample 
averages over k = 1,2, ... , N. Taking, say, the first row of(7.3.7) we see 
that 

1 N 

N L Yk[Yk+r - rXOYk - ... - rXmYk-m - POuk - ... - PIUk-I] = ° 
k=O 

i.e. 
I N 

N L Ykek+r = 0, 
k=O 

where ek is the residual sequence defined by 
._ ~ -1 ~-1 

ek+r· - Yk+r - d(z )Yk - ~(z )uk· 

Similarly, taking the other rows of (7.3.7) we obtain 

I N 

N L Yk-jek+r=O j=O,l, ... ,m 
k=O 

I N 
- L Uk-lk+r=O j=O,l, ... ,l. 
N k=O 

(7.3.8) 

In general, the parameter estimates &;(N), Pi(N), and hence the 
residuals ek, depend on N and there is no guarantee that they will 
converge as N ~ 00. However, we wish to examine what happens if 
they do converge. Let us therefore make the ad hoc assumptions that 
the parameter estimates converge and that the resulting closed-loop 
system (7.3.5) is stable. Then Yk and ek are asymptotically 
stationary processes whose covariances are the limits of the corre­
sponding sample averages. We describe this situation by saying the 
'parameter estimates have converged'. From (7.3.8) we then obtain 
the following information. 

Proposition 7.3.l 

If the parameter estimates have converged then 

EYkek+j = ° 
EUkek+j = ° 

j=r,r+ 1, ... ,r+m 

j = r, r + 1, ... , r + 1. (7.3.9) 

Indeed, these expressions are obtained from (7.3.8) by replacing the 
sample averages there by the corresponding expected values. This 
result does not depend in any way on the control transfer function but 
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is a simple consequence of the structure of least-squares estimation. 
The next result is really the heart of the self-tuning property. 

Proposition 7.3.2 

Suppose that the true system is described by the ARMAX model 
(7.1.1), that parameter estimates &;, Pi in the predictor model (7.3.2) are 
estimated by least squares, where the degrees m,l of d, f!4 satisfy 
(7.3.3), and that these estimates have converged. The control Uk is 
given by (7.3.4) where nH = m and nJ = 1 and Hand J are assumed to 
have no common factors. Then the residual sequence Sk is a moving 
average of order r - 1 if 

nc S nA + nB + 2r - 2 - nL (7.3.10) 

where nL is the degree of the polynomial L given by (7.3.6). 

REMARK Note from (7.3.6) that the 'generic' degree of L is nL = 

1 + m + r = nA + nB - 2r - 2 in which case condition (7.3.10) says 
nc = 0, i.e. the noise in the true system model is white. This is precisely 
the situation in which least-squares estimates can be expected to 
'behave'. What the result says is that it is possible to obtain the 
moving-average property of the residuals even with non-white system 
noise (nc > 0) if the control parameters H, J are chosen, as functions of 
the model estimates d,f!4, in such a way that L has less than its 
generic degree, i.e. some cancellation of higher-order coefficients 
occurs. For instance, in the m.v. regulator we take H = - (l/Po}d 
and then L = J with degree nJ = nB + r - 1, so that (7.3.10) specifies 
nCsnA +r-1. 

PROOF Suppose that convergence has taken place so that all 
processes are stationary and (7.3.9) holds. Define an auxiliary process 
(k by 

Then 
Yk = J(z-lKk 

Uk = H(z-lKk· 

Thus in view of (7.3.9) we have 

0= EYkSk+ j = E[(kSk+ j + jl(k-lSk+ j + ... + jl(k-ISk+ J, 
j=r, ... ,r+m 
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and 

0= EUkBk+ j = E[ho(kBk+ j + ... + hm(k-mBk+ j], j = r, ... , r + [. 

Define R's(j) = E(kBk+ j and assemble these equalities in matrix form. 
This gives the following: 

1 jl j, 
o 1 jl j, 

j, 
=0. 

The (m + [+ 2) x (m + [+ 1) matrix on the left has full rank as long as 
H, J have no common factors. Thus 

j=r, ... ,r+m+l. (7.3.11) 

We want to show that in fact (7.3.11) holds for allj;?; r. Now the 'true' 
closed-loop system is given by (7.1.1) with Uk = (HjJ)Yk' i.e. 

[JA - z-rBH]Yk = JCWk 

and hence 
1 C 

(k = J(Z-l)Yk = [JA -z-rBH] Wk' (7.3.12) 

Thus (k is an ARM A (ne, n*) process, where n* = nA + nB + r - 1. 
Referring to Section 2.3, this means that its covariance function R,(p) 
satisfies 

for p> ne 
(7.3.13) 

where the denominator polynomial in (7.3.12) is (1 - If 4>iZ-i). 
Bearing in mind that Bk=L(z-lKk we have 
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and hence 
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R,ip + 1) = R,(p + 1) + I1R,(p) + ... + InLR,(p - nL + 1). 
(7.3.14) 

If p - nL + 1 > nc, then from (7.3.13), R~U) = L <piR~U - i) for j = 
p - nL + 1, ... ,p + 1. Substituting in (7.3.14) we obtain 

n* 

R,ip + 1) = L <PiLR,(P - i + 1). 
i~ 1 

Now 
E(kCk+ j = E(k[(k+ j + 11 (k+ j-1 + ... ] 

= R,(j) + I1R\(j -1) + ... = LR,(j) 

so that 
n* 

R,,(p + 1) = L <piR,ip - i + 1). 
i~ 1 

Taking p = r + m + I we see from (7.3.11) that the right-hand side is 
equal to zero, so that 

R,ir + m + 1+ 1) = O. 

We can repeat the argument with r + m + 1+1 replacing r + m + I, 
and so on, to conclude that R"U) = 0 for all j ~ r. The condition 
required is p - nL + 1 > nc where p = r + m + I, and this coincides 
with (7.3.10). 

Finally, ck = L(z - 1 Kk> so that 

Rij) = &kCk+ j = E[(kCk+ j + 11 (k-1 ck+ j + ... + Inik-nLCn+ j] 

= 0 for r~ r. 

Thus Ck is a moving-average process of order (r - 1). o 

Example 7.3.3 

Let us consider the system 

(l-az-1)Yk=buk_1 +(1 +ez-1)wk 

where b =f. 0 and lal, lei < 1. The delay is r = 1. Condition (7.3.,10) 
becomes nL = O. The degrees of the polynomials involved are nJ = 

nH = m = I = 0 so that 

L(Z-l) = 1- (1 + /3ohO)Z-1. 
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Thus the only controller that satisfies (7.3.10) is H = - Ij Po,J = 1 and 
this is the m.v. regulator for the system. Note in particular that (7.3.10) 
is not satisfied when H = 0, and this is just as well since we know that 
least-squares estimates for A in the ARMA model A(z - 1 )Yk = 
C(Z - 1 )Wk are biased unless C(Z - 1) = 1. 

7.3.2 Minimum-variance regulators 

As already pointed out above, the minimum-variance regulator 
corresponding to the model (7.3.2) is 

d(Z-l)Yk + Bi(Z-l)Uk =0, (7.3.15) 
i.e. 

1 
Uk = - Po [P1Uk - 1 + ... + PIUk- 1 + d(Z-l)YkJ. 

The controller (7.3.4) is thus HjJ= -djfJI, and L(Z-l)=J. The 
conclusions of Proposition 7.3.2 are thus valid if nc ~ nA - 1. In this 
case we have the following result. 

Proposition 7.3.4 

Suppose that the conditions of Proposition 7.3.2 hold, and that the 
control is given by (7.3.15), so that condition (7.3.10) becomes nc ~ 
nA + r - 1. Then the controller coincides with the m.v. regulator 
(7.1.7) for the system (7.1.1) with known parameters, i.e. 

- D(z-l) 
Uk = B(z l)F(z l)Yk 

where D, F satisfy (7.1.2). In particular, the asymptotic variance of the 
output is (J2(n + !i + ... + !;- d. 

PROOF With the m.v. regulator, Yk = Gk> so that by Proposition 
7.3.2 the output Yk is a moving average of order r - 1. Now the closed­
loop system is 

[JA - z-rBH]Yk = JCwk 

so it must be the case that 

--:--:-_J_C-=-=-= = P 
JA -z rBH 

(7.3.16) 
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where F is a polynomial of order r - 1. Thus Yk = FWk and from 
(7.3.16) 

- BHF AF-z-r--=C ] . 

Denoting 15 = BH F I] this becomes 

AF _z-rj) = C. 

But this equality is satisfied by unique polynomials F = F, j) = D. 
Thus HI] = DIBF and this coincides with the m.v. regulator (7.1.7) 
designed for the known system (7.1.1). 0 

Note that this result does not say that the combination of least­
squares estimation and the controller given by (7.3.15) will converge 
to the m.v. regulator. It says that if convergence takes place to some 
controller such that the closed-loop system is stable, then that 
controller must be the m.v. regulator. Some separate argument has to 
be employed to show that convergence actually does take place; this 
question is discussed in Section 7.4. Nonetheless, Proposition 7.3.4 is 
a striking result because it means that one can get away with using 
simple least-squares estimation in a context in which one expects that 
something more sophisticated would be required. 

Wellstead et al. (1979) recommend use ofthe detuned m.v. regulator. 
This was introduced in Section 7.2.1 above and is a kind of 
compromise between m.v. control and regulation by pole shifting. 
Everything is the same as before except that the control algorithm 
(7.3.15) is replaced by 

1 
H=-[ -d+ T*] 

130 
1 

] =-fJB 
130 

(7.3.17) 

where T* is an arbitrary polynomial of degree nT,. In this case the self­
tuning result is as follows. 

Proposition 7.3.5 

Suppose that the conditions of Proposition 7.3.2 hold and that the 
control is given by (7.3.17). Then condition (7.3.10) becomes 

(7.3.18) 
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and under this condition the asymptotic closed-loop system is given 
by 

F(Z-l) 
Yk= 1 +z 1T*(z 1) wk (7.3.19) 

where F(z - 1) is the same (r - 1 )th degree polynomial that appears in 
the m.v. regulator. 

PROOF Here 

L = 8l(1 - z-7*) 

with degree nB + r + nT' so that the condition (7.3.10) becomes (7.3.18). 
The residuals ek are given by 

ek =(I-z- 1T*)Yk 

and ek is a moving average of order (r - 1) under the stated conditions. 
The closed-loop system is given by (7.3.16), so that 

( -r * (l - z-7*)JC -
ek = 1 - z T)Yk = W k = FWk 

JA -z-rBH 

where F is a polynomial of degree (r - 1). Rearranging, we see that 

C=FA-z- r !5 

where 

!5=FBH_ T*C 
J . 

As before, F, !5 must coincide with F, D from the m.v. regulator, and 

H D+ T*C 

J BF 

From (7.2.1) and (7.3.16), we obtain (7.3.19) as the closed-loop system. 
The closed-loop system for detuned m.v. control is an ARMA 

system with the same zeros as the m.v. regulated system but with poles 
given by the roots of 1 + (rT*(() = 0 instead of all poles being 
at infinity. Wellstead et al. (1979) adduce some evidence that the 
de tuned regulator has better stability properties than the strict m.v. 
regulator. However, the scope of 'de tuning' is severely limited unless 
the system has almost white noise, since the condition nc + nT* ~ 
nA - 1 must be satisfied to guarantee the self-tuning property. 
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Finally, a note on system order. If m ~ n A and I ~ nB + r, i.e. we have 
overestimated the order of the true system, then d and f!J must 
contain common factors. For m.v. regulation H = - (1/Po}/d and 
J = (1/Po)f!J so that Hand J have common factors, which violates a 
condition of Proposition 7.3.2. To obtain the self-tuning property, we 
must take HIJ = - dlf!J cancelling all common factors. In practice 
this is not a simple thing to do, since one needs a numerical procedure 
to decide on the presence of common factors when d and f!J are not 
given in factored form. 

7.3.3 LQG regulators 

We now turn to m.v. controllers with control costs, i.e. to LQG 
regulators of the sort discussed in Section 7.1. The main result is that 
these regulators do not have the self-tuning property except, possibly, 
when C(Z - 1) = 1. Even if they did, they would not constitute a very 
practical form of control algorithm because of the necessity of 
performing a spectral factorization at every step in order to compute 
the required control value. In the known-parameter case this only has 
to be done once and the LQG regulator is a viable way of handling 
difficulties with m.v. control associated with non-minimum phase 
systems, etc. In the self-tuning case, some other way of handling these 
difficulties must be found; hence the interest in detuned m.v., pole­
shifting control and other non-optimal algorithms. 

The discussion here will be limited to the unit-delay case r = 1 since 
only for this case is the solution ofthe LQG problem given directly for 
the predictor model (7.2.2). Similar results may however be expected 
when r> 1. 

As for m.v. regulation, the self-tuning LQG regulator is designed 
for the predictor model on the (possibly erroneous) assumption that 
the process noise is white. Now when C(Z - 1) = 1 and r = 1 the system 
model (7.1.1) becomes 

A(Z-l)Yk = Z-l B(Z-l)Uk + Wk' (7.3.20) 

The coefficients of this and of the predictor model (7.3.2) are therefore 
related by 

d=z(1-A) 

f!J = B. 

The putative self-tuning LQG controller is therefore obtained by the 
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following procedure: 

(a) Estimate the parameters d and f!J of the predictor model 
(7.3.2) by recursive least squares; 

(b) Apply the LQG control designed for the system (7.1.1) with 

A=d:=1-z- 1d 

B=f!J (7.3.21) 

c= 1. 

Since we want the control in transfer function form Uk = (H jJ)Yk it is 
convenient to use the frequency-domain solution of the LQG 
problem as presented in Section 7.1.3, which gives the control directly 
in this form. This solution can be expressed in a more explicit way for 
the problem at hand, in which the system is, with parameters given by 
(7.3.21) above, 

-1 f!J(Z-I) 1 
Yk=Z <~(Z-I)Uk+ d(Z-I) wk 

Thus, in the notation of Section 7.1.3, 'I'(Z-I) = l/d(z-l) and the 
LQG controller is given by 

H - .9t'§ 
J f!J(1 - Z-I,§) 

where 

and 

(we take K(Z-I) = 1, which means that control energy is being costed 
directly). 

We can express '§ in more explicit form if we suppose, as is 
generically the case, that Z--+d(Z-I) has distinct zeros Pl, ... ,PnA. 
Then there are constants D1, ••• , DnA such that 

1 nA b· 
~-"-;--1<7 = L J 1 
d(z ) j=11- PjZ-

and the sum in (7.3.22) can be evaluated by the method of residues as 
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follows: 
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(7.3.23) 

where .1(z -1) is a polynomial of order n A - 1. Thus (7.3.22) becomes 

~( -1) = .1(Z-1).1I(Z-1) 
Z N(Z-1) 

and the controller is 
H -d.1 
J N-z- 1 .1.11· 

(7.3.24) 

The closed-loop predictor model equation (7.3.2) with this control is 

dNYk=(N-z- 1 fl.flJ)6k. (7.3.25) 

Thus L = dN and nL = nA + max(nA, nB), so that condition (7.3.10) is 
satisfied only if nB ~ nA and nc = O. 

Let us now see in what way the situation is different in the 
minimum-variance, minimum-phase case when A = 0, N =.11. We 
know that the m.v. regulator is given by Uk = - (.91 /flJ)Yk> so it must be 
the case that 

fl.=~=d. 

(This can, with some difficulty, be checked directly from (7.3.23).) Thus 

(N - z - 1 .1.11) = d.1l 

so that here L = J =.11. Thus the order of L has been reduced to nB 

and this allows scope for self-tuning as described in Proposition 7.3.4. 
If nB ~ nA , nc = 0 and convergence takes place, then we conclude 

from (7.3.20) and (7.3.25) that, asymptotically, the residual sequence 6k 
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and Wk are related by 

.91N .91N 
Ck=jYk=(JA_z- 1BH) Wk' 

It follows from Proposition 7.3.2 that .91N/[JA - Z-l BH] = fo for 
some constant fo. i.e. 

JA-z- 1BH=(1/fo).91N. (7.3.26) 

On the other hand, from (7.3.24) we have 

(7.3.27) 

If we regard (7.3.26), (7.3.27) as equations for 'unknowns' .91, f1J, then 
one solution is certainly .91 = A, f1J = B, implying convergence of .91, f1J 
to the true parameter values and hence of HjJ to the true LQG 
controller. We have not, however, succeeded in showing that this is 
only possible limit point of HjJ. The conclusion is therefore that 
the conditions for self-tuning are not met unless the system noise is 
white and that even in this case there is some possible ambiguity as 
to the convergence point of the algorithm. 

7.3.4 Pole-shifting regulators 

Following the discussion in Section 7.2, a self-tuning pole-shifting 
regulator is determined in the following way. A polynomial T(z - 1) of 
degree nT is selected and the control parameters H, J are related to the 
coefficients .91, PJ of the predictor model (7.3.2) by 

L = J(1 - Z-l d) - z-rPJH = TP (7.3.28) 

where P is a polynomial of degree (r - 1), to be determined: 

P(Z-l) = 1 + P1 Z - 1 + ... + Pr_1Z-(r-1). 

We thus set the denominator of the closed-loop transfer function of 
the predictor model equal to TP. If T has (maximum) degree nT = 
1 + m + 1, then both sides (7.3.28) have degree 1 + m + r, which is equal 
to the number ofparametersj1, ... ,jl' ho,···,hm, P1, ... ,Pr-1' There­
fore (7.3.28) is (in general) satisfied by unique H, J, P for given .91, f1J, T. 
According to Proposition 7.3.2, since nL = nT + r - 1 we require 

(7.3.29) 

for the self-tuning property, which is that Ck = (L/ J)Yk = (T P jJ)Yk is an 
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(r - l)th-order moving average. In this case the behaviour of the 
resulting closed-loop system is given by the following proposition. 

Proposition 7.3.6 

Suppose the conditions of Proposition 7.3.2 hold (in particular, 
(7.3.29) is satisfied) and that the control parameters H, J satisfy 
identity (7.3.28). Then the closed-loop system is the ARMA system 

J(Z-l) 
Yk=T(z-l)Wk, 

Thus the closed-loop zeros are the poles of the controller and the 
closed-loop poles are those of the specified polynomial T(z - 1). 

PROOF From (7.3.16) we have 

Therefore 

L TP TPC 
i:k=YYk=jYk=[JA_z rBH] Wk' 

TPC _ 
-----=F 
[JA - z-rBH] 

where F is a polynomial of degree (r - 1), i.e. 

FJA - z-rFBH = TPC. 

(7.3.30) 

(7.3.31 ) 

Under condition (7.3.29) the left and right sides are polynomials of 
degrees (nA + nB + 2r - 2), and this is the number of parameters in 
F,H,J. Therefore (7.3.31) is satisfied by unique F,H,J for given A,B, 
T, C, P. Consider, on the other hand, the identity 

(7.3.32) 

Again, this is satisfied by unique H, J for given A, B, T, C. But if H, J 
satisfy (7.3.32) then P, H, J satisfy (7.3.31), so F = P. From (7.3.30), 

JA-z-rBH= TC 

and hence the closed-loop system is Yk = (J/T)Wb as required. 0 

7.4 A self-tuning controller with guaranteed convergence 

The results in the previous section give conditions under which the 
self-tuning phenomenon can occur, and help us to identify possible 
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candidates for self-tuning regulation. However, the results only refer 
to asymptotic properties of the closed-loop systems assuming that the 
parameter estimates converge; there is no guarantee that they actually 
will converge. Until fairly recently it had been a long- standing open 
problem in adaptive control to give an algorithm with guaranteed 
convergence properties: that is, a controller which when applied to an 
'unknown' system would under reasonably general conditions give at 
least a stable closed-loop system. In the last few years, however, there 
has been considerable progress in this area and convergence proofs 
have been given for a number of adaptive control algorithms. 
Nevetheless, this is still an area of active research which has certainly 
not reached its final form. In this section we will discuss the simplest 
case of an algorithm due to Goodwin, Ramadge and Caines (1981). This 
is closely related, but not identical, to the minimum-variance self­
tuning regulators discussed earlier. The convergence proof of Good­
win, Ramadge and Caines (1981), which we give in Appendix C, was the 
first general such result given for stochastic systems. 

As before, the system to be controlled is described by the ARMAX 
model 

(7.4.1) 

with polynomial degrees n A, nB, nco A and C are monic, i.e. A(O) = 
C(O) = 1. Wk is a sequence of independent random variables with 
EWk = 0, var(wk) = q2. A property of Wk which will be useful later is 
this: we know by the strong law of large numbers that with 
probability one, 

1 N 
w~:=N L W~-+q2 

k=l 
as n-+ 00. 

It follows in particular that, with probability one, for any realization 
of the process the sequence wf is bounded, i.e. 

for all N (7.4.2) 

where K may depend on the realization. 
A non-random reference signal yt is given and this is supposed to 

be bounded 

for all k. 

The objective of the controller is to 'track' yt. The algorithm we will 
describe applies only to the unit delay case r = 1. (Other algorithms 
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for r > 1 are described in Goodwin et al. 1981). As in self-turning m.v. 
regulation, the idea is to estimate the control parameters directly 
rather than identifying the system and then calculating the appropri­
ate control. The algorithm is as follows. 

Algorithm 7.4.1 (Unit delay algorithm) 

Let m* = max(nA, nB, nd. For k:2: m* + 1 define 

4>[-1 = [Yk-1'···'Yk-nA+1,Uk-l,···,Uk-nB' - yt-1'···' - yt-nJ. 

ek is an n*-vector of control parameter estimates, where n* = 

nA + nB + nc - 1, which is generated recursively together with control 
values Uk by: 

e e aT ~ 
k= k-l +-4>k-1[h-4>k-1(}k-1] k:2:m*+ 1 (7.4.3a) 

rk-1 

r m'-1 = 1 (7.4.3b) 

,J,. T e~ - * (7 4 3 ) 'Vk k - Yk + 1 . • • c 

The initial estimate em' is an arbitrary constant, as are the first m* 
control values U 1, ... , Urn'. ii is a constant whose value is fixed in 
Theorem 7.4.2 below. Note that (7.4.3c) specifies Uk recursively, since 
written out explicitly it states 

U - 1 [(jly + ... + enA - 1 Y + e~nJl + 1 U + 
k - - t1'k A k k k k - nA + 2 k k - 1 •.• 

+ (jnA +nB-1 U _ y* _ enA +nBy* _ ... k k-nB+1 k+1 k k 

_enA+nB+nc-l * ] 
k Yk- nc+ 1 • 

The recursion formulae (7.4.3a) and (7.4.3b) belong to a class of 
algorithms known as stochastic approximation algorithms. They are 
clearly related to recursive least-squares estimators, but have no 
direct statistical interpretation since, for example, an arbitrary 
parameter ii is involved. Note that (7.4.3) is computationally ex­
tremely simple to implement since rk is a scalar sequence (in recursive 
least-squares (7.4.3b) is replaced by a matrix equation). The choice of 
control (7.4.3c) is analogous to the m.v. controller for output tracking 
given in Section 7.1.1 above for the known-parameter case. This was 
shown to be given by 

(7.4.4) 
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With unit delay r= 1 we have F(Z-I)= 1 and D(Z-1) = Z(C(Z-1)­
A(Z-1)). We can write (7.4.4) in the form 

(7.4.5) 

where cPk is as before and eo contains the parameters of B, C, D. With 
this control the output Yk is equal to yt + Wk and var(Yk) = (12. Denot­
ing by Yklk-I the best predictor of Yk give the past up to (k -1), we 
know that (12 is also equal to the prediction error E[Yk - Yklk-IY 

The adaptive controller (7.4.3) simply uses the 'estimate' Uk in 
place of the true parameter eo. Under certain conditions, stated in 
Theorem 7.4.2 below, this algorithm has a performance which is 
asymptotically equivalent to that of the m.v. controller (7.4.4). 

One of the conditions of Theorem 7.4.2 is a so-called positive-real 
condition. A polynomial (or transfer function) p(Z-1) is said to be 
(strictly) positive real if there is some number ~ > 0 such that 

for alllwi ~ 11:. (7.4.6) 

In the first-order case this is equivalent to stability, since if P(z -1) = 

1 + pz - 1 then Re {P( eiW) } = 1 + P cos w, so that P is positive real if 
and only if Ipi < 1. In general, positive realness is a stronger condition 
than stability: by the Nyquist criterion, a positive real polynomial 
has stable zeros, but on the other hand, a polynomial with stable zeros 
need not be positive real. Consider for example the second-order case 
P(Z-1) = (1 + P1z-1)(1 + P2Z-1); then 

Re{P(eiW)} = 1 + (PI + P2)COSW + PIP2cos2w. 

If we take PI = - 0.8, P2 = - 0.7, then at w = 11:/4 we have 
Re{P(eiW)} = 1 -1.5/.J2 < 0 so that (7.4.6) is violated. 

The property of positive real polynomials that we need is the so­
called positive real lemma, Lemma C.3 of Appendix C. Some further 
comments will be found there. 

We denote by IlJI k the collection of random variables {y 1, Yl, ... , Yk, 
Wo,"" wm*}; thus for any random variable R with finite expectation 
E[RlllJIkJ = E[RIYl'" ',Yk, Wo,···, wm']. Note from (7.4.3) that Uk is a 
nonlinear function of Yt, . .. , Yk so that if the noise Wk is normal the 
output Yk will not in general be normal. However, it is clear from (7.4.1) 
that the conditional distribution of Yk given IlJIk - 1 is normal, and in 
general, whatever the distribution of Wk the best predictor Yklk-I = 

E[YklllJlk-lJ is a linear function of {Yj,uj,j=k-l,k-2, ... } and 
{wo, ... , wm'}' Indeed, in the unit delay case the system model can be 
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written 

(7.4.7) 

Now if the 'initial conditions' {Wo,"" wm*} are known then Wj can be 
calculated recursively forj > m* given {Yk' Uk' k ::;;j}. Thus (7.4.7) takes 
the form 

k-l k-l m* 

Yt - wk = L (X,jYj + L /3jUj + L YjWj 
j=l j=l j=O 

for some constants (X,j, /3j' Yj. Since Wk and !{Ifk-l are independent, the 
right-hand side of (7.4.7) is equal to E[Ykl!{lfk-lJ, and the prediction 
error is 

with 

Since Wo, ... , Wm* are not outputs of the system it might seem more 
natural to define !{If k = {Yl"'" Yk}' The theorem below is true with this 
definition but the calculations become a little more complicated as we 
have to take account of the (asymptotically negligible) unknown 
initial conditions. 

Here then is the main result. 

Theorem 7.4.2 

Suppose that the true system is given by (7.4.1) where r = 1 and 
nA ::;; n~, nB ::;; n~ and nc::;; ng where n~, n~, ng are known constants. 
Suppose also that 

-0 
1 a C(z- )--

2 

is strictly positive real for some jio > O. Let the control Uk be generated 
by the unit delay algorithm 7.4.1 with ji = jio, nA = n~, nB = n~, 
nc = ng. Then with probability one, 

1 N 
lim sup- L Y~ < CIJ 
N~oo Nk=l 

(7.4.8) 

(7.4.9) 
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and 

(7.4.10) 

The proof of this result is given in Appendix C. 

Properties (7.4.8), (7.4.9) constitute a form of stability for the closed­
loop system. They are violated if IYkl-+ 00 or Iukl-+ 00 as k -+ 00, but 
they do not by themselves imply that IYkl and IUkl are bounded: for 
example, the sequence 

k =fo 2" for some integer n 

k=2" 

satisfies (7.4.8) but is not bounded. Thus occasional large deviations 
are allowed. 

As regards property (7.4.10), we know that E[(Yk - yt)21 
ifYk - 1] = (12 when the system is controlled by the known-parameter 
m.v. controller. Thus (7.4.10) states that the unit delay algorithm 
asymptotically achieves the best performance that could be obtained 
if the system were identified exactly, in the sense that the conditional 
variance of Yk - yt given qy k - 1 asymptotically coincides with that of 
the best one-step predictor. (Again, occasional large deviations are 
not theoretically excluded.) In Section 7.1.1 a somewhat stronger 
result was obtained for the known-parameter case, namely that 
E[(Yk - Yt)2] = (12 (no conditioning). No similar claim is made here, 
but it is in fact possible to show that under stronger hypotheses on the 
noise process Wk (for example, Ewt ~ M < 00), (7.4.10) can be replaced 
by 

(7.4.11 ) 

It will be seen in Appendix C that the convergence property is more 
easily established in the form (7.4.10) since we can essentially analyse 
the system along a single realization whereas to establish (7.4.11), 
'ensemble' properties must be investigated. 

As mentioned earlier, Theorem 7.4.2 was the first general result 
establishing convergence of a stochastic adaptive control algorithm. 
It has been followed by analysis of other algorithms including, for 
example, some designed to cover the important case of non-constant 
parameters. These results represent a major advance in adapative 
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control. Nevertheless, they all suffer from the serious disadvantage 
that an upper bound for the order of the system must be known in 
advance. In other words, the complexity of the model must be at least 
as great as that of the system to be controlled. This is of course 
unrealistic since physical systems are complex objects which are only 
approximately represented by low-order ARMAX models. An im­
portant and satisfying feature of the prediction error formulation of 
(off-line) system identification, as presented in Chapters 4 and 5, is 
that the possibility that the true system may not be contained in the 
model set is explicitly allowed for. So far no formulation of adaptive 
control with analogous features has been given. What is involved is a 
careful analysis of the 'robustness' properties (stability margins, etc.) 
of algorithms such as the unit delay algorithm presented here. Such 
questions are the subject of current research. 

That the conditions required by theory are not generally met in 
practice does not mean that adaptive control ideas cannot be 
successfully used in applications. The last few years have seen, in 
parallel with theoretical developments, a greatly enhanced under­
standing of the practical issues involved in the implementation of 
adaptive controllers. A state-of-the-art discussion of these issues will 
be found in the survey papers of Astrom (1983) and Wittenmark and 
Astrom (1984). Two key problems are the following: 

(a) Persistent excitation This concept was introduced in Defi­
nition 5.3.5 and is an essential condition for consistency results such 
as Theorem 5.3.7, where the system input is supposed to contain an 
exogenous persistently exciting component. If the input is generated 
entirely by feedback, as in many adaptive control schemes, it is 
difficult to guarantee that it will be persistently exciting. The 
important thing is that updating of parameter estimates should be 
carried out only when there is sufficient excitation in the input signal. 
A variety of detection procedures have been devised which can be 
incorporated in the control loop to ensure this. 

(b) Unmodelled high-frequency dynamics Typically, a low-order 
model is designed to capture only the dominant modes of a system, 
and it is well-known that standard 'classical' control system design 
techniques are rather insensitive to the elementary 'model reduction' 
procedure of simply ignoring system poles which are close to the 
origin. In adaptive control, one possible source of instability is 
excitation of the system at frequencies at which the unmodelled 
dynamics play some significant role. If one has some a priori idea as to 
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what the dominant modes of a system are, such instabilities can be 
eliminated by introducing a low-pass filter into the control loop. 

Adaptive control is in a state of rapid development, and has already 
advanced to the point where controllers based on the self-tuning 
principle (and incorporating the sort of safeguards mentioned above) 
are commercially available. On the theoretical side, guaranteed 
stabilization under progressively more realistic conditions is being 
demonstrated; on the practical side, the mechanisms of instability are 
much better understood. Perhaps a grand synthesis is not too far 
around the corner. 

Notes 

The literature on adaptive and self-tuning control is voluminous. The 
survey article by Astrom (1983) gives an up-to-date overview and a 
lengthy list of references. For a general introduction see Harris and 
Billings (1981); this book contains several articles discussing both 
basic theory and practical issues. Landau (1981) describes Model 
Reference Adaptive Control, a somewhat different approach to that 
discussed here. 
Section 7.1 Minimum-variance controllers appear in Astrom's book 
(1970) and were also derived by Box and Jenkins (1962). The relation 
between m.v. regulators and LQG control has been discussed by 
several authors, for example Caines (1972). The frequency-domain 
approach to control of stationary processes is treated thoroughly by 
Whittle (1963). Another recent reference is Y oula, Bongiorno and 
Jabre (1976). We follow Burt and Rigby (1982). 
Section 7.2 Pole/zero shifting regulators were introduced in this 
context by Well stead and co-workers (1979a, b); see also Astrom and 
Wittenmark (1980) and Wellstead and Prager's article in Harris and 
Billings (1981). 
Section 7.3 The self-tuning regulator is due to Astrom and Witten­
mark (1973). The self-tuning argument we give in Section 7.3.2 
essentially follows Well stead et al. (1979b), as does the discussion of 
pole-shifting regulators. Other non-optimal algorithms, designed to 
introduce control costs and to have the self-tuning property, have 
been given by Clarke and Gawthrop (1979). 
Section 7.4 This section is taken from Goodwin, Ramadge and 
Caines (1981). As mentioned in the text, this is an area of active 
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research and the results have already been extended in various ways; 
see for example Chen and Caines (1983) and Sin and Goodwin (1982). 
Stochastic approximation algorithms and the positive real condition 
are discussed at length in Kushner and Clarke (1978) and Ljung 
(1977). All of these matters are discussed in the recent book of 
Goodwin and Sin (1984). 
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APPENDIX A 

A uniform convergence theorem and 
proof of Theorem 5.2.1 

Consider an identification experiment in the framework of Section 5.1 
in which the data is generated by a stable system, the models supply 
uniformly stable predictors and the identification criterion is quadra­
tically bounded. 

The definitions of 'stability', 'uniform stability' and 'quadratic 
boundedness' (see Definitions 5. t.t, 5.1.3 and 5.1.5) each refer to an 
open neighbourhood of the parameter constraint set D. We assume 
that the conditions of the definitions are satisfied for some common 
neighbourhood ~ of D (this can always be arranged by choosing ~ to 
be intersection of the three neighbourhoods). 

Let dN' N = 1,2, ... , be a collection of matrix-valued functions all 
defined on a subset fF of IRq and let F be a subset of fF. The functions 
are said to be equicontinuous on F if, given any () > 0, there exists e > 0 
such that II dN(s) - dN(Sf) II :s; Ii for N = 1,2, ... and for all s, Sf ED such 
that lis - Sf II < e. (Any matrix norm may be used; see Appendix D.2.) 
The functions are said to be uniformly bounded on F if there exists 
a constant c such that II dN(s) II :s; c, for N = t, 2, ... and for all SED. 

We shall first build up through several steps a result we refer to as 
the 'uniform convergence theorem'. This concerns the relationship 
between the random variable 

1 N 
QN(O;yN,uN- 1) = N k~llk(O,ek(O)) 

and its expected value in the limit as N --+ 00, and the equicontinuity 
and uniform boundedness of the functions EQN(O;yN,uN- 1), 

N = 1,2, .... Theorem 5.2.1 will follow as a simple consequence. 
It is convenient initially to prove the uniform convergence theorem 

in the special case when the functions Ik(O, e), k = 1,2, ... , are scalar 
valued. In this case our proof hinges on application of the ergodic 

335 
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theorem (Theorem 1.1.15)to a sequence of random variables {11k} of the 
form: 

k=1,2, ... (A. 1) 

Here BaW) denotes the ball {O: II ° -ell < rx} in IRq, eis an appropriate 
element in D and rx is some positive number such that B.W) c r». 

The following lemma collects together a number of properties of 
Yfk(rx,O) and liO,ek(O)) which will be required. 

Lemma A.1 

Suppose that lk(O, e) is scalar valued for k = 1,2, ... and let Yfk(rx, e) be 
defined by (A. I). Then there exist AE(O, 1) and c > ° such that, for any 
eED and rx which satisfies B.W) c r» we have: 

(a) cov {Yfk(rx, e), Yfirx, (f)} ~ d k- j, for all k and j such that k ~j; 
(b) EYfk(rx, e) - Elk(O, ek(O)) ~ crx, for all OEBaW) and for all k; 
(c) EI1k(iT,ekW))1 ~ c, for all k; and, 

(d) Ell :0 lk(iT, ekW)) II~c, for all k. 

PROOF Fix eED and let rx be such that BaW)Er». For convenience 
we write Yfk for Yfk(lX, e). 

In what follows numbers A, .11 in the interval (0,1) and positive 
numbers c1 , c2 , ... are introduced; it is understood that they do not 
depend on e or IX. 

Let k, j be positive numbers such that k ~j and define 

yj = (Yk,j, Yk-1,j,···, Yj+ l,j, 0, ... ,0) 
and 

In these expressions Yk,j, ... ,Yj+l,j,Uk,j, ... ,Uj+l,j are the random 
variables associated with the stability of the system (see Definition 
5.1.1). 

Now define 

ek,iO) = Yk,j - h(O; y~-l, uj-1). 

We begin by establishing the following bounds: 

E sup Ilek(O) 114 ~ C1> for all k, (A.2) 
8 
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E SUp IledO) 114 ~ C1, for all k,j with k ~ j, (AJ) 
6 

E sup Ilek(O) - edO) 114 ~ C1 Ak- i, 
o 

for all k,j with k ~j (A.4) 

and 

Es~p II:oek(8)r ~C1' for all k. 

In each case, the supremum is taken over 8's in B~(lJ). 
Consider (A.2). We have 

sup Ilek(8) 114 = sup IIYk - fk(8; yk-1, Uk- 1) 114 
6 6 

= sup IIYk - fk(8; 0, 0) - fk(8; yk- 1, Uk- 1) + fk(8; 0, 0) 114 
6 

k-1 

~ sup (11Ykll + Ilfk(8; 0, 0) II + C2 L At- i( II Yi II + II Ui 11))4 
o i = 1 

since the predictors are uniformly stable (see Definition 5.1.3), 

~ C3 [ 1 + (itl A~-i( IIYil1 + IIUdl)) 
4 

] 

since the system is stable and since la + bl 4 ~ 8(la1 4 + IbI 4), 

~ C3 [ 1 + (ito A1- 1 ) 3 Jo A1- i ( IIYil1 + Iluill)4 ] 

by the generalized Holder inequality (see Appendix E), 

(A.5) 

Taking expectations and noting that, since the system is stable, 

EIIYiI1 4, Elluil1 4, i = 0,1, ... are uniformly bounded, we obtain 

Es~p Ilei8) 114 ~ c{ 1 + eta A1- irJ ~ c6 · 

The proofs of (AJ) and (A.5) are along similar lines to that of (A.2). 
In the case of(AJ), we note that ed8) is obtained from the formula for 
ek(8) = Yk - /,.(8; yk-1, Uk- 1), by substitution of Yk,j in place of Yk, Uk,j in 
place of Uk' etc. So the earlier arguments hold good again, provided 
that the substituted random variables are appropriately bounded; 
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specifically, we require 

EIIYj,iI14 + Elluj,dl4 S C7 for all j, i with j ~ i. 

However, we readily deduce this bound from stability of the system 
(see Definition 5.1.1). 

As for (A.S), we use the fact that 

a 
ao ek(O) 

is obtained from the formula for eM)=Yk- fk(O;yk-1,Uk- I), 
by substitution of 0 in place of Yk and a fk/ ao in place of fk' In view of 
the conditions placed upon a fk/ ao in the definition of a uniformly 
stable predictor, the earlier arguments can be used a further time, to 
yield (A.S). 

Finally we consider (A.4). We define Yi,i = 0, ui.i = 0 for i sj. 

s~p Ilek(lJ) - edlJ) 114 

= sup IIYk - Yk.j - fk(O;/-I, Uk-I) + fk(O; y~-l, U~-l) 114 
6 

scsCt A~-i(IIYi- Yi)1 + Ilui-ui)l) r 
since the predictors are uniformly stable 

s c9Ct ).~-ir Ct A~-i(EIIYi - Yi)1 4 + Ellui - U i,jI14). 

by the generalized Holder inequality and since Ela + W s 
8(Ella11 4 + EllbI1 4). 

Taking expectations and noting that EllYi - Yi)1 4 + Ellui - ui )1 4 is 
bounded by C1OAil-i for i> j and by c10 for isj, we obtain 

for any AE(A 1, 1) and for some appropriately chosen number C12' We 
have proved (AA). 

We are now ready to prove claims (a), ... , (d) of the lemma. 
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(a) Define 

ek,j = S~p lk(O; ek,J{O)). 

In view of the properties of the random variables y~ and u~ used 
in the construction of ek,j(O), it is not difficult to see that 
ek,J{O) and eiO) are independent for arbitrary o. It follows that ek,j 
and tTj are independent, so that by Schwarz's inequality 

cov {tTk' tTj} = cov {tTk - ek,j' tTj -IJ{if; O)} 

~ (EltTk - ek,l)1/2(EltTj -l/~; OW)1/2. (A.6) 

We now bound the terms in the product (A.6). Application of the 
mean value theorem yields 

ItTj -li{f; OW = Isup{liO; eiO)) -li{f; O)} 12 
8 

= Is~p{ :oliO - fJ) + :/jeiO) }12 

inwhichol/oOandol/oeareevaluatedat((l- u){f + uO,ueiO)),forsome 
uE[O,I], 

~ C13 (s~p Ilepi) 112 r 
(since the identification criterion is quadratically bounded (see 
Definition 5.1.5)) 

Taking expectations, we conclude now from (A.2) that 

EltTj -IJ{{f; OW ~ C14 . (A.7) 

Examine next tTk - ek,j' We have 

tTk - ek,i ~ s~p{ lk(O; ek(O)) -lk(O; ede))} 

= s~p{ :/k(O; ueiO) + (l - u)edO))(eiO) - edO))} 

for some UE [0, 1] (which is a function possibly of 0) by the mean value 
theorem, 
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(we have used again quadratic boundedness). Likewise, we use the 
mean value theorem to show that 

11k - ek,j ~ inf {lk(8; ek(8)) -lk(8; ed8))} 
6 

~ - c1ssup{ (1Iek(8) II + Il ek,i8) II )IIek(8) - ek,i8) III}. 
6 

It follows that 

l11k - ekf :$ C16S~P{ (1I ed 8) II + Ilei8) II )21Iek(8) - ek,}{8HI 2} 

:$ C16S~P{ (1I ed 8) II + Ilek(8) II )2}S~p{ Ilei8) - ed8) 112}. 

Taking expectations and applying Schwarz's inequality yields 

EI11k- ed2 

:$ C16 [Es~p( Ilek,}{8) II + Ilek(8) 11 4r /2 

. [Esup Ilek(8) - ek i8) 114]1/2 
6 ' 

. [Esup Ilek(8) - ek,i8) 11 4r /2 

6 

:$ C 1S A.k - j 

by (A.2), (AJ) and (A.4). This inequality together with inequalities 
(A.6) and (A.7) establishes (a). 

(b) For arbitrary (JeBifJ) 

11k -lk(8; ek(8)) = sup {lkW; ekW) -lk(8; ek(8))} 
6' 

(the sup, as usual, is taken over B,/lJ)), 

= s~p { (:8 lk(8"; ek«(J")) + :e lk«(J"; ek(8")) :8 ek(8"))W - 8) } 

by the mean value theorem (8" is a point in B,,(iJ) which depends, 
possibly, on 8'), 

$; C 19 0( [ s~p II ek( (J') 112 + s~p II ei (J') II s~p II :8 ek( (J') II ] 
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by the quadratic boundedness of the identification criterion 

:S; C20 Ci [s~p Ilck(O') 112 + s~p II :0 Ck(O') 112]. 

Taking expectations and applying Schwarz's inequality, we obtain 

ElJk - Elk(O; cM)):S; C20 Ci [(E s~p Ilck(O') 114)1/2 

by (A.2) and (A.S). 
(c) We have 

Iliii; ck(ii)) I = IZk(iT; 0) + :c Ik(iT; O'Ck( 8) )Ck(iT)! 

by the mean value theorem, for some O'E[O, 1], 

:S; czz [1 + Ilck(ii) liZ] 

since the identification criterion is quadratically bounded. Now take 
expectations. There results 

EIWT; Ck(lT)) I :S; C22 [1 + E Ilck(iT) liZ] 
:S; czz [1 + (E IICk(iT) 114)1/2] :S; CZ3 

by (A.2). This is the required inequality. 
(d) Note that 

II :Olk,(lJ; ck(iT)) II = II :0 lilT; ck(iT)) + :c Ik(IT; Ck(lT)) :Ock(iT) II 

:S; CZ4 (1Ick(IT) liz + Ilck(lT) 1111 :OCk(lT) II) 

:S; C Z 5 (II ck(iT) f + II :0 ck(iT) r ). 
(we have used the property that the identification criterion is 
quadratically bounded). Taking expectations and applying Schwarz's 
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inequality, we obtain: 

by (A.2) and (A.5). The proof is complete. o 
Next we note a simple criterion for equicontinuity. 

Lemma A.2 

Let F be a compact subset of IRq and let fF be an open subset of IRq 
which contains F. Let dN' N = 1,2, ... be a family of continuously 
differentiable, scalar-valued functions on fF and suppose that there 
exists a constant c such that 

OEfF, N = 1,2, ... (A.8) 

Then the functions dN' N = 1,2, ... are equicontinuous on F. 

PROOF Proof is by contradiction. Suppose that the functions 
dN' N = 1,2, ... are not equicontinuous on F. This means that there 
exists an increasing sequence of positive integers {N i }, sequences 
{O;} and {Oa in F and s > 0 such that 

as i-+ 00 

and 

i = 1,2, ... (A.9) 

Since F is compact, we can extract subsequences with the property that 

j -+ 00, (A.10) 

for some lJEF. lJ lies in the open set fF. An open ball B can be 
chosen therefore, with centre B" and which is contained in fF. We 
now choose an integer J such that Oij' e;j lie in B for j ~ J. The line 
segments).whichjoins 0i' and 0;. lies inBforj ~ J (this follows from the 

J J 

convexity of B). We deduce from the mean value theorem that 

dNiiOi) - dNilO;) = :0 dNijW)(Oij - 0;), j ~ J, (A.11) 

for some lJjESj. 
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Properties (A.8), (A.l 0) and (A.ll) imply that 

as j-HJJ. 

This contradicts (A.9). The functions dN , N = 1,2, ... must therefore 
be equicontinuous. D 

We are now ready to prove the uniform convergence theorem. 

Theorem A.3 

(a) The random variables QN((J;yN,uN-1),(JED, N = 1,2, ... have the 
property 

QN((J;yN,uN-1)-EQN((J;yN,uN-1)-+0 as N-+CIJ 

uniformly in (JED, almost surely; and, 
(b) The functions (J-+EQ((J;yN,uN- 1) are uniformly bounded and 

equicontinuous on D. 

PROOF We consider first of all the case when the lkL .) are scalar 
valued. 

(a) Let c be an arbitrary positive number. Part (a) of the theorem 
can be restated: there exists a number N(w), which depends on the 
sample point wand which is almost surely finite, such that 

1
1 N I sup N L (lk(()' Sk((})) - Elk((}, £k((})) < £ 

BED k = 1 
(A.12) 

whenever N > N(w). It is convenient to prove it in this form. 
Let Biit) be an open ball (with centre rJ, radius a) in ~. We draw 

from the ergodic theorem, Theorem 1.1.15, and from Lemma A.l 
which tells (among other things) us that the functions 1Jk(a,8), k = 

1,2, ... satisfy the hypotheses of the ergodic theorem, the following 
conclusions: given 8> 0, there exists a positive integer N(rx, rJ, 8, w) 
which depends on the ball B.clJ), 8 and the sample point wand which is 
almost surely finite, such that 

I ~ Jl (1Jk(a, 8) - E1Jk(a, 8)) I < 8 

whenever N> N(a, (J, 8, w). Here, we recall, 

1Jk(a, it) = sup lk((); ci()))· 
BEB.(B) 

(A.13) 
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Notice that 

1 N 
~ - L ('1k((i, lJ) - inf Elk(O; Bk(O))) 

N k = 1 OeB.(9) 

1 N 
~ N k~l ('1k(li, 11) - Eflk(li, 11)) + eli 

by Lemma A.l, 
(A.14) 

provided N > N(a., lJ, e, w) by (A.13). Here e is positive number which 
does not depend on a. or if. 

Now the set of open balls 

f/ = {B,,(O):O < rx < ;e' OED,B,,(O) C!0} 
covers D.1t follows from the compactness of D that there exists a finite 
collection of balls in f/ such that 

i= 1 

We have from (A.l4) that 

sup {~ t ((liO; Bk(O» - Elk(O; Bk(O)))} 
OeD k 1 

~ sup {-.} = max sup { .. } 
Oeu,B,,(B,) i = 1 •...• n OeB,,(8J 

B CB 
~-+-=B 

2 2c 
(A.lS) 

whenever N> N 1(ro). Here 

N 1(ro)= .=max {N(rxi,Oi'~'ro)}. 
I 1, ... , n 

Exactly the same arguments apply when -I replaces I. It follows that 
there exists a positive integer N 2( OJ), which depends on the sample point 
and which is almost surely finite, such that 

inf{~ t (liO;Bk(O»-Elk(O;Bk(om} > -t; (A.16) 
OeD k 1 
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whenever N > N 2(W). Inequalities (A.lS) and (A.l6) imply (A.l2) when 
N(w) is taken to be max {N 1(w),N 2(w)}. 

(b) For N = 1,2, ... , the function dN , with domain 'lfi, is defined to 
be 

(A. 17) 

We must show that the dN are uniformly bounded and equicon­
tinuous on D. 

Uniform boundedness follows from Lemma A.I. Bearing in mind 
that D is a compact subset of'lfi, we can deduce from Lemma A.2 that 
the functions dN , N = 1,2, ... are equicontinuous on D provided we 
can show that they are continuously differentiable on 'lfi and that the 
derivatives 

are uniformly bounded on 'lfi. 
However, in view of the smoothness of the fk and ik, 

the function 0 ~ ik(O; Ck(O)) is continuously differentiable for} 

given samples y\ Uk - 1 of the input and output, k = 1,2, ... 

(A.18) 

By Lemma AI, 

EI:oik(O;Ck(O))1 ~ c, 

for some positive number c. 

for all OE'lfi, k = 1,2,... (A.19) 

It is known that (A.18) and (A.19) imply that the following 
interchange of the expectation and differentiation operators is valid: 

k=I,2, ... 

and that these expressions depend continuously on O. Recalling the 
definition (A.17) of dN , we see that the functions dN , N = 1,2, ... are 
continuously differentiable on 'lfi, and the derivatives 

are uniformly bounded on 'lfi. It follows that the dN are equicon­
tinuous on D. 
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The theorem has been proved in the special case when the ll,') are 
scalar valued. However, it is not difficult to see that, by applying the 
special case of the theorem when lk is replaced by an arbitrary 
component of lk' we can deduce that the assertions of the theorem are 
true in general. 0 

Proof of Theorem 5.2.1 

We shall write QN(O;yN,uN- 1) briefly as QN(O). 
Suppose that 

as N --+ 00 uniformly over OED. (A.20) 

By Theorem AJ, this event has probability 1. 
The functions 0 --+ EQN(O), N = 1,2, ... are uniformly bounded and 

equicontinuous on D, by Theorem A.3. The function h is continuous 
and therefore uniformly continuous on some open ball which 
contains the point EQN(O) for N = 1,2, ... and for all OED; in view of 
(A.20) this ball also contains QN(O) for all OED and for all N sufficiently 
large. We deduce from these properties, and (A.20), that 

and 

the functions O--+h(EQN(O)), N = 1,2, ... are} 
(A.21) 

uniformly bounded and equicontinuous on D 

h(Q~O)) - h(EQN(O))--+O as N --+ 00 uniformly over OED. 
(A.22) 

Now let {ON.} be an arbitrary convergent subsequence of {ON}' Let 
(J = li~ ONi' and let t/I be an arbitrary element in D. The theorem will 

I 

be proved if we can show that 

lim inf {h(EQN(fJ)) - h(EQN(t/I))} ~ 0 (A.23) 
N-+oo 

since the maximum over t/I of the left-hand side of this inequality is 
obviously non-negative. But 

lim inf {h(EQN(fJ)) - h(EQN(t/lm ~ lim inf {h(EQN,(fJ)) - h(EQN.(tjJ))} 
N-C() i-co 

= lim inf {h(EQNi(fJN)) 
i- 00 

- h(EQN.(t/I))} 
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by (A.21) and since ON, --+"8, 

= lim inf {h(QN.(ON.)) - h(QN.(I/I))} 
i-+ 00 

by (A.22) 

sO 

since ON; minimizes the identification criterion 0 --+ h(QN,(O)). Inequ­
ality (A.23) is proved. D 



APPENDIX B 

The algebraic Riccati equation 

The purpose of this appendix is to establish various properties of the 
algebraic Riccati equation (ARE), as required for application to the 
Kalman filter and the linear/quadratic control problem. We shall 
consider the ARE in its 'control' form since the proofs are based on 
control rather than filtering ideas. The corresponding results for the 
'filtering' form of the ARE are obtained by using the duality 
relationships given in Section 6.1. 

Let A, B, D, F be matrices of dimensions respectively n x n, n x m, 
p x n, p x m, where p ~ m. We suppose throughout that pT F is strictly 
positive definite, i.e. there exists b > 0 such that 

uTFTFu ~ Jllul1 2 

for all uElRm. Then FTF is non-singular. We denote 

0= (pTF)-l 

A=A-B0FTD 

15 = [I - F0FTJD. 

In addition, we sometimes write Ilxll~ for the quadratic form XTQX 

when x is a vector and Q is non-negative definite matrix. 
The equations in question are: 

The discrete-time Riccati equation 

S(k) = ATS(k + 1)A + DTD - (ATS(k + 1)B + DTF) 

. (BTS(k + 1)B + FTF)-l(BTS(k + 1)A + FTD). (B.1) 

This generates matrices S(N - 1), S(N - 2), ... from a given terminal 
condition S(N) = So. It follows from Theorems 6.1.1 and 6.1.2 that 
if So is symmetric and non-negative definite then the same is true of 
S(k) for all k ~ N. 

348 
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The algebraic Riccati equation 

{s = ATSA + DTD - (ATSB + DTF)(BTSB + FTFr 1(BTSA +FTD) 
S=ST,S~O. (B.2) 

The results are as follows. 

Theorem B.1 

Suppose that (A, B) is stabilizable and that S( - 1), S( - 2), . .. is 
the sequence of matrices defined by (B.1) with S(O) = O. Then as 
i --+ - 00, S(i) --+ S where S is a non-negative definitive symmetric 
matrix satisfying (B.2). Now suppose also that (15, A) is detectable. 
Then (A - BK) is stable, where 

K = (BTSB + FTF)-l(BTSA + FTD) (B.3) 

and S is the only non-negative definite solution of B.2. Further, 
S(i) --+ S as i --+ - 00, where S(i) is the sequence defined by (B.1) with 
S(O) an arbitrary non-negative definite symmetric matrix. 

Theorem B.2 

For each xElRn, define 

l1(x) = inf Lto IIDxk + Fukl1 2 } 

where the infimum is taken over all sequences {Xk' Uk} satisfying 

Xo=X 

k=O,I, ... (BA) 

Suppose that (A, B) is stabilizable and (15, A) is detectable. Let S be the 
solution to (B.2) and let K be given by (B.3). 

Then 

l1(X) = xTSx 

and Uk = - KXk is optimal in that 

00 

xTSx = L IIDxk + Fukl1 2 

k=O 
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These two theorems summarize the results of the sequence of 
lemmas stated and proved below. 

Lemma B.3 

Take integers M, N with N> M. Suppose S(M), S(M + 1), ... , S(N) 
satisfy (B.1) and that {Xk,uk,M ~k~N} are sequences satisfying 
(BA). Suppose also that S(N) = ST(N), S(N) ~ o. Then 

N-l 

L IIDxk + Fukl1 2 

k=M 
N-l 

= x1S(M)XM - x~S(N)XN + L II (BTS(k + l)B + FT F)uk 
k=M 

PROOF Using (BA) we have 

x~S(N)XN - x1S(M)xM 

Thus 

N-l 

= L (xl+ 1 S(k + l)xk+ 1 - xl S(k)Xk) 
k=M 
N-l 

= L ((AXk + BukfS(k + l)(Axk + Buk) - xlS(k)xk)· 
k=M 

N-l 
L IIDxk + Fukl1 2 + x~S(N)XN - x1S(M)XM 

k=M 
N-l 

= L {(xl DT + ul FT)(Dxk + Fuk) 
k=M 

+ (xlAT + ulBT)S(k + l)(Axk + BUk) - xlS(k)xd. 

The kth term in the sum can be written, after some rearrangement, 
as 

xnATS(k + l)A + DTD - (ATS(k + l)B + DTF) 

. (BTS(k + l)B + PF)-l(BTS(k + l)A +FTD - S(k)]Xk 

+ II (BTS(k + l)B + FTF)uk 

+ (BTS(k + l)A + FTD)xkllfBTs(k+ l)B+FTF)-1. 

This gives the result in view of (B.1). o 
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Corollary BA 

Let So be a symmetric non-negative definite matrix and x an n-vector. 
Define S( - 1), S( - 2), ... by (B.l) with S(O) = So. Then for j = 0, 1, ... , 

where the minimum is taken over all sequences {Xk' Uk' 

k = 0, 1, ... ,j} satisfying (B.4). 

Lemma B.5 

Suppose that (A, B) is stabilizable and let S( - 1), S( - 2), ... be defined 
by (B.l) with S(O) = 0. Then, as k -+ - 00, S(k) -+ S for some matrix S 
satisfying (B.2). 

PROOF Since So = ° it follows from (B.1) that all the S(k) are 
symmetric, and it is evident from Corollary B.4 that S(k - 1) ~ S(k) for 
k = 0, - 1, ... It will be shown presently that there exists a constant 
c such that 

(B.5) 

for all XEW, k=O, -1, ... 
Thus Yk:= xTS(k)x is a sequence of numbers which is increasing 

as k -+ - 00 in that Yk-l ~ Yk, and Yk ~ c II X 112 for all k. Any such 
sequence converges to a limit; call it IX(X). According to Pro­
position D.1.4 in Appendix D this implies that oc(x) = xTSx for some 
symmetric non-negative definite matrix S and that S(k) -+ S. Taking 
the limit as k-+ - 00 on both sides of(B.1), we conclude that S satisfies 
(B.2). It remains to prove (B.5). 

Let L be a matrix such that A - BL is stable (such a matrix exists 
by the stabilizability hypothesis). Take xElRn and define 

Xo=x 

Xi+ 1 = AXi + Biib iii = -LXi i =0, 1, ... 

Since (A - BL) is stable there exist constants c1, c2, not depending 
on x, such that 

00 

L IIDxi+Fii;ll2~ClllxI12 
i=O 
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and 
i = 0,1, ... 

Now apply Lemma B.3 with N = 0, Xk = Xk-M, Uk = uk-M.This gives 

-M-l 

xTS(M)x = L IIDxk + Pukl1 2 + X1 S0XM 
k=O 
-M-l 

- L II (BTS(k + 1-M)B+pTp)Uk 
k=O 

- (BTS(k + 1 - M)A + PTD)Xk II [BTS(k+ I-M)B+FTF) 

~(Cl+C2)llxI12. 0 

Lemma B.6 

Let (15, A) be detectable and suppose that S satisfies (B.2). Then 
(A - BK) is stable, where K is given by (B.3). 

PROOF Let L be a matrix such that A - L15 is stable. Such 
a matrix exists by the detectability hypothesis. Let xElRn be 
arbitrary. Now apply Lemma B.1 with M = 0, S(k) = S, Xo = x and 
Uk = - KXk (so that Xk = (A - BK)kX). This gives 

N-l 

xTSx=II(A-BKtxll~+ L II(D-PK)XkI1 2• (B.6) 
k=O 

Denote M = P0pT (this is the projection onto the range of P). Then 

(D - PK)xk = (I - M + M)Dxk - PKxk 

= 15xk + P(0pTD - K)xk· 

The two terms are orthogonal since 15xk is orthogonal to the range 
of P. Thus (B.6) becomes 

N-l 
xTSx= II(A-BK)NXII~+ L (1115xk 11 2 

k=O 

(B.7) 

Since (a) the left-hand side of(B.7) is independent of N; (b) the terms on 
the right are all positive; and (c) IIuI1 2 ~ <5 -lllullhF for any uElRm, this 
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shows that 

rJ) 

L (II DXk 112 + II (0P D - K)Xk 112) ~ kl < CfJ (B.8) 
k=O 

for some constant kl depending on x. 
Next, note that, since A = A - B0FTD, 

A-BK=A+B(0PD- K) 

= (A - LD) + B(0FTD - K) + LD. 

The first term on the right will be denoted A and is stable by 
hypothesis. In view of this identity, if a sequence Zk is generated by 

Zo =X 
- T ~ Zk+ 1 = AZk + (B(0F D - K) + LD)Zk' (B.9) 

then Zk = Xk. On the other hand, writing down the solution of(B.9) as 
a difference equation with Xk replacing the last Zk gives 

k-l 

Zk = AkX + L Ak-i(B(0FTD - K) + LD)xi. 
i=O 

We therefore have the identity 

k-l 

(A - BK)kX = AkX + L Ak- i(B(0FTD - K) + LD)(A - BK)iX. 
i=O 

In view of the properties of matrix norms, this shows that 
k-l 

ak 50 ak + L: gk- ihi =:ak + lk (B.1O) 
i=O 

where 

and 

where 

C1 = max {IIBII, IILII}. 

Now regard the terms in (B.1O) as the kth components of 

tMatrix norms in this appendix are taken to be the spectral norms. 
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(N + I)-vectors a, ii, I and use the triangle inequality to give 

(ta~r/Z ~(ta~r/z +11111. (B.1l) 

Examining lk we see that I can be written 

N 

1= L gihi 
i= 1 

wherehT =(0, ... ,0,ho,h1 , ... ,hN -J Since giZO this shows that 

11111 ~ itl g;ll hi II = Jl g{:t~ h~ )-

Since A is stable,gi ~ czAifor somd < 1. Using this together with (B.8) 
we see that 

Now 

ro 

Ia~ < 00 

° 
since A is stable, and hence from (B.II), 

ro 

I II (A - BK)kX liZ < 00. (B.12) 
k=O 

If (A - BK) were not stable, the real symmetric matrix (A - BK)T 
(A - BK) would have a real eigenvalue A with A Z 1. If x is a 
corresponding eigenvector then 

k =0, 1, ... 

But this contradicts (B.12). Therefore (A - BK) must be stable. 0 

Lemma B.? 

Suppose that S satisfies (B.2) and (A - BK) is stable, where K is given 
by (B.3). Then S is the unique solution to (B.2) with this property, and 
for every xElRn, 

ro 

xTSx= L IIDxk+Fukll z (B.13) 
k=O 
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where {Xk' Uk' k = 0,1,2, ... } are defined by 

Xo=X 

Xk+ 1 = AXk + Biik 

Uk= -KXk· 

PROOF For every XEIR" define 

'1°(x) = infLt IIDxk + Fuk l1 2 } (B.14) 

where the infimum is taken over sequences {Xk, Uk} such that the sum 
in (B.13) is finite, (B.4) is satisfied, and Ilxkll ~O. (The set of such 
sequences is non-empty since it includes {Xk,Uk}.) Consider such a 
sequence {Xk' Uk}. Application of Lemma B.1 with S(k) = S for all k 
and M = 0 and passage to the limit as N ~ 00 yields 

00 

L IIDxk + Fuk l1 2 

k=O 

00 

= xTSx + L II (BTSB + FTF)uk + (BTSA + FTD)XkllfBTSB+PTPf ' · 
k=O 

Since S ~ 0 it follows that (B.13) holds and that '1°(k) = xTSx. Now 
let Q be any other solution to (B.2) for which A - B(BT QB + FT F) - 1 

(BT QA + FT F) is stable. Bearing in mind that S did not enter the 
definition of '10 we conclude that XTQX = xTSx, and hence that S = Q, 
since Sand Q are symmetric and x is arbitrary. It follows that S is the 
unique solution to (B.2) such that A - BK is stable. 

Lemma B.8 

Suppose that (A, B) is stabilizable and (15, A) is detectable. Let S be the 
solution to (B.2). Then given xEIR", 

00 

xTSx 5; L IIDx; + Fudl 2 

;=0 

for every pair of sequences {Xi> u;} satisfying (B.4). 

PROOF The hypotheses imply that (B.2) has a unique non-negative 
definite solution S. Define S( - 1), S( - 2), ... by (B.t) with S(O) = 0 and 
apply Lemma BJ with N = 0, M < O. Since S(M) is non-negative 
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definite, we conclude that 
-M-l 

xTS(M)x ~ L IIDxk + Fuk11 2• 
k~O 

Now take the limit as M --+ - 00. By Lemma BS, S(M) --+ S. The result 
follows. 0 

Lemma B.9 

Suppose that (A, B) is stabilizable and (15,..4) is detectable. Let So be an 
arbitrary symmetric non-negative definite n x n matrix and let 
Q( - 1), Q( - 2), ... be defined by (B.1) with Q(O) = So. Then Q( k) --+ S as 
k --+ - 00, where S is the solution to (B.2). 

PROOF Take xElRn and let S( -1), S( - 2), ... satisfy (B.1) with 
S(O) = O. By Corollary B.4, 

k= -1, -2, ... 

since these are the minimal costs for the k-stage control problems with 
terminal cost matrices So and 0 respectively. By Lemma B.5, S(k) --+ S, 
so that 

lim infxTQ(k)x ~ xTSx. (B.1S) 
k-...-o:) 

On the other hand, again by Corollary B.4, for each j ~ 0 
j-l 

xTQ( - j)x ~ L IIDxj + Fudl 2 + xJSOXj 
j~O 

where {Xj, U;, i = 0, 1, ... ,j} satisfy (B.4) with Uj = - KXj, since this 
stationary control is sub-optimal for the j-stage problem. By Lemma 
B.6,xJ SOxj--+Oasj --+ 00. By Lemma B.7, the sum converges toxTSx.1t 
follows that 

limsupxTQ(j)x ~ xTSx (B.16) 
j-+ - 00 

Now (B.1S) and (B.16) imply that XTQ(j)X--+XTSx asj--+-oo for 
arbitrary x. In view of Proposition D.1.4, Appendix D, this implies 
that QU) --+ S. 0 



APPENDIX C 

Proof of Theorem 7.4.2 

In this appendix we provide a proof of Theorem 7.4.2, showing that 
when an ARMAX system is controlled by the Unit Delay Algorithm 
7.4.1, performance is 'asymptotically optimal' under the stated 
conditions. All notation is that of Section 7.4. We start by making 
the following definitions: 

where 

ek: = Yk - yt = Yk - ¢I-l Uk- 1 

Sk-l: = ek - Wk = E[Ykl~k-1J - yt 

bk : = - ¢[iJk • 

iJk=Uk-eO• 

Note that all these processes are adapted to ~k in that at each 
time k they are functions of the output and initial conditions 
{Yl' ... 'Ykl WO,· .. ,Wm*} (in the case of Sk, recall that yt+l is 
deterministic). The 'true system' equation in predictor form (7.1.3) 
IS 

C(Z-l)(Yk+l - yt+l}= [B(Z-l)Uk+D(Z-l)Yk- C(Z-1)yt+1J 

+ C(Z-I)Wk+ 1. 

This can be expressed as 

C(z-l)(ek+l -wk+d= ¢Ieo- yt+l 

or alternatively as 
(C.l) 

where eo is as given by (7.4.4), (7.4.5) but extended to dimension 
(n~ + ng + ng - 1) by the addition of zero coefficients. This is 
where the degree condition on nA, etc., is required. We shall prove 
two lemmas, from the second of which the assertions of the Theorem 
follow quickly. The proofs of these lemmas require some technical 
results which are collected together at the end of the section. 

We write iio = ii throughout for convenience. 
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Lemma C.1 

With probability one, if rN ~ 00 as N ~ 00 then 

I· 1 ~ 2 0 1m - L.. Sk = . 
N~oorNk=l 

PROOF Define 

From (7.4.3a), Ok satisfies 

A little algebra using the fact that Yk - E[Yk II!lJ k -1] = Wk shows that 

Taking the conditional expectation of both sides and using the 
properties that E[ Wk II!lJ k -1 ] = ° and that Sk _ 1 is a function of 
CWk - 1 , we obtain 

From (7.4.3b), <Pl-l <Pk-l ~ r k - 1 and hence the third term on the 
right is, for any p > 0, less than or equal to 

ii 2 2 ( 2ii (ii + p) Pii) 2 
--Sk-l = -- -- --- Sk-l' 
rk - 1 rk - 1 2 r k - 1 

Thus 

(C.2) 
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where 

a+p 
hk = bk --2-Sk . 

Now using (C.1) and (7.4.3c) we see that 

C(Z-l)Sk_l = cPI-IOO - yt = cPI-IOO - cPI-liJk- l = bk- l· 

The process hk is therefore the following moving average of Sk: 

[ 
-1 a+ p] hk = C(z )--2- Sk k:? m*. 
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Since C(Z-l) -!a is strictly positive real, C(Z-1) - !(a + p) is 
positive real for some p > O. Choose such a p and define 

k 

Sk:=2a L hj - t Sj - 1 +K. 
j= 1 

It follows from Lemma C.3 below that there exists K > 0 such that 
Sk:? 0 for all k. Now define 

1 
Zk:= Vk+--Sk. 

rk - 1 

Substituting Vk = Zk - Skh -1 in (C.2), we find that 

E[ I ] po, 2 0, 2 T 2 
Zk I!Yk-1 :$;Zk-1 ---Sk-1 +-2-cPk-1cPk-1U . 

rk - 1 rk - 1 

Note that 

(a) Zk:?' 0 for all k; 
(b) The second term on the right is non-positive; 
(c) For the third term we have 

00 -2 

L ;- cPI cPkU2 < 00. 
k= 1 rk 

Part (c) follows from (7.4.3b) since, denoting cxk:= cPr cPk' we have 

k>m* 
so that 
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The result follows. In view of (a), (b), (c), the martingale convergence 
theorem (Lemma C.4 below) implies that with probability one, 

Zk-+Zoo 

where Zoo is some random variable with Zoo ~ 0, EZoo < 00; and that 

The conclusion of the lemma now follows from the Kronecker 
Lemma C.S (which requires rk i 00). D 

Lemma C.2 

With probability one, 
1 N 

lim - L sf =0. 
N ..... ooN k =l 

PROOF First consider a realization of the process such that rk i 
roo < 00. From (7.4.3b) this implies II rpk 11-+ 0. Since Zk = ~Ok + 
Sk/rk -1 -+ Z < 00 and Sdrk- 1 ~ 0, there exists no such that II Ok II < 2Z 
for k> no. Now Sk is generated by C(Z-l)Sk = bk = - c/JUJk and Cis 
stable; thus Sk-+O since IrpIOkl-+O, and hence 

1 N - L sf-+O. 
N k=l 

F or the remainder of the proof we take a realization of the process 
such that rk i 00, and that (7.4.2) and the conclusion of Lemma C.l 
hold. Together with the case considered above, this covers all possible 
realizations except a set of probability zero. 

Think of system (7.4.1) as a stable linear system with inputs Wk, 

Yk and output Uk. This can be realized in state-space form in the 
standard way, and it then follows from the bounded input/bounded 
output stability Lemma C.6 that there are constants K 1, K 2, No such 
that 

1 ~ 2 K1 ~ 2 
N kf-1 Uk ~N kf-1 Yk+1 + K2 for N>No. 

Using the fact that 
m*+k 

rm*+k= 1 + L rpJc/Jj 
m* 
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and the definition of ¢ j' this implies that 

rN K3 ~ 2 

N ~-N .L. Yk+1 +K4 
J= 1 

for some constants K 3 , K 4 . Now 

Yk = yt + Wk + Sk-1' 

It follows from (7.4.2) that 

and hence from (C.4), since Iytl is bounded, 

1 ~ 2 K5 ~ 2 
N kf-1 Yk+ 1 S Ii kf-1 Sk + K6 

for some K 5, K 6, N l' Combining this with (C.3) we have 

1 K7 ~ 2 
-rN S - L, Sk + K 8· 
N N j=l 

We can use this relation to show that 

must be bounded. Indeed, suppose 

1 N 

N k~/l+l 
is not bounded; then 

since, by the definition of rN 

N 

rN~ L yl+1' 
k=l 

In view of (C.S) this implies that 

1 N 

lim sup- L sl = 00. 
N .... oo Nk=l 
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(C.3) 

(C.4) 

(C.S) 

(C.6) 
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Write 

S2 =~(~ S2). 
N N f k , 

then (C.5) states that N/rN ~ 1/(K7s~ + Kg) or that 

N -2 SN 
-SN> . 
rN - K7SN+ K g 

(C.7) 

From (C.6), there exists a sequence n1 < n2 < '" such that 
limks;k = 00 Thus limks;j(K7snk + Kg) = 1/K7' and from (C.7) 

1· . fN 2 1 
Imlll -sN~-K . 
N-+oo rN 7 

However, this contradicts Lemma C.1; so it must be the case that 

is bounded. Returning to (C.3) this means that 

or, equivalently, that 

}. 1 
Imsup-rN < 00 
N-+oo N 

liminf N ~ <5 > O. 
N--+oo rN 

Combining this with Lemma C.1 we conclude that 

1· 1 ~ 2 0 
1m N 1..J Sk = . 

N--+oo k=l 

This completes the proof. 

Proof of Theorem 7.4.2 

o 

This is almost immediate from Lemma C.2. Indeed, (7.4.8) and (7.4.9) 
have already been shown in the proof of Lemma C.2. For (7.4.10), 
denote Yklk-I: = E[Ykl£Wk- 1]. Then 

Yk - yt = [Yk - Yklk-I] + Sk-l' 
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Now Sk-l is a function Of~k-l' so that 

E[(Yk - Pklk-l)Sk-ll~k-lJ = Sk-l E[Yk - Pklk-ll~k-lJ = O. 

Hence 

E[(Yk - Yn21~k-lJ = Sf-l + E[(Yk - hlk-ll~k-lJ 
= Sf-l + (12. 

Thus using Lemma C.2 we see that 

lim ~ f E[(Yk - Ytfl~k-lJ = (12. 
N ..... oo N k=l 

which is the result claimed. 

The following lemmas are used in the proof. 

Lemma C.3 (Positive real lemma) 

Suppose 

G(z - 1) = 1 + 9 1 Z - 1 + ... + 9 pZ - p 
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o 

is positive real, i.e. Re { G(e - iro)} ;::: 0 for 0::; OJ ::; 2n. Suppose doubly 
infinite sequences {hk' Sk} satisfy 

hk = G(Z-l)Sk for k;::: m*;::: p. 

Then there exists a constant K such that, for all N;::: m*, 

N 

I hksk+ K;:::O. 
k=O 

REMARK Positive realness is a kind of 'passivity' condition. If one 
thinks of G as a transfer function relating (sampled) current hk and 
voltage Sk in a network then Lhksk is the energy dissipation and this is, 
apart from initial conditions, positive, corresponding to a passive 
network. The result is true if G is a rational function (rather than a 
polynomial) but the proof is then somewhat more complicated. 

PROOF Fix N 2 m* and suppose, without loss of generality, that 
hk = Sk = 0 for k < 0 and Sk = 0 for k> N. Define 

00 00 

H(OJ) = I hke-irok, S(OJ) = I Ske- irok 
k= - 00 k= - 00 
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(these are finite sums). By the generalized Parseval equality, 

1 f21t 00 

-2 S*(w)H(w)dw = L s: hk· 
n 0 k~O 

Let Tik be given by 

Tik = G(Z-l)Sk' 

Thus Tik = hk for k ~ m*, and 

for all k. 

00 

L hke- iwk = H(w) = G(e-iw)S(w), 
k= - 00 

so that 
H(w) = G(e -ilD)S(W) + R(w) 

where 
m*-l 

R(w) = L (hk -Tik)e- ilDk. 
k=O 

Now Sk and hk are real, so (e.8) becomes 

(e.8) 

N { 1 f21t 1 f21t } L Skhk = Re -2 S*(w)G(eilD)S(w)dw + - S*(w)R(w)dw 
k=O n ° 2n ° 

~ Re2~ f: 1t 
S*(w)R(w)dw 

(invoking the positive real condition). This last expression is equal to 

and is independent of N. This completes the proof. 

Lemma CA (Martingale convergence theorem) 

Let Xo, Y l' Y2, ... be a sequence ofrandom variables and denote qy k = 

{xo, Yl' ... ' Yk}· A sequence of random variables {Tk} is adapted 
to 0Jj k if, for each k ~ 1, Tk = 9k(XO' Y 1, ... 'Yk) for some function 9k· 

Let {Tk}, {OCk}' {l1d be sequences of non-negative random 
variables adapted to 0Jj k such that 

E[Tklqy k-l] ~ Tk- 1 - OCk-l + I1k-l· 
If 



APPENDIX C PROOF OF THEOREM 7.4.2 365 

with probability 1, then, also with probability 1, Tk converges to a finite 
random variable T and 

00 

L rik < 00. 
k=l 

PROOF We cannot give a self-contained proof of this result here. See 
Neveu (1975) or Goodwin et al. (1981) listed in the references to 
Chapter 7. 

Lemma C.5 (Kronecker lemma) 

Let s, {x., b., n = 1,2, ... } be real numbers such that 0 < b. i 00 and 

Then 

• 
S.+1:= L Xk~S as n~oo. 

k=1 

Thus it suffices to show that the second term on the right converges to 0 
as n ~ 00. For any 6 > 0 there exists ne such that ISk - sl < e for k > ne, so 
that for n > ne 

The result follows on letting n i 00, el 0 (in that order). 

Lemma C.6 (Bounded input/bounded output stability) 

Let (k' Uk be respectively the m-vector input and scalar output of the 
stable linear system 

Xk+ 1 = AXk + B(k 

Uk = CTXk + dT(k' 
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Then there exist constants c l' c2 independent of N such that 

PROOF The output is given explicitly by 

k 

uk=eTAkxo+dT~k+ L cTAjB~k_j· 
j= 1 

Let II A II denote the spectral norm II A II = max[x[ = 11 Ax I. Since A is 
stable, there exists A, 0::::;; A < 1, and K < 00 such that II Aj II ::::;; KA j . Thus 

II Uk 112 ::::;; 3 [ II c 11211 A k 11211 Xo 112 + II d 11211 ~k 112 

+ Ctl lie IIII Ajllil B IIII ~t- jll) 2J 

::::;;K1A2k+K211~kI12+K3Ct Ajll~k-jlly. 
Using the Schwarz inequality we have 

Ctl Am Ajf2 11 ~k- j II r ::::;; Jl AjJl Aj II ~k- j 112 

and hence 

On introducing the variables I = k - j and interchanging the order of 
summation, the last term becomes 

The proof is complete. o 
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Some properties of matrices 

In this appendix we collect together various facts about matrices which 
are used in this book. There are four sections. The first covers properties 
of symmetric non-negative definite matrices. In the second, various 
matrix norms and the relations between them are discussed. The third 
section is devoted to establishing a uniform bound on IIAkl1 for stable 
matrices A; this is needed in connection with the analysis of 
identification algorithms in Chapter 5. In the final section, some 
identities of matrix calculus are presented. 

D.l Symmetric non-negative definite matrices 

Symmetric non-negative definite matrices play an important role in 
this book. This section establishes their main properties. 

Throughout, we consider only matrices with real (as opposed to 
complex) entries. First some definitions: an n x n matrix A is 

symmetric if AT = A; 
non-negative definite if x T Ax ~ 0 for all x E IRn; 
positive definite if x T Ax> 0 for all xElRn, x =1= 0; 
orthogonal if AT A = I (the n x n identity matrix). 

From the definition, an orthogonal matrix A is non-singular and 
A- 1 =AT. 

Lemma D.1.1 

A real symmetric matrix has real eigenvalues. With every eigenvalue 
can be associated a real eigenvector, and the (real) eigenvectors 
corresponding to distinct eigenvalues are orthogonal. 

PR 00 F In the following, an over bar denotes complex conjugate and 
a star denotes complex conjugate transpose. Suppose that A, x are 
respectively an eigenvalue and an eigenvector of a real symmetric 

367 
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matrix A, so that 

AX=AX and X#O. (D.1) 
Then 

x* Ax = AX*X. 

The left-hand side of this equality is, however, real in view of the 
symmetry, since 

X* Ax = X T Ai = x* Ax. 

Thus )0 is equal to the real quantity x* Ax/x*x. If x = Xl + iX2 then 

AXl + iAx2 = AX 1 + iAX2 

so that both x 1 and X 2 are real eigenvectors corresponding to A; at least 
one must be non-zero. If J1. is another eigenvalue, J1. + A, with 
real eigenvector y, then 

Ay = J1.y. (D.2) 

Premultiplying (D. I) and (D.2) by yT and xT respectively and 
subtracting, we see that 

(A - J1.)xTy = 0 

and hence that x 1. y since A - J1. + O. This completes the proof. D 

Suppose A is a symmetric matrix with distinct eigenvalues Ai"'" An­
Then the eigenvectors U l , ••• , Un are mutually orthogonal and hence 
form a basis of [Rn. We suppose the Ui are normalized: ui Ui = 1. Let 
U be the n x n matrix with columns Ul"'" Un' We then have 

UTU=I 

AU=UA 

(D.3) 

(DA) 

where A is the diagonal matrix with diagonal entries Ai,"" An­
Thus U is orthogonal, and, premultiplying (DA) by UT we see that 
UTA U = A, i.e. A can be diagonalized by means of the orthogonal 
matrix U. It is important that a similar result holds even when the 
eigenvalues are not distinct. 

Proposition D.l.2 

Let A be a symmetric matrix with eigenvalues ..1.1"'" An (not 
necessarily distinct) and form the diagonal matrix A as above. 
Then there exists an orthogonal matrix U such that UT AU = A. 
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PROOF The proof is by induction on the order n. Suppose the 
result holds for n = k - 1 and let A be a k x k matrix and 2, x be an 
eigenvalue/eigenvector pair. Let P be the orthogonal matrix which 
rotates x so as to align with the first coordinate vector e1, i.e. such 
that 

Px = le1 

where 1= Ilxll. Now Ax = 2x so that 

PAx=P2x, 
or 

P ApT(px) = 2(Px). 

In view of (D.5) this shows that 

PApTe1 = 2e1 · 

(D.S) 

Now the left-hand side is just the first column of P ApT, so that 
P ApT takes the form 

PApT = [~---:---~l 
However, P ApT is symmetric, so b = O. By the induction hypothesis, 
B can be written B = VT M V where M is diagonal and V is a 
(k - 1) x (k -1) orthogonal matrix. Thus A = UTAU, where 

A= [-5-t--~} u= [~-+--~Jp. 
Since U is orthogonal, this establishes the result for n = k. The result 
is trivially true when n = 1, so that the induction argument is 
complete. 0 

Non-negative definite symmetric matrices have non-negative 
eigenvalues since if A is such a matrix and 2, x an eigenvalue/ 
eigenvector pair, then 

o ~ xTAx = 2xTx. 

In view of the representation A = UT AU it is evident that the rank 
deficiency of A is equal to the number of zero eigenvalues and that 
A is positive definite if and only if all its eigenvalues are strictly 
greater than zero. The following results on the existence of 'square 
root' matrices are used in several places in the book. 
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Proposition D.1.3 

Let A be a symmetric non-negative definite matrix. 

(a) If A has rank k, there exists an n x k matrix B such that A = BBT; 
(b) If A is positive definite, i.e. has rank n, then there exists a positive 

definite symmetric matrix A 1/2 such that A = (A 1/2)2. 

PROOF Write A = UT AU and suppose, without loss of generality, 
that A takes the form 

o 

o o 

Now let C be the the n x k matrix 

o 

and define B = UT C. Then A = BBT. If k = n we can define 
A 1/2 = UTCU. This is symmetric and positive definite, and 
(A1/2)2 = UTAU = A. 0 

Finally, we need a result on convergence of sequences of symmetric 
non-negative definite matrices. 

Proposition D.lA 

Let P(k), k = 1,2, ... be a sequence of n x n symmetric non-negative 
definite matrices and suppose that for each xElRn, the scalar 
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sequence xTp(k)x converges to some number ex(x). Then there exists 
a non-negative definite symmetric matrix P such that ex(x) = xTpx. 

PROOF Let ej be the unit vector in the ith coordinate direction of 
IR" and define 

Pii = ex(ej ) = lim eT P(k)ej. 
k-+ co 

Now note the identity 

(e j + e/ P(k)(ej + e) = eT P(k)ej + eJ P(k)ej + 2eT P(k)ej 

where we have used the symmetry of P(k). Taking the limit as k -+ 00 

of this identity shows that 

eT P(k)ej-+t(ex(ej + e) - ex(ej ) - ex(e}), k-+ 00. 

Denote this limit P jj and let P be the symmetric matrix with i,jth 
entry Pij. 

Then for arbitrary x, 

we have, 

lim xTp(k)x = lim L xjxJ.eT P(k)ej 
k-+ co k-+ co j,j= 1 

Thus xTpx ~ 0 since xTp(k)x ~ 0 for all k, so that P is non-negative 
definite. 0 

D.2 Matrix norms 

Consider first of all the space of n-vectors (over the real or complex 
field). A real-valued function on the space is called a norm, and is 
written 11'11, if it possesses the following properties: 

(a) 11'11 ~ 0 and II x II = 0 if and only if x = 0; 
(b) II exx II = lexl II x II for all scalars ex; 
(c) Ilx + yll :s; Ilxll + Ilyll· 
These axiomatize the notion of 'length' of a vector. (If the field is 
complex, 1'1 here indicates the modulus and, if real, the absolute 
value). 
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An important example is 

where the Xi are the components of x. This is the Euclidean norm. 
Others are 

n 

Ilxll = L IXil 
i= 1 

and 

II X II = max Ix;!' 
i 

We can define a norm also on the space on n x m matrices. This is a 
function, again written 11'11, which satisfies axioms analogous to (a)­
(c) above, namely: 

(a') II A II ~ 0 with equality if and only if A is the zero matrix; 
(b/) II aA II = lal II A II for all scalars a; 
(c') IIA+BII::; IIAII + IIBII· 

There are many possible choices of matrix norm. The Euclidean 
(matrix) norm of a matrix is simply the Euclidean norm of the vector 
assembled from the entries of the matrix. It is a useful fact that this 
norm can be expressed as 

II A 112 = trace{A* A} (or trace {AA*} ). 

(Here A * denotes the 'simple' transpose or complex conjugate 
transpose of A, depending on whether the field is real or complex). 
Other possible choices are 

n m 

IIAII = L L lai) 
i=jj=l 

(where the aij are the entries of A) or 

II A II = max laiJ 
i,j 

A particularly important class of norms are those which take the 
form 

II A II = max II Ax II, (D.6) 

'ix"=l 
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the definition of which depends, of course, on our choice of norms on 
the domain and range spaces of A. These are called induced matrix 
norms ('induced' by our choice of norms on the domain and range 
spaces). The reason for their importance is that, if a norm is defined 
according to (D.6) then the norm satisfies the inequality 

IIABII S IIAII·IIBII. (D.7) 

(Of course it is assumed here that the same norm is adopted for the 
range of B and the domain space of A for the purposes of defining the 
induced norms II A II and II B II). We frequently need to bound the 
magnitude of the product of several matrices; noting inequality (D.7) 
we see that, if induced norms are used, a bound is provided simply by 
the product of the norms of the matrices involved. 

An induced matrix norm which crops up particularly frequently is 
that which results from the choice of the Euclidean norm on both the 
domain and range spaces. It is named the spectral norm. It can be 
shown that, if 11'11 is the spectral norm, then for any matrix A we have 
that II A 112 is the maximum eigenvalue (the eigenvalues will all be real) 
of the matrix AA *, or equivalently of the matrix A * A. It is the 
relationship of the spectral norm A with the eigenvalues ('spectrum', 
as the set of eigenvalues is called) of the associated matrix A * A which 
gives rise to the terminology 'spectral norm'. 

All the norms considered in this book are defined on matrices of 
arbitrary dimension and satisfy (in addition to the norm axioms) the 
condition 

IIAII = IIA*II 

for arbitrary A. 
There is a sense in which all matrix norms are equivalent: if 11'11 and 

11'11' are two norms on the space of n x m matrices, it can be shown 
that there exist real numbers co(n, m) and c1(n, m) such that 

IIAII S co(n,m)IIA II' 
and 

IIAII'sc1(n,m)IIAIl 

for any matrix A. This means that we can pass from bounds (above or 
below) on one matrix norm to another by simple scaling. This device 
is extremely useful when we require a bound with respect to one 
particular norm, but calculations are much more easily carried out 
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with some other norm. Often in analysis we do not need the actual 
numerical values of co(n, m) and c 1 (n, m), but merely the fact of their 
existence; for example, the inequalities imply that if members of a set 
of norm matrices are uniformly bounded in magnitude (above or 
below) with respect to one matrix norm then they will be uniformly 
bounded with respect to any other matrix norm. 

We utter a word of caution here, though. We can expect matrix 
norms to be equivalent only if we limit attention to matrices of fixed 
dimension. Indeed, if the members of a set of matrices, not of fixed 
dimension, are uniformly bounded with respect to one matrix norm, it 
does not necessarily follow that the same is true when we substitute 
another matrix norm. 

Often in this book it will not matter what choice of norm or matrix 
norm is made. The reader should assume, for concreteness, that the 
vector norm is the Euclidean norm and the matrix norm is the 
spectral norm unless explicitly told to the contrary. This convention is 
consistent since for a vector, interpreted as a matrix with one column, 
the Euclidean and spectral norms coincide. 

D.3 A uniform bound for stable matrices and applications 

It is a well-known property of (real) n x n matrices A, which are 
'stable' in the sense that all the eigenvalues lie in the open unit disc, 
that the numbers IIAkll, k = 1,2, ... , decay exponentially. (Here, and 
for the rest of this appendix 11'11 denotes the spectral norm). This 
property has the important implication for linear dynamical systems 
that a solution {Xk} to the dynamical system equations 

k=O,1, ... (D.8) 

(for Xo a given n-vector) has exponential decay. 
With applications to system identification in mind, we now 

consider a family of n x n matrices, in place of a single matrix. We 
give conditions under which the exponential decay is uniform over 
the family. 

Proposition D.3.1 

Let & be a compact subset of n x n matrices. Suppose that there 
exists 8E(O,1) such that, for each matrix AE& the eigenvalues of 
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A are contained in the disc {SEC: lsi ~ 1- e}. Then, corres­
ponding to any A > 1 - e, there exists c > 0 such that 

IIAkl1 ~ d k for all AE&, and k = 0,1,00' 

PROOF The proof is in several steps. 
Let X and A be numbers such that 

1-e<X<A<1. 

Step 1 Take A to be a fixed element in ,91. We shall show that 
there exists a number c A (which depends on A) such that 

k= 1,2,00' 

Jordan decomposition of the matrix A gives 

A=M-1JM. 

(D.9) 

Here M is a (possibly complex) non-singular n x n matrix. The matrix 
J can be partitioned as follows: 

o 

J= 

o 
Here, each J i is a square matrix (of dimension n;) which takes the 
form 

o 

o 

for Ai some eigenvalue of A. 
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Powers of A can be expressed in terms of 1 as follows 

Ak = M-i1MM-i1M '" M-i1M = M-iJkM 

o 
M. 

o 
1~ 

It follows from properties of matrix norms that there exists a number 
Ci > 0 such that 

IIAkl1 SCi max 111711, k = 0,1, ... 
iE{I,2, ...• d) 

Next we note that, for i = 1,2, ... , d, 1i = AJ + Si' where 

o 

o 

o 0 

1 
o 

(D.10) 

Observe that S7 = 0 for k z ni• We deduce that there exists a number 
C2 > 0 (which does not depend on i) such that 

k =0, 1, ... (D.ll) 

Using the binomial expansion, we calculate, for i = 1, ... , d, 

111711 = II {AJ + Sill = II Jo Clk AlS7- l II, 

where Clk = k!j(k -l)!l!, 

k 

S L C1k IA;l 11IS7- 111 
I~O 

k 

S C2 L ClkiAill(I - 1 + e)k-l 
I~O 

by (D.ll) 
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(we have appealed once again to the binomial expansion) 

i= 1,2, ... ,d, k=O,I, ... 

in view of our assumptions on the eigenvalues of A. It follows from 
(D.10) that (D.9) is true with CA = ClCz. 

Step 2 Let A be a fixed element in fJ. We shall show that 

II A k II ~ C A A k 

for all A in an open ball about A of radius A - I ('ball' here 
is understood in the sense of the induced norm). 

Suppose that B is an n x n matrix such that IIBII < A - I Then 

II (A + Btll = lilt ClkAIBk-111 ~ Jo clkllAIIIIIBk-11i 

k 

~ CA L ClkII(A - I)k-l 
I~O 

by (D.9) (once again the Clk are the 'binomial' coefficients), 

k= 1,2, ... 

This is the required inequality. 
Conclusion of the proof The collection of sets {A: IIA - All < 

A - X}, AEfJ, forms an open covering of fJ. Since f!/' is compact 
there is a finite subcovering; in other words there exist matrices 
A1, ... ,Ap in flJJ such that 

p 

f!/'c U {A:IIA-A.lI<A-I}. 
i~ 1 

We set C = maxcA • Given any AEfJ, A will lie in the set 
i • 

{A: IIA - Aill < A - I} for some value of i. 

By the results of step 2, 

IIAkll ~ CA)k 

:::;:dk, 

The proposition is proved. 

k= 1,2, .. . 

k= 1,2, .. . 

o 

Given the close relationship between state-space system descrip­
tions and descriptions expressed in terms of matrices of rational 
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functions in the delay operator (see Section 2.3 of Chapter 2), one 
would expect Proposition D.3.1, which concerns the state-space 
equation (D.8), to find a counterpart governing rational functions. 
Obtaining such a result is the goal of the rest of this appendix. To 
this end we prove a preliminary lemma. 

Lemma D.3.2 

Let !!2 c IRq be a compact set. Consider the polynomial in (1': 

pi(1') = 1 + (Xl (8)(1' + ... + (Xn(8)(1'n 

whose coefficients (Xl (8), ... , (Xn(8) are continuous (real-valued) 
functions of the parameter 8 on !!2. Suppose that for each 8E!!2, all 
the zeros of (1'~Pe(a) lie in the set {aEC:lal>ro} for some 
fixed ro > 1. Then corresponding to any number A > ro 1 there exists 
a number c such that the coefficients dk(8), k = 1,2, ... in the formal 
expansIOn 

satisfy 
for all 8E!!2, k = 1,2, ... 

PROOF We note the following identity: for arbitrary 8, 

[po(a)] -1 = hT[I - (1'A(8)r lb 

in which 

o - (Xn{{t) o 
1 0 

(D.12) 

F(8) = b= h T = [0, ... , 0, 1 J . 

o 
To see this we have merely to observe that [Po(z -l)J -1 is the transfer 
function of the system described by 

Po(Z-l)Yk = Uk (D.13) 

and hT[I - Z-l A(8)r lb is that of the system described by 

Xk+ 1 = A(8)Xk +bUk+ 1 

(D.l4) 
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The responses of the two systems (D.13) and (D.14) are the same for 
zero initial conditions (i.e. Yk = 0, k S 0 and Xo = 0) and arbitrary 
inputs {Uk}' This can be deduced from Proposition 2.4.2. It follows 
that the transfer functions are the same, which amounts to (D.12). 

Expanding the right-hand side of (D.12) about (J = 0, we obtain 

in which 

k=O,l, ... 

It follows that 

(D.15) 

Now the characteristic polynomial of A( 0) is sn + 1Y.1 (O)sn - 1 + ... + 
IY.n(O). Bearing in mind that Pe(J) cannot vanish at (J = 0, we deduce 
that if is a zero of (J--lo pi(J) if if =1= 0 and ;-1 is an eigenvalue of 
A(O). It follows from our assumptions about the zeros of Pe(J) that 
the eigenvalues of A(O) are contained in {sEIC:lsl < ro1}. Note 
also that {A(O): OE~} is a compact set of n x n matrices since 
~ is compact and A(O) depends continuously on O. 

Take a real number A> r 01. By Proposition D.3.1 there exists a 
number C1 such that 

k=O,1, ... 

It follows now from (D.15) that 

Idk(O) I s d\ for k = 0,1, ... and OE~ 

where c = Ilhllllbllc1. The lemma is proved. 0 

Proposition D.3.3 

Let ~ c IRq be a compact subset. Consider an r x 1 matrix of 
rational functions To(J) in (J which can be represented 

Te(J) = [gi(J)r 1G(J) 

in which 

and 
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Here ct 1(8), ... , ctn(8) are (real-valued) continuous functions of 8 
(on ~) and Qo(8), ... , Qn(8) are continuous r x I matrix-valued 
functions of 8. We suppose that there exists ro > 1 such that the zeros 
of (J-+g6((J) are contained in {(JEIC: I(JI > ro} for all BED. 
Let H o( B), H 1 (8), ... be the coefficients in the formal expansion 
of Ti(J) about (J = 0: 

(D.16) 

Then, corresponding to any A> ro 1, there exists c > 0 such that 

for BE~, k = 0,1, ... 

PROOF Fix A > ro 1. By Lemma DJ.2 there exists C1 > 0 such that 

for BE~, k = 0, 1, ... (D.17) 

where d1 (B), d2(B), ... are the coefficients in the formal expansion of 
[gi(J)] -1 about (J = 0: 

[g6((J)]-1 = 1 + d1(B)(J + d2(8)(J2 + ... 
Now the Hk(B), given by (D.16), are related to the dk(B) by the formula: 

min{k,n} 

Hk((J) = L: dk - /B)Q/(J), (JE~, k = 0, 1, ... 
j~O 

It follows now from (D.17) and properties of matrix norms that 

II Hk(B) II ~C1Cto IIQ/(J) II Ak - j ) 

~ d\ (J E ~, k = 0, 1, ... 

Here the constant c is given by 

c = ~~ ~:xLt II Qj(B) II J 
This completes the proof. o 

0.4 Some matrix calculus identities 

We collect together in this appendix a number of identities of 
importance in identification. Let F(t) be a matrix-valued function of a 
scalar parameter t and let m(S) be a scalar-valued function on a space of 
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matrices S. In what follows we shall interpret 

a a 
- F(t) and -a m(S) at S 

as having components 

(:t F(t) }j = :t [F(t)]ij and ( :S m(s)) .. = a~ .. m(S). 
'J J' 

This interpretation is consistent with the convention, adhered to 
elsewhere in this book, that the gradient of a scalar-valued function of a 
column vector is a row vector. 

Lemma D.4.1 

Let M(t) and N(t) be continuously differentiable functions of the scalar 
parameter t. Suppose that M(t) is p x r matrix valued and N(t) is r x q 
matrix valued. Then 

IS 

:t (M(t)N(t)) = (:t M(t) )N(t) + M(t)( :t N(t)). 

PROOF The (i,j)th component of 

a 
-(M(t)N(t) ) at 

a a 
-a [M(t)N(t)]ij = -a L mik(t)nkit) 

t t k 

= f (:t mik(t) )nkj(t) + f mik(t)( :t nkj(t))-

= [ (:t M(t)N(t)) Ij + [ M(t)( :t N(t)) Jij' 0 

Lemma D.4.2 

Let F(t) be a continuously differentiable n x n matrix-valued function 
of the scalar parameter t. Suppose that F(t)is non-singular att = f. Then 

:t F- 1(t) = - F- 1(t)( :t F(t) )F- 1(t) 

at t = f. 
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PROOF Since F(t) is non-singular and F is continuous, F(t) is non­
singular on some neighbourhood JV of t and we can write 

F(t)F-l(t) = J on JV. (D.18) 

Now in consequence of the implicit function theorem, the neighbour­
hood JV can be so chosen that the function F- 1(t) is continuously 
differentiable on JV. Differentiating both sides of equation (D.18) we 
deduce from Lemma D.4.1 that 

(:t F- 1(t) )F(t) + F- 1(t)( :t F(t)) = 0 on JV. 

It follows that 

at t = t. 

Lemma DA.3 

Let D be an r x q matrix. Then 

a 
as trace {SD} = D on the space of p x r matrices. 

PROOF The (i,j)th component of d/dS trace{SD} is 

8 a 
-a trace {SD} =-0 LSkldlk=dij' 

Sji Sjik.l 

Lemma DAA 

Let S be a non-singular n x n matrix. Then 

8 oS 10gdetS = S-l 

on a neighbourhood of S in the space of n x n matrices. 

o 

D 

PROOF Let JV be a neighbourhood of S on which det S +- O. Fix a 
pair of indices (i,j). By Cramer's rule, 

(det S)J = S Adj S 
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(Adj denotes the adjugatematrix ofS). Equating theU, j)th components 
of the matrices in this equation, we obtain 

det S = ~>jk[Adj S]kj' 
k 

It follows that on .K, 

[ :S log det sJ .. = a~ .. IOgdet S = (det S)-1 a~ .. det S 
I) )1 )1 

= (det S) -1[Adj S]ij' 

(We have used the fact that [Adj S]kj does not depend on Sji for any k). 
D 

Lemma DA.5 

Let S be a non-singular n x n matrix and let a be an n-vector. Then 

on a neighbourhood of S in the space of n x n matrices. 

PROOF Let.K be a neighbourhood of S on which det S =F O. On.K 
we have, by Lemma D.4.2, 

[~aTS-1aJ = ~aTS-1a = aTS- 10(i, j)S-1a 
iJS ij iJsji 

(here O(i,j) denotes the matrix with 1 in the U, i)th entry and zeros 
elsewhere) 

= trace {O(i,j)S-1 aaTS-1} 

= L [O(i,j)]k,I[S-1 aaTS-1]I,k 
k,l 

_[S-1 TS-1] - aa i,j' D 
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Some inequalities of Holder type 

We collect together in this appendix a number of useful inequalities 
which centre around the Holder inequality for finite sequences of real 
numbers. 

Theorem E.1 (The Holder inequality) 

Let p and q be numbers (possibly infinite) such that 1 :s; p:S; 00, 1 :s; 
q:S; 00, and lip + 11q = 1. Then for any positive integer n and numbers 
IX 1 , IX2,···,IXn and /31,/32, ... ,/3n, we have 

(E.1) 

(when p = 00 the relationship lip + llq = 1 is taken to indicate q = 1 
and 

PROOF The inequality is obviously true if all the lXi' or all the /3i' are 
zero. It is obviously true also in the cases p = 1 (whenq = oo)andp = 00 

(when q = 1). We need consider then only the case when the IXi are not all 
zero, the /3i are not all zero, and 1 < p < 00, 1 < q < 00. 

The proof hinges on an auxiliary inequality: 

(E.2) 

valid for any numbers x ?: O,y?: 0,0 < A < 1. To show (E.2)weconsider 
the function r: [0, (0) ~ IR given by 

r(t) = tA - At, o:s; t < 00. (E.3) 

Note that the derivative r'(t) (= A(tA- 1 - 1» is positive for t < land 

384 
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negative for t > Lit follows that r achieves its maximum over [0, (0) at 
t = 1, so 

r(t) ~ r(l), t ~ o. 
From (E.3), 

t~O (E.4) 

We are now ready to prove (E.2). Clearly we can limit attention to the 
case y + 0 since, otherwise, the inequality is trivial. But if y + 0 the 
inequality follows from substitution of t = x/y into (E.4). 

Next, for i = 1, ... ,n we apply (E.2) when x, y and A. are taken as 
follows: 

x - IlXilP 
_ IPdq 1 ( 1) 

- n ,y - n 'A. = - whence 1 - A. = - . 
L IlXilP L IPdq p q 

j= 1 j= 1 

This choice of x and y makes sense, since by assumption neither all the lXi 
nor all the Pi are zero. There results 

IlXiPil < 1 IlXilP 1 IPilq 

(~I.Xr( ~IP'I'r -p( ~I."') + q(~IP}I') 
Summing over i, we obtain 

D 

Undoubtedly the most frequently used case of this inequality is that 
which results when we take p = q = 2. Here the inequality takes the 
form 

(E.5) 

This is the Schwarz inequality. An alternative direct proof can be 
given along the lines ofthe proof of the similarly-named inequality in 
Proposition 1.1.2. 

We remark that the names 'Holder' and 'Schwarz' are given to 
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inequalities similar in character to (E.l) and (E.5) but when infinite 
sequences, functions or random variables replace {cxi}7=1, {PJ7=1. 

The HOlder inequality is the source of a variety of inequalities, 
obtained by consideration of special classes of numbers {cx l ,.··, cxn} 
{P I' ... , Pn}· One which is particularly useful in stability analysis in the 
following. 

Corollary E.2 

Let p and q be numbers (possibly infinite) such that 1 ~ P < 00, 

1 ~ q ~ 00 and lip + llq = 1. Then for any positive integer nand 
numbers AI'··.' An' J.lI' ... ' J.ln, we have 

(E.6) 

PROOF Apply the Holderinequalitywith CXi = !AJ/P,Pi = !Adl/qJ.lifor 
i= l, ... ,n. 0 
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Induced matrix morms, 373 
Inequality 

Chebyshev, 5 
Holder, 384 
Schwarz, 8, 384 

Infimum (int), 25 
Initial conditions, 69, 90, 328 
Inner product, 103, 104 
Innovations process, 95, 118, 129, 

135, 277, 279, 281 
Innovations representations, 94, 95, 

127, 276, 287, 299 
Instrumental variable, 138, 211 

Kalman filter, 56, 95, 102, 117, 118, 
250, 258, 280, 282, 285, 298, 
348 

with feedback control, 276 
Kronecker lemma, 360, 365 

Least-squares estimation, 13, 212, 
228,292,311, 312 

bias in, 202, 202, 311 
for dynamical systems, 173 
for static models, 151 
recursive, 193, 195, 212 
statistical properties, 154 
three-stage, 104, 210 

Likelihood function, 176, 208 
Lim inf, 26 
Lim sup, 26 
Linear estimation, 101, 108 

geometry of, 102 

391 

Linear regulator problem 
deterministic, 125, 250, 290 
discounted costs, 259, 265, 297, 

310 
infinite-horizon, 260, 297 
stochastic, see LQG problem 

Linear systems, 31, 33, 58 
Low-pass filter, 332 
LQG problem, 249, 291, 321, 348 

complete observations, 266 
discounted costs, 249, 271, 285 
finite-horizon, 266 
infinite-horizon, 271, 285 
partial observations, 276, 298 
self-tuning case, 321 

Lyapunov equation, 88, 89 

Markov parameters, 65, 71 
Matched impedance, 265, 271 
Matrix calculus, 380 
Matrix inversion lemma, 194 
Maximum likelihood estimation, 

143, 173, 201, 208, 210, 212, 
228, 245 

approximate, 212 
for dynamical systems, 175 
for static systems, 159 

Mean,9,19 
Mean square deviation, 27 

error, 100 
Measure theory, 57 
Minimum-phase systems, 296, 305 
Minimum-variance control, 244, 

291, 292, 307, 311, 318, 332 
frequency domain method, 301 
with control costs, 297 

Models 
continuous-time, 62 
discrete-time, 62 
externCll,60, 128, 129 
input/output, 60, 137, 146 
interchangeability of, 92 
internal, 60 
order of, 162 
predictor, 96, 148 
static, 147 
stochastic, 60 
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stochastic dynamical, 85, 92, 96, 
99, 147, 148 

stochastic state space, 87, 92, 98, 
148 

Model order selection 
dynamical systems, 167,204, 

207,212, 331 
static systems, 161, 167 

Model set, 216, 220, 311, 312 
Monotone sequence, 25 
Moving average process, 72, 215, 

315, 359 
Multi-step-ahead prediction, 293 
Multivariable system design, 266, 

290 

Newton-Raphson algorithm, 187, 
188,212 

recursive, 196, 198 
Noise, 61 
Noisy measurements, 247, 276 
Non-negative definite matrix, 367 
Norm 

of a matrix, 371 
of a vector, 104 

Normal distribution, 15, 111, 145, 
157, 249, 277, 327 

Normal equations, 153 
Nyquist criterion, 327 

Observability, 33, 42, 131 
Hautus' test for, 46 
matrix, 43 

Observable pair, 43 
Observer, 56 
One-step-ahead prediction, 97, 149, 

227, 280 
Open-loop control, 247, 256 
Optimal control, 247, 248 
Order determination, see Model 

order selection 
Orthogonal matrix, 367 
Orthogonal projection, 101, 105, 

109 
Orthogonal vectors, 104 
Orthonormal basis, 104 

Parameter 
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estimation, 138, 146, 150, 171 
Markov, 65 
vector, 62, 67, 220 

Parsimony of parametrization, 127, 
208 

Partial observations, 247 
Persistent excitation, 233, 331 
Performance criterion, 248 
Point estimation, 138, 211 
Pole, 47 
Pole assignment, 47, 57, 134 
Pole-shifting regulator~, 248, 291, 

292, 306, 321, 324, 332 
Positive definite matrix, 367 
Positive real condition, 328, 333, 

359,363 
Prediction, 60, 135, 293, 328 
Prediction error models, 96, 130, 

211, 244 
Predictor models, 96, 99, 172, 212, 

220, 357 
stability of, 222 

Principle of optimality, 252 
Probability theory, 1, 58 
Projection, see Orthogonal 

projection 
Projection operator, 106 

Quadratic boundedness, 225, 335 

Random variable, 1 
centred, 110 
continuous, 2 
discrete, 2 
integrable, 4 

Random vector, 6 
Reachability, 34 
Recursive algorithm, 101 

least squares, 193, 195,212, 327 
Recursive estimation, 112, 212 

Residues, 78, 322 
Riccati equation, 118, 195, 199, 

258, 264, 282, 348 
computation of solution, 123 

Robustness, 331 

Sampling, 18 
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Self-tuning control, 244, 291, 332 
convergence of, 325 

Separation principle, 250, 276, 285, 
286, 289, 290 

Set points, 296 
Shift operator, 64 
Spectral density function, 23, 73, 

307 
Spectral distribution function, 24 
Spectral factorization, 81, 99, 321 
Spectral norm, 373 
Square root filtering, 124, 135 
Stability, 216, 217, 326, 335 

bounded input/bounded output, 
360, 365 

Stabilizability, 41, 52, 57, 125,261, 
263, 272, 275, 286, 289, 299, 
349,351,355 

rank test for, 53 
Standard deviation, 4 
Standard normal distribution, 15 
State, 32, 60 
State feedback, 46, 247, 298 
State-space model 

innovations form, 95, 127 
stability of, 224 
control of, 247 

Statistic, 164 
Stieltjes integral, 3 
Stochastic approximation, 327, 333 
Stochastic differential equations, 

68,99,216 
Stochastic dynamical models, 85, 

92, 95, 96, 99 
Stochastic processes, 18 

centred, 19 
normal, 20 
stationary, 21 

Stochastic state-space model, 82, 
92, 98 

covariance function of, 87 
Strict-sense stationary processes, 21 
Subsequence, 28 
Supremum (sup), 25 

Symmetric matrix, 367 
Symmetric non-negative definite 

matrices, 367 
square root of, 369, 370 

System, 31, 60 
closed-loop, 46 
deterministic, 61 
pole-assignable, 47 
stable stochastic, 217 
stochastic, 61, 216 
time invariant, 32 
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Three-stage least squares, 204, 210, 
212 

Tracking, 296, 326 

Unbiased estimators, 139 
Unconstrained minimization, 251 
Uncorrelated random variables, 7 
Uniform-bound for stable matrices, 

374 
Uniform boundedness, 335 
Uniform convergence theorem, 

335, 343 
Uniform stability, 220, 335 
Unit delay algorithm, 327, 330, 357 
Unit disc 

closed, 64 
open, 53 

Unmodelled high-frequency 
dynamics, 331 

Value function, 253 
Variance, 4 
Variance of least squares estimates, 

158 
Vector spaces, 103 
Verification theorem, 254, 268, 284 

White noise, 22, 277, 315 
Wide-sense stationary process, 22 

Yule-Walker equations, 76 

Zeroth power (of a matrix), 32 




