3.07pt

Aproximação da Binomial pela Normal

Bacharelado em Economia - FEA - Noturno

1º Semestre 2017

Profs. Vanderlei C. Bueno e Gilberto A. Paula

Sumário

3.07pt

- Objetivos da Aula
- Distribuição de Bernoulli
- Distribuição Binomial
- 4 Histogramas Distribuição Binomial
- 6 Aproximação pela Norma
- Resultado Aproximado
- Cálculo da Probabilidade
- Observações
- Correção de Continuidade
- Tabela Normal
- Exemplos

Objetivos da Aula

Objetivos da Aula

O objetivo principal desta aula é discutir a aproximação da distribuição binomial (distribuição discreta) pela distribuição normal (distribuição contínua) e apresentar algumas aplicações.

Sumário

3.07pt

- Objetivos da Aula
- Distribuição de Bernoulli
- Distribuição Binomia
- 4 Histogramas Distribuição Binomia
- Aproximação pela Norma
- Resultado Aproximado
- Cálculo da Probabilidade
- Observações
- Orreção de Continuidade
- Tabela Norma
- Exemplos

Definição

Experimentos que admitem apenas dois resultados possíveis (sucesso ou fracasso) recebem o nome de ensaios de Bernoulli e originam uma variável aleatória com distribuição de Bernoulli.

Definição

Experimentos que admitem apenas dois resultados possíveis (sucesso ou fracasso) recebem o nome de ensaios de Bernoulli e originam uma variável aleatória com distribuição de Bernoulli.

Função de probabilidade

Se X é uma variável aleatória com distribuição de Bernoulli com probabilidade de sucesso p, em que X=1 se o resultado é sucesso e X=0 se o resultado é fracasso, então a função de probabilidade de X fica dada por

$$P(X = x) = p^{x}(1-p)^{(1-x)},$$

Definição

Experimentos que admitem apenas dois resultados possíveis (sucesso ou fracasso) recebem o nome de ensaios de Bernoulli e originam uma variável aleatória com distribuição de Bernoulli.

Função de probabilidade

Se X é uma variável aleatória com distribuição de Bernoulli com probabilidade de sucesso p, em que X=1 se o resultado é sucesso e X=0 se o resultado é fracasso, então a função de probabilidade de X fica dada por

$$P(X = x) = p^{x}(1-p)^{(1-x)},$$

em que x = 0, 1. Denotamos $X \sim Be(p)$.

Exemplos

• resultado da inspeção de uma peça, defeituosa ou não defeituosa

- resultado da inspeção de uma peça, defeituosa ou não defeituosa
- opinião de um eleitor, favorável ou contrário

- resultado da inspeção de uma peça, defeituosa ou não defeituosa
- opinião de um eleitor, favorável ou contrário
- resultado de um exame vestibular, aprovado ou não aprovado

- resultado da inspeção de uma peça, defeituosa ou não defeituosa
- opinião de um eleitor, favorável ou contrário
- resultado de um exame vestibular, aprovado ou não aprovado
- intenção de voto de um eleitor, partido A ou outra preferência

- resultado da inspeção de uma peça, defeituosa ou não defeituosa
- opinião de um eleitor, favorável ou contrário
- resultado de um exame vestibular, aprovado ou não aprovado
- intenção de voto de um eleitor, partido A ou outra preferência
- terminar uma corrida para pedestres, sim ou não

- resultado da inspeção de uma peça, defeituosa ou não defeituosa
- opinião de um eleitor, favorável ou contrário
- resultado de um exame vestibular, aprovado ou não aprovado
- intenção de voto de um eleitor, partido A ou outra preferência
- terminar uma corrida para pedestres, sim ou não
- preferência de um consumidor, carro nacional ou carro importado

- resultado da inspeção de uma peça, defeituosa ou não defeituosa
- opinião de um eleitor, favorável ou contrário
- resultado de um exame vestibular, aprovado ou não aprovado
- intenção de voto de um eleitor, partido A ou outra preferência
- terminar uma corrida para pedestres, sim ou não
- preferência de um consumidor, carro nacional ou carro importado
- pressão arterial de um paciente, alterada ou não alterada

- resultado da inspeção de uma peça, defeituosa ou não defeituosa
- opinião de um eleitor, favorável ou contrário
- resultado de um exame vestibular, aprovado ou não aprovado
- intenção de voto de um eleitor, partido A ou outra preferência
- terminar uma corrida para pedestres, sim ou não
- preferência de um consumidor, carro nacional ou carro importado
- pressão arterial de um paciente, alterada ou não alterada
- hábito de práticas esportivas, sim ou não

Função de probabilidade

Assim, a função de probabilidade de $X \sim \text{Be}(p)$, 0 , pode ser representada pela tabela abaixo

Função de probabilidade

Assim, a função de probabilidade de $X \sim \text{Be}(p)$, 0 , pode ser representada pela tabela abaixo

X	0	1
P(X = x)	1 – <i>p</i>	р

Esperança

A esperança (ou valor médio) da distribuição de Bernoulli é dada por

Esperança

A esperança (ou valor médio) da distribuição de Bernoulli é dada por

$$E(X) = 0 \times P(X = 0) + 1 \times P(X = 1) = 0 \times (1 - p) + 1 \times p = p.$$

Esperança

A esperança (ou valor médio) da distribuição de Bernoulli é dada por

$$E(X) = 0 \times P(X = 0) + 1 \times P(X = 1) = 0 \times (1 - p) + 1 \times p = p.$$

Variância

A variância de X é definida por $Var(X) = E(X^2) - [E(X)]^2$. Temos que

Esperança

A esperança (ou valor médio) da distribuição de Bernoulli é dada por

$$E(X) = 0 \times P(X = 0) + 1 \times P(X = 1)$$

= $0 \times (1 - p) + 1 \times p = p$.

Variância

A variância de X é definida por $Var(X) = E(X^2) - [E(X)]^2$. Temos que

$$E(X^{2}) = 0^{2} \times P(X = 0) + 1^{2} \times P(X = 1)$$

= 0 \times (1 - \rho) + 1 \times \rho = \rho.

Esperança

A esperança (ou valor médio) da distribuição de Bernoulli é dada por

$$E(X) = 0 \times P(X = 0) + 1 \times P(X = 1)$$

= $0 \times (1 - p) + 1 \times p = p$.

Variância

A variância de X é definida por $Var(X) = E(X^2) - [E(X)]^2$. Temos que

$$E(X^{2}) = 0^{2} \times P(X = 0) + 1^{2} \times P(X = 1)$$

= 0 \times (1 - p) + 1 \times p = p.

Assim, $Var(X) = p - p^2 = p(1 - p)$ e portanto $DP(X) = \sqrt{p(1 - p)}$.

Sumário

3.07pt

- Objetivos da Aula
- Distribuição de Bernoulli
- Distribuição Binomial
- 4 Histogramas Distribuição Binomia
- Aproximação pela Norma
- Resultado Aproximado
- Cálculo da Probabilidade
- Observações
- Correção de Continuidade
- Tabela Norma
- Exemplos

Definição

A variável aleatória X correspondente ao número de sucessos em n ensaios de Bernoulli independentes e com mesma probabilidade p de sucesso, tem distribuição binomial com parâmetros n e p.

Definição

A variável aleatória X correspondente ao número de sucessos em n ensaios de Bernoulli independentes e com mesma probabilidade p de sucesso, tem distribuição binomial com parâmetros n e p.

Função de probabilidade

A função de probabilidades de X fica dada por

Definição

A variável aleatória X correspondente ao número de sucessos em n ensaios de Bernoulli independentes e com mesma probabilidade p de sucesso, tem distribuição binomial com parâmetros n e p.

Função de probabilidade

A função de probabilidades de X fica dada por

$$P(X=x) = \binom{n}{x} p^x (1-p)^{(n-x)},$$

Definição

A variável aleatória X correspondente ao número de sucessos em n ensaios de Bernoulli independentes e com mesma probabilidade p de sucesso, tem distribuição binomial com parâmetros n e p.

Função de probabilidade

A função de probabilidades de X fica dada por

$$P(X=x) = \binom{n}{x} p^x (1-p)^{(n-x)},$$

em que x = 0, 1, ..., n. Denotamos $X \sim B(n, p)$.

Esperança

Se $X \sim B(n, p)$ podemos escrever $X = X_1 + \cdots + X_n$, em que $X_i \sim Be(p)$ para $i = 1, \dots, n$.

Esperança

Se $X \sim B(n, p)$ podemos escrever $X = X_1 + \cdots + X_n$, em que $X_i \sim Be(p)$ para $i = 1, \dots, n$. Assim, obtemos

$$\mathsf{E}(X) = \mathsf{E}(X_1) + \cdots + \mathsf{E}(X_n) = np.$$

Esperança

Se $X \sim B(n, p)$ podemos escrever $X = X_1 + \cdots + X_n$, em que $X_i \sim Be(p)$ para $i = 1, \dots, n$. Assim, obtemos

$$\mathsf{E}(X) = \mathsf{E}(X_1) + \cdots + \mathsf{E}(X_n) = np.$$

Variância

Similarmente como temos *n* ensaios independentes, então

Esperança

Se $X \sim B(n, p)$ podemos escrever $X = X_1 + \cdots + X_n$, em que $X_i \sim Be(p)$ para $i = 1, \dots, n$. Assim, obtemos

$$\mathsf{E}(X) = \mathsf{E}(X_1) + \cdots + \mathsf{E}(X_n) = np.$$

Variância

Similarmente como temos *n* ensaios independentes, então

$$Var(X) = Var(X_1) + \cdots + Var(X_n) = np(1-p).$$

Esperança

Se $X \sim B(n, p)$ podemos escrever $X = X_1 + \cdots + X_n$, em que $X_i \sim Be(p)$ para $i = 1, \dots, n$. Assim, obtemos

$$\mathsf{E}(X) = \mathsf{E}(X_1) + \cdots + \mathsf{E}(X_n) = np.$$

Variância

Similarmente como temos *n* ensaios independentes, então

$$Var(X) = Var(X_1) + \cdots + Var(X_n) = np(1-p).$$

E daí segue que $DP(X) = \sqrt{np(1-p)}$.

Sumário

3.07pt

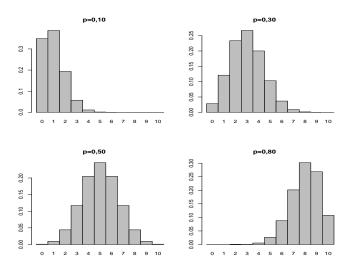
- Objetivos da Aula
- Distribuição de Bernoull
- Distribuição Binomial
- 4 Histogramas Distribuição Binomial
- 6 Aproximação pela Normal
- Resultado Aproximado
- Cálculo da Probabilidade
- Observações
- Correção de Continuidade
- Tabela Norma
- Exemplos

Histogramas Distribuição Binomial

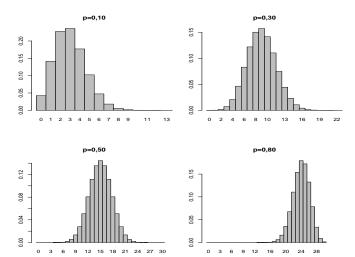
Descrição

A seguir serão construídos histogramas para a distribuição B(n,p) variando-se o número de ensaios n e também a probabilidade de sucesso p.

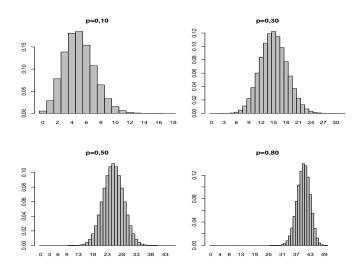
Histogramas B(n, p) para n = 10



Histogramas B(n, p) para n = 30



Histogramas B(n, p) para n = 50

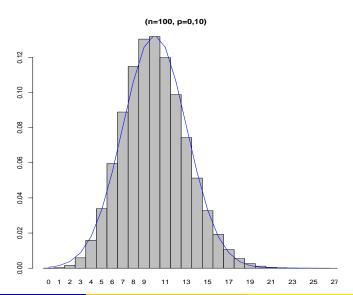


Sumário

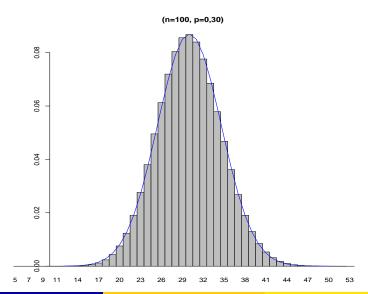
3.07pt

- Objetivos da Aula
- Distribuição de Bernoull
- Oistribuição Binomia
- 4 Histogramas Distribuição Binomial
- 5 Aproximação pela Normal
- Resultado Aproximado
- Cálculo da Probabilidade
- Observações
- Correção de Continuidade
- Tabela Norma
- Exemplos

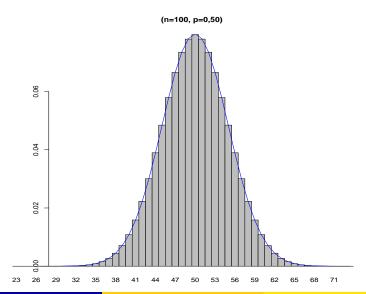
Aproximação da B(n, p) pela N(np, np(1-p))



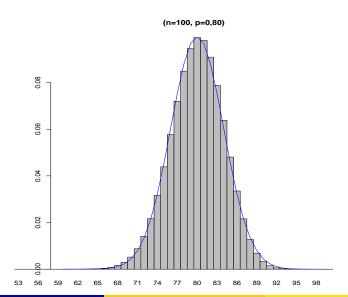
Aproximação da B(n, p) pela N(np, np(1-p))



Aproximação da B(n, p) pela N(np, np(1-p))



Aproximação da B(n, p) pela N(np, np(1-p)



Sumário

3.07pt

- Objetivos da Aula
- Distribuição de Bernoull
- O Distribuição Binomial
- 4 Histogramas Distribuição Binomia
- Aproximação pela Normal
- Resultado Aproximado
- Cálculo da Probabilidade
- Observações
- Correção de Continuidade
- Tabela Norma
- Exemplos

Resultado Aproximado

Resultado Aproximado

Nota-se pelos gráficos que

Resultado Aproximado

Resultado Aproximado

Nota-se pelos gráficos que

• à medida que n cresce a distribuição de $X \sim B(n, p)$ se aproxima da distribuição de $Y \sim N(\mu_X, \sigma_X^2)$ em que $\mu_X = np$ e $\sigma_X^2 = np(1-p)$

Resultado Aproximado

Resultado Aproximado

Nota-se pelos gráficos que

- à medida que n cresce a distribuição de $X \sim B(n, p)$ se aproxima da distribuição de $Y \sim N(\mu_X, \sigma_X^2)$ em que $\mu_X = np$ e $\sigma_Y^2 = np(1-p)$
- a aproximação parece mais rápida à medida que p se aproxima de $\frac{1}{2}$

Sumário

3.07pt

- Objetivos da Aula
- Distribuição de Bernoull
- Distribuição Binomial
- 4 Histogramas Distribuição Binomia
- 5 Aproximação pela Norma
- Resultado Aproximado
- Cálculo da Probabilidade
- Observações
- Correção de Continuidade
- Tabela Norma
- Exemplos

Cálculo da Probablidade

Cálculo da Probabilidade

Portanto, temos a aproximação para n grande

Cálculo da Probablidade

Cálculo da Probabilidade

Portanto, temos a aproximação para n grande

$$\begin{split} P(a \le X \le b) &\cong P(a \le Y \le b) \\ &= P\left(\frac{a - np}{\sqrt{np(1 - p)}} \le Z \le \frac{b - np}{\sqrt{np(1 - p)}}\right), \end{split}$$

Cálculo da Probablidade

Cálculo da Probabilidade

Portanto, temos a aproximação para n grande

$$\begin{split} P(a \leq X \leq b) &\cong P(a \leq Y \leq b) \\ &= P\left(\frac{a - np}{\sqrt{np(1 - p)}} \leq Z \leq \frac{b - np}{\sqrt{np(1 - p)}}\right), \end{split}$$

em que $Z \sim N(0, 1)$.

Sumário

3.07pt

- Objetivos da Aula
- Distribuição de Bernoull
- O Distribuição Binomia
- 4 Histogramas Distribuição Binomia
- Aproximação pela Norma
- Resultado Aproximado
- Cálculo da Probabilidade
- Observações
- Correção de Continuidade
- Tabela Norma
- Exemplos

Observações

Observações

• A aproximação da distribuição binomial pela normal é boa quando np(1-p) > 3

Observações

- A aproximação da distribuição binomial pela normal é boa quando $np(1-p) \geq 3$
- A demonstração da validade desta aproximação é feita utilizando-se o Teorema do Limite Central

Observações

- A aproximação da distribuição binomial pela normal é boa quando $np(1-p) \geq 3$
- A demonstração da validade desta aproximação é feita utilizando-se o Teorema do Limite Central
- A aproximação pode ser melhorada através do uso da Correção de Continuidade

Sumário

3.07pt

- Objetivos da Aula
- Distribuição de Bernoull
- Distribuição Binomia
- 4 Histogramas Distribuição Binomia
- 6 Aproximação pela Normal
- Resultado Aproximado
- Cálculo da Probabilidade
- Observações
- Correção de Continuidade
- Tabela Norma
- Exemplos

Correção de Continuidade

A correção de continuidade é um procedimento que pode ser aplicado para melhorar a aproximação de distribuições discretas através de distribuições contínuas.

Correção de Continuidade

A correção de continuidade é um procedimento que pode ser aplicado para melhorar a aproximação de distribuições discretas através de distribuições contínuas. Em particular, na aproximação da distribuição binomial pela normal temos o seguinte:

Correção de Continuidade

A correção de continuidade é um procedimento que pode ser aplicado para melhorar a aproximação de distribuições discretas através de distribuições contínuas. Em particular, na aproximação da distribuição binomial pela normal temos o seguinte:

$$P(a \le X \le b) \cong P\left(a - \frac{1}{2} \le Y \le b + \frac{1}{2}\right)$$

$$= P\left(\frac{a - \frac{1}{2} - np}{\sqrt{np(1 - p)}} \le Z \le \frac{b + \frac{1}{2} - np}{\sqrt{np(1 - p)}}\right),$$

Correção de Continuidade

A correção de continuidade é um procedimento que pode ser aplicado para melhorar a aproximação de distribuições discretas através de distribuições contínuas. Em particular, na aproximação da distribuição binomial pela normal temos o seguinte:

$$P(a \le X \le b) \cong P\left(a - \frac{1}{2} \le Y \le b + \frac{1}{2}\right)$$

$$= P\left(\frac{a - \frac{1}{2} - np}{\sqrt{np(1 - p)}} \le Z \le \frac{b + \frac{1}{2} - np}{\sqrt{np(1 - p)}}\right),$$

em que $Z \sim N(0, 1)$.

Correção de Continuidade

Consideramos o caso particular

Correção de Continuidade

Consideramos o caso particular

$$P(X = a) \cong P\left(a - \frac{1}{2} \le Y \le a + \frac{1}{2}\right)$$

$$= P\left(\frac{a - \frac{1}{2} - np}{\sqrt{np(1 - p)}} \le Z \le \frac{a + \frac{1}{2} - np}{\sqrt{np(1 - p)}}\right),$$

Correção de Continuidade

Consideramos o caso particular

$$P(X = a) \cong P\left(a - \frac{1}{2} \le Y \le a + \frac{1}{2}\right)$$

$$= P\left(\frac{a - \frac{1}{2} - np}{\sqrt{np(1 - p)}} \le Z \le \frac{a + \frac{1}{2} - np}{\sqrt{np(1 - p)}}\right),$$

em que $Z \sim N(0,1)$.

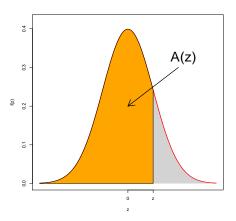
Sumário

3.07pt

- Objetivos da Aula
- Distribuição de Bernoull
- O Distribuição Binomial
- 4 Histogramas Distribuição Binomia
- Aproximação pela Norma
- Resultado Aproximado
- 🕜 Cálculo da Probabilidade
- Observações
- Orreção de Continuidade
- Tabela Normal
- Exemplos

Cálculo de Probabilidades

Descrição de $A(z) = P(Z \le z), z \ge 0$



Distribuição Normal Padrão: Valores de $A(z) = P(Z \le z)$

	Segunda Decimal de z										
Z	0	1	2	3	4	5	6	7	8	9	
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359	
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753	
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141	
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517	
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879	
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224	
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549	
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852	
8.0	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133	
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389	
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621	
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830	
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015	
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177	
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319	
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441	
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545	
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633	
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706	
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767	
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817	

Distribuição Normal Padrão: Valores de $A(z) = P(Z \le z)$

	Segunda Decimal de z										
Z	0	1	2	3	4	5	6	7	8	9	
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857	
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890	
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916	
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936	
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952	
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964	
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974	
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981	
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986	
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990	
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993	
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995	
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997	
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998	
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	
3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	
3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	
3.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	

Sumário

3.07pt

- Objetivos da Aula
- Distribuição de Bernoull
- O Distribuição Binomia
- Histogramas Distribuição Binomia
- Aproximação pela Norma
- Resultado Aproximado
- Cálculo da Probabilidade
- Observações
- Correção de Continuidade
- Tabela Norma
- Exemplos

Exemplo 1

Exemplo 1

Supor $X \sim B(225; 0, 2)$. Então,

Exemplo 1

Exemplo 1

Supor $X \sim B(225; 0, 2)$. Então,

•
$$E(X) = np = 225 \times 0, 2 = 45$$

Exemplo 1

Supor $X \sim B(225; 0, 2)$. Então,

- $E(X) = np = 225 \times 0, 2 = 45$
- $Var(X) = np(1-p) = 225 \times 0, 2 \times 0, 8 = 36$

Exemplo 1

Supor $X \sim B(225; 0, 2)$. Então,

- $E(X) = np = 225 \times 0, 2 = 45$
- $Var(X) = np(1-p) = 225 \times 0, 2 \times 0, 8 = 36$
- $DP(X) = \sqrt{36} = 6$

Exemplo 1

Supor $X \sim B(225; 0, 2)$. Então,

- $E(X) = np = 225 \times 0, 2 = 45$
- $Var(X) = np(1-p) = 225 \times 0, 2 \times 0, 8 = 36$
- $DP(X) = \sqrt{36} = 6$

Assim, a distribuição de X pode ser aproximada por $Y \sim N(45, 6^2)$.

Cálculo de Probabilidade

a)
$$P(39 \le X \le 48) \cong P(39 \le Y \le 48)$$

$$= P\left(\frac{39 - 45}{6} \le Z \le \frac{48 - 45}{6}\right)$$

$$= P(-1, 0 \le Z \le 0, 5)$$

$$= P(Z \le 0, 5) - P(Z \le -1, 0)$$

$$= P(Z \le 0, 5) - [1 - P(Z \le 1, 0)]$$

$$= A(0, 5) - [1 - A(1, 0)]$$

$$= 0,6915 - 0,1587$$

$$= 0,5328.$$

Cálculo de Probabilidade

a)
$$P(39 \le X \le 48) \cong P(39 \le Y \le 48)$$

$$= P\left(\frac{39 - 45}{6} \le Z \le \frac{48 - 45}{6}\right)$$

$$= P(-1, 0 \le Z \le 0, 5)$$

$$= P(Z \le 0, 5) - P(Z \le -1, 0)$$

$$= P(Z \le 0, 5) - [1 - P(Z \le 1, 0)]$$

$$= A(0, 5) - [1 - A(1, 0)]$$

$$= 0,6915 - 0,1587$$

$$= 0.5328.$$

Usando a tabela binomial obtém-se $P(39 \le X \le 48) = 0,5853$ (valor exato).

Aproximação da Binomial pela Normal

Correção de Continuidade

a)
$$P(39 \le X \le 48) \cong P(38, 5 \le Y \le 48, 5)$$

$$= P\left(\frac{38, 5 - 45}{6} \le Z \le \frac{48, 5 - 45}{6}\right)$$

$$= P(-1, 08 \le Z \le 0, 58)$$

$$= P(Z \le 0, 58) - P(Z \le -1, 08)$$

$$= P(Z \le 0, 58) - [1 - P(Z \le 1, 08)]$$

$$= A(0, 58) - [1 - A(1, 08)]$$

$$= 0,7190 - 0,1401$$

$$= 0,5789.$$

Correção de Continuidade

a)
$$P(39 \le X \le 48) \cong P(38, 5 \le Y \le 48, 5)$$

$$= P\left(\frac{38, 5 - 45}{6} \le Z \le \frac{48, 5 - 45}{6}\right)$$

$$= P(-1, 08 \le Z \le 0, 58)$$

$$= P(Z \le 0, 58) - P(Z \le -1, 08)$$

$$= P(Z \le 0, 58) - [1 - P(Z \le 1, 08)]$$

$$= A(0, 58) - [1 - A(1, 08)]$$

$$= 0,7190 - 0,1401$$

$$= 0,5789.$$

Usando a tabela binomial obtém-se $P(39 \le X \le 48) = 0,5853$ (valor exato).

Cálculo de Probabilidade

$$b)P(X \ge 42) \cong P(Y \ge 42)$$

$$= P\left(Z \ge \frac{42 - 45}{6}\right)$$

$$= P(Z \ge -0,5)$$

$$= P(Z \le 0,5)$$

$$= A(0,5)$$

$$= 0,6915.$$

Cálculo de Probabilidade

b)
$$P(X \ge 42) \cong P(Y \ge 42)$$

= $P\left(Z \ge \frac{42 - 45}{6}\right)$
= $P(Z \ge -0, 5)$
= $P(Z \le 0, 5)$
= $A(0, 5)$
= 0, 6915.

Usando a tabela binomial obtém-se $P(X \ge 42) = 0,7164$ (valor exato).

Correção de Continuidade

b)
$$P(X \ge 42) \cong P(Y \ge 41, 5)$$

= $P\left(Z \ge \frac{41, 5 - 45}{6}\right)$
= $P(Z \ge -0, 58)$
= $P(Z \le 0, 58)$
= $A(0, 58)$
= $0, 7190$.

Correção de Continuidade

b)
$$P(X \ge 42) \cong P(Y \ge 41, 5)$$

= $P\left(Z \ge \frac{41, 5 - 45}{6}\right)$
= $P(Z \ge -0, 58)$
= $P(Z \le 0, 58)$
= $A(0, 58)$
= 0.7190 .

Usando a tabela binomial obtém-se $P(X \ge 42) = 0,7164$ (valor exato).

Cálculo de Probabilidade

$$c)P(X \le 57) \cong P(Y \le 57)$$

$$= P\left(Z \le \frac{57 - 45}{6}\right)$$

$$= P(Z \le 2)$$

$$= A(2,0)$$

$$= 0,9773.$$

Cálculo de Probabilidade

$$c)P(X \le 57) \cong P(Y \le 57)$$

$$= P\left(Z \le \frac{57 - 45}{6}\right)$$

$$= P(Z \le 2)$$

$$= A(2,0)$$

$$= 0,9773.$$

Usando a tabela binomial obtém-se $P(X \le 57) = 0,9791$ (valor exato).

Correção de Continuidade

c)
$$P(X \le 57) \cong P(Y \le 57, 5)$$

= $P\left(Z \le \frac{57, 5 - 45}{6}\right)$
= $P(Z \le 2, 08)$
= $A(2, 08)$
= $0,9812$.

Correção de Continuidade

c)
$$P(X \le 57) \cong P(Y \le 57, 5)$$

= $P\left(Z \le \frac{57, 5 - 45}{6}\right)$
= $P(Z \le 2, 08)$
= $A(2, 08)$
= 0,9812.

Usando a tabela binomial obtém-se $P(X \le 57) = 0,9791$ (valor exato).

Cálculo de Probabilidade

$$d)P(41 < X < 52) = P(42 \le X \le 51)$$

$$\cong P(42 \le Y \le 51)$$

$$= P\left(\frac{42 - 45}{6} \le Z \le \frac{51 - 45}{6}\right)$$

$$= P(-0, 5 \le Z \le 1, 0)$$

$$= A(1) - [1 - A(0, 5)]$$

$$= 0,5328.$$

Cálculo de Probabilidade

$$d)P(41 < X < 52) = P(42 \le X \le 51)$$

$$\cong P(42 \le Y \le 51)$$

$$= P\left(\frac{42 - 45}{6} \le Z \le \frac{51 - 45}{6}\right)$$

$$= P(-0, 5 \le Z \le 1, 0)$$

$$= A(1) - [1 - A(0, 5)]$$

$$= 0,5328.$$

Usando a tabela binomial obtém-se $P(42 \le X \le 51) = 0,5765$ (valor exato).

Correção de Continuidade

$$d)P(41 < X < 52) = P(42 \le X \le 51)$$

$$\cong P(41, 5 \le Y \le 51, 5)$$

$$= P\left(\frac{41, 5 - 45}{6} \le Z \le \frac{51, 5 - 45}{6}\right)$$

$$= P(-0, 58 \le Z \le 1, 08)$$

$$= A(1, 08) - [1 - A(0, 58)]$$

$$= 0,5789.$$

Correção de Continuidade

$$d)P(41 < X < 52) = P(42 \le X \le 51)$$

$$\cong P(41, 5 \le Y \le 51, 5)$$

$$= P\left(\frac{41, 5 - 45}{6} \le Z \le \frac{51, 5 - 45}{6}\right)$$

$$= P(-0, 58 \le Z \le 1, 08)$$

$$= A(1, 08) - [1 - A(0, 58)]$$

$$= 0,5789.$$

Usando a tabela binomial obtém-se $P(42 \le X \le 51) = 0,5765$ (valor exato).

Exemplo 2

Um sistema é formado por 100 componentes, cada um dos quais com confiabilidade (probabilidade de funcionar adequadamente num certo período) igual a 0,9. Esses componentes funcionam de forma independente e para o sistema funcionar é preciso que pelo menos 87 desses componentes estejam funcionando. Qual é a confiabilidade do sistema?

Exemplo 2

Seja X:número de componentes que funcionam adequadamente. Suposição $X \sim B(100; 0, 9)$. Então,

Exemplo 2

Seja X:número de componentes que funcionam adequadamente. Suposição $X \sim B(100; 0, 9)$. Então,

• $E(X) = np = 100 \times 0, 9 = 90$

Exemplo 2

Seja X:número de componentes que funcionam adequadamente. Suposição $X \sim B(100; 0, 9)$. Então,

- $E(X) = np = 100 \times 0, 9 = 90$
- $Var(X) = np(1-p) = 100 \times 0, 9 \times 0, 1 = 9$

Exemplo 2

Seja X:número de componentes que funcionam adequadamente. Suposição $X \sim B(100; 0, 9)$. Então,

- $E(X) = np = 100 \times 0, 9 = 90$
- $Var(X) = np(1-p) = 100 \times 0, 9 \times 0, 1 = 9$
- $DP(X) = \sqrt{9} = 3$

Exemplo 2

Seja X:número de componentes que funcionam adequadamente. Suposição $X \sim B(100; 0, 9)$. Então,

- $E(X) = np = 100 \times 0, 9 = 90$
- $Var(X) = np(1-p) = 100 \times 0, 9 \times 0, 1 = 9$
- $DP(X) = \sqrt{9} = 3$

Assim, a distribuição de *X* pode ser aproximada por $Y \sim N(90, 3^2)$.

Cálculo da Confiabilidade do Sistema

$$P(X \ge 87) \cong P(Y \ge 87)$$

$$= P\left(Z \ge \frac{87 - 90}{3}\right)$$

$$= P(Z \ge -1, 0)$$

$$= P(Z \le 1, 0)$$

$$= A(1, 0)$$

$$= 0,8413.$$

1º Semestre 2016

Cálculo da Confiabilidade do Sistema

$$P(X \ge 87) \cong P(Y \ge 87)$$

$$= P\left(Z \ge \frac{87 - 90}{3}\right)$$

$$= P(Z \ge -1, 0)$$

$$= P(Z \le 1, 0)$$

$$= A(1, 0)$$

$$= 0.8413.$$

A confiabilidade do sistema é 0,8413(84,13%).

Exemplo 3

Um exame é constituído de 120 questões de múltipla escolha sendo que cada questão tem 4 alternativas. Calcule aproximadamente a probabilidade de um candidato que escolhe as alternativas ao acaso acertar mais do que 1/3 das questões.

Exemplo 3

Exemplo 3

•
$$E(X) = np = 120 \times 0, 25 = 30$$

Exemplo 3

- $E(X) = np = 120 \times 0, 25 = 30$
- $Var(X) = np(1-p) = 120 \times 0,25 \times 0,75 = 22,5$

Exemplo 3

- $E(X) = np = 120 \times 0, 25 = 30$
- $Var(X) = np(1-p) = 120 \times 0,25 \times 0,75 = 22,5$
- $DP(X) = \sqrt{22,5} \cong 4,74$

Exemplo 3

Seja X:número de questões respondidas corretamente pelo candidato. Suposição $X \sim B(120; 0, 25)$. Então,

- $E(X) = np = 120 \times 0, 25 = 30$
- $Var(X) = np(1-p) = 120 \times 0,25 \times 0,75 = 22,5$
- $DP(X) = \sqrt{22,5} \cong 4,74$

Assim, a distribuição de X pode ser aproximada por $Y \sim N(30; 4, 74^2)$.

Cálculo da Probabilidade

$$P(X > 40) = P(X \ge 41)$$

$$\cong P(Y \ge 41)$$

$$= P\left(Z \ge \frac{41 - 30}{4,74}\right)$$

$$= P(Z \ge 2,32)$$

$$= 1 - P(Z \le 2,32)$$

$$= 1 - A(2,32)$$

$$= 1 - 0,9898$$

$$= 0,0102(1,02\%).$$

Cálculo da Probabilidade

$$P(X > 40) = P(X \ge 41)$$

$$\cong P(Y \ge 41)$$

$$= P\left(Z \ge \frac{41 - 30}{4,74}\right)$$

$$= P(Z \ge 2,32)$$

$$= 1 - P(Z \le 2,32)$$

$$= 1 - A(2,32)$$

$$= 1 - 0,9898$$

$$= 0,0102(1,02\%).$$

Portanto, de cada 100 alunos que responderem as questões ao acaso espera-se apenas 1 com mais do que 40 acertos.

Exemplo 4

O tempo de vida útil de uma bateria segue uma distribuição normal de média 5 anos e desvio padrão 2,4 anos. O fabricante dá a garantia de 2 anos e troca as baterias que apresentarem defeito nesse período. Se uma bateria é sorteada ao acaso da produção, qual é a probabilidade de que a mesma venha a ser trocada na garantia? Em um lote de 150 baterias vendidas, qual é a probabilidade de que no máximo 10 sejam trocadas no período de garantia?

Exemplo 4

Seja T:tempo de vida útil da bateria. Temos que $T \sim N(5; 2, 4^2)$.

Exemplo 4

Seja T:tempo de vida útil da bateria. Temos que $T \sim N(5; 2, 4^2)$. $P(\text{bateria ser trocada}) = P(T \le 2) \cong P(Z \le (2-5)/2, 4) = P(Z \le -1, 25) = 1 - P(Z \le 1, 25) = 1 - A(1, 25) = 1 - 0,8944 = 0,1056.$

Exemplo 4

Seja X:número de baterias trocadas no período de garantia.

Suposição $X \sim B(150; 0, 1056)$. Então,

Exemplo 4

Seja X:número de baterias trocadas no período de garantia. Suposição $X \sim B(150; 0, 1056)$. Então,

• $E(X) = np = 150 \times 0, 1056 = 15,84$

Exemplo 4

Seja X:número de baterias trocadas no período de garantia. Suposição $X \sim B(150; 0, 1056)$. Então,

- $E(X) = np = 150 \times 0, 1056 = 15,84$
- $Var(X) = np(1-p) = 150 \times 0, 1056 \times 0, 8944 \cong 14, 17$

Exemplo 4

Seja X:número de baterias trocadas no período de garantia. Suposição $X \sim B(150; 0, 1056)$. Então,

- $E(X) = np = 150 \times 0,1056 = 15,84$
- $Var(X) = np(1-p) = 150 \times 0, 1056 \times 0, 8944 \cong 14, 17$
- $DP(X) = \sqrt{14, 17} \cong 3,76$

Exemplo 4

Seja X:número de baterias trocadas no período de garantia. Suposição $X \sim B(150; 0, 1056)$. Então,

- $E(X) = np = 150 \times 0,1056 = 15,84$
- $Var(X) = np(1-p) = 150 \times 0, 1056 \times 0, 8944 \cong 14, 17$
- $DP(X) = \sqrt{14, 17} \cong 3,76$

Assim, a distribuição de X pode ser aproximada por $Y \sim N(15, 84; 3, 76^2)$.

Cálculo da Probabilidade

$$P(X \le 10) \cong P(Y \le 10)$$

$$= P\left(Z \ge \frac{10 - 15, 84}{3, 76}\right)$$

$$= P(Z \le -1, 55)$$

$$= 1 - P(Z \le 1, 55)$$

$$= 1 - A(1, 55)$$

$$= 1 - 0,9394$$

$$= 0,0606(6,06\%).$$

Exemplo 5

Num ambulatório médico sabe-se que 60% das receitas de analgésico prescrevem aspirina e 40% prescrevem dipirona sódica. Num determinado dia há em estoque 70 comprimidos de aspirina e 50 comprimidos de dipirona sódica. Se nesse dia são prescritas 100 receitas, calcule aproximadamente a probabilidade de todas as receitas serem atendidas.

Exemplo 5

Vamos considerar a variável aleatória X:número de prescrições de aspirina. Note que sabendo-se o número de prescrições de aspirina sabe-se também o número de prescrições de dipirona sódica. Suposição $X \sim B(100; 0, 60)$. Então,

Exemplo 5

Vamos considerar a variável aleatória X:número de prescrições de aspirina. Note que sabendo-se o número de prescrições de aspirina sabe-se também o número de prescrições de dipirona sódica. Suposição $X \sim B(100; 0.60)$. Então,

• $E(X) = np = 100 \times 0,60 = 60$

Exemplo 5

Vamos considerar a variável aleatória X:número de prescrições de aspirina. Note que sabendo-se o número de prescrições de aspirina sabe-se também o número de prescrições de dipirona sódica. Suposição $X \sim B(100; 0.60)$. Então,

- $E(X) = np = 100 \times 0,60 = 60$
- $Var(X) = np(1-p) = 100 \times 0,60 \times 0,40 = 24$

Exemplo 5

Vamos considerar a variável aleatória X:número de prescrições de aspirina. Note que sabendo-se o número de prescrições de aspirina sabe-se também o número de prescrições de dipirona sódica. Suposição $X \sim B(100; 0.60)$. Então,

- $E(X) = np = 100 \times 0,60 = 60$
- $Var(X) = np(1-p) = 100 \times 0,60 \times 0,40 = 24$
- $DP(X) = \sqrt{24} \cong 4,90$

Exemplo 5

Vamos considerar a variável aleatória X:número de prescrições de aspirina. Note que sabendo-se o número de prescrições de aspirina sabe-se também o número de prescrições de dipirona sódica. Suposição $X \sim B(100; 0.60)$. Então,

- $E(X) = np = 100 \times 0,60 = 60$
- $Var(X) = np(1-p) = 100 \times 0,60 \times 0,40 = 24$
- $DP(X) = \sqrt{24} \cong 4,90$

Assim, a distribuição de X pode ser aproximada por $Y \sim N(60; 4, 90^2)$.

Cálculo da Probabilidade

Portanto, temos que P(todas as prescrições serem atendidas) = $P(50 \le X \le 70)$. Então,

Cálculo da Probabilidade

Portanto, temos que P(todas as prescrições serem atendidas) = $P(50 \le X \le 70)$. Então,

$$P(50 \le X \le 70) \cong P(50 \le Y \le 70)$$

$$= P\left(\frac{50 - 60}{4,90} \le Z \le \frac{70 - 60}{4,90}\right)$$

$$= P(-2,04 \le Z \le 2,04)$$

$$= P(Z \le 2,04) - P(Z \le -2,04)$$

$$= A(2,04) - [1 - A(2,08)]$$

$$= 0,9793 - [1 - 0,9793]$$

$$= 0,9586(95,86\%).$$

Cálculo da Probabilidade

Portanto, temos que P(todas as prescrições serem atendidas) = $P(50 \le X \le 70)$. Então,

$$P(50 \le X \le 70) \cong P(50 \le Y \le 70)$$

$$= P\left(\frac{50 - 60}{4,90} \le Z \le \frac{70 - 60}{4,90}\right)$$

$$= P(-2,04 \le Z \le 2,04)$$

$$= P(Z \le 2,04) - P(Z \le -2,04)$$

$$= A(2,04) - [1 - A(2,08)]$$

$$= 0,9793 - [1 - 0,9793]$$

$$= 0,9586(95,86\%).$$

Portanto, a probabilidade de todas as prescrições serem atendidas é aproximadamente 0,9586 (95,86%).