
Telematic Device Development Based on Framework for Embedded Systems

LEOPOLDO R. YOSHIOKA, CLAUDO L. MARTE, CAIO F. FONTANA

Polytechnic School

University of Sao Paulo (USP)

Av. Prof. Luciano Gualberto, 158, SAo Paulo, SP

BRAZIL

leopoldo.yoshioka@usp.br, claudio.marte@usp.br, caio.fernando@unifesp.br http://www.poli.usp.br

MARCIO C. OLIVEIRA, EDGAR T. YANO

Department of Computer Engineering

Aeronautical Institute of Technology (ITA)

Sao Jose dos Campos, SP

BRAZIL

mcamargooliveira@gmail.com, yano@ita.br http://www.ita.br

Abstract: - The proportion of electronic devices in automotive systems is increasing, representing something about 25-

35% of the total production cost of a vehicle, depending on the model. In particular, the role of embedded systems in

performance and quality of the vehicles is becoming critical. The effort required for the design and implementation of

hardware and software for automotive applications is growing exponentially, while development cycles must be

minimized due to the time-to-market constrains. This article presents a framework for development of automotive

embedded systems, with the following objectives: 1) to propose a unified platform of hardware and software on which

work will be developed, 2) to define a systematic process of development based on test management and 3) to evaluate the

effectiveness of the proposed method through a case study of the development of a electronic module for telematic

application.

Key-Words: -Telematic Device, Embedded System, Framework, Hardware Platform, Software Platform, Controller Area

Network, CAN.

1 Introduction
An embedded system basically consists of a

microprocessor system with few dedicated functions,

usually with real-time computing constraints. In order to

propitiate more comfort, safety and operational

performance it is increasingly present in automotive

applications. Currently, the electronic components

represent about 35% of the production cost of a high end

model [1].

The increasing use of embedded systems came from

two factors. First, standardization of intra-vehicular

systems architecture, particularly data communication

networks known as CAN (Controller Area Network),

which allowed the interconnection of various embedded

modules in a true network of devices. Second, the

availability of a range of high performance sensors,

actuators and processors with reduced costs, allowing

the onboard electronics to take on various vehicle

functions, previously performed by mechanical and

electrical systems [2] [3] [4].

Recent laws imposed by CONTRAN (Brazilian

National Transit Council) are making RFID system

(Automatic Vehicle Identification System – SINIAV)

and vehicle tracking system (Integrated Monitoring and

Automatic Registration of Vehicles – SIMRAV), among

other items, mandatory onboard equipment for new

vehicles [5][6]. The implementation of these

components is occurring gradually, following a

government schedule. This is an opportunity for

companies to develop new embedded solutions, since

there are not available in the global market yet, OEM

products that meet the specific requirements defined for

these Brazilian applications.

It should be noted that the development of an

embedded system for automotive applications must meet

the requirements of quality, reliability and robustness,

while they must also be comply with the time-to-market

and costs constraints imposed by market competition.

Therefore, it represents a major challenge for companies

that need to cope with the massive demands of resources

throughout the life cycle of product development [7].

Recent Researches in Telecommunications, Informatics, Electronics and Signal Processing

ISBN: 978-960-474-330-8 215

mailto:claudio.marte@usp.br
http://www.poli.usp.br/
mailto:yano@ita.br

Given this scenario, the ability to carry out the

development of embedded systems efficiently becomes

critical to business success. Therefore, it is obvious the

need to define and implement effective processes,

associated with the use of modern development tools.

Nevertheless, small size companies, mostly, do not have

the culture or not acquired a reasonable level of maturity

in terms of techniques for the development of its

hardware or software products. Beyond the issues of

investment resources, one of the causes for this fact is

the difficulty in adjusting the traditional development

methodologies to the context of these companies.

Concerning to software, another issue is the fact that

most of these techniques relates to development for

computational platforms with less constraint processing

capability, memory space, and operating system [8].

Therefore, this paper proposes a development

framework based on a unified platform, combined with a

systematic development process to increase the quality

and reliability of products through the reuse of hardware

and software components, minimizing rework costs and

increasing the work efficiency of the development

teams.

2. Framework for Embedded System

Development
A framework can be understood as architecture

developed in order to achieve maximum reuse,

represented as a set of abstract and concrete classes, with

great potential for specialization [8] [9].

Although this definition is essentially focused on the

object-oriented software domain, their concepts can be

applied to the development paradigm of automotive

embedded systems, creating a scenario that embraces the

four pillars involved in developing such kind of system:

• Process development;

• Hardware;

• Software;

• Integration and Testing.

Therefore, within the context of this work we will

adopt the following definition:

"A Development Framework for Embedded

Automotive Systems is characterized as a well-defined

development process, coupled with the appropriated

tools for management, development and testing,

enabling the implementation, reuse and customization of

embedded systems efficiently with low cost, thus

preserving the quality and reliability of the final

products, ensuring reduced time-to-market."

The increasing adoption of embedded software has

led many automakers to consider to deal with subjects

that earlier where exclusive to software developers, such

as managing multiple vendors systems, an item that is

identified as a potential source of problems, and having

to consider the use of international software

development standards the same way as happens in

aerospace industry.

Such initiatives can be seen, for example, in

Automotive Spice – a process model reference created

jointly by several vehicle manufacturers through the SIG

(Automotive Special Interest Group Automotive), with

the goal of bringing the best practices defined in

ISO/IEC 15502-2 standard for automotive environment.

And, also in AUTOSAR [10] which is a methodology

where the embedded software is separated into two

distinct categories: application and infrastructure. Here,

the software components are tailored from the beginning

to be interconnected, by means of well-defined ports,

independently of the CPU, hardware or type of

application.

2.1 Unified Hardware and Software Platform
In the following it is presented the background for

hardware and software development platform.

2.1.1 Hardware platform definition

When we are designing the hardware for a particular

embedded system, we should not consider that the

hardware will only have to attend the requirements of a

specific application. We need to expand the scope, and

see it as a "Platform" for the development of different

future applications.

In order to apply the concept of reusability in the

context of the development of a new embedded system,

it is essential to have a particular concern regarding that

the hardware architecture will be adopted for a particular

class of embedded products.

Fig. 1 illustrates a conventional hardware

development process, based on the waterfall model,

where the development cycles are recurring for each new

product being created.

If we choose the hardware architecture considering

the specific requirements strongly attached to a

particular purpose, it could result in a good final product,

and even achieves the purpose for which it was designed

with some success. However, it will have a limited life

span to its original purpose, reducing the chance of its

use in other similar product, thus, requiring a new

development cycles for each new product. As showing

in the Fig. 1, each design and development cycle of a

new product is repeated throughout the life cycle,

without substantial reuse of previous solutions and

effort.

The proposal to minimize this problem is the

incorporation of a hardware platform, where the full

development cycle is performed only in the first

development. In the following cycles, the design of the

hardware platform is reused in different applications,

Recent Researches in Telecommunications, Informatics, Electronics and Signal Processing

ISBN: 978-960-474-330-8 216

with specific configuration or arrangement variations to

meet distinct requirements.

A hardware platform is, therefore, a family of

architecture that satisfies a set of architectural

requirements, imposed to allow the reuse of hardware

and software.

REQUIREMENTS

GATHERING #1

REQUIREMENTS

ANALYSIS #1

DESIGN #1

IMPLEMENTATION

#1

TESTS #1

REQUIREMENTS

GATHERING #2

REQUIREMENTS

ANALYSIS #2

DESIGN #2

IMPLEMENTATION

#2

TESTS #2

REQUIREMENTS

GATHERING #3

REQUIREMENTS

ANALYSIS #3

DESIGN #3

IMPLEMENTATION

#3

TESTS #3

FULL DEVELOPMENT CYCLE

EMBEDDED SYSTEM #1

FULL DEVELOPMENT CYCLE

EMBEDDED SYSTEM #2

FULL DEVELOPMENT CYCLE

EMBEDDED SYSTEM #3

Fig. 1. Hardware development process – repetition of

traditional waterfall model for each new embedded

system development.

Within this idea, the assembly comprising the

platform architecture must cover all possible

requirements of the class of products considered. Thus,

given a hardware platform, each new product will define

an "instance", a sort of “sub-platform” that consists of a

subset of the technological possibilities available on the

hardware platform, and where all the requirements of the

embedded module are being fully complied.

At first glance someone can suppose an increased

unit cost of a basic product, which eventually will be

using a hardware platform more complex than it needs to

have. However, this cost will be diluted by efficiency

gain and economies of scale when considered

throughout the lifecycle of each new product.

Following this strategy, the proposed framework

considers that the full development cycles will only

occur at the first time when the hardware platform is

designed. For each new embedded system, will exists a

reduced cycle where the requirements are analyzed, and

it will be generated an instance of the hardware platform

in accordance with the needs of the new product.

The platform must be designed in such a way that it

covers the key features and future needs envisioned by

the company from the point of view of technological

resources for embedded modules, such as processing

speed, memory (RAM and FLASH), interfaces, power

consumption etc.

The choice of a specific hardware component must

take into account factors such as availability of

development tools, ease of use, expertise of technical

team (minimizing any training needs or renewal of the

team), component life cycle and technical support

provided by the manufacturer.

By defining a platform, you should consider that it

must have scalability and needs to be equipped with

current technologies available on the market, thus

ensuring at least a three year life cycle, without the need

of significant changes in the project in the short and

medium term.

Fig. 2 in the following illustrates the design and

development process of hardware within the context of

the proposed reusable platform framework.

REQUIREMENTS

GATHERING #1
REQUIREMENTS

ANALYSIS #1

DESIGN #1

IMPLEMENTATION

#1

TESTS #1

FULL DEVELOPMENT CYCLE

HARDWARE PLATFORM #1

(First Time)

PLATFORM “INSTANCE”

DESIGN &

IMPLEMENTATION #2

TESTS #2

PLATFORM “INSTANCE”

DESIGN &

IMPLEMENTATION #3

TESTS #3

REQUIREMENTS

GATHERING #2

REQUIREMENTS

ANALYSIS #2

REQUIREMENTS

GATHERING #3

REQUIREMENTS

ANALYSIS #3

REDUCED DEVELOPMENT CYCLE

EMBEDDED PRODUCT #2

“SUBSTANTIAL REUSE OF DESIGN, FUNCTIONS AND

TEST ARTIFACTS PREVIOUSLY DEVELOPED”

STRATEGY:

REDUCED DEVELOPMENT CYCLE

EMBEDDED PRODUCT #3

Fig. 2. Proposed hardware development process –

reducing the development cycle by introducing platform

“instance” concept.

Critical components such as microcontrollers and

memories must be chosen preferably within device

families that have a broad spectrum of features and

Recent Researches in Telecommunications, Informatics, Electronics and Signal Processing

ISBN: 978-960-474-330-8 217

capabilities, while preserving the "pin-to-pin"

compatibility so that they can be eventually exchanged

for each platform instance, in order to adjust cost

requirements. For example, the adoption of a processor

with multi task features becomes a key factor for the

segment of automotive embedded systems that are based

on complex algorithms.

Moreover, a very important factor which should be

taken into account for an automotive embedded system

is the fact that the devices chosen should have capability

to operate in low power consumption mode (standby).

2.1.2 Software platform definition

The software platform should also follow the concept of

reusability and scalability, allowing substantial code

reuse and adoption of the best practices of software

engineering and object oriented model. This results in

advantages such as:

• Increased reliability – reused software, already

tried and tested, tends to be more reliable than

new software, once that design and

implementation flaws have been cleared;

• Compliance with standards – some patterns

can be implemented as a set of standardized

reusable components;

• Improve Team Efficiency – rather than

developing the same work again and again, the

team experts can focus their efforts on the

specific application, thereby reducing

development time and costs, and enabling the

use of algorithms that have been tested and

consolidated by the development team.

A very common scenario, especially in small size

companies, is the practice to always implement the

embedded system software from the scratch for each

new project. This is partly due to the influence of its own

hardware, which constantly changes for each new

product development cycle [7].

The software architecture shold be based on

componentization of modules along all software layers,

using the concepts of CBSE (Component Based

Software Engineering) [11]. The basic philosophy

consists in the implementation of the software systems

from pre-existing components instead of creating them

from the scratch, i.e., the focus is on reusability.

This architecture promotes several advantages,

among which we highlight:

• enables better control of activities like design

and coding – because, the scope of

requirements is concentrated in small packages

grouped in each component;

• allows the outsourcing of software

implementation to various suppliers – since the

componentization becomes possible to work

with isolated artifacts, inter-connectable via a

standard interface, which will be integrated to

the final embedded software application.

The proposed framework considers that the software

will be organized into three distinct layers:

• Application Layer;

• Services Layer, and

• Infrastructure Layer.

First, the infrastructure layer will be responsible for

interacting with the hardware, creating an abstraction

layer between the hardware and the upper layers,

decoupling them from direct contact with the hardware

platform in use. It is included in this group all device

drivers required for interaction with the hardware

platform, including devices such as CPU, memory, IO,

modems, GPS modules, network devices etc.

Second, the services layer aggregates the components

responsible for the provision of services to the

application layer, using processes of the real-time

operating system and device drivers addressed in the

infrastructure layer. These services include general

connectivity elements as serial, network, GPRS, GPS,

timers and threads. Also, in this layer will be found the

components responsible by the device diagnosis, and by

communication services between components.

Third, the application layer is responsible for the

business rules, comprising all the algorithms and logic

used in the operation of the embedded system according

to its application. This layer will be the user of the

services provided by the services layer.

The operating system for the proposed software

platform is based on Linux, operating in conjunction

with real-time microkernel RTLinux [12].

An important feature of RTLinux is that it works on

Linux as a system module, operating in HAL mode

(Hardware Abstraction Level).

Fig. 5 shows the proposed three-layer architectural

model. On the lower level there is the hardware, which

in this case is the "instance" of the platform to be used.

On the next level there are the software components that

build up the infrastructure layer, immediately after the

service layer, and at the highest level, the software

components that characterize the application layer,

including the algorithms and business rules of the

embedded module.

Fig. 6 illustrates the component-based development

process model.

All phases receive input artifacts and generate output

artifacts. For each type of input / output there is a

standard set of documents and artifacts to be generated,

based on the tools available in the market.

In the following items we describe the development

process phases:

Recent Researches in Telecommunications, Informatics, Electronics and Signal Processing

ISBN: 978-960-474-330-8 218

APPLICATION LAYER

BUSINESS RULES

SERVICES LAYER

GENERAL SERVICES, CONNECTIVITY, DIAGNOSIS

OPERATIONAL SYSTEM

DEVICE DRIVERS & PERIPHERAL ACCESS

HARDWARE PLATFORM INSTANCE

INFRA-STRUCTURE LAYER

Fig. 5. Proposed software architectural model.

a) Analysis

In this initial stage all the features of the product should

be discussed by the project and development team, and

the requirements listed, detailed and classified according

to their nature.

The input of this phase will be composed by technical

scope commercially aligned with the requesting client, in

this case an auto maker. At this point, the information

will still have a high level of abstraction from the

viewpoint of the embedded module itself, but it already

contains a certain level of technical detail regarding

aspects of the module´s operation and integration with

the vehicle, such as the interfaces with the outside world,

communication protocols to be used, performance,

reliability and security requirements.

The final result of this phase will be the generation of

a specification document with detailed technical

requirements, which will be used as a guideline for the

next phase, the architectural design.

b) Architectural Design

Architectural design will details the componentization of

software within the context of layers defined in the

framework. It will be defined the components and their

respective interfaces. In this phase it is performed the

final software assembly activities from the software

components, either from the coding of new components

that will be developed, or eventually already ready

components that can be qualified, adapted and reused.

The output of this phase will be the Architectural

Design Document, which will consist of UML 2.0

diagrams containing static and dynamic representations

of the embedded software.

c) Component Qualification

It consists in evaluating the applicability of a component

to the final system where it will be used. This activity is

applicable when it is being considered the use of some

ready component (reuse) in a given system. It will be

evaluated aspects such as functionality, usability,

reliability in order to approve certain component for use.

Moreover, essential items such as the adherence of the

component to the Component Framework in use are also

evaluated.

d) Component Adaptation

It consists in evaluating the coupling between various

components eventually developed for use in different

contexts, within the context of the new software which

will be integrated (reuse). The goal of this activity is to

ensure that conflicts between components will be

worked and minimized, ensuring among other things that

all they work with the same Component Framework.

The idea is to eliminate any undesirable characteristics

of a particular component, making it compatible with the

framework and component model adopted.

e) Component Engineering

This activity consists in the implementation of new

components, which are being first time developed for

use in an embedded application, being designed and

coded with focus on future reuse, upon which they may

eventually go through the steps of Qualification and

Adaptation.

f) Component Composition

This activity consists in integrating the various

components to create the final application. In this step

the components are interconnected through the

component framework providing services to each other

via the available interfaces. Typically, the composition

may be of three different types: i) Hierarchical (a

component directly calls the services of another

component) ii) Sequential (component services are

executed in sequence), or iii) Additive (two or more

interfaces components are composed to create a new

component).

g) Validation Tests

This activity consists in the validation test of the

individual software components or final software. It

should be noted that the validation tests brings forth a

wide range of variations of test cases due to various

combinations of applicability of the module and the

environment in which it will operate.

Recent Researches in Telecommunications, Informatics, Electronics and Signal Processing

ISBN: 978-960-474-330-8 219

REQUERIMENTS

ANALYSIS

ARCHITECTURAL

DESIGN

COMPONENT

ENGINEERING

COMPONENT

COMPOSITION

VALIDATION

TESTS

FINAL EMBEDDED

SOFTWARE

APPLICATION

COMPONENT

QUALIFICATION

COMPONENT

ADAPTATION

COMPONENT REUSE

NEW COMPONENT

IMPLEMENTATION

COMPONENT

INTEGRATION

Fig. 6. Life cycle of the component-based development process model.

3. Case Study – Development of the

Telematic Module
In this article, it will be taken as an example the

development of a telematics control unit (TCU) adherent

to SIMRAV specification [5] [13].

The TCU is an electronic device capable of

performing the functions of vehicle tracking and

blocking. The blocking function, which prevents vehicle

operation can be enabled / disabled remotely or locally

(by the own device under special circumstances, or by

the service operator). The tracking function sends out

data regarding the positioning coordinates and security-

related events to the Monitoring Service Provider

(TIV). Fig. 8 and Fig. 9 illustrate TCU module used in

this Case Study.

3.1 Functional description of the TCU:
It is described in the following the main functional

elements that composes the TCU module.

 Satellite Signals Reception Module: it consists

of an antenna and a receiver. It has the function

to capture signals from a constellation of global

positioning satellites (GPS) and determine the

position of the vehicle.

 Bi-directional Communication Module: it

consists of an antenna and a communication

unit. Its function is to send the localization data

and events from the vehicle to a TIV, and to

receive commands from it, beyond data related

to the equipment configuration.

 Vehicle locking and Management Module: it

is responsible for the integration of all other

functional modules. It receives information from

satellite signals receiver, captures events

information from the vehicle´s interfaces,

receives data from the bi-directional

communication module, and also manages the

equipment features, and the backup battery

module.

 Inputs Interfaces: they read the sensors states

installed on the vehicle (ignition, panic buttons,

doors status, brakes pedal, etc.). There are six

digital inputs available.

 Output interfaces: they allow the activation of

external devices like the vehicle locking system

or a siren. There are four digital outputs.

 Backup Battery Module: it ensures the

functioning of the equipment in case of main

power failure (vehicle battery). It is capable to

operate instead the main energy source for at

least two hours, enabling the device to keep the

communication with the TIV, thus enabling

alarm messages sending and the reception of

remote blocking commands.

Recent Researches in Telecommunications, Informatics, Electronics and Signal Processing

ISBN: 978-960-474-330-8 220

Satellite Signals
Reception

Module

Bi-directional
Communication

Module

Backup Batery
Module

Vehicle locking and Management Module

Vehicle

Output
interfaces

Input
interfaces

Fig. 8. Functional block diagram of the TCU module.

Fig. 9. Telematic module used in the Case Study.

4.2 Application Variability:
In this context, we will consider the following

situation regarding the TCU applicability:

1. Models of vehicles where the module will be

applied: Model A, Model B and Model C.

2. Data communication service providers: Operator

1, Operator 2, Operator 3 and Operator 4.

3. Monitoring service providers: TIV 1, TIV 2,

TIV 3 and TIV 4.

The following environmental variations would be

present in a typical scenario of operation:

1. Status of the GPS signal:

 Module with permanent sight of

satellites

 Module with intermittent sight

 Module without sight

2. Status of GPRS data channel:

 GPRS constant signal

 GPRS intermittent signal

 No GPRS signal

3. Vehicle speed

 V = 0 km / h

 V > 0 km / h

4. Vehicle ignition status:

 On / Off

The following configuration changes would be present

in a typical scenario of operation:

5. Localization function for TIV:

 On / Off

6. Localization function for local fleet management

system:

 On / Off

7. Status of tracking service with a TIV:

 Activated (service contracted)

 Not activated (service not contracted)

The Table 1 represents the total number of variables

involved, and the range of possible values for each

variable.

Table 1. Paramenters and values involved in the TCU’s

tests

Paramenter Range of values

Vehicle models 1 to 3

Mobile Service Operators 1 to 4

TIV’s 1 to 4

GPS signal situation 1 to 3

GPRS link situation 1 to 3

Vehicle speed 1 to 2

Vehicle ignition status 1 to 2

TIV’s localization function 1 to 2

Local localization function 1 to 2

TIV’s association 1 to 2

It should be noted that the number of the

combinations of the functions and situations to be tested

results in a huge number of test cases, which could derail

the development due to the high number of hours and

personnel necessary to cover all combinations

possibilities.

In the previous example, if we consider total

variation for each item From the Table 2, if we consider

the number of variations for each item, applying the rule

of the product, we will note that the number of test cases

(NCt) is given by:

13284

2 x 2 x 2 x 2 x 2 x 3 x 3 x 4 x 4 x 3

NCt

NCt

Recent Researches in Telecommunications, Informatics, Electronics and Signal Processing

ISBN: 978-960-474-330-8 221

As seen, we have to perform 13,284 test cases in

order to cover 100% of the test possible combinations.

Faced with a situation like this, where there are a

huge number of variants to be tested, it is necessary to

select a subset of combinations which facilitates the

testing in accordance with the available resources [14].

Here, we will use pairwise testing technique [15],

which resides in the idea not to try to test all test case

variables (functions) and all possible values they can

take, but to test all pairs of variables (functions).

The proper functioning of the pairwise technique lies

in the fact that most of the defects is a "single defect

mode", i.e,. a function under test simply does not work

and any test on it will find the defect, or defects are

"double mode defects ", ie it is a given pair function /

module with another function / module that causes the

defect even though all the other pairings work well [15].

This technique significantly reduces the number of test

cases that must be created and run.

There are two techniques for the application of

pairwise testing:

 Orthogonal matrices

 AllPairs Algorithm

Here we will use the orthogonal matrix technique

[16].

3.3 Application of the Orthogonal matrix

technique
An orthogonal matrix is a two-dimensional matrix

(elements 1 to n1, 1 to n2 1, ..., 1 to nm in each column)

with the following properties:

 Choosing any two columns of the matrix, in

each pair of columns all combinations of pairs

will appear.

 If there are n repetitions (n = 1 ... N) of a pair,

in the pair of columns, these pairs will appear

repeated, in the equal number, in all pairs of

columns.

In the following it is presented an example that

demonstrates these properties:

122

212

221

111

M (1)

It should be noticed that in each pair of columns

appear the following pairs: {1,1}, {1,2}, {2,1} and

{2,2}.

The orthogonal matrix notation is:

)2(3

4L (2)

Where the number "4" represents the number of rows

of the matrix, the number "2" is the maximum variation

in the possible values for each variable, and the number

"3" the number of columns of the matrix, which

symbolizes the number of variables under test.

In practical cases, the matrix will not have in each

column (each variable) the same maximum number of

range values. In this case, the matrix is called "Mixed

Orthogonal Matrix" and the notation will be in the

following format:

)32(71

18L (3)

The above example is an orthogonal matrix which

there is one column (variable) with a maximum value 2,

and 7 columns (variables) with maximum value 3.

The application of the technique of orthogonal matrix

to apply pairwise testing should follow the following

steps:

 First, identify the variables (functions). In the

case of the TCU, we will have 10 variables.

 Determine the maximum value of the range of

values for each variable. In the case of the

TCU module, we have two variables with

maximum 4, 3 variables with maximum value

3, and 5 variables with maximum 2.

 Determine the orthogonal matrix which

represents the situation under examination. In

the TCU module example, we would have the

following perfectly orthogonal matrix (which

covers exactly the number of variables

involved and the range of values of each

variable):

)234(532

xL (4)

 Mathematically doesn’t exist orthogonal

matrices for all cases, so we need to use

Taguchi’s orthogonal matrix selection table

[16], in order to locate an Orthogonal Matrix

closest to the case under analysis. For this

example, the Taguchi’s best suited matrix

would be the following:

)4(10

32L (5)

Applying the values obtained in the orthogonal

matrix, we have 32 lines that correspond to 32 test cases,

and in the columns, 10 variations (VAR1, VAR2,

VAR10), representing the 10 variables involved.

The technique results in a list of 32 test cases. It

should be noticed that original test case list have 13,284

items. It represents a substantial reduction in labor, time

and resources for system validation.

4. Conclusion
The proposed framework allows embedded systems

developers to move from their traditional process to an

approach based on software and hardware reuse. The

componentization of software associated to the concept

Recent Researches in Telecommunications, Informatics, Electronics and Signal Processing

ISBN: 978-960-474-330-8 222

of hardware platform, enables the development of

automotive embedded devices with cost effective,

quality assured, and the timing needed to meet the

market opportunities. The use of dedicated test

techniques such as pairwise testing enables validation

activities, keeping the formalism necessary to ensure the

product quality, while minimizing costs involved in this

critical step.

Acknowledgements: The authors thank the COMPSIS

Computadores e Sistemas Ind. Com. Ltda, for the

opportunity to conduct this research.

References:

[1] J. Yu, B. M. Wilamowski, Recent Advances in In-

vehicle embedded systems, in IECON 2011 – 37th

Annual Conference on IEEE Industrial Electronics

Society, 2011.

[2] B.C. Pinheiro, Real time control for automatic

parking sytem, Master Thesis, UFSC, 2009.

[3] K.H. Johansson, M. Törngren, M., L.Nielsen,

Vehicle applications of controller area network. In:

Handbook of Networked and Embedded Control

Systems. p. 741–766, 2005.

[4] Y.J. Choi’s et al, A study of HMI on in-vehicle

elematic System. Proceeding of the 5th WESEAs

International Conference on Applied Informatics

and Communications, 2005, pp.281-283.

[5] BRASIL, CONTRAN, Resolution No. 212,

november 2006 – Deployment of National

Automatic Vehicle Identification System (SINIAV),

2006.

[6] BRASIL, CONTRAN, Resolution No. 245, July

2007 – Deployment of National Automatic Vehicle

Monitoring System (SIMRAV), 2007.

[7] A.C. Guerra, J.N. Moreno, Best practices for

software development in small businesses. IADIS

Conferences Ibero-American, 2008.

[8] J.C.B. Mattos, L.S. Rosa, M.L. Pilla, M. L..

Challenges to Design Embedded Systems, Ed. da

Universidade Federal de Pelotas, 2009.

[9] T. Novosel, L.Jelenkovic, Framework for embedded

systems development. In MIPRO, 2011

Proceedings of 34 th International Convention.

2011, pp. 825-828.

[10] AUTomotive Open System Architecture –

AUTOSAR: URL:http://www.autosar.org/

[11] M. Mattsson, Evolution and Compostion of Object

Oriented Frameworks, University of

Karlskrona/Ronneby, Department of Software

Engineering and Computer Sciente, Karlskrona,

Sweden, 2000.

[12] RTLinux Open Source – URL:

http://www.osadl.org/Realtime-Linux.projects-

realtime-linux.0.html.

[13] L.R. Yoshioka, M.C. Oliveira, M., Micoski, R. D.

Costa, Considerations on the Design and

Implementation of ACP245 Protocol in the

Telematic Control Unit, SAE Technical Paper

2010-36-0339.

[14] M. S. Phadke, Quality Engineering Using Robust

Design. New York, NY: Prentice-Hall, 2008.

[15] K.C. Tai, Y. Lei, A test generation strategy for

pairwise testing. IEEE Transaction on Software

Engineering, vol. 28, 2002, pp. 109-111.

[16] Taguchi Orthogonal Array Selector,

http://www.freequality.org/documents/tools/Tagarra

y_files/tamatrix.htm , accessed in 21/04/2013.

Recent Researches in Telecommunications, Informatics, Electronics and Signal Processing

ISBN: 978-960-474-330-8 223

http://www.autosar.org/
http://www.osadl.org/Realtime-Linux.projects-realtime-linux.0.html
http://www.osadl.org/Realtime-Linux.projects-realtime-linux.0.html
http://www.freequality.org/documents/tools/Tagarray_files/tamatrix.htm
http://www.freequality.org/documents/tools/Tagarray_files/tamatrix.htm

