V-Cycle Pedro C. Rossetti

ETAS

1 Public| ETBZ | Pedro Rossetti | 2015 | © ETAS GmbH 2014. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

V-Cycle

AUT OSAR

2 Public| ETBZ | Pedro Rossetti | 2015 | © ETAS GmbH 2014. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

V-Cycle

3 Public| ETBZ | Pedro Rossetti | 2015 | © ETAS GmbH 2014. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

V-Cycle

🖭 Combined Editor [1]												- • •
K Spk_Cold <map></map>	-	[Deg BTDC]	x: Engine_Loa	ad [Kg/min]			y: RPN	A [RPM]				
	y∖x	1.0000	1.5000	2.0000	2.5000	3.0000	3.5000	4.0000	4.5000	5.0000	5.5000	6.0000
A Walt of the second	0.0000	4.5000	5.2500	10.5000	20.2500	26.2500	34.1323	34.1323	34.1323	34.1323	34.1323	34.1323
	1000.0000	7.5000	12.0000	20.2500	27.0000	34.1323	34.1323	34.1323	34.1323	34.1323	34.1323	34.1323
	2000.0000	9.7500	18.0000	29.2500	34.1323	34.1323	34.1323	34.1323	34.1323	34.1323	34.1323	34.1323
	3000.0000	11.2500	24.0000 🔺	30.0000	34.1323	34.1323	34.1323	34.1323	34.1323	34.1323	34.1323	33.7500
1 ⁵]	3500.0000	9.7500	19.5000	23.2500	28.5000	30.7500	33.0000	34.1323	34.1323	34.1323	33.7500	30.0000
8, 15	4000.0000	7.5000	15.0000	18.0000	23.2500 🔻	23.0000	28.5000	33.7500	33.0000	29.2500	29.2500	27.0000
	4500.0000	3.7500	9.0000	13.5000	19.5000	22.5000	25.5000	28.5000	29.2500	24.7500	25.5000	25.5000
E State A A A A A A A A A A A A A A A A A A A	5000.0000	0.7500	4.5000	10.5000	16.5000	21.0000	24.7500	24.7500	27.0000	22.5000	23.2500	24.7500
	5500.0000	0.0000	2.2500	9.7500	15.0000	21.0000	24.7500	24.0000	27.0000	21.7500	21.7500	23.2500
	6000.0000	0.0000	2.2500	9.0000	15.0000	21.0000	24.7500	24.0000	27.0000	21.0000	21.0000	21.7500
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2												

Lambda_Max	1.1963	÷ []
Lambda_Min	0.8057	

4 Public| ETBZ | Pedro Rossetti | 2015 | © ETAS GmbH 2014. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

V-Cycle Development ECU ≠ Series ECU

5 Public| ETBZ | Pedro Rossetti | 2015 | © ETAS GmbH 2014. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

ET/S

V-Cycle Development ECU ≠ Series ECU

6 Public| ETBZ | Pedro Rossetti | 2015 | © ETAS GmbH 2014. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

DRIVING | EMBEDDED EXCELLENCE

Basic Control Definition

7 Public| ETBZ | Pedro Rossetti | 2015 | © ETAS GmbH 2014. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Closed-Loop Simulation

8 Public| ETBZ | Pedro Rossetti | 2015 | © ETAS GmbH 2014. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

V-Cycle V-Model - Overview

9 Public| ETBZ | Pedro Rossetti | 2015 | © ETAS GmbH 2014. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

BYTE_1_R

BYTE_2_F

BYTE_3_R

BYTE_4_R

BYTE_5_R

BYTE_6_R

BYTE_7_F

BYTE_8_R

Model Based ≠ Block Diagram

10 Public| ETBZ | Pedro Rossetti | 2015 | © ETAS GmbH 2014. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

/3/Throttle_Demo

-**I** aps_car_pero

DRIVINGI EMBEDDED EXCELLENCE

-

11 Public| ETBZ | Pedro Rossetti | 2015 | © ETAS GmbH 2014. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Physical Experiment for: PID_Throttle Target: ES910 Environment: >Default< <u>File Edit View Experiment Extras Tools Window Help</u> Steps: 1 🕼 🐷 🐔 🖾 🤞 🖪 💼 🌘 🐌 100% Numeric display; 1 <New Calibration Editor> • 1 Oscilloscope; 1 File Edit View Extras PID_Throttle -> PID_Method (Perc_Pos_Ref::cont;Perc_Pos_A Signals 📳 Outline 🛛 式 Navigation easure <u>c</u>hannels Source 100.0 Measure variable Re ta St 1 PWM Frequency = Frequency; x PWM_1\PID_Throttle - O X A Numeric Editor; 1 x PWM_2\PID_Throttle Edit View Extras 80.0 KiVPID Throttle 1.000e-4 ----Kp\PID_Throttle 2 000 _Ref - Perc_Pos_Actu + Actual_Error; 20000.000 Frequency\PID Throttle or + Ki*Error_Sum; 60.0 - O X y Numeric display; 1 Control to 1812 View Extras 40.0 PWM_2\PID_Throttle 0.000 [] PWM_Frequency\PID_Throttle 20000.000 П 20.0 PWM_1\PID_Throttle 0.000 II 20 - else { 21 inv = true; 22 Control = -Control; 0.0 23 🛥 if (Control > 80){ 24 Control = 80; 40.0 t [s] 50.0 25 26 PWM_2 = Control/100; 27 $PWM_1 = 0;$ 28 29

- Virtual Simulation: this is not a real time simulation and the model runs on PC with virtual and controlled stimulation of the inputs
 - 12 Public| ETBZ | Pedro Rossetti | 2015 | © ETAS GmbH 2014. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

13 Public| ETBZ | Pedro Rossetti | 2015 | © ETAS GmbH 2014. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

 Real Time Simulation: The ASCET model runs on RP with virtual inputs. The HW is dedicated to execute the code and it runs in real time

14 Public| ETBZ | Pedro Rossetti | 2015 | © ETAS GmbH 2014. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

15 Public| ETBZ | Pedro Rossetti | 2015 | © ETAS GmbH 2014. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

DRIVING | EMBEDDED EXCELLENCE

ET/S

16 Public| ETBZ | Pedro Rossetti | 2015 | © ETAS GmbH 2014. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

V-Cycle Test & Validation

17 Public| ETBZ | Pedro Rossetti | 2015 | © ETAS GmbH 2014. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

V-Cycle Test & Validation

18 Public| ETBZ | Pedro Rossetti | 2015 | © ETAS GmbH 2014. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

V-Cycle Test & Validation

20 Public| ETBZ | Pedro Rossetti | 2015 | © ETAS GmbH 2014. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

21 Public| ETBZ | Pedro Rossetti | 2015 | © ETAS GmbH 2014. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

V-Cycle Measurement & Calibration

🔟 Expe	eriment: >New experiment < Hardware: >Workspace <											
Experim	nent Edit View Variables Measurement Hardware	Dataset Com	nponents E-T	arget ODX	Instrument	Window ?						
ETK test	t device:1::INCA_TRAIN t devi	NCA_TRAINING ICA_TRAINING	Diff.: 0									
	Combined Editor [1]										⚠ Measure Window [3]	- • •
6	Spk_Warm <map></map>	• [D	eg BTDC] x:	Engine_Load	l [Kg/min]	y:	RPM [RPM]				4000	
		y\x	1.0000	1.5000	2.0000	2.5000	3.0000	3.5000	4.0000	4.5000	-2000	6000
		0.0000	6.0000	0.0000	0.0000	9.0000	21.0000	28.5000	30.0000	30.0000		
2 1		2000.0000	6.0000	3.0000	3.0000	15.0000	27.7500	34,1323	34.1323	34.1323	0 80	00
<u>i</u>	4 ²⁰	3000.0000	6.0000	4.5000	4.2000	14.7000	23.1000	23.8927	23.8927	23.8927		
		3500.0000	6.0000	9.0000	10.5000	17.3250	21.0000	23.1000	23.8927	23.8927		
		4000.0000	6.0000	15.7500	14.1750	16.8000	19.4250	19.4250	23.8927	23.8927	ECT [Deg C]	•
2	BERNE BERNE	4500.0000	6.0000	12.0000	12.0750	15.2250	17.8500	17.8500	18.3750	22.5750		
		5000.0000	3.0000	7.5000	8.4000	11.0250	13.6500	14.7000	17.8500	20.4750	-80.0000 563.0000	150.0000
	La the second	6500.0000	-3.0000	-3.0000	4.2000	6 3000	8 4000	9 9750	11 5500	17,8500		4440 114 1 1 1
	· · · · · · · · · · · · · · · · · · ·	0300.0000	•	5.0000	412000	0.5000	0.1000	5.5750	11.5500	+	Engine_Load 1	.4449 [Kg/min]
	YT Oscilloscope (V7.1) [1]										Measure Window [1]	
	🗄 🔢 🔍 🖼 🗃 🍃 🚼 🧄 - 🗠 - 🗞 - 🛒							S	tyle Name	Value	Spk Out 0.74	127 [Deg BTDC]
Jan	20								RPM	433.000	5pk_0ut 0.74	
									Engine_Loa	ad 1.5236	🕘 в_wot	
	5000 - 50000 - 50000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 -								Lambda_1	233.000		
				_					EUT	583.000	Marchael Throttle_Fault	
											Measure Window [2]	
											CatDC Dact	
	2 A 1000 -											<u>13.0000 []</u>
»»	[3] 27 28 29 [h:min]00:00	30	і 31	32	 33	 I 34	35	36			CatDC_Pre	313.0000 []
	Visualization on / Default rec. stopped											Max. buffer level: 0%

22 Public| ETBZ | Pedro Rossetti | 2015 | © ETAS GmbH 2014. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

V-Cycle Measurement & Calibration

23 Public| ETBZ | Pedro Rossetti | 2015 | © ETAS GmbH 2014. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

V-Cycle Measurement & Calibration

 Real Test: SW & HW of a real ECU with real inputs and real plant. This controller can be calibrated by INCA using .a2l and .hex files

24 Public| ETBZ | Pedro Rossetti | 2015 | © ETAS GmbH 2014. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

V-Cycle V-Model – Improving Eficiency of the Control Design

Combined Editor [1]												
K Spk_Cold <map></map>	•	[Deg BTDC]	x Engine_Lo	oad [Kg/min]			y: RPM	[RPM]				
	y\x	1.0000	1.5000	2.0000	2.5000	3.0000	3.5000	4.0000	4.5000	5.0000	5.5000	6.0000
AND COMPANY	0.0000											
	1000.0000											
	2000.0000											
	3000.0000											
5 ²	3500.0000											
	4000.0000	· · · ·										
	4500.0000											
	5000.0000											
	5500.0000											
	6000.0000											
A THE AND A												
5 1000 000 000 00 00 00 00 000 000 000 0												
ૼ૱ૢ૾ૼઌૻૻૼૢઌૻૺૼૢઌૻૺૼૻૻૻૻઌૢ૿ૻ૾ૡૻૻ												
P.	· ·											

25 Public| ETBZ | Pedro Rossetti | 2015 | © ETAS GmbH 2014. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

DRIVING | EMBEDDED EXCELLENCE

V-Cycle V-Model – Improving Eficiency of the Control Design

26 Public| ETBZ | Pedro Rossetti | 2015 | © ETAS GmbH 2014. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

V-Cycle V-Model – Improving Eficiency of the Control Design

- Faster completion
- Less risk
- Less stress: fewer trips to the boss's office...

27 Public| ETBZ | Pedro Rossetti | 2015 | © ETAS GmbH 2014. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

DRIVING | EMBEDDED EXCELLENCE

V-Cycle V-Model - Improving Eficiency of the Control Design

28 Public| ETBZ | Pedro Rossetti | 2015 | © ETAS GmbH 2014. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

V-Cycle V-Model – Rapid Prototype using a Real Plant

29 Public| ETBZ | Pedro Rossetti | 2015 | © ETAS GmbH 2014. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

DRIVING | EMBEDDED EXCELLENCE

ETV2

Operating Systems:

- Control and processing of a variety of tasks on a single processor;
- Management and allocation of resources as processor, I/O and memory;
- Interface between tasks.

Task:

- Unit of work that is managed by the OS and executed by the processor;
- Using a one core controller, hence, at one time only one task can be executed;
- OS can switch between tasks according to the priority and the scheduling. The step can be so fast that creates the impression of parallel processing. The term is **quasiparallel**.

30 Public| ETBZ | Pedro Rossetti | 2015 | © ETAS GmbH 2014. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

V-Cycle Real Time Operating System (RTA – OSEK)

31 Public| ETBZ | Pedro Rossetti | 2015 | © ETAS GmbH 2014. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

DRIVING | EMBEDDED EXCELLENCE

OSEK/VDX

Open systems and the corresponding interfaces for automotive electronics.

Consortium of automobile industry representatives pursues the objective of defining standards to be applied to automotive system software.

Aiming at an industry standard for an open-ended architecture for distributed control units in vehicles

32 Public| ETBZ | Pedro Rossetti | 2015 | © ETAS GmbH 2014. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

V-Cycle Real Time Operating System (RTA – OSEK)

33 Public| ETBZ | Pedro Rossetti | 2015 | © ETAS GmbH 2014. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Scheduling

The scheduling is made considering the priority and the type of chosen processor: Preemptive (preemp) or Cooperative (coop).

- PREEMPTIVE PROCESSOR: a higher-priority task may interrupt the execution of a lower-priority task. So the task switching occurs exactly when the H-P task is needed.
- COOPERATIVE PROCESSOR: a higher-priority task is unable to interrupt the execution of a lower-priority task. So the task switching occurs only after the conclusion of the L-P task and because of that the execution of a H-P task is delayed by the L-P task.

34 Public| ETBZ | Pedro Rossetti | 2015 | © ETAS GmbH 2014. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

V-Cycle Real Time Operating System (RTA – OSEK)

- Cooperative Processor:

35 Public| ETBZ | Pedro Rossetti | 2015 | © ETAS GmbH 2014. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Thanks **Prof. Dr. Dieter Nazareth** for providing a training of Model Based Development of Automotive Software

36 Public| ETBZ | Pedro Rossetti | 2015 | © ETAS GmbH 2014. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

ET/\S

Thank you	Muchas gra	icias	
indink you		谢谢	
Tack så mycke	t	Děkuji	
Hvala	धन्यवाद	Mille Grazie	
	Merci		
감사합니다.		Obrigado	
Спасибо!	有難うござい	ました	
Vielen Dank	Kiitos	Д'якую	

37 Public| ETBZ | Pedro Rossetti | 2015 | © ETAS GmbH 2014. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.