
Leis de Potência 



Leis de potência e não-

normalidade 
• A base das ciências aplicadas é a 

distribuição normal. 
• O conceito de média. 

 



Valor médio próximo ao mais 

típico 

Distributição fica ao redor do  

valor médio de forma simétrica 

Escalas Típicas 
Muitas coisas que os cientistas medem tem um tamanho típico 

ou escala definida. 

Por exemplo, a altura de seres 

humanos adultos variam entre 50 

cm and 272 cm, o que 

corresponde a uma razão de 4.8 

entre o menor e o maior ser já 

medido. A média é de  175 cm. 





Power Law Distribution 



Power-law distribution 

• linear scale  log-log scale 

 Alta assimetria (asymmetry) 

 Linha reda no log-log plot 



Log-log plot 

 

ln(x) 

ln (y) 

ln(y) = A ln(x) + c 

y=# vezes x ocorre 



Log-log plot 

NO typical value or a typical scale (all sizes, all scales).  



Log-log plot 

NO typical value or a typical scale (all sizes, all scales).  

inclinação. . . 

. . . ajustada 

. . . 

Inclinação da reta 



Leis de potência - exemplos 

normalization 

constant (probabilities over 

all x must sum to 1) 

power law exponent a 



• Lei de Kleiber 
 

• Gato tem 100 

• vezes o peso 

• do rato e 31 

• vezes a taxa 

• metabólica. 
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Question 4: estimates often < 3/4? 

 



• Lei de Zipf 
 

 

• A segunda palavra no raking (x) tem a metade da 

probabilidade de ocorrência que a primeira. 

 

1 x)x(f



• Lei de Pareto 
 

 

• The Italian economist Vilfredo Pareto was  

     interested in the distribution of income.  

 

• Pareto’s law is expressed in terms of the cumulative 

distribution 

– the probability that a person earns X or more 

 

P[X > x] ~ x-k  

 

• Here we recognize k as just a -1, where a is the power-

law exponent 

 







Scientific Collaboration Network 

• 400,000 nodes, 

authors in 

Mathematical Reviews 

database 

• An edge between two 

authors if they have a 

joint paper 

• Just 676,000 edges 
Picture from orgnet.com 



Redes Sociais 
Albert and Barabasi (1999) 

 

 

. 

 

Power laws in real networks: 

(a) WWW hyperlinks 

(b) co-starring in movies 

(c) co-authorship of physicists 

(d) co-authorship of neuroscientists 

* Same Velfredo Pareto, who defined Pareto optimality in game theory. 



Biogeography and Species Richness 

• Number of species on 
an island is related to its 
size. 

• In general, a 10 fold 
larger area will have 
twice the number of 
species in a given taxa. 

• Conservation biologists 
have used this 
generalization to predict 
species loss from 
habitat destruction and 
to determine optimum 
preserve size. 



Scientific Collaboration Network 

• 400,000 nodes, authors in  

• Mathematical Reviews database  

• Just 676,000 edges 

• An edge between two authors if they have 

a joint paper 

• Average degree 3.36 

• A few high-degrees: 

– Paul Erdös, 509 

– Frank Harary, 268 

– Yuri Alekseevich Mitropolskii, 244 

• Many low-degrees: (100,000 of degree 1) 

Picture from orgnet.com 











Example: City Populations 

• Power law exponent: c = 0.74 



Log-log scale plot of straight binning of the data 
 Same bins, but plotted on a log-log scale 
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Noise in the tail: 

Here we have 0, 1 or 2 observations 

of values of x when x > 500 

here we have tens of thousands of observations 

when x < 10 

Actually don’t see all the zero 

values because log(0) =  



Log-log scale plot of straight binning of the data 
 Fitting a straight line to it via least squares regression will 

give values of the exponent a that are too low  
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What goes wrong with straightforward binning 

• Noise in the tail skews the regression result 
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data

a  = 1.6 fit

have many more bins here 

have few bins 

here 



First solution: logarithmic binning 
• bin data into exponentially wider bins: 

– 1, 2, 4,  8, 16, 32, … 

• normalize by the width of the bin 
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data

a  = 2.41 fit

evenly 

spaced 

datapoints 

less noise 

in the tail 

of the 

distribution 

 disadvantage: binning smoothes out data but also loses information 



Second solution: cumulative binning  

• No loss of information 

– No need to bin, has value at each observed value of x 

• But now have cumulative distribution 

– i.e. how many of the values of x are at least X 

 

– The cumulative probability of a power law probability distribution is also 

power law but with an exponent  
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Fitting via regression to the cumulative distribution 

• fitted exponent (2.43) much closer to actual (2.5) 
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data

a-1 = 1.43 fit



Where to start fitting? 

• some data exhibit a power law only in the 

tail 
 

• after binning or taking the cumulative 

distribution you can fit to the tail 
 

• so need to select an xmin the value of x 

where you think the power-law starts 
 

• certainly xmin needs to be greater than 0, 

because xa is infinite at x = 0 



Example:  

• Distribution of citations to papers 

• power law is evident only in the tail  

– xmin > 100 citations 
xmin 

Source: MEJ Newman, ’Power laws, Pareto distributions and Zipf’s law 



Maximum likelihood fitting – best 

• You have to be sure you have a power-law 

distribution 

– this will just give you an exponent but not a 

goodness of fit 
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 xi are all your datapoints,  

 there are n of them 

 for our data set we get a = 2.503 – pretty close! 



Real world data for xmin and a  

xmin a 

frequency of use of words 1 2.20 

number of citations to papers 100 3.04 

number of hits on web sites 1 2.40 

copies of books sold in the US 2 000 000 3.51 

telephone calls received 10 2.22 

magnitude of earthquakes 3.8 3.04 

diameter of moon craters 0.01 3.14 

intensity of solar flares 200 1.83 

intensity of wars 3 1.80 

net worth of Americans $600m 2.09 

frequency of family names 10 000 1.94 

population of US cities 40 000 2.30 



Another common distribution: power-law 

with an exponential cutoff 

• p(x) ~ x-a e-x/k 
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starts out as a power law 

ends up as an exponential 

but could also be a lognormal or double exponential… 



What (universal?) mechanisms give 

rise to this specific distribution? 

 

How can we know with rigor when a 

phenomenon shows PLD behavior? 



Mechanismos que geram Leis de Potência 

1- Transições de Fase 

2- Criticalidade Auto-Organizada (SOC) 

3-Fractais 

4- Combinação de Exponenciais 

5- Processos de Levy 

6- Processos de Yule 

7- Alometria 

 

 



1. T=0 
well ordered 

2. 0<T<Tc 
ordered 

3. T>Tc 
disordered 

 Critical phenomena: Phase transitions. 

Global magnetization 

PLD’s 



Sandpile model :  celular automata 
sandpile applet 

 

 

 
1. A grain of sand is added at a 

randomly selected site: z(x,y) -> 
z(x,y)+1; 

 
2. Sand column with a height 

z(x,y)>zc=3 becomes unstable and 
collapses by distributing one grain 
of sand to each of it's four 
neighbors. 

        This in turn may cause some of 
them to become unstable and 
collapse (topple) at 

        the next time step.   
        Sand is lost from the pile at the 

boundaries. That is why any 
avalanche of topplings eventually 
dies out and sandpile "freezes" in a 
stable configuration with z(x,y)<=z 
everywhere. At this point it is time 
to add another grain of sand.  

 

http://www.cmth.bnl.gov/~maslov/Sandpile.htm


Percolação 



SOC: modelo de incêndio em floresta 

• Sítios na cor cinza contém árvores  

• Sítios na cor vermelha significa árvores em chama 

• Sítios vazios não contém árvores 

• A cada rodada uma árvore pode nascer em uma célula vizinha 

a alguma célula com árvore. 

• Com baixa probabilidade, uma chama inicia em um sítio 

aleatório com  árvore e pode se propagar ao longo do cluster. 



 The Yule process (rich gets richer) 

• Initial population 

 

• With t, a new item is added to the population 

 

how?? With probability p, to the most relevant one! 

                with probability 1-p, randomly.  

Also known as 

 

• The gibrat principle (Biometrics) 

• Matthew effect 

• Cumulative advantage 

(bibliometrics) 

• Preferential attachment 

(complex networks) 

 

Time (more nodes) 

Initial population 



 Combinations of exponentials. 

Exponential distribution is more common than PLD, for instance: 

• Survival times for decaying atomic nuclei 

• Boltzmann distribution of energies in statistical mechanics 

• etc... 

 -  Suppose some quantity y has an exponential distribution 

 - Suppose that the quantity we are interested in is x, exponentially 

related  to y  

 

 

 

Where a, b are constants. Then the probability distribution of x is a PLD 



 Log-normal distributions: multiplicative process 

•At every time step, a variable N is multiplied by a random variable. 

• If we represent this process in logarithmic space, we get a brownian 

motion, as long as log() can be redefined as a random variable. 

 

 

 

 

 

 log(N(t)) has a normal (time dependent) distribution (due to the Central Limit 

Theorem) 

 

 N(t) is thus a (time dependent) log-normal distribution.   

 

Now, a log-normal distribution looks like a PLD (the tail) when we look at a 

small portion on log scales (this is related to the fact that any quadratic curve 

looks straight if we view a sufficient small portion of it). 



A log-normal distribution has a PL tail that gets wider the higher variance it 

 has. 



Example: wealth generation by 

investment. 
 

•A person invests money in the stock 

market 

 

• Getting a percentage return on his 

investsments that varies over time. 

• In each period of time, its 

investment is multiplied by some 

factor which fluctuates (random and 

uncorrelatedly) from one period to 

another. 

 Distribution of wealth: log-normal 



 Stable Laws: GAUSSIAN and LEVY LAWS 

The Lévy laws 

 

Paul Lévy discovered that in addition to the Gaussian law, there exists a large  

number of stable pdf’s. One of their most interesting properties is their asymptotic 

Power law behavior. Asymptotically, a symmetric Lévy law stands for 

 

     P(x) ~ C / |x|1+       for x  infinity 

 

• C is called the tail or scale parameter 

•  is positive for the pdf to be normalizable, and we also have <2 because for higher 

values, the pdf would have finite variance, thus, according to the Central Limit  

theorem, it wouldn’t be stable (convergence to the gaussian law). At this point a  

generalized central limit theorem can be outlined. 

 

There are not simple analytic expressions of the symmetric Lévy stable laws, denoted 

by   L (x), except for a few special cases: 

 

•  =1 - Cauchy (Lorentz) law -  L1(x)  = 1/(x2 + p2) 

 

• = 1/2                                                with C=1 

 



Leis de potência e não-normalidade 

• Na natureza parece ser que os eventos raros existem com maior 

probabilidade do que a normalidade espera. 

• statistical physics: critical phenomena, edge of chaos, fractals, 

SOC, scale-free networks,...  

•  geophysics: sizes of earthquakes, hurricanes, volcanic eruptions... 

•  astrophysics: solar flares, meteorite sizes, diameter of moon 

craters,... 

•  sociology: city populations, language words, notes in musical 

performance, citations of  scientific papers... 

•  computer science: frequency of access to web pages, folder sizes, 

...     

•  economics: distributions of losses and incomes, wealth of richest 

people,... 

•  a huge etc. 

 

Ler Black Swan 

 







Perigos de Baixo Risco 

Desastres naturais produzem consequências que 
variam em tamanho e frequência.  
 
Perigos de baixo risco são definidos como perigos que  
historicamente produzem um alto expoente. 
Se o expoente é maior do que 1, o risco diminui a  
medida que a consequência aumenta. De fato, 
incidentes de grandes consequências são tão raros 
que sua contribuição para o risco é quase nulo. 
 
 



  

 Risco 
Baixo 
 

Resi 
Liên 
cia 

Risco 
Alto Baixa 



Perigos de Baixo Risco 

O expoente é também uma medida de resiliência. 
Grandes valores de expoente indica grande resiliência. 
O inverso também se aplica. Baixos valores dele 
indica baixa resiliência. 
  
Quando o expoente q é menor do que 1 o perigo 
passa a ser de alto risco. Em outras palavras, o risco 
aumenta com o aumento da consequência. Incidentes 
de grandes consequências são mais prováveis para 
estes perigos, o que resulta em maior risco. 



Risco 
Baixo 
 

Resi 
Liên 
cia 

Risco 
Alto Baixa 
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