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Abstraet

This paper presents a computer program for use in the design of long-term clinical trials with muitiple treatment
arms in which the primary outcome variables are censored survival times. The treatment arms may be siructured as
a ope-way or multi-way factorial design. It is assumed that patients are entered and randomized to a treatment arm
during an accrual period. The patients are then followed for a fixed period during which there may be dropouts.
Various distributional assumptions can be used to model the survival times. These inciude an option in which there
is an effect of treatment duly after a lag or delay time. The program then computes the power of various statistical
tests of hypotheses concerning treatment differences, interactions and trends. The power computations are “exact” in
that they use the Monte Carlo method to obtain Type I and II error probabilities. However the program aiso outpuis
the normal approximations for comparison, although they are typically not accurate in these situations. Fisher’s LSD
method is used to adjust for the multiple comparisons. By comparing the power for various sets of design parameters,
such as sample size, numbers of factor levels, patient accrual rate, and length of follow-up, an appropriate design can
be consiructed. Two examples are provided. The first is a simple one-way layout with multiple treatment arms; the
second a two-way factorial design for a proposed large scale cancer chemoprevention trial.

Keywords: Clinical trials; Power; Sample size; Multiple treatments; Factorial design; Treatment lag; Multipie com-
parisons; Fisher’s LSD; Stratification; Monte Carlo method

1. Introduction clinical trials. However there has been much
renewed interest in the past few years, in part
because such designs are natural candidates for
disease prevention trials where it is desired to
examine the effect of various nutritional sup-

plements, pharmacologic agents or other potential

Until recently, factorial designs were rarely con-
sidered for the conduct of long-term randomized
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prophylactic factors. For example, the Physicians’
Health Study {1} employed a 2 x 2 design with the
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two factors being aspirin use and betacarotene use.
A more complicated design was used in the recent
Linxian study {2,3]. In this 6-year prospective
intervention trial, there were four factors con-
sisting of four vitamin/mineral groups, each at two
levels-present or absent. A fractional 2* design
was employved to investigate the effects on mortali-
ty and cancer incidence.

Of course, disease treatment trials can benefit
from consideration of factorial designs also. For
example, Staquet and Dalesio [4] describe a lung
caneer trial in which 600 subjects were randomized
into a 2 X 2 design to evaluate the effectiveness of
chemotherapy (ves/no) and of immunotherapy
(ves/no}. Beck et al. [5] describe use of the same
2 x 2 design in the MDRD trial where the effect
of two different diets and two different blood pres-
sure coatrols were evaluated to investigate their
effect on glomerular filtration rate in patients with
chronic renal disease.

A general introduction to factorial designs for
randomized clinical trials has been given by Byar
and Piantadosi [6] and Byar, Herzberg and Tan
[71. Brittain and Wittes [8] studied the effect that
interaction and non-compliance can have on the
power to detect treatment (main) effects in a facto-
rial design especially in comparison with the “one
at a time” design. Slud [9] gives the theoretical de-
velopment of semi-parametric methods of analysis
of a 2 % 2 design, when the endpoint is survival
time.

For comparing just two treatment arms with a
survival endpoint, there are available a number of
statistical tables, nomograms and computer pro-
grams for power and sample size calculations
[10-14,16,17]. Computer programs for two treat-
ment designs involving group sequential monitor-
ing are also available [18-20]. Our program does
not specifically address group sequential designs;
however by inflating the sample size from the fixed
sample design by the appropriate factor, the cor-
responding sample size for the group sequential
test can be found [21].

Makuch and Simon [22] gave tables for design-
ing trials with muitiple arms in a one-way layout.
Their method assumed exponential survival times
and used normal approximations to obtain the
power. Also their sample sizes were stated in terms

in numbers of events observed, so further approx-
imations are needed to convert this information
into numbers of subjects and length of follow-up
that would be needed. Peterson and George {23}
have extended the methods of {10,22] to provide
number of events requirements for testing for an
interaction effect in 2 X k factorial design. They
used the resuits of {13] to obtain sample sizes and
trial duration.

The purpose of this paper is to present and de-
scribe a computer program for use in planning fac-
torial or multi-arm clinical trials, The primary
outcome variable is a time to an event of interest,
for example, death or onset or recurrence of
disease. We assume that, after the start date of the
study, there is an accrual period during which pa-
tients are recruited. After a fixed period of time
from the study start date during which patients are
followed, the data set is closed and a statistical
analysis is performed. During this follow-up
period some patients drop out and are assumed
lost. Before initiating such a trial it is important to
ensure that the sample sizes and follow-up period
are sufficient to guarantee adequate power 1o
detect treatment differences that are considered
meaningful; also adequate power to test trend, in-
teraction and other hypotheses of interest. The
availability of such information in the planning
stages of a large-scale clinical trial is extremely
useful as it can indicate areas where scarce
resources are best spent. Our program provides
information on these issues by simulating a clinical
trial according to the design specifications of the
user. Exact power calculations using compuied
critical values are performed for the overall test of
homogeneity among treatment groups, for a test of
interaction and for tests for trend and other linear
combinations of the group incidence rates. In
addition, the user can investigate the sensitivity
of the analysis to different disiributional
assumptions.

The methodology is described in Section 2. The
computer program is described in Section 3. Some
sample runs are described in Section 4. Hardware
and software specifications are given in Section 5.
The program is written in C and versions are cur-
rently set up to run interactively on a SUN
workstation and an IBM PC or compatible.
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2. Description of the methods
2.1 The model

Factorial designs permit the study of several fac-
tors simultaneously. We consider a full factorial
design with multiple factors, labelled 4, B, ...., say.
We will think of factors as different “treatments”,
but in fact some of these factors may actually be
stratifying covariates used in the randomization. If
factor A has a levels, factor B has b levels, etc.,
then we say we have an a x b x... full factorial
design and there are k =a X b X... factor level
combinations or “groups”. For example, the
Physicians’ Health Study [1] was a 2 X 2 design
with four groups; factor 4 was aspirin use (with
levels aspirin or aspirin placebo), factor B was
betacarotene use (with levels betacarotene or
betacarotene placebo). Of course, an important
special case is the one-way layout with just one
factor A4, at k = a levels.

The outcome by which the k groups are to be
compared is the time from entry info the study
until the time of first occurrence of a specific event
of interest, failure say. During the accrual period
of V¥ time units, patients enter at a uniform rate
and are randomly assigned to one of the treatment
groups. If ¥ = 0, all subjects enter simultaneously.
After the end of the accrual period, the study con-
tinues for a further 7 (=0) time units. Thus the
maximum possible follow-up time for any one sub-
ject can be no more than ¥V + 7. We assume that
subiects drop out of the study at a constant rate.
The faiture times for such subjects are considered
censored. Non-failing patients surviving to the end
of the study are also considered censored.

Let ), Fj, f; denote the mean, cumulative distri-
bution and densxty functions, respectively, of the
time to failure for subjects in group j (1 < j < k).
We define the “incidence rate” parameter as the
reciprocal of the mean, N; = 1/u;. For exponential-
ly distributed failure times, ), is the usual hazard
rate, The null hypothesis of interest is F; = F for
all j, that is, there is no difference among the treat-
ment groups. The alternative hypothesis may be a
general one of inhomogeneity or there may be in-
terest in a specific type of departure from the null
hypothesis such as trends in the levels of one or

more of the factors, or the presence of interaction
(synergism or antagonism) between the faciors.
These hypotheses are discussed in more detail in
the following sections.

2.2. Test statistics

In this section we describe the varicus
hypotheses of interest and the corresponding test
statistics. We denote the observed incidence rate
for groupj {1 < j < k) by )\ dT , where T is
the total exposure time of all subjects in the Jt’a
group and d is the number of failures in that
group. The observed log incidence rates are defin-
ed as p;=In }\ If the failure times in group j are
exponentially dlstrlbuted then h is the maximum
likelihood estimator of the true incidence rate A
and p; is asymptotically normally distributed thh
mean ¢; = In \; and variance d;”' [24, page 25].

2.2.1. Overall test of homogeneity
To test the overall null hypothesis of no differ-
ence we use the following test statistic based on

observed log incidence rates proposed by Makuch
and Simon {22}

k
Y 4 - b’ M
i=1
where
k k -1
(59) (59"
j=1 j=1

a weighted average of the {;}. If the failure-time
distributions are exponential, then Eq. I has an
approximate chi-squared distribution with (k — 1)
degrees of freedom. However our program does
not need to assume this is necessarily the case. The
null hypothesis of homogeneity is rejected if Eq. 1
is greater than some critical value. Calculation of
this critical value will be discussed in Section 2.4,

2.2.2. Overall test of interaction

An advantage of using factorial designs is the
ability to test for interaction between factors.
Typically an analysis of variance (ANOVA) is car-
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ried out and the appropriate interaction sum of
squares is used to test for the presence of interac-
tion. Note here, however, that the numbers of
events occurring in each group play the role of ef-
fective sample sizes and these will differ from
group to group. Unfortunately, for unbalanced
multi-way ANOVA, there is no exact way to parti-
tion the sums of squares so as to maintain or-
thogonality. Several approximate methods have
been proposed [25-29], for example Henderson’s
method [26], and unweighted and weighted
squares of means analysis proposed by Yates [25].
Little work appears to have been done comparing
these methods, even for normally distributed data;
however, based on the results of the simulation
study [30], we adopted the weighted squares of
means statistic, as being best approximated by a
chi-square distribution.

To define this statistic we need to extend our
group labelling notation. First suppose we have a
two factor @ X b design. We define dj; and j; to
be the number of failures and observed log inci-
dence rate, respectively, in the group correspon-
ding to level i of factor 4 and level j of factor B.
The statistic used to test for presence of interaction
is then given by:

oL iy -

i=1 j=1
- {b Y d. G -0
i=1
b
a ¥ d.,@.j—f»)z] @
j=1

Here p; is a weighted average of the {4;} given
by:

2 b a b -1
(5 5o (2 £9
i: = i=l j=

=1 j=1

This is the same quantity as defined after Eq. 1 but
in the notation for this two-way layout. Further,

p;. is the weighted average of the {4} correspon-
ding to level 7 of factor 4, namely

e(£ ) (£ )

j=1 j=1

and

b -1
=b ( E d,.j'l)
j=1

is the harmonic mean of the cell samples cor-
responding to the ith level of factor 4. The quan-
tities {4.;] and {d.;} are defined analogously for
groups corresponding to level j of factor B. If the
{p;} are approximately normally distributed, as
they are if the failure time distributions are
exponential, then the statistic 2 has an approx-
imate chi-squared distribution with (@ 1) X
(b - 1) degrees of freedom. However our program
does not need to assume this is necessarily the case.
The null hypothesis of no interaction is rejected if
Eq. 2 is greater than some critical value. Calcula-
tion of this critical value will be discussed in more
detail in Section 2.4.

For higher-order factorial designs, the statistic 2
generalizes in a natural way to be defined as the
total weighted sum of squares minus the sum of
the main effects weighted sums of squares.

2.2.3. Tests for trends and other linear effecis

It is often of interest to test various particular
linear combinations of the group incidence rates,
For example, in an a x b two factor design, this
linear combination can be written as Li Lj ¢;8; for
specified constants {c;}. The corresponding test

statistic is
N\ -2
di (3;

The null hypothesis of homogeneity of incidence
rates is rejected if the absolute value of Eq. 3 is
greater than some critical value. If the rates {5}
are approximately normally distributed, then Eq.
3 has an approximate standard normal N(0,1) dis-

a b aq b
(Z L on) (T Lo
i=1 j=1 i=1 j=1
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tribution under the null hypothesis. However our
program does not need to assume this is necessari-
ly the case.

Various choices for the {cy} are of interest. For
example, to test for presence of a linear trend in in-
cidence rates corresponding to the levels of factor
A, we may simply set ¢; = L. If we are interested in
the pairwise difference between the high level of
factor 4, (i = a, say) and the control level (i = I,
say), we may set ¢;;= -1, ¢; = +1 and ¢; =0,
i=2,..,a— 1 Similarly, by appropriate choice of
{c;}, we may test for any “single degree of
freedom™ interaction effect.

Tests of linear combinations are not limited to
two factor designs. Analogous hypotheses of in-
terest and corresponding test statistics can -be
formed for designs with any number of factors.
For example, for three factor designs, the quan-
tities in Eq. 3 would have triple subscripts; for one
factor designs, formally set 5 =1 in Eq. 3.

2.2.4. Multiple testing

In a factorial experiment there will be several
hypotheses that are of interest, e.g. overall
homogeneity of incidence rates, presence of inter-
action, trends or pairwise differences between
levels in each of the factors. The problem of mulii-
ple comparisons is well known {31,32]. One way to
preserve Type 1 error rates and protect -against
spurious significant results is to use Fisher’s LSD
method [31] as proposed by Makuch and Simon
[22]. Here any linear combination or interaction
test can only be found significant at level « if the
overall hypothesis of homogeneity of rates is
rejected using test Eq. 1 at level «. If this strategy
is employed then it is ensured that the probability
of falsely rejecting any true hypothesis does not
exceed . Other less conservative approaches are
possible [31], but this is the most simple.

2.3. Failure-time distributions

The program presented in this paper allows the
user to specify different choices for the failure-time
distribution F;. One way to characterize a failure
time distribution is by its hazard rate function, A(7)
say. The hazard rate function is related to the
cumulative distribution function (cdf) F(r) by the
relationship:

) =1 - exp{-fo h()dy} @

The choice h(f) = at*~ /8% corresponds to the
Weibull cdf where F(£) = 1 — exp{~(2/8)*}. Here
« is termed the shape parameter and 8 the scale
parameter. The mean and variance of the Wei-
bull distribution are given by ST(l + «~) and
BIT(L + 207 - T + &™)} where () is the
gamma function. The exponential distribution
corresponds to the special case when the shape
parameter o = 1. In this case the hazard rate is
constant, equal to A, say, where A = 1/8. The mean
and variance are A\~! and A2, respectively.

Another commonly used failure time distribu-
tion is the lognormal, with cdf and density func-
tion given by F(t)=® ((Inf - u)o) and A7) =
(Ve¢((Int — pu)/o), respectively. Here #(.) and
¢(-) are the standard normal cdf and density,
respectively. The hazard function is given by
k() = A1 - F(9)] and the median, mean, and
variance are given by pu, exp(p + ¢¥2) and
exp(2u + 6%)(exp(o®) - 1), respectively.

Under the overall null hypothesis of homo-
geneity, the failure time distributions of all groups
are the same. The program aliows three possible
choices — exponential, Weibull or lognormal. The
powers of the various tests are computed under the
alternative hypothesis. Under this hypothesis, the
failure distributions of the different groups have
the same form (either exponential, Weibull or
lognormal), but with parameters that may vary
from group to group. In addition to the above
three families of distributions, two further choices
are available under the alternative hyvpothesis.
These are the lagged exponential and lagged
Weibull. The lagged Weibull is defined by its haz-
ard rate function:

H) = { h() if t < ¢*
@ ift = r*

where A;(t) = ot %~ (3;%) for i = 0,1. Here * is
a further parameter that represents the length of a
lag period during which the hazard rate remains
the same as that specified by the null hypothesis,
ie. hy(-), but after which the treatment takes
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effect, changing the hazard rate to #;(.). The lagg-
ed exponential is a special case where og = o) = 1.
The provision of lagged distributions is motivated
by our interest in disease prevention studies where
it might be expected that intervention does not
take effect immediately [33,34].

By being able to postulate different distributions
under the null and alternative hypotheses, the user
of our program can investigate the sensitivity of
the power to a variety of distributional assump-
tions and thus be able to decide on a robust design.

2.4. Monte Carlo approach

In this section we will describe the simulation of
a clinical trial according to the design specifica-
tions of the user. First, failure times are generated
for each patient under the nuil as the minimum of
a variate drawn from the selected failure-time dis-
tribution and a censoring time. The test statistics
given in Egs. ! and 2 are computed using the
generated data. The test statistic 3 is also com-
puted for the linear combinations specified. This
procedure is repeated N times where N is some
specified (large) number. This yields N indepen-
dent realizations of Egs. 1-3. From the generated
distribution of each statistic, the 100(1 - &)
percentiles are calculated for o = 0.05, 0.01. For
test statistics | and 2 we refer to these percentiles
a8 “‘exact” cut-off points (or critical values). How-
ever, since the exact distribution of Eq. 3 is not
symmetric and the tests based on it are two-sided,
we compute two “exact” cut-off points for it: an
upper and lower o/2 value, These are simply the
upper and lower «/2 quantiles of the generated
statistic values.

For the statistics 1 and « = 0.01, 0.05, we also
record the relative frequency that the generated
values exceed x% _ (a), the upper 100« percen-
tage point of the chi-square distribution with k& - 1
degrees of freedom. This provides a check on the
accuracy of the normal approximation proposed
by Makuch and Simon [22]. Similar checks are
provided on the normal approximations for the
statistics 2 and 3. However it should not be ex-
pected that the distribution of these statistics is
approximated well by a chi-square in all cir-
cumstances.

Simulated failure times are generated similarly
under the alternative hypothesis specified. For
each test statistic (1-3), the proportion of
generated values that lie above the exact cut-off,
computed under the null as above, provide an esti-
mate of the power of each of these tesis. The power
of the tests that use the normal approximation for
critical values can also be computed by consider-
ing the approximate cut-off points in place of the
exact ones.

3. Program description

A flow chart for the program is given in Fig. 1.
Some sample runs are described in the next sec-
tion. The program consists of three parts: (1} input
module, (2) simulation meodule, (3) ouiput module.
We will now describe each of these modules in
detail.

3.1 Step 1. input module

The user is first prompted for the name of the
output file where the input specifications and all
output is recorded. The design layout (e.g., one-
way or higher-way) to be simulated is entered next.
If a higher-way design is selected, the user is pro-
mpted for the number of factors. The number of

START C\\
2 g

PROMPT FOR | i SIMULATE Pt
DESIGY FAILURE |
SPECIFICATIONS] EXPERIENCE :
FOR TRIAL, |
PROMPT FOR N TIMES.
FAILURE-TIME .
DISTRIBUTIONS.

- e

|

SIMULATION
INPUT ! MODULE
MODULE DISPLAY
SUMMARY
STATISTICS,

PROMPT FOR
SIMULATION
REPLICATIONS, i

COMPUTE ‘
TEST STATISTICY |

| DISPLAY

STATISTICAL

s1or ou‘r?ur FOR : oUTPYT

H TESTS OF MODULE
INTEREST. |
]

Fig. 1. Flow chart for the program
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levels for each factor and the number of subjects
in each treatment combination arm are entered
next. The time-unit for the study (hours, days,
weeks, months or years) is now inputted This item
is not actually used by the program in any of the

143

Table 1: Overall Test of Equality of Rates

The exact 100(1 ~ o) percentile cut-off and cor-
responding power are displayed for o = .05 and
0.01. In addition the approximate significance
level, cut-off and power using the approximate chi-

ticnc hut iccafiil farcattinatharantavt ~6 oo 1 11 _inr o

of the accrual period, the overall length of the
study {analysis time) and the dropout rate among
individuals in the study. Next, the form and par-
ameter values of the failure-time distributions to
be simulated under the null and alternative hypo-
thesis are specified. For the exponential and
Weibull distributions the mean and standard
deviation of the distribution selected under the
null are printed for verification purposes. The user
is then prompted to enter the number (possibly 0)
of linear combinations of log incidence rates to be
tested. Denote this number by L¢, say. If L = 1,
the user is further prompted to input the coeffi-
cients, in standard group order, for each of the L.
combinations, as illustrated in the sample terminal
session in Appendix B. Finally, the desired number
N of simulation runs (or replications) under the
null and alternative are entered. Optionally, the
program allows the user to specify the random
number seed to initiate the simulation so that the
results are repeatable.

3.2. Step 2: simulation module

The program simulates the failure experience of
a clinical trial with the design specified using the
input of Step 1. This is done by simulating entry,
dropout and failure times under the null hypothe-
sis for each patient with the specified sample sizes.
This simulation is then replicated N times. A table
of summary statistics containing the average
numbers of failures generated (along with stan-
dard errors) is printed for each group. The empiri-
cal distributions of the statistics 1-3 are
constructed and the exact and approximate cutoff
points computed. The whole procedure is then
repeated for failure times under the alternative hy-
pothesis specified in Step 1.

3.3. Step 3: output module

The program prints the following results to the
screen and designated output file:

Table 2: Overall Test of Interaction
This table is printed only if there are two or more
factors. It contains output analogous to that in

Table I but for the interaction statistic given by
Eq. 2.

Table 3: Two-sided Tests of the Individual Linear
Combinations of Log Incidence Rates

For each of the L. linear combinations specified,
the exact upper and lower (denoted by I/ and L,
respectively) cut-off and power are reported. The
approximate normal cut-off, significance level and
power are also displayed for comparison purposes.
Note that, under the normal approximation, the
distribution of Eq. 3 is symmetric, so only two-
sided significance levels and powers are reported
for the approximate test.

Table 4: Proportion of Runs in Which at Least One
of L¢ Linear Combination is Significant

This table is designed to illustrate the multiple
comparisons phenomenon and is displayed only if
more than one linear combination is tested
(Le = 2). The proportion of simulation runs
(under the null and alternative) in which at least
one combination is significant is reported. The
numbers along the null row reflect the inflated
Type I error if each combination were tested at the
unadjusted a significance level.

Table 5: Proportion of Runs in Which at Leasi One
of L¢ Linear Combinations and Overall Test of
Equality is Significant

If more than one linear combination is tested
{L¢ = 2), the proportion of simulation runs (both
under the null and alternative) in which at least
one combination and the overall test statistic is sig-
nificant is reported. The numbers along the null
row reflect the adjusted Type I error if Fisher’s
LSD multiple comparisons method is used to eval-
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vate the significance of individual tested linear
combinations.

4. Sample runs

Sample runs for two designs are described. The
first is a simple one-way layout example. The
second is a large clinical trial with two factors of
interest. The terminal sessions are given in Appen-
dices A and B, respectively.

4.1. One factor design with three levels

The first example is intended to serve as a com-
parison with the approximate procedure of
Makuch and Simon [22]. The authors determine
sample size requirements for comparative clinical
trials with multiple treatment groups. Failure
times are assumed to follow the exponential distri-
bution. Using approximate chi-square cut-offs,
they calculate the number of failures required per
group, to achieve a pre-specified power against
specific alternatives. We specify a trial using the
sample size they recommend for achieving a power
of 0.90 for a one-way layout with three treatment
arms. Since they specify sample size in terms of
number of failures, we set the dropout rate to be
zero and the analysis time very large (1000 years),
to assure that all failures are observed. Thus all pa-
tients are followed to failure. The alternative hy-
pothesis under consideration is one where the ratio
of the largest mean failure time relative to the
smallest mean failure time is two.

The sample run is displayed in Appendix A. It
can be seen from the results displayed in Table 1
that the achieved power of 0.8940 (with a simula-
tion standard error of 0.0097) is very close to the
pre-specified power 0.90, thereby validating the
use of the chi-square approximation by Makuch
and Simon {22] in this example of exponentially
distributed data.

4.2. Two factor chemoprevention clinical trial

We have used the program to design a large
2 % 3 general population chemoprevention clini-
cal trial involving two nutritional supplements.
Factor A has two levels — placebo or supplement;
factor B has three levels, placebo, low and high

dose. Thus there are six treatment combination
arms or groups. The objective of this trial is to
determine if the two treatments under consider-
ation have any effect on disease and mortality.
Based on the resources available, the following
input numbers are used. A total of 1200 patients is
assigned to each of the six celis. The overall length
of the study is 10 years with an accrual period of
2 years. Based on pilot study data, a dropout rate
of 7.5% per year is anticipated and the distribution
of the time to failure under the null hypothesis is
specified as exponential with a failure time of
2%/year. The failure-time distribution under the
alternative is a lagged exponential with a lag time
of 2 years. Further, the failure rates under the
alternative for the six cells are chosen such that
there is no interaction in incidence rates between
the factors on a multiplicative scale (additive on
the log scale). The two linear combinations of in-
térest test for the effect of the presence of each
treatment. The sample run is displayed in Appen-
dix B. The results show that such a design is prob-
ably adequate — a 5% level exact test of overall
homogeneity has power of approximately 85%; the
power for testing the main effect of factor 4 (com-
bination 1) is 88%; for testing high and low dose
of factor B versus placebo (combination 2) it is
56%. The normal approximations agree guite well
again, even though, under the alternative hypothe-
sis, the distributions are not exponential but lagg-
ed exponential. However if the powers displayed
were not sufficient, the program could be rerun
with larger sample sizes, Conversely, if lower
powers would suffice, smaller sample sizes could
be tried. Upon iteration, a suitable combination of
acceptable power, numbers of factor levels and
economical sample size can be obtained. The pro-
gram should then be rerun under a variety of input
failure distributions and parameter values to ex-
amine the sensitivity to departure to assumptions
made in constructing the design. In the application
which motivated this example, such considerations
led to selecting only two, not three, levels for fac-
tor B.

5. Hardware and software specifications

The random number generator used in the simu-
lation module applies a linear congruential meth-
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od [35]. The program was written using the C
language for a SUN SPARC station [36]. CPU
time for the example of Section 4.1 was 2 s on a
SPARC 20, 2 s on a SPARC 10, 8 s on a SPARC
2 and 20 s on a SPARC 1. The corresponding CPU
times for the example of Section 4.2 were 239, 287,
781 and 1873 s. A Microsoft C [37] program has
also been compiled to run on a 386 or higher IBM
PC or compatible.

6. Mode of availability of the program

Copies of the program are available upon re-
guest from the corresponding author, Ranjini
Natarzjan.
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Appendix A: Sample terminal session — oneway
layout

POWER CALCULATIONS FOR USE IN THE DESIGN OF A MULTI-ARM AND FACTORIAL
CLINICAL TRIAL USIKG THE MAKUCE AND SIMON TEST STATISTIC

SPECIFY FILEZ FOR PRIVTED QUTPUT: opeway.dat
ENTER THE DESIGK TQ BE SIMULATED:
1. ONE-WAY LAYOUT
2. HIGHER-WAY FACTORIAL DESIGN
ENTER SELECTION BERE: 1
ENTER THE KUMBER OF TREATMENT GROUPS ( > 1): 3
ARE THERE EQUAL NUMEER OF SUBJECTS IN EACE GROUP? (Y/N) y
ENTER THE HUMBER UF SUBJECTS IN EACHE GRAUP: 53
ENTER THE TIME UNIT? (H=HOUR, D=DAY, W=WEEK, M=MONTE, Y=YEAR) y
ENTER LENGTE OF ACCRUAL PERIOD (IR YEARS: O FUR SIMULTAWEQUS ENTRY): O
EFTER QVERALL LEEGTE OF STUDY (I¥ YEARS): 1000
ENTER THE DRGP-OUT RATE IN PERCENT PER YEAR: O
WEAT IS THE UNDERLYING DISTRIBUTION OF TEE TIME TO FAILURE TO BE SIMULATED?

UNDER TEE NULL:

1. EXPONERTIAL
2. LOG FORHAL
3. WEIBULL

ENTER SELECTION EERE: 1
UEDER THE ALTERBATIVE:

. SXPOEENTIAL

. LOG NDRHAL

. WEIBULL

. LAGGED EXPONENTIAL
. LAGGED WEIBULL

e e

w

ENTER SELECTIDE BERE: 1

NULL BYPOTHESIS

ESTER FAILURE RATE IN PERCENT PER YZAR: §
TEE MEAE TINE TO FAILURE IS 20.0Q YEARS
THE STD. DEV. OF TIME TO FAILURE IS 20.0G VYEARS

ENTER FAILURE RATE IN PERCENT PER YEAR:

Group 1: s
Group 2: 2.5
Group 3: 3.5

ERTER KUMBER OF LINEAR COMBINATIONS OF TBE LOG KEAF RESPOKSE TIME: ¢
ERTER NUMBER OF SI¥ULATIGN RUNS FOR THE NULL: 1000

ENTER NUMBER OF SIXULATION RUSS FCR THS ALTERNATIVE: 1000

ENTER RANDOM KUHEER SEED (O FOR RARDOM SEED): 2948239487

GENERATING DATA UNDER TEE NULL........ PLEASE WAIT

AVERAGE NUMBER OF FAILURES

MEAN 5. E

Group 1: §3.00  (0.00)

Group 2: 53.00  (0.00)

Group 3: 53.00 (0.00)

GENERATING DATA UNDER TEE ALTERNATIVE........ PLEASE WAIT
AVERAGE NUMBER OF FAILURE!

XEAN 5. E

Group 1: 53.00  (0.0C)

Group 2: $3.00  {0.00)

Group 3: $3.00  (0.00)

TABLE 1: OVERALL TEST OF EQUALITY OF RATES

HOMINAL CUT-QFF¥ ACHIEVED ACHTEVED
SIZE VALUE SIG LEVEL POWER

Approximate ChiSquare 0.0500 6.9916 0.0590 (0.0076)

6.9070 {0.0082)

0.0100 2.2103  0.0050 (0.0022) 0.77G0 (0.0133)

Exact (via Simulation) 0.0500 6.2601 0.0500 0.8%840 (0,0097)
0.0100 8.7719 0.0100 0.7850 (0.0130)

145

Appendix B: Sample terminal session — clinical

trial data

POWER CALCULATIONS FOR USE IN TEE DESIGK OF A WULTI-ARM A¥D FACTORIAL
CLINICAL TRIAL USING THE MAKUCE ABD SINOW TEST STATISTIC

SPECIFY FILE FOR PRINTED OUTPUT: clinical.dat
ENTER TEE DESIGE TO BE SIMULATED:
1. QFE-WAY LAYQUT
2. HIGHER-WAY FACTDRIAL DESIGN
EXTER SELECTION BERE: 2
ENTER THE NUMBER OF FACTORS: 2
ENTER THE NUMBER OF LEVELS OF FACTOR 1: 2
ENTER THE NUMBER OF LEVELS OF FACTOR 2: 3
THE SELECTED DESIGE BAS 6 TREATMEET COMBIMATION GROUPS
ABE TEERE EQUAL NUMBER OF SUSJECTS I¥ EACH GROUF? (Y/¥) y
ENTER TEE NUMBER OF SUBJECTS IK EACB GROUP: 1200
ENTER THEE TIME UNIT? (B=BOUR, D=DAY, W=VEEK, =HOETHE, Y=YEAR} y
EXTER LEEGTE OF ACCRUAL PERIOD (IN YEARS; 0 FOR SIXULTANEQUS EXTRY): 2
ENTER OVERALL LENGTE OF STUDY (IN YEARS): 10
ENTER THE DROP-OUT RATE I¥ PEACENT PER YEAR: 7.5
WEAT IS THE UKDERLYING DISTRIBUTION OF TRE TIME TO FAILUARE TO BE SIMULATED?

UNDER THE NULL:

1. EXPONENTIAL

2. LOG XORMAL

3. WEIBULL
EETER SELECTION HERE:

URDER THE ALTERNATIV

- EXPONENTIAL

. LOG NORMAL

. WEIBULL

. LAGGED EXPUNENTIAL
5. LAGGED WEIBULL

ENTER SELECTICH EERE: ¢

1
2
3
4

FULL HYPOTEESIS

ENTER FAILURE RATE IN PERCENT PER YEAR: 2
THE MEAY¥ TIME TO FAILURE IS 50.00 YEARS
THE STD. DEV. OF TIHE TQ FAILURE IS 350.00 YEARS
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ALTERNATIVE HYPOTHESIS

ENTER LAG (IN YEARS) UNTIL TREATMENT TAKES EFFECT (O FOR KO LAG): 2

ENTER FAILURE RATE IN PERCENT PER YEAR (EFFECTIVE BEFORE 2.00 YEARS):

ENTER FAILURE RATE IN PERCENT PER YEAR (EFFECTIVE AFTER 2.00 YEARS):

GROUP 1:( &, 1) 2
GROUP 2:( 1, 2 ) 1.6816
GROUP 3:( 1, 2 ) 1.416
GROUP 4:( 2, 1 ) 1.416
GROUP 5:( 2, 2 ) 1.1256
GROUP 6:( 2, 3 ) 1

ENTER NUMBER OF LINEAR COMBINATIONS OF THE LOG MEAN RESPORSE TIME: 2
ENTER THE COEFFICIENTS OF COMB 1 (IN GROUP ORDER): -1 -1 -11 1 1
ENTER THE COEFFICIENYS OF COMB 2 (IN GROUP ORDER): -1 11 -1 1 1

ENTER NUMBER OF SINMULATION RUNS FOR THE NULL: 1000

ENTER NUMBER OF SIMULATIQM RUNS FOR THE ALTERNATIVE: 1000

EXTER RANDOM NUMBER SEED (0 FOR RANDOM SEED): 9287925

GENERATING DATA UNDER THE RULL........ PLEASE WAIT

AVERAGE NUMBER OF FAILURE:

GROUP 1:( 1, 1) 144,93 (0,36)
GRCUP 2:( 1, 2 ) 145.17 (0.37)
GROUP 3:( 1, 3) 144.63 (0.36)
GROUP 4:( 2, 1) 144.56 (0.36)
GROUP 5:( 2, 2 ) 144.37 (0.35)
GROUP 6:( 2, 3 ) 146.00 (0.36)
GENERATING DATA UEDER THE ALTERBATIVE........ PLEASE WAIT

AVERAGE NUMBER OF FAILURES

HEAX  S. E
GROUP 1:( 1, 1) 145.13  (0.37)
GROUP 2:( 1, 2 ) 128.56 (0.35)
GROUP 3:( 1, 3) 117.03  (0.33)
GROUP 4:( 2, 1) 116.74 (0.32)
GROUP 5:( 2, 2) 102.30 (0.30)
GROUP 6:( 2, 3 ) 95.87 (0.30)

STATISTICAL QUTPUT

TABLE 1: OVERALL TEST OF EQUALITY OF RATES

HOMINAL CUT-OFF ACEIEVED ACHIEVED
SYZE VALUE SIG LEVEL POWER

Approximate ChiSquare 0.0500 11.0705 0.0610 (0.0076) 0.8620 (0.0109)
©.0100 15.0863 0.0190 (0.0043) 0.6710 (0.0149)

0.8450 (0.0114)
©.6010 (0.0185)

EZxact (via Simulation) 0.0500 11.784¢ 0.0500
0.0100 16.2986 0.¢100

TABLE 2: OVERALL TEST OF IKTERACTION

BOMINAL CUT-OFF ACHIEVED ACHIEVED
SIZE VALUE $I1G LEVEL POWER

Approximate ChiSquare 0.0500 $.9916  0.0830 (0.0071) 0.0620 (0.0078)
0.0100 9.2103 0.0080 (0.0028) 0.0150 {0.0038)

Exact (via Simalatien) 0.0500 €.0300 ©.0500
0.0100 8.3564 6.0100

6.0620 (0.0076)
6.0180 {0.0043)

TABLE 3: 2-SIDED TESTS OF THE INDIVIDUAL LINEAR
COMBIKATION(S) OF LOG(MEAR) RESPONSE TIME

COMBINATION i:

-1.00 ~1.00 -1.00 1.00 1.00 1.00

ROMINAL CUT-OFF ACHIEVED ACHIEVED
SIZE ~ VALUE  SIG LEVEL POWER
Approximate Hormal 0.0500  1.8600 0.0420 (0.0063) 0.8490 (0.0113)
0.0100  2.5758 0.0080 (0.0028) 0.6620 (0.0150)
Exact (via Simulation) 0.0250L ~1.9446 0.0250 0.0000 (0.0000)
0.02500 1.8471 0.0250 0.8800 (0.0103)
0.0500 0.8800
0.0050L ~2.5752 0.0050 0.0000 (0.0000)
0.0050U 2.5528 0.0050 0.6710 (0.0149)
0.0100 0.6710

COMBINATION 2:

Approximate Normal

CUT-OFF ACHIEVED ACHTEVED
VALUE SIG LEVEL POWER

1.9600 0.0590 (0.0075} ¢.6000 (0.0155
2.5768 0.0120 (0.0034) 0.2590 (0.0152)

Exact (via Simulatien) 0.0250L -2.0527 0.0250 0.0000 {6.0000)
0.0250U 2.03B2 ©.0280 0.5590 (0,0187)
9.05C0 0.5590
0.0050L -2.6361 0.0050 0.0000 (0.0000)
0.0050U 2.9104 0.0050 0,2500 (0.0137)
0.0100 09,2500

TABLE 4: PROPGRTION OF RUNS IN WHICH AT LEAST ONE OF 2 LIEEAR
COMBINATION(S) IS SIGRIFICANT (USING EXACT VYIA SIHMULATION CUT-GFF}

4.0500 0.0100
Bull: 0.0950 (0.0093) 0.0200 (0.6044)
Alternative: 0.9500 (0.0069) 0.7510 (0.0137)
TABLE S: PROPORTIOR OF RUNS IN WHICH AT LEAST OKE GF 2 LIFEAR
COKBINATINN(S) AFD OVERALL TEST OF EQUALITY IS SIGNIFICANT
(USING EXACT VIA SIMULATIOR CUT-OFF)
0.0500 0.Q100
Null: 0.0270 (0.0051) 0.0030 (0.0017)
Alternative: 0:8350 (0.0117) 0.571C (0.0457}
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