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This paper presents a computer program for use in the design of long-term clinical trials with multiple treatment 
arms in which the primary outcome variables are censored survival times. The treatment arms may be structured as 
a one-way or multi-way factorial design. It is assumed that patients are entered and randomized to a treatment arm 
durmg an accrual period. The patients are then followed for a fixed period during which there may be dropouts. 
Various distributional assumptions can be used to model the survival times. These include an option in which there 
is an effect of treatment duly after a lag or delay time. The program then computes the power of various statistical 
tests of hypotheses concerning treatment differences, interactions and trends. The power computations are “exact” in 
that they use the Monte Carlo method to obtain Type I and II error probabilities. However the program aiso outputs 
the normal approximations for comparison, although they are typically not accurate in these situations. Fisher’s LSD 
method is used to adjust for the multiple comparisons. By comparing the power for various sets of design parameters, 
such as sample size, numbers of factor levels, patient accrual rate, and length of follow-up, an appropriate design can 
be constructed. Two examples are provided. The first is a simple one-way layout with multiple treatment arms; the 
second a two-way factorial design for a proposed large scale cancer chemoprevention trial. 

Kqwor& Clinical trials; Power; Sample size; Multiple treatments; Factorial design; Treatment lag; Multiple com- 
parisons; Fisher’s LSD; Stratification; Monte Carlo method 

1, b&rtiiJCtiOR 

Until recently, factorial designs were rarely con- 
sidered for the conduct of long-term randomized 

clinical trials. However there has been much 
renewed interest in the past few years, in 
because such designs are natural candidate 
disease prevention trials where it is desired to 
examine the effect of various nutritional 
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plements, pharmacologic agents or other pote 
prophylactic factors. For example, the Physic 
Health Study [I] employed a 2 x 2 design with the 
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two factors being aspirin use and betacarotene use. 
A mire complicat as used in the recent 
Limian study [a &year prospective 
i~t~~e~~t~o~ trial, there were four factors con- 
sisting of four v~ta~~~neral groups, each at two 
~eve~§-p~es~~t or absent. A fractional 24 design 
was emp to investigate the effects on mortali- 
ty and c incidence. 

Of course, disease treatment triak can benefit 
from consideration of factorial designs also. For 
example, Staquet and Dalesio [4] describe a lung 
cancer trial in which 600 subjects were randomized 
into a 2 x 2 design to evaluate the effectiveness of 
e~ern~t~era~y (yes/no) and of immunotherapy 

et al. [S] describe use of the same 
trial where the effect 
different blood pres- 

sure controls were evaluated to investigate their 
erular filtration rate in patients with 

tion to factorial designs for 
ical trials has been given by Byar 
[6] and Byar, Herzberg and Tan 

ittes [S] studied the effect that 
non-compliance can have on the 

treatment (main) effects in a facto- 
n comparison with the “one 

Slud [9] gives the theoretical de- 
-parametric methods of analysis 

when the endpoint is survival 

For comparing just two treatment arms with a 
surviva] endpoint, there are available a number of 
statistical tables, nomograms and computer pro- 
rams for power and sample size calculations 

~~~-~4,~6,~~]. Computer programs for two treat- 
ment designs involving group sequential monitor- 
ing are also available [lg-201. Our program does 
not s~e~i~cally address group sequential designs; 
however by ng the sample size from the fixed 
sample desi the appropriate factor, the cor- 
responding sample size for the group sequential 

[22] gave tables for design- 
ing trials with multiple arms in a one-way layout. 
Their method assumed exponential survival times 
and used normal approximations to obtain the 
power. Iso their sample sizes were stated in terms 

in numbers of events obse 
imations are needed to c 
into numbers of subjects and 
that would be needed. Peters 
have extended the methods of [l&22 
number of events requirements for testi 
interaction effect in 2 x k facto 
used the results of 1131 to obtain 
trial duration. 

The purpose of this paper is to pr de- 
scribe a computer program for use in fat- 
torial or multi-arm clinical trials. The primary 
outcome variable is a time to an event of interest, 
for example, death or onset or ~~c~~re~ce of 
disease. We assume that, after the start date of the 
study, there is an act 
tients are recruited. 
from the study start 
followed, the data set is 
analysis is performed. 
period some patien 
lost. Before initiating such a 
ensure that the sample sizes 
are sufficient to 
detect treatment 
meaningful; also adequate power to test trend, in- 
teraction and other hypotheses of interest. The 
availability of such information in tbe 
stages of a large-scale clinical trial is 
useful as it can indic 
resources are best spent. 
information on these issues 
trial according to the desi 
user. Exact power calcul 
critical values are perform 
homogeneity among treatment gr 
interaction and for 
combinations of t 
addition, the user can investigate the sensitivity 
of the analysis to different d~~t~~~~tio~a~ 
assumptions. 

The methodology is described in Section 2. The 
computer program is describ 
sample runs are described i 
and software specifications are given in Section 5. 
The program is written in C and versions ar 
rently set up to run interactively on a 
workstation and an IB 
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2.6 The model 

the study of several fac- 
onsider a full factorial 

factors, labelled A, B ,...., say. 
ors as different “treatments”, 
hese factors may actually be 

in the randomization. If 
s a levels, factor B has b levels, etc., 

then we say we have an a x b x . . . full factorial 
design and there are k = a x b x . . . factor level 
combinatio or “‘groups”. For example, the 
Physicians’ ealth Study [l] was a 2 x 2 design 
with four groups; factor A was aspirin use (with 
levels aspirin or aspirin placebo), factor B was 
betacarotene use (with levels betacarotene or 
~e~~a~o~e~e placebo). Of course, an important 
s~~~ia~ case is the one-way layout with just one 
factor A, at k = a levels. 

The o~te~rne by which the k groups are to be 
~Qrn~a~e~ is the time from entry into the study 
until the time of first occurrence of a specific event 
of interest, failure say. During the accrual period 
of W time units, patients enter at a uniform rate 
and are ra~do~~ assi ed to one of the treatment 
groups. If V = 0, all subjects enter simultaneously. 
After tbe end of the accrual ,period, the study con- 
tinues for a further r (10) time units. Thus the 

ossible follow-up time for any one sub- 
no more than V + r. We assume that 

out of the study at a constant rate. 
es for such subjects are considered 

on-failing patients surviving to the end 
also considered censored. 

Let ~9, ei,h denote the mean, cumulative distri- 
bution and density functions, respectively, of the 
time to failure for subjects in group j (1 5 i zz k). 
We define the “incidence rate” parameter as the 
reciprocal of the mean, $ = l/pP For exponential- 
ly distributed failure times, 5 is the usual hazard 
rate, Tbe null hypothes f interest is Fj = F for 
all j, that is, there is no d renee among the treat- 

e hypothesis may be a 
eneral one of i~~om~geneity or there may be in- 

terest in a specific: type of departure from the null 
hypothesis such as trends in the levels of one or 

more of the factors, or the ~~ese~~ of i~te~a~t~~~ 
(synergism or antagonism) between the factors. 
These hypotheses are discussed in more detail in 
the following sections. 

2.2. Test statistics 

In this seetio 
hypotheses of int 

e denote the observed i~~~de~e~ rate 
S k) by Xj = BjTj-‘, Where Tj  :S 

the total exposure time of all subj~e~s in the jth 
group and 4 is the number of fa~I~~~$ in that 
group. The observed log incidence rates are defin- 
ed as $j = In $. If the failure times in group j are 
exponentially distributed the 
likelihood estimator of the t 
and 4 is as~ptoti~aliy norma 
mean pj = In $ and variant 

2.2.1. Oved test of ho~oge~e~ty 
To test the overall null hypothesis of 

ence we use the following test statistic 
ence rates propose 

and Simon 1221: 

k 

where 

a weighted average of the I&l. If the failure-time 
distributions are exponential, then Eq. 1 has an 
approximate chi-squared distribution with (J% - 1) 
degrees of freedom. However our program does 
not need to assume this is necessarily the case. The 
null hypothesis of homogeneity is rejecte 
is greater than some critical value. of 
this critical value will be discussed in 

2.2.2. Overall test of interaction 
An advantage of using factorial desists is the 

ability to test for interaction etween factors. 
Typically an analysis of variance ( ) is car- 
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ried out and the appropriate interaction sum of 
uares is used to test fo.r the presence of interac- 
n. Note here, however, that the numbers of 

events occurring in each group play the role of ef- 
fective sample sizes and these will differ from 
roup to group. Unfortunately, for unbalanced 

multi-way ANNA, there is no exact way to parti- 
tion the sums of squares so as to maintain or- 
tb~~~nalit~. Several approximate methods have 

oposed [25-291, for example Henderson’s 
(261, and unweighted and weighted 

of means analysis proposed by Yates [25]. 
Little work appears to have been done comparing 
these methods, even for normally distributed data; 
~~w~v~~, based on the results of the simulation 
study [30], we adopted the weighted squares of 
means statistic, as being best approximated by a 
chi-square dist~bnti~n. 

To define this statistic we need to extend our 
roup labelling notation. First suppose we have a 
wo factor a x b design. We define dii and fiij to 
e the ~¶~rnb~r of failures and observed log inci- 
ence rate, respectively, in the group correspon- 
ing to level i of factor A and level j of factor 3. 

The statistic used to test for presence of interaction 
is then given by: 

a b 

i=l jzl 

di. (6;. - $I2 

b 

-k a d.fjQ - bj2 1 
j= I -1 

(2) 

ere pi is a weighted average of the (i$ ) given 
by: 

ij= 

This is the same quantity as defined after Eq. 1 but 
in the notation for this two-way layout. Further, 

$i. is the weighted average of the (& 
ding to level i of factor A, namely 

fii. = 
-1 

dti 

and 

die =b 

is the harmonic mean of the cell sa 
responding to the ith level of factor A. 
tities (fi.j] and (d.j) are defined analQ~~~sly for 
groups corresponding to level j of factor 
( &) are approximately normally 
they are if the failure time dis 
exponential, then the statistic 2 has an approx- 
imate chi-squared distribution with (a -_ 1) x 
(b - 1) degrees of freedom. However our ~r~g~a~ 
does not need to assume this is ne~essa~iIy the case. 
The null hypothesis of no interaction is rejects 
Eq. 2 is greater than some critical value. Calc 
tion of this critical value will be discussed in more 
detail in Section 2.4. 

For higher-order factorial desi 
generalizes in a natural way to 
total weighted sum of squares 
the main effects weighted sums of ~~~~re~. 

2.2.3. Tests for trends and other hem ~~~~~t~ 
It is often of interest to test vario 

linear combinations of the gro 
For example, in an a x b two 

linear combination can be written as 
specified constants ( cV] . The ~~rr~s~~~ding test 
statistic is 

The null hypothesis of homogeneity of in~i~e~~~ 
rates is rejected if the absolute value of EqS 3 is 
greater than some critical value. If the rates (jcj) 
are approximately normally distribu 
3 has an approximate standard no 
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tribution under the null hypothesis. However our 
program does not need to assume this is necessari- 
ly the case. 

Various choices for the 1 cij] are of interest. For 
example, to test for presence of a linear trend in in- 
cidence rates corresponding to the levels of factor 
A, we may simply set eij = i. If we are interested in 
the pair-wise difference between the high level of 
factor A, (i = LI, say) and the control level (i = 1, 
Say], we may set cli= -1, Caj = +l and cii= 0, 
i = 2,...., a - 1. Similarly, by appropriate choice of 
(~$1 I we may test for any “single degree of 
freedom” interaction effect. 

Tests of linear combinations are not limited to 
two factor designs. Analogous hypotheses of in- 
terest and corresponding test statistics can ‘be 
formed for designs with any number of factors. 
For example, for three factor designs, the quan- 
tities in Eq. 3 would have triple subscripts; for one 

s, formally set b = 1 in Eq. 3. 

22.4. .Multiple testing 
In a factorial experiment there will be several 

hypotheses that are of interest, e.g. overall 
homogeneity of incidence rates, presence of inter- 
action: trends or pairwise differences between 
levels in each of the factors. The problem of multi- 
ple comparisons is well known f3 1,321. One way to 
preserve Type I error rates and protect against 
spurious significant results is to use Fisher’s LSD 
method [31] as proposed by Makuch and Simon 
[22]. Here any linear combination or interaction 
test can only be found significant at level o if the 
overall hypothesis of homogeneity of rates is 
rejected using test Eq. 1 at level cr. If this strategy 
is employed then it is ensured that the probability 
of falsely rejecting any true hypothesis does not 
exceed CC Other less conservative approaches are 
possible [31], but this is the most simple. 

2.3. Failure-time distributions 

The program presented in this paper allows the 
user to specify different choices for the failure-time 
distribution FP One way to characterize a failure 
time distribution is by its hazard rate function, h(t) 
say. The hazard rate function is related to the 
cumulative distribution function (cdf) F(t) by the 
relationship: 

40 = 1 - exp(-jh h(~)B’j 

The choice h(t) = crf - i&P corresponds to the 
Weibull c& where F(t) = 1 - exp 1 -(t/@)“J . Here 
CY is termed the shape parameter and ,6 the scale 
parameter. The mean and variance of the Wei- 
bull distribution are @ven by ~~(1 + cu-‘) and 
/PF(l + 2a-‘) - P(1 + CC-‘)] wh 
gamma function. The exponen 
corresponds to the special case w  
parameter CY = 1. In this case the 
constant, equal to h, say, where a = 
and variance are X-* and Xw2, res~e~t~ve~y. 

Another commonly used failure time distribu- 
tion is the lognormal, with c&and density func- 
tion given by F(t) = Cp ((lnt __ p&r) and f(f) = 
(llat)#((lnt - *)/a), respectively. Here 9( *) and 
$4.) are the standard normal cdf and density, 
respectively. The hazard function is given . 
h(t) =At)lIl - F(t)] and the median, mean, a 
variance are given by p, exp(p + ~~~12) and 
exp(& + a2)(exp(a2) - l), respe~tiv~l~~ 

Under the overall null hy~Qthesis of homo- 
geneity, the failure time distributions of all groups 
are the same. The program allows three possible 
choices - exponential, Weibull or lognormal. The 
powers of the various tests are computed under the 
alternative hypothesis. Under this hypothesis, the 
failure distributions of the different groups have 
the same form (either ex~one~ti~~, eibull or 
lognormal), but with parameters that may vary 
from group to group. In addition to the above 
three families of distributions, two further choices 
are available under the alternative hypothes- 
These are the lagged exponential and lagg 
Weibull. The lagged Weibull is defined by its haz- 
ard rate function: 

h(t) = 
ho(t) if t < t* 

hi(t) if t E t* 

where h,(t) = qt ai - ‘/(pi”‘) for i = O,l. Here P is 
a further parameter that represents the length of a 
lag period during which the hazard rate remains 
the same as that specified by the null hypothesis, 
i.e. h,(b), but after which the treatment takes 
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effect, changing the hazard rate to hi(.). The Iagg- 
nential is a special case where o. = cyi = 1. 
vision of lagged distributions is motivated 

terest in disease prevention studies where 
it might be expected that intervention does not 
take effect immediately [33,34]. 

y being able to postulate different distributions 
er the null and alternative hypotheses, the user 
ur program can investigate the sensitivity of 

r to a variety of distributional assump- 
thus be able to decide on a robust design. 

2.4. Carlo approach 

In this section we will describe the simulation of 
a c~i~i~~l trial according to the design specifica- 
tions of the user. F st, failure times are generated 
for each patient un r the null as the minimum of 
a vacate drawn from the selected failure-time dis- 
t~ib~~io~ and a censoring time. The test statistics 
iven in Eqs. 1 and 2 are computed using the 

~eneKat~d data. The test statistic 3 is also com- 
puted for the linear combinations specified. This 
procedure is repeated N times where N is some 

(large) number. This yields N indepen- 
of Eqs. 1-3. From the generated 
each statistic, the lOO(1 - cu) 

mated for a! = 0.05, 0.01. For 
2 we refer to these percentiles 

as “exalt” cut-o oints (or critical values). How- 
ever since the exact istribution of Eq. 3 is not 
S etric and the tests based on it are two-sided, 
we ~o~~ut~ two “‘exact” cut-off points for it: an 

er and lower al2 value. These are simply the 
er and lower ~~62 quantiles of the generated 

For the statistics 1 and cy = 0.01, 0.05, we also 
record the relative frequency that the generated 
values exceed x2k _ i(o), the upper 100~~ percen- 

point of the -square distribution with k - 1 
ees of freed This provides a check on the 

accuracy of the normal approximation proposed 
bY imon [22J. Similar checks are 
provided on the normal approximations for the 
statistics 2 and 3. However it should not be ex- 
pected that the distribution of these statistics is 
a~~roxi~~.ated well by a chi-square in all cir- 
~~rnsta~~es. 

Simulated failure times are gene 
under the alte~ative 
each test statistic ( 
generated values that lie a 
computed under the null as 
mate of the power of each o 
of the tests that use the normal 
critical values can also 
ing the approximate cu 
exact ones. 

A flow chart for the program 
Some sample runs are descr 
tion. The program consists oft 
module, (2) simulation module 
We will now describe each 
detail. 

3.1. Step 1: input madde 

The user is first prompted for the name o 
output file where the input spe~i~~atio~s an 
output is recorded. The des 
way or higher-way) to be sim 
If a higher-way design is se1 
mpted for the number of factors. The 

Fig. 1. Flow chart for the ~~o~~a~ 
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levels for each factor and the number of subjects 
in each treatment combination arm are entered 
next. The time-unit for the study (hours, days, 
weeks, months or years) is now inputted. This item 
is not actually used by the program in any of the 
calculations, but is useful for setting the context of 
the study. The user is then prompted for the length 
of the accrual period, the overall length of the 
study (analysis time) and the dropout rate among 
individuals in the study. Next, the form and par- 
ameter values of the failure-time distributions to 
be simulated under the null and alternative hypo- 
thesis are specified. For the exponential and 

eibull distributions the mean and standard 
vi&ion of the distribution selected under the 

null are printed for verification purposes. The user 
is then prompted to enter the number (possibly 0) 
of linear combinations of log incidence rates to be 
tested. Denote this number by Lo say. If Lc 1 1, 
the user is further prompted to input the coeffi- 
cients, in standard group order, for each of the Le 
combinations, as illustrated in the sample terminal 
session in Appendix B. Finally, the desired number 
N of simulation runs (or replications) under the 
null and alternative are entered. Optionally, the 
program allows the user to specify the random 
number seed to initiate the simulation so that the 

3.2, Step 2: simulation module 

The program simulates the failure experience of 
a clinical trial with the design specified using the 
input of Step 1. This is done by simulating entry, 

ropout and failure times under the null hypothe- 
sis for each patient with the specified sample sizes. 
This simulation is then replicated N times. A table 
of summary statistics containing the average 
~~rnb~rs of failures generated (along with stan- 
dard errors) is printed for each group. The empiri- 
cal distributions of the statistics l-3 are 
constructed and the exact and approximate cutoff 
points computed. The whole procedure is then 
repeated for failure times under the alternative hy- 

othesis specified in Step 1. 

3.3. Step 3: output module 

rogram prints the following results to the 
screen and designated output file: 

Table I: Overall Test of Equality of 
The exact lOO( 1 - CY) ~erce~til$ cut 
responding power are displayed for Q: = 0.05 and 
0.01. In addition the approximate significance 
level, cut-off and power using the a~~r~~irn~t~ chi- 
square cut-off are also displayer for purposes of 
comparison with Ref. [22]. 

Table 2: Overail Test of Interaction 
This table is printed only if there are two or more 
factors. It contains output analogous to that in 
Table 1 but for the interaction statistic given by 
Eq. 2. 

Table 3: Two-sided Tests of the ~ndiv~~aa~ Linear 
Combinations of Log Incidence Rates 
For each of the Lc linear combinations specified, 
the exact upper and lower (denoted 
respectively) cut-off and power are reported. The 
approximate normal cut-off, significance level and 
power are also displayed for comparison purposes. 
Note that, under the normal approximation, the 
distribution of Eq. 3 is s etric, so only two- 
sided significance levels wers are repsrted 
for the approximate test. 

Table 4: Proportion of Runs in ich at Least One 
of Lc Linear Combination is ~ig~~~~a~t 
This table is designed to illustrate the multiple 
comparisons phenomenon and is displayed only if 
more than one linear combination is tested 
(Lc r 2). The proportion of sim~~lation runs 
(under the null and alternative) in 
one combination is significant is 
numbers along the null row refle 
Type I error if each combination were tested at the 
unadjusted a significance level. 

Table 5: Proportion of Runs in Which at Least One 
of Lc Linear Combinations and 09erd Test of 
Equality is Significant 
If more than one linear combination is tested 
(Lc 2 2), the proportion of simulation runs (both 
under the null and alternative) in which at least 
one combination and the overall test stat 
nificant is reported. The numbers alon 
row reflect the adjusted Type I error 
LSD multiple comparisons metho 
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significance of individual tested linear 

le runs for two designs are described. The 
first is a simple one-way layout example. The 
second is a large clinical trial with two factors of 
interest. The terminal sessions are given in Appen- 
dices A and B, respectively. 

4.1. CBree fk25r design with three levels 

The first example is intended to serve as a com- 
r&son with the approximate procedure of 

h and Simon [22]. The authors determine 
size requirements for comparative clinical 

trials with multiple treatment groups. Failure 
s are assumed to follow the exponential distri- 

ion. Using approximate chi-square cut-offs, 
calculate the number of failures required per 

group, to achieve a pre-specified power against 
specific alternatives. We specify a trial using the 
sample size they recommend for achieving a power 
of 0.90 for a one-way layout with three treatment 

5. Since they specify sample size in terms of 
number of failures, we set the dropout rate to be 
zero and the analysis time very large (1000 years), 
to assure that all failures are observed. Thus all pa- 
tients are followed to failure. The alternative hy- 
~ot~esi~~ under consideration is one where the ratio 
of the largest mean failure time relative to the 
smallest mean failure time is two. 

The sample run is displayed in Appendix A. It 
can be seen from the results displayed in Table 1 
that the achieved power of 0.8940 (with a simula- 
tion standard error of 0.0097) is very close to the 
pre-specified power 0.90, thereby validating the 
use of the chi-square approximation by Makuch 
and Simon [22] in this example of exponentially 
di$trib~ted data. 

4.2. Two factor chemogrevention clinical trial 

We have used the program to design a large 
2 x 3 general population chemoprevention clini- 
cal trial involving two nutritional supplements. 

has two levels - placebo or supplement; 
factor B has three levels, placebo, low and high 

dose. Thus there are six treatment combination 
arms or groups. The objective of this trial is to 
determine if the two treatments under eo~sider- 
ation have any effect on disease and 

assigned to each of the six cells, 
of the study is 10 years with a 
2 years. Based on pilot study 
of 7.5% per year is anticipated an 
of the time to failure under t 
specified as exponential with a 
2%/year. The failure-time 
alternative is a lagged exp 
of 2 years. Further, the 

the factors on a multipli 
the log scale). The two linear co 
terest test for the effect of the 

power for testing the main effect of factor A ( 
bination 1) is 88%; for testing high and low 
of factor B versus placebo (combination 2) it 1s 
56%. The normal approximations agree quite well 
again, even though, under the alternative 
sis, the distributions are not exponential 
ed exponential. However if the cowers di 
were not sufficient, the program could 
with larger sample sizes, ~o~ve~se~y~ if lower 
powers would suffice, smaller sample sizes could 
be tried. Upon iteration, a suitable combination 
acceptable power, numbers of factor levels an 
economical sample size can be ~btai~~d~ p-O- 
gram should then be rerun under a variet nput 
failure distributions and parameter values to ex- 
amine the sensitivity to departure to ass~rn~~o~s 
made in constructing the design. In the ap~~iea~i~n 
which motivated this example, such ~o~s~~e~at~~~s 
led to selecting only two, not three, levels for fat- 
tor B. 

The random number generator use 
lation module applies a linear co~~r~e~t~al meth- 
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[?5]. The program was written using the C 
guage for a SUN SPARC station [36]. CPU 

time for the example of Section 4.1 was 2 s on a 
R@ 20,2 s on a SPARC IO,8 s on a SPARG 

2 and 20 s on a SP‘4R.C 1. The corresponding CPU 
times for the example of Section 4.2 were 239,287, 
781. and 1873 s. A Microsoft C [37] program has 
also been compiled to run on a 386 or higher IBM 
PC or compatible. 

6. Mode of availability of the program 

Copies of the program are available upon re- 
uest from the corresponding author, Ranjini 

Natarajan. 

This research was supported by grants from the 
US National Institutes of Health. 

x A: Sample terminal 
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