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Statistics

Study design in clinical
research: sample size
estimation and power
analysis Jerrold Lerman BASC MD FRCPC

The purpose of this review is to describe the statistical meth-
ods available to determine sample size and power analysis in
clinical trials. The information was obtained from standard
textbooks and personal experience. Equations are provided for
the calculations and suggestions are made for the use of
power tables. It is concluded that sample size calculations and
power analysis can be performed with the information provid-
ed and that the validity of clinical investigation would be
improved by greater use of such analyses.

Cet article de revue decrit les methodes statistiques utilisees
au cours des epreuves cliniques pour determiner la taille d'un
echantillon et ianalyse de sa puissance. L'information
provient des manuels standards et de Vexperience de I'auteur.
Des equations sont fournies avec des suggestions sur I'usage
des tables de puissance. En conclusion, avec cette informa-
tion, il est possible d'ejfectuer les calculs de la taille d'un
echantillon et I'analyse de sa puissance; ces analyses ameliore-
raient la validite d'une etude clinique si on les utilisaient
plus.

Although study design is an integral component of clini-
cal research, it appears infrequently in the anaesthesia
literature.1"3 This is evidenced by the absence of both
sample size calculations in prospective studies and
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power analysis in studies with negative results.1"5 Two
possible explanations may account for this omission
from clinical anaesthesia research. First, sample size
estimation and power analysis are subjects that are
rarely taught to trainees and almost totally omitted from
the anaesthesia literature.6 Second, the mathematical
expressions that are used often appear complex and
overwhelming. To address similar concerns in the
behavioural sciences,7 Cohen developed a user-friendly
approach to sample size calculation and power analysis
that appears to be as accurate as the more complex
mathematical expressions.8 In this synopsis, the con-
cepts of and approaches to sample size estimation and
power analysis in the design and reporting of clinical
research studies in anaesthesia are reviewed.

Study design is a process in which methodology and
statistical analysis are organized to ensure that the null
hypothesis can be accepted or rejected and that the con-
clusion reached reflects the truth. The null hypothesis
states at the outset that the treatments under investiga-
tion have equipoise (i.e., are equal). If the study is prop-
erly designed (i.e., appropriate sample size) and the
treatments differ, then the investigators are likely to
conclude from their results that the treatments do indeed
differ and that the null hypothesis is false and should be
rejected. On the other hand, if the study is properly
designed and the treatments do not differ, then the
investigators are likely to conclude that the treatments
do not differ and that the null hypothesis is true and
should be accepted. In the second case, power analysis
will clarify whether the null hypothesis was accepted
correctly, on the basis of equipoise of the treatments, or
incorrectly because of inadequate power.

1 Sample size estimation
Before undertaking a study, the investigator should first
determine the minimum number of subjects (i.e., sample
size estimation) that must be enrolled in each group in
order that the null hypothesis can be rejected if it is
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false. Sample size estimations are warranted in all clini-
cal studies for both ethical and scientific reasons. The
ethical, reasons pertain to the risks of enrolling either an
inadequate number of subjects or more subject's than the
minimum necessary to reject the null hypothesis. In both
instances, the risks include randomizing the care of sub-
jects and/ or exposing them to unnecessary risk/harm.
Consequently, the Research Ethics Boards at The
Hospital for Sick Children and others require that all
investigators justify the proposed sample size. The sci-
entific reasons pertain to the enrollment of more sub-
jects than necessary because it extends the duration of
and increases the costs of clinical research studies.
Thus, sample size estimation is essential to achieve
excellence in clinical research.

Study design depends on four interdependent vari-
ables: (i) alpha (a), (ii) beta (P), (iii) effect size (ES)
and (iv) sample size (n).8

(i) Alpha (or the P-value) is the probability of finding a
difference between the treatments when a difference
does not exist (i.e., the difference is attributable to the
random selection of the subjects). This is usually
expressed as a 5% chance (i.e., P < 0.05) that the null
hypothesis is falsely rejected. The alpha value is usually
two-tailed (oc2), ie., the treatment may be greater or less
than the control value. A type I statistical error, an error
that occurs when groups are repeatedly compared, refers
to the false claim that P < 0.05 (Table). Each time
another variable is compared, there is a 5% chance that
the treatments will differ because of random selection of
the data. After comparing several of these variables, the
probability that at least one variable will differ between
the treatments is approximately the product of the num-
ber of variables compared and the F-value (the
Bonferroni inequality): i.e., if ten comparisons were per-
formed and the P-value is 0.05, then the probability is
=0.5 or 50%.*

Three techniques have been used to minimize or
account for a type I error. First, the number of compar-
isons should be restricted to those that are essential to
address the null hypothesis. Second, the value may be
corrected by decreasing it in proportion to the number of
variables that are compared.9 This is known as the

*The Bonferroni inequality may overestimate the probability
of making a Type 1 statistical error, particularly when a large
number of comparisons are performed. The actual probability
of obtaining at least one difference that is significant at a P <
0.05 is: ar = 1- (1 - a)*, where a, is the total probability of
making a Type 1 error, a is the significance level and K is the
number of comparisons. In the case of a = 0.05 and k = 10, the
actual a7- is O.4.9

TABLE The relationship between the null hypothesis (the premise
of the study that the treatments have equipoise) and the true effects of
the treatments. Two statistical errors arc identified: a type I (or a
error) and a type II (or fj error).

Reality

Observation
Treatment has no
effect

Treatment has an
effect

Treatment is effective Type I or a error Correct conclusion
Ho is rejected

Treatment has no effect
Ho is accepted

(falsely reject Ho)
a
Correct conclusion
(accept Ho)
1-a

(reject Ho)
I-P
Type II or fj error
(falsely accept Ho)

P

Bonferroni correction. However, in the presence of a
large numbers of comparisons, this correction may
decrease the a value to the extent that it causes a type II
statistical error. Third, a within-group measure of the
variance of the data may be used, which reduces the
probability of a type II error that is associated with the
Bonferroni correction.9 Thus, type I statistical errors are
easy to identify and can be minimized using several
techniques.

(ii) Beta is the probability of failing to find a difference
between the treatments when a difference exists. The
maximum value of (3 that is accepted in the biostatistical
literature is 0.20 or a 20% chance that the null hypothe-
sis is falsely accepted. This value is based on conven-
tion rather than any mathematical derivation. However,
it is interesting that we accept a four-fold greater risk of
falsely accepting the null hypothesis than we do of
falsely rejecting the null hypothesis a. The |3 value is
usually one-tailed, (3,. A type II statistical error, an error
that occurs .when the null hypothesis is falsely accepted,
occurs when the P error exceeds 0.2. This is usually
expressed in terms of the power of the study; that is, the
probability that the null hypothesis can be rejected if the
treatments differ. Power is defined as 1-P. For a P of
0.2, the power is 0.8, which is the minimum power
required to accept the null hypothesis. Type II statistical
errors occur when the power of the study is <0.8.
Calculation of the power of a study uses the actual
results of the study as described below.

(iii) The effect size (ES) is a measure of the smallest
clinically acceptable difference between treatments nor-
malized by the standard deviation of the data (equation
1). In the design of clinical research studies, investiga-
tors define a and P, estimate the ES using one of the
three techniques (a pilot study, published data or an edu-
cated guess based on clinical experience) and then cal-
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culate the sample size. The first two techniques to esti-
mate the ES are preferable to the third since they are
based on real measurements.

Calculation of the ES is specific for the type of data
under consideration. In the case of parametric data
(defined as data that are continuous and whose distribu-
tion can be described by a measure of central tendency
and a measure of the scatter) for two unrelated groups,
ES is represented by d:*

8 |x| - x2\a — - = (Eq. 1)

where A: , and x2 are the mean values of the two treat-
ments and a is the standard deviation of the treatments.
These data are based on either pilot data or the litera-
ture. In this equation, the standard deviations of the two
treatments are similar. (When the standard deviations
differ, a mean o for the two treatments is used, see Case
2 below). Because the ES does not carry a sign, absolute
value brackets are included in the numerator. It is
important that the values used in the calculation of the
ES be clinically relevant if the interpretation of the
results is to have meaning in clinical practice.

For nominal or proportional data (defined as data
based on the presence or absence of a quality or
attribute such as the presence or absence of vomiting),
the ES is the absolute value of the difference between
the incidence of these qualities, (expressed as two pro-
portions, PI and P2) after transformation of the propor-
tions (see below). This difference is represented by "/i":8

h= (Eq. 2)

where 0, is the arcsine transformation of PI and <f>2 is the
arcsine transformation of P2. Proportions which consist
of only two categories (presence or absence of a quality)
form a binomial distribution (rather than a normal distri-
bution). The square root of each proportion is trans-
formed to its arcsine value (also known as the angular
transformation or inverse sine (sin"1)) by determining the
angle whose sine is "vP. The transformed values will
have a distribution that approximates a normal distribu-
tion and these values can then undergo simple mathe-
matical operations. Arcsine transformation tables for
proportions are available in most statistical texts.810

Thus, the ES can be estimated for most of the com-
mon types of data used in clinical studies in anaesthesia,
parametric and nominal data. In the case of ordinal data,
which is defined as data that are discontinuous, for
which sequential values have no mathematical relation-
ship; i.e., cannot be described by a measure of central
tendency and scatter, these data must be transformed to
a normal distribution to apply a sample size calculation

based on parametric data or represented as categorical
data. Sample size calculations can also be performed for
more complex study designs including ANOVA, as
described elsewhere.10

Estimation of the sample size can be based on any
one of several variables being measured in a study. The
most appropriate variable is the one that most closely
addresses the null hypothesis of the study. However,
some investigators may be tempted to use another vari-
able to estimate the sample size, one that yields a larger
ES and a correspondingly smaller sample size than
would the appropriate variable! Although the smaller
sample size may facilitate earlier completion of the
study, it may also prevent achieving a statistically sig-
nificant difference in the appropriate variable, a type II
statistical error. In such a case, a power analysis should
be performed (using the data generated in the study) to
verify that the sample size was sufficient to reject a false
null hypothesis.

Example I: A study is planned to compare the anxiolyt-
ic effects of a new premedication with a placebo with
the outcome variable being stress at induction of anaes-
thesia. The investigators planned to quantitate stress at
induction using the plasma adrenaline concentration,
heart rate or systolic blood pressure. Any of these three
variables may be used to calculate the sample size,
although the investigators based their null hypothesis on
the adrenaline concentration. To obtain estimates of the
mean and standard deviation of the adrenaline concen-
tration for a sample size calculation, a literature search
is performed. The published mean concentration of
adrenaline at induction in the premedication group
was J, = 50 pg, the concentration in the placebo group
was x2 = 75 pg, and the standard deviation (a) of the
concentrations for both groups was 50 pg. Using equa-
tion 1, d is (75-50)/ 50 or 0.5. This value is then used to
calculate the sample size as follows.

(iv) Sample size calculation

(a) PARAMETRIC DATA - two unpaired samples
Several approaches may be used to estimate the sample
size for two groups of parametric data. These are based
on an iterative approach10 which is detailed in Appendix
A. The approach that I prefer however, is based on the
ES after Cohen8 because it is accurate and simple to per-
form. All approaches yield similar estimates of the sam-
ple size for a given set of conditions.

To estimate the sample size using the ES approach,
either a simple mathematical expression is solved or
tables are consulted.8"10 Because the tables do not
address all possible combinations of the variables, it is
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preferable to solve the mathematical expression. Three
common case scenarios are discussed.

CASE l: n, = n2, a, = o2

In this case, both the sample size (n) and the standard
deviation (a) of the data in each of the two groups are
equal. Here, sample size estimation is related to the ES
by the expression:8

Sample Size

_
n =

1
100 ES2

+ I (Eq. 3)

where n0, is the sample size for an ES of 0.1, a2 of 0.05
and P, is 0.2. Equation 3 accurately predicts the sample
size for the conditions; a2 = 0.05, pV < 0.3 and ES
between 0.2 and 1.6. For ES values outside this range,
equation 3 must be modified.8' Equation 3 may be sim-
plified for the common set of conditions, a2 = 0.05 and
P, = 0.2 by substituting n0A - 1570:8

n — ES2
(Eq. 4)

The sample size is calculated by substituting the value
for ES into equation 4. For P values between 0.2 and
0.05, the relationships between n and ES are illustrated
in Figure 1. For each P value, there is a corresponding
value for n0l based on Table 2.4.1 in reference 8: for p
of 0.1, the numerator of equation 4 is 21.0 and for p of
0.05, it is 26.0. By substituting these values into equa-
tion 4, the sample size can be calculated for a range of
values of ES. In addition, sample size may be calculated
using either of two small but user-friendly statistics
packages (Primer of Biostatistics (McGraw-Hill, New
York, 1992: version 3.0) and InStat™ (GraphPad. Soft-
ware, San Diego, CA, 1993: version 2.03)).

Example 2: Continuing the example of the new pre-
medicant, the sample size required for an ES of 0.5, a2

of 0.05 and a P, of 0.2 is 64 subjects in each group
(equation 4). However, suppose the investigators found
a more recent study in which the adrenaline concentra-
tion after the placebo was only 25 pg, one-half that pre-
viously published. Using x2 = 25 pg, then ES increases
100% (to a value of 1.0) and the sample size decreases
from 64 to 17 subjects in each group (Figure 1).

When several values for the ES exist (based on the
results from different studies), the ES that best approxi-
mates the clinical study assumptions should be used to
estimate the sample size. If the best approximate is not
obvious, then the authors are best advised to follow a
conservative approach and choose the smaller ES (i.e.,
the one that yields a larger sample size). In the final
analysis, if the investigators overestimate the ES and use

a
3
o
o>
S 200

0.6

Effect Size

FIGURE 1 The relationship between sample size and ES for the
unpaired t test for |J values between 0.05 (power is 0.95) and 0.20
(power is 0.80) based on equation 3.8 As the ES decreases, the sample
size, as well as the difference in the sample size among the three P
values, increase (Figure 1). By doubling the ES, the sample size
decreases by four-fold as predicted by equation 3.

a small sample size, they risk falsely accepting the null
hypothesis (or a Type II error).

CASE 2: nx = n2, O{ * O2

When the standard deviations of the two groups differ, a
hybrid of the two standard deviations known as the root
mean square (a'), should be used to estimate the ES as
follows:8

o =
rt2

°2 (Eq. 5)

where O| and o2 are the standard deviations of the two
treatments and c' is the root mean square of the stan-
dard deviations. The value, o', is substituted for a in
equation 1 to calculate the ES.

CASE 3: Paired data

For paired data, the ES is first calculated assuming the
data are unpaired. Second, the calculated ES is
increased by a factor of \ 2 to account for the homogene-
ity of the paired measurements:8

ESpaired = ESunpairodjf>/2 (Eq.6)

The increase in ES for paired data decreases the sample
size as predicted by equations 3 and 4. Thus, repeated
measurements in subjects decrease the sample size (and
increase the power) compared with measurements in
two different groups of subjects.
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(b) PROPORTIONAL OR NOMINAL DATA -

For proportional data, the estimate of the sample size is
similar to that for parametric data with two exceptions.
First, proportional data must be transformed (using the
arcsine transformation) before simple mathematical
operations can be performed. Second, the constant in
equations 3 and 4, is omitted. Thus, the expression used
to estimate the sample size for proportional data is:8

Sample Size

n =
15/7

h2
(Eq. 7)

for an oc2 = 0.05 and a P, = 0.2. The sample size may
also be calculated using the mathematical expression in
Appendix B. In addition, both the Primer of Biostatistics
and Instat™ compute sample sizes for proportional data.
However, all three of these techniques yield larger sam-
ple sizes than the equations of Cohen8 (equation 7) as
discussed below.

Example 3: Suppose the incidence of two events under
consideration are: PI (control) = 0.45 and P2 = 0.25.
The arcsine transformation of PI is 1.471 and of P2 is
1.0478. Using equation 2, "h" is 0.424. When this value
is substituted into equation 7 together with an a2 of 0.05
and a P[ of 0.2, a minimum of 88 subjects are required
per group. Some statistics packages (Primer of
Biostatistics and Instat™) may overestimate the sample
size (by approximately 10%) compared with the size
based on equation 7. However, the sample size esti-
mates for proportions after Cohen8 appear to be accu-
rate, reliable and slightly smaller than values based on
these other approaches.

Small differences in the sample size between treat-
ments do not substantially decrease the power of the
study, but large differences may.8 When the size of one
group is fixed (for example, only a limited number of
subjects can receive an expensive new treatment) at a
value that is far less than the sample size calculated for
same size treatments, the size of the unfixed group must
be increased disproportionately such that the total sam-
ple size exceeds the total for equal sized groups.810

Calculation of the sample size for unequal size groups
uses equation 8 as follows:

(Eq. 8)

where nu is the unfixed sample size, rij- is the fixed sam-
ple size and n is the sample size estimate for same size
groups (as per equations 4 or 7). nf must be >0.5n, oth-
erwise the denominator in equation 8 becomes negative
or zero, thereby making equation 8 insoluble. If nf can-
not be increased to solve equation 8, then a, P or the ES

500

O 400

CO 300

_ 200

0.1 0.3 0.5 0.7 0.9

Control Proportion (P1)

FIGURE 2 The sample size (ordinatc axis) in a study in which the
probability of an event in the treatment group (P2) is 50% that in the
control group (PI). The control proportion (PI) is the probability that
the event occurs in the control group, shown on the abscissa. The
sample size estimates were based on a2 = 0.05, and P = 0.20 and
equation 7.

should be adjusted to decrease n. In example 2 with
equal sample sizes, 64 subjects were required for each
group or 128 subjects in total. However, if one sample
size had been fixed (nj) to 35 subjects, then the unfixed
sample size (nu) would require 375 subjects for the same
a, P and ES. In this case, the number of subjects
increases to 410 or 3 fold the number with equal sample
sizes.

When summarizing the sample size estimation, all of
the assumptions used should be reported including the a
and P values, and the means and standard deviations or
the estimated probabilities of the outcome events (i.e.,
proportions) (with the actual data or the sources of the
data). When incomplete information is provided, it may
be difficult to determine the assumptions used to calcu-
late the sample size. For example, when the sample size
is reported to be based on a 50% decrease in the inci-
dence of an event in the treatment group compared with
the control group, there is a whole range of sample sizes
possible as shown in Figure 2. In this case, the actual
incidence used in the calculation of the sample size
should be reported. The summary of this information
usually involves only a statement or two at the conclu-
sion of the methods section to outline the details of how
the sample size was estimated.
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2 Power analysis
If, after completion of a study, the null hypothesis is
accepted, two possible scenarios may exist: (1) that the
treatments have equipoise (or are similar) or (2) that the
power of the study was inadequate to prove the treat-
ments differed (Type II error). Before concluding that
the treatments have equipoise, it is important to deter-
mine whether a statistically significant difference
between the treatments could have been detected if the
treatments truly differed.

The power of a study is the probability of correctly
accepting the null hypothesis (1-P). Biological scien-
tists have accepted a maximum value for P of 0.2 or a
power of 80%. Thus, when treatments are found to
have equipoise, the null hypothesis may be falsely
accepted if the power of the study is <80% or correctly
accepted if the power is >80%. The power of a study is
determined after completion of the study, using the
actual sample size and ES and the a value. Power may
be determined, for the same types of data as for the sam-
ple size calculation. Whenever the null hypothesis is
accepted, a power analysis is warranted to validate the
conclusions of the study. Power tables using the sample
size and ES (calculated from the results of the study) as
well as the a value are available in the standard texl-
books.8

Example 4: Upon completion of a study in which 20
subjects were enrolled in each of two groups, the inves-
tigators concluded that two treatments had equipoise.
The investigators had not performed a sample size cal-
culation before undertaking the study. In this example,
the ES was 0.5, a2 was 0.05 and the sample size was 20.
Using power tables,8 the power of the study was only
33%, less than the minimum power of 80% required to
correctly accept the null hypothesis. Based on this low
power, the investigators could not conclude that the two
treatments were similar, but rather that they were unable
to detect a statistically significant difference between
the treatments. On the basis of the results of this study,
the investigators would have required 64 subjects in
each treatment group to accept the null hypothesis with
a power of 80%.

Several strategies may be considered in order to max-
imize the power of a study.810 First, the sample size in
each treatment group should be similar. When the sam-
ple sizes are equal, the power of the study is maximal;
as the difference between sample sizes increases, the
power of the study decreases. Other strategies that
increase the power include repeat measurements in the
same subjects rather than singular measurements in sev-
eral cohorts of subjects and measurement techniques
that minimize the variability in the outcome variable

(i.e., minimizes the standard deviation of the measured
variable). These strategies must be considered during
the design phase of the study to maximize the power of
the study.

When the null hypothesis is accepted at the conclu-
sion of a study, some investigators dismiss the study as
a failure because a statistically significant difference had
not been achieved. However, such studies should not be
dismissed frivolously. If the power of the study was suf-
ficient to detect a clinically relevant difference between
the treatments, then the treatments were similar and the
results relevant to clinical practice. This study would
merit publication. If the study had insufficient power to
detect a clinically relevant difference, then the flawed
study design also merits publication to serve as a guide
to other investigators for future study designs. As the
application of power analysis becomes widespread, the
clinical relevance of studies in which the null hypothesis
is accepted, will be enhanced.

Appendix A

An alternative approach to estimating the sample size
for parametric data10

Equation 9 may be used to estimate the sample size.
This equation requires an iterative process as shown in
example 5.

-~£{ta
(2),u 'fl(l).u) (Eq. 9)

where n is the sample size, sp is the pooled standard
deviation,* 5 is the difference between the two means
and /a(2)V and /p(1)v are the / values10 that correspond to
a2, one-tailed P (or pi) and v degrees of freedom (in
this case, the degrees of freedom for two unrelated
groups = (2 x n) - 2).

Equation 9 may be may be simplified to equation 3 as
follows: first, the ratio, S/sp, is replaced by ES in equa-
tion 4 (assuming c^ = o2). Second, for large v values,
ra(2)v approaches /a(2).oo, which is also the standard nor-
mal deviate for a2, Za(2). Using the same approach for
tp())v, equation 9 becomes:

_
zm)y

ES2 (Eq. 10)

* Where s2
p =

SS2
Here, SS is the sum of squares of

u, t- u2

the data in treatments 1 and 2 and v are the degrees of freedom
(n-1) in treatments 1 and 2.10
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Third, substituting 1.96 for Z005{2) and 0.8416 for
Z02(i) into the numerator of equation 10 yields the
numerator of equation 4, 15.7.1011 Cohen also noted
that for these a2 and P, values, the sample size must be
adjusted upwards slightly to yield accurate estimates of
the sample size. He increased the sample size by the
addition of a constant, in this case, 1, to give equa-
tion 4.

Example 5: To estimate the sample size (n) using equa-
tion 9, a series of iterations (or repeated calculations) is
required because the sample size estimate is also one of
the assumptions that determines the t values on the right
side of the equation. We begin by guessing a sample
size (any guess is acceptable, although the most efficient
solution is achieved by overestimating the first sample
size) and determine the two t values (ta(2) and fp())) that
correspond to this first sample size using t tables.10

These values, together with the sp and 8 are substituted
into the right side of equation 9 to yield the first calcu-
lated sample size. The second estimate of the sample
size is a value that lies between the first estimated and
calculated sample sizes. Using this new estimate of n,
two new / values are generated and substituted into
equation 9. The second calculated sample size is com-
pared with the second estimated sample size and the
process continues until the estimated and calculated
sample sizes converge.

Using the data from the premedication example, 5 is
25, o is 50, «2 = 0.05 and p, = 0.2. Our first estimate
of the sample size is 20 subjects per group. This corre-
sponds tO a V = 38, fo.O5(2),38 = 2 - 0 2 4 a n d 'o.2(l),38 =
0.851." Substituting these values into equation 9
yields

_ 2x(50)2

n = (2.024 H-0.851)2 = 63.6.

Our second estimate of the sample size is 60 subjects
which corresponds to a v = 118. In this case, ô.os(2),i is =
1.975 and ?o.2(i),ii8 = 0.845. Substituting these values
yields ann = 63.8. Thus, our sample size should be at
least 64 subjects. This value is consistent with the
results of the example for CASE l.

Appendix B

An alternative approach to estimating the sample size
for proportional data10

Equation 11 may be used to estimate the sample size for
proportional data as follows:

n — (Eq. 11)

VP\Q\

where Za and Zp are the normal standard deviates or
?a(2),o° ar |d *P(i),oo respectively,10 p\ and p2 are the propor-
tions of the events and qx and q2 are the complementary
values, i.e., qt= 1-/?,-:

and

Example 6: Solving the example for proportions, px =
0.45, p2 = 0.25. The corresponding q{ and q2 values are
0.55 and 0.75. 5h = 0.45-0.25 = 0.20. ZOo5(2) = 1.96 and

= 0.8416."
Hence:

(0.45 + 0.25)(0.55 + 0.75)

+ 0.8416 V(0.45)(0.55) + (0.25)(0.75)

= 3.52

Now:

3

n =

sm + Wi
4(0.2)1:

4(0.2)'
= 97.7

This result is similar to the estimate in example 3.
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