# PTR 2580 / PTR5917

## Sistemas Inteligentes de Transportes (ITS)

# ATIVIDADE PRÁTICA 4 (Lab\_ITS\_04) VISSIM (Validação de uma Rede de Simulação)

### DOCENTE

Prof. Dr. Claudio Luiz Marte

### ROTEIRO

- Larissa Lourenço Ramos Zipoli Elaboração
  - Letícia Alves Chijo Elaboração
- Pedro Henrique Linhares Fernandes Elaboração
  - Gabriela Therese Richert Tonus Revisão

São Paulo Primeiro semestre de 2017

### Laboratório de ITS: validação de uma rede de simulação

No último laboratório (*Laboratório de ITS: Construção de uma Rede de Simulação*), abordamos os passos para a concepção de uma rede. Com um exemplo prático, foi possível criar e configurar os principais elementos do VISSIM que compõem uma rede de microssimulação para estudo de soluções em ITS (e também outras alternativas).

No entanto, é necessário notar que cada estudo de caso requer a criação de elementos específicos. Dependendo-se do objetivo da simulação, mais variáveis podem entrar para a rede, como por exemplo a programação semafórica para avaliar a Prioridade Semafórica Condicional (TSP).

Para construir uma rede de simulação que efetivamente represente a situação real observada, é necessário realizar procedimentos para ajustar a rede. Este passo do trabalho é denominado de **calibração ou validação** de uma rede de simulação. Consiste em realizar simulações sucessivas com o objetivo de avaliar o desempenho da rede comparando-se com o desempenho observado na operação real do trecho, representado pelos dados oficiais de tráfego (CET e SPTrans).

No caso que trabalharemos, de um Trabalho de Formatura apresentado na Escola Politécnica da USP: "Estudo de viabilidade e impactos da aplicação de ferramentas ITS em faixas e corredores de ônibus", estavam disponíveis os dados da Pesquisa de contagem da CET e os dados de movimentação dos ônibus (em banco de dados tratados como visto no Laboratório de ITS: Sistemas Gerenciadores de Banco de dados). Ou seja, as variáveis registradas nessas medições são os **volumes de tráfego** e as **velocidades** em determinados trechos das vias.

Isso significa que a calibração da rede será feita em função das velocidades e do volumes dos ônibus e demais veículos. O processo se conclui quando obtivermos, em nossa rede, volumes e velocidades semelhantes aos medidos na operação real de tráfego.

#### MÉTODO DE ANÁLISE DA CET

O primeiro passo na validação é compreender como os dados reais são coletados, para que possamos simular também a mesma maneira de coleta na rede. Para inserir um coletor de velocidade, por exemplo, precisamos saber se a velocidade calculada pela CET é a velocidade instantânea de um veículo (como a medida por um radar) ou se é a velocidade média observada em um trecho. O método utilizado pela CET para coleta desses dados está detalhado no Anexo I.

#### Método de cálculo da velocidade dos ônibus da SPTrans

Para obter a velocidade dos ônibus, utilizaremos dados da base da SPTrans, com a qual trabalhamos no Laboratório 1 (Sistemas Gerenciadores de Bancos de Dados).

Relembrando um pouco o procedimento da coleta e tratamento desses dados:

- Primeiramente, escolhemos um local de onde foram coletados esses dados, criando assim um filtro espacial para nossa pesquisa
- Em seguida, foram escolhidos outros filtros (neste caso, serão utilizados data e horário)
- Por fim, a pesquisa foi feita no banco de dados, mas os dados resultantes ainda precisam passar por um segundo tratamento em um SIG. Tal atividade foi contemplada no Laboratório 2 (SIG Dinâmico e Mapas Virtuais).
- No Laboratório 2, os dados de localização foram importados para o QGIS, onde puderam ser melhor filtrados (apenas os dados que passavam por uma determinada via eram relevantes).

Todo este processo já foi realizado para o trecho que estudaremos neste laboratório. Os dados com os quais você trabalhará hoje podem ser encontrados na tabela **Radial\_7G\_CBT**, localizada no diretório **E** na pasta da disciplina e do laboratório 04, que são dados referentes à rota 7G (nomenclatura da CET), no sentido Centro-Bairro coletados no pico da tarde (das 17h às 20h). Neste caso, trabalharemos apenas com os dados do dia 20/05/2014 para facilitar o processo didático, entretanto, quanto mais dados forem utilizados, maior será a precisão do resultado.

- 1. Abra a planilha Radial\_7G\_CBT.
- 2. Observe os dados nela contidos: Hora, IDOnibus, Long, Lat, Linha e Tipo. A coluna Data foi omitida pois todas as datas são iguais a 20/05/2014.

| 1 | Hora     | IDOnibus | Long       | Lat        | Linha | Тіро |
|---|----------|----------|------------|------------|-------|------|
| 2 | 19:19:57 | 35024    | -46,597085 | -23,545397 | 4313  | 10   |
| 3 | 19:21:22 | 35024    | -46,590063 | -23,543957 | 4313  | 10   |
| 4 | 19:22:47 | 35024    | -46,588477 | -23,543615 | 4313  | 10   |
| 5 | 17:50:11 | 35060    | -46,597567 | -23,545605 | 4315  | 10   |

3. Esses serão os dados utilizados para calcular a velocidade dos ônibus.

A velocidade será calculada de maneira bem simples: para cada ônibus, calcularemos a distância percorrida entre o primeiro e o último registro e o tempo que esse percurso demorou para ser realizado. Dividindo esses dois resultados (V =  $\Delta S/\Delta t$ ), obteremos uma velocidade média para cada ônibus no trecho. Por fim, será feita uma média de todas essas velocidades calculadas de cada ônibus, obtendo-se, assim, a velocidade média que será utilizada na calibração do modelo.

- 4. Para facilitar os cálculos da distância entre dois pontos, transformaremos as coordenadas para o sistema UTM. Para isso, será utilizado um programa do IBGE chamado ProGriD.
- 5. Primeiramente, copie as colunas de Longitude e Latitude da tabela de dados e cole em um bloco de notas, apagando, então, a primeira linha (cabeçalho), de forma que fiquem apenas duas colunas com os números.

|    | А        | В        | С          | D          | E     | F    | G                     | Н              | 1           | J                    | К  |   |  |  |
|----|----------|----------|------------|------------|-------|------|-----------------------|----------------|-------------|----------------------|----|---|--|--|
| 1  | Hora     | IDOnibus | Long       | Lat        | Linha | Тіро |                       |                |             |                      |    |   |  |  |
| 2  | 19:19:57 | 35024    | -46,597085 | -23,545397 | 4313  | 10   | 📃 Sem                 | título - Blo   | co de notas |                      |    | x |  |  |
| 3  | 19:21:22 | 35024    | -46,590063 | -23,543957 | 4313  | 10   | Arquiv                | o Editar       | Formatar    | Exibir Aiu           | da |   |  |  |
| 4  | 19:22:47 | 35024    | -46,588477 | -23,543615 | 4313  | 10   | -46,5                 | 97085          | -23,5       | 45397                |    |   |  |  |
| 5  | 17:50:11 | 35060    | -46,597567 | -23,545605 | 4315  | 10   | -46,5                 | 90063          | -23,5       | 43957                |    |   |  |  |
| 6  | 17:51:36 | 35060    | -46,591623 | -23,544327 | 4315  | 10   | -46,5                 | 97567          | -23,5       | 3,543615<br>3,545605 |    |   |  |  |
| 7  | 17:53:01 | 35060    | -46,589312 | -23,543793 | 4315  | 10   | -46,591623 -23,544327 |                |             |                      |    |   |  |  |
| 8  | 17:52:09 | 35062    | -46,593778 | -23,544698 | 3459  | 10   | -46,593778 -23,544698 |                |             |                      |    |   |  |  |
| 9  | 17:53:34 | 35062    | -46,590923 | -23,544155 | 3459  | 10   | -46,5                 | 90923<br>88217 | -23,5       | 44155                |    |   |  |  |
| 10 | 17:54:59 | 35062    | -46,588217 | -23,54362  | 3459  | 10   | -46,5                 | 93882          | -23,5       | 4474                 |    |   |  |  |
| 11 | 17:25:25 | 35067    | -46,593882 | -23,54474  | 4312  | 10   | -46,5                 | 91387<br>89635 | -23,5       | 44287                |    |   |  |  |
| 12 | 17:26:50 | 35067    | -46,591387 | -23,544287 | 4312  | 10   | -46,5                 | 89537          | -23,5       | 43873                |    |   |  |  |
| 13 | 17:28:15 | 35067    | -46,589635 | -23,543957 | 4312  | 10   | -46,5                 | 8925<br>93385  | -23,5       | 43843                |    |   |  |  |
| 14 | 17:29:40 | 35067    | -46,589537 | -23,543873 | 4312  | 10   |                       |                | 23,3        |                      |    |   |  |  |
| 15 | 17:31:05 | 35067    | -46,58925  | -23,543843 | 4312  | 10   |                       |                |             |                      |    |   |  |  |

Figura 5 - Criação do bloco de notas com longitudes e latitudes

- 6. Salve o bloco de notas com o nome CBT.
- 7. Abra o programa ProGriD.

| A ProGriD                                                                                                         | - <b>D</b> ×           |
|-------------------------------------------------------------------------------------------------------------------|------------------------|
| Arquivo Ajuda                                                                                                     |                        |
| Opções Processamento                                                                                              |                        |
| Referencial de Entrada                                                                                            | Referencial de Saída   |
| Referencial •                                                                                                     | Referencial            |
| Tipo de Coordenadas 🗸 🗸                                                                                           | Tipo de Coordenadas -  |
| Opções                                                                                                            |                        |
| <ul> <li>Tipo de entrada</li> <li>Teclado Formato de Entrada</li> <li>Arquivo Texto Formato de Entrada</li> </ul> | • <u>Inserir</u>       |
| Arquivo GML     Nome do Arquivo                                                                                   |                        |
| Tipo de saida<br>Tela Arquivo Texto Arqui                                                                         | uivo GML 💿 Arquivo PDF |
| Nome do Arquivo                                                                                                   | Salvar como            |
| Processar         Sair           Nome do Arquivo de Mensagem                                                      | Reiniciar              |
|                                                                                                                   | Salvar como            |
|                                                                                                                   |                        |
|                                                                                                                   | *                      |
|                                                                                                                   | *                      |
| 4                                                                                                                 | b.                     |
| # Erro =0                                                                                                         | 30 Novembro 2009       |

Figura 6 - Tela principal do ProGriD

8. Configure as entradas de acordo com o exibido na Figura 7:

| ProGriD                                                             |                             |                  |                       |                      |
|---------------------------------------------------------------------|-----------------------------|------------------|-----------------------|----------------------|
| Opções Processamento                                                |                             |                  |                       |                      |
| Referencial de Entrada                                              |                             | Referencial de   | Saída                 |                      |
| Referencial Córrego Alegre (                                        | (1961) 🔹                    | Referencial      | Córrego Alegre (1961) | •                    |
| Tipo de Coordenadas Latitude,Lo                                     | ongitude 👻                  | Tipo de Coorde   | nadas UTM E, N        | •                    |
| Opções                                                              |                             |                  |                       |                      |
| <ul> <li>Tipo de entrada</li> <li>              ■ Teclado</li></ul> | rmato de Entrada            |                  | ~                     | <u>I</u> nserir      |
| Arquivo Texto For                                                   | rmato de Entrada 🛛 🛛 🛛      | ong  Lat GG, GG( | GGG                   | -                    |
| O Arquivo GML                                                       |                             |                  |                       |                      |
| Nome do Arquivo                                                     | CBT.txt                     |                  |                       | Abrir                |
| <ul> <li>Tipo de saida</li> <li>Tela</li> <li>Arquiv</li> </ul>     | o Texto 💿 Arqu              | ivo GML          | O Arquivo PDF         |                      |
| Nome do Arquivo                                                     | CBT_UTM.txt                 |                  |                       | Salv <u>a</u> r como |
| Processar                                                           | <u>S</u> air                | <u>R</u> ein     | iciar                 |                      |
| Nome do Arquivo de Mensagem                                         |                             |                  |                       |                      |
|                                                                     |                             |                  |                       | Salvar co <u>m</u> o |
|                                                                     |                             |                  |                       |                      |
|                                                                     |                             |                  |                       |                      |
| 4                                                                   |                             |                  |                       |                      |
|                                                                     |                             |                  |                       | ,                    |
| Córrego Alegre (1961) Latitude, Longitude                           | Córrego Alegre (1961) UTM E | , N # Erro =0    |                       | 30 Novembro 2009     |

igura 7 - Configurações necessárias para conversão

9. Aperte o botão "Processar" e aguarde a mensagem de sucesso que aparecerá no console após a conversão dos arquivos. Um novo arquivo txt chamado CBT\_UTM será criado.

| A transformação foi completada com sucesso. terça-feira, 17 de maio de 2016 14:12:04 | ^<br>            |
|--------------------------------------------------------------------------------------|------------------|
| <                                                                                    | • •              |
| Córrego Alegre (1961) Latitude,Longitude Córrego Alegre (1961) UTM E, N # Erro =0    | 30 Novembro 2009 |

Figura 8 - Mensagem de sucesso exibida ao fim do processamento

- 10. Abra a planilha **Calculos\_CBT** no diretório **E** na pasta da disciplina e do laboratório 04. Ela é uma planilha que realiza os cálculos da velocidade, e será detalhadamente explicada posteriormente.
- 11. Na aba Dados, copie e cole, nas 6 primeiras colunas, os dados da tabela **Radial\_7G\_CBT**, e nas duas colunas remanescentes (Long UTM e Lat UTM), cole os dados obtidos no arquivo convertido, **CBT\_UTM.txt**. O resultado deverá ser semelhante ao da Figura 9.

|    | Α        | В        | С          | D          | E     | F    | G          | Н           | - I |
|----|----------|----------|------------|------------|-------|------|------------|-------------|-----|
| 1  | Hora     | IDOnibus | Long       | Lat        | Linha | Тіро | Long UTM   | Lat UTM     |     |
| 2  | 19:19:57 | 35024    | -46,597085 | -23,545397 | 4313  | 10   | 336971,991 | 7395160,698 | 23  |
| 3  | 19:21:22 | 35024    | -46,590063 | -23,543957 | 4313  | 10   | 337687,144 | 7395328,129 | 23  |
| 4  | 19:22:47 | 35024    | -46,588477 | -23,543615 | 4313  | 10   | 337848,651 | 7395367,797 | 23  |
| 5  | 17:50:11 | 35060    | -46,597567 | -23,545605 | 4315  | 10   | 336923,037 | 7395137,116 | 23  |
| 6  | 17:51:36 | 35060    | -46,591623 | -23,544327 | 4315  | 10   | 337528,327 | 7395285,389 | 23  |
| 7  | 17:53:01 | 35060    | -46,589312 | -23,543793 | 4315  | 10   | 337763,618 | 7395347,141 | 23  |
| 8  | 17:52:09 | 35062    | -46,593778 | -23,544698 | 3459  | 10   | 337308,763 | 7395241,861 | 23  |
| 9  | 17:53:34 | 35062    | -46,590923 | -23,544155 | 3459  | 10   | 337599,583 | 7395305,229 | 23  |
| 10 | 17:54:59 | 35062    | -46,588217 | -23,54362  | 3459  | 10   | 337875,202 | 7395367,537 | 23  |
| 11 | 17:25:25 | 35067    | -46,593882 | -23,54474  | 4312  | 10   | 337298,197 | 7395237,092 | 23  |
| 12 | 17:26:50 | 35067    | -46,591387 | -23,544287 | 4312  | 10   | 337552,372 | 7395290,086 | 23  |
| 13 | 17:28:15 | 35067    | -46,589635 | -23,543957 | 4312  | 10   | 337730,842 | 7395328,614 | 23  |
| 14 | 17:29:40 | 35067    | -46,589537 | -23,543873 | 4312  | 10   | 337740,744 | 7395338,027 | 23  |
| 15 | 17:31:05 | 35067    | -46,58925  | -23,543843 | 4312  | 10   | 337770,009 | 7395341,674 | 23  |
| 16 | 17:25:42 | 35074    | -46,593385 | -23,54469  | 4311  | 10   | 337348,878 | 7395243,193 | 23  |

Figura 9 - Aba "Dados" da tabela Calculos\_CBT

- 12. A coluna I é desnecessária e, portanto, é possível deletá-la.
- 13. Mude a visualização para a aba Cálculos. Nela, você encontrará algo semelhante à Figura 10, com os cálculos já realizados e, no canto superior direito, em destaque, o valor obtido para a velocidade média.

|    | А        | В          | С            | D              | E        | F   | G          | Н | - I        | J              | К          | L | М     | N               | 0 F         | ) Q         | R | S        | Ē |
|----|----------|------------|--------------|----------------|----------|-----|------------|---|------------|----------------|------------|---|-------|-----------------|-------------|-------------|---|----------|---|
| 1  | IDOnibus | Delta Long | Delta Lat    | Delta Lat-Long | Tempo    | ID' | Mesmo ID'? |   | Distância  | Dist acumulada | Dist total |   | Tempo | Tempo acumulado | Tempo total | Velocidade  | 1 | V média  | E |
| 2  | 35024    | 715,153    | 167,431      | 734,4909483    | 85       | 1   | 1          |   | 734,490948 | 734,4909483    |            |   | 85    | 85              |             |             | 1 | 10,33389 |   |
| 3  | 35024    | 161,507    | 39,668       | 166,3071294    | 85       | 1   | 1          |   | 166,307129 | 900,7980777    | 900,798078 |   | 85    | 170             | 170         | 19,075724   |   |          |   |
| 4  | 35024    | -925,614   | -230,681     | 953,9260982    | #NÚM!    | 1   | 0          |   | 0          | 0              |            |   | 0     | 0               |             |             |   |          |   |
| 5  | 35060    | 605,29     | 148,273      | 623,186061     | 85       | 2   | 1          |   | 623,186061 | 623,186061     |            |   | 85    | 85              |             |             |   |          |   |
| 6  | 35060    | 235,291    | 61,752       | 243,2594586    | 85       | 2   | 1          |   | 243,259459 | 866,4455196    | 866,44552  |   | 85    | 170             | 170         | 18,34825806 |   |          |   |
| 7  | 35060    | -454,855   | -105,28      | 466,8800161    | #NÚM!    | 2   | 0          |   | 0          | 0              |            |   | 0     | 0               |             |             |   |          |   |
| 8  | 35062    | 290,82     | 63,368       | 297,6437062    | 85       | 3   | 1          |   | 297,643706 | 297,6437062    |            |   | 85    | 85              |             |             |   |          |   |
| 9  | 35062    | 275,619    | 62,308       | 282,5740965    | 85       | 3   | 1          |   | 282,574097 | 580,2178027    | 580,217803 |   | 85    | 170             | 170         | 12,28696523 |   |          |   |
| 10 | 35062    | -577,005   | -130,445     | 591,5662837    | #NÚM!    | 3   | 0          |   | 0          | 0              |            |   | 0     | 0               |             |             |   |          |   |
| 11 | 35067    | 254,175    | 52,994       | 259,640703     | 85       | 4   | 1          |   | 259,640703 | 259,640703     |            |   | 85    | 85              |             |             |   |          |   |
| 12 | 35067    | 178,47     | 38,528       | 182,5813454    | 85       | 4   | 1          |   | 182,581345 | 442,2220484    |            |   | 85    | 170             |             |             |   |          |   |
| 13 | 35067    | 9,902      | 9,413        | 13,66214379    | 85       | 4   | 1          |   | 13,6621438 | 455,8841922    |            |   | 85    | 255             |             |             |   |          |   |
| 14 | 35067    | 29,265     | 3,647        | 29,49136881    | 85       | 4   | 1          |   | 29,4913688 | 485,375561     | 485,375561 |   | 85    | 340             | 340         | 5,139270646 |   |          |   |
| 15 | 35067    | -421,131   | -98,481      | 432,492574     | #NÚM!    | 4   | 0          |   | 0          | 0              |            |   | 0     | 0               |             |             |   |          |   |
| 16 | 35074    | 183,075    | 37,474       | 186,8709616    | 85       | 5   | 1          |   | 186,870962 | 186,8709616    |            |   | 85    | 85              |             |             |   |          |   |
| 17 | 35074    | 182,416    | 41,673       | 187,1155685    | 85       | 5   | 1          |   | 187,115569 | 373,9865302    |            |   | 85    | 170             |             |             |   |          |   |
| 18 | 35074    | 0,443      | 6,096        | 6,112075343    | 85       | 5   | 1          |   | 6,11207534 | 380,0986055    |            |   | 85    | 255             |             |             |   |          |   |
| 19 | 35074    | 31,615     | 3,562        | 31,81502898    | 85       | 5   | 1          |   | 31,815029  | 411,9136345    | 411,913634 |   | 85    | 340             | 340         | 4,361438483 |   |          |   |
| 20 | 35074    | -168,666   | -29,447      | 171,2172461    | 527      | 5   | 0          |   | 0          | 0              |            |   | 0     | 0               |             |             |   |          |   |
| 21 | 35077    | 12,745     | 1,692        | 12,85682266    | 85       | 6   | 1          |   | 12,8568227 | 12,85682266    |            |   | 85    | 85              |             |             |   |          |   |
| 22 | 35077    | 79,142     | 17,823       | 81,12407468    | 85       | 6   | 1          |   | 81,1240747 | 93,98089735    |            |   | 85    | 170             |             |             |   |          |   |
| 23 | 35077    | 36,487     | 6,163000001  | 37,0038341     | 85       | 6   | 1          |   | 37,0038341 | 130,9847314    |            |   | 85    | 255             |             |             |   |          |   |
| 24 | 35077    | 42,749     | 12,435       | 44,52085159    | 85       | 6   | 1          |   | 44,5208516 | 175,505583     |            |   | 85    | 340             |             |             |   |          |   |
| 25 | 35077    | 113,074    | 24,179       | 115,6302448    | 85       | 6   | 1          |   | 115,630245 | 291,1358279    | 291,135828 |   | 85    | 425             | 425         | 2,466091718 |   |          |   |
| 14 | Dado     | s Cálculos | ₹1 010<br>€⊒ | 345 0506730    | HALLINAL | c   | 0          |   | 0          | 0              | 14         |   | ^     | <b>^</b>        |             |             |   | •        |   |

Figura 10 - Aba "Cálculos" da tabela Calculos\_CBT

Este resultado (V = 10,33 km/h) foi obtido através de fórmulas simples do excel, que manipulam as linhas da aba Dados. A seguir, uma breve explicação de como os dados são obtidos em cada uma das colunas e o que eles significam.

Caso haja qualquer dúvida nos comandos utilizados ou em seus efeitos, recomenda-se um breve estudo da tabela, que ilustra tudo o que é explicado no Anexo II.

Com isso, obtivemos uma velocidade estimada para o trecho estudado da Radial Leste no dia 20/05/2014, no período entre as 17h e 20h. Entretanto, para obter um resultado mais preciso, seria necessário utilizar dados de mais dias, pois quanto mais dados, melhor o resultado final.

A velocidade que será usada para a calibração da rede no VISSIM, no sentido centro-bairro, será de **14,2 km/h**. Esse dado foi obtido exatamente da mesma maneira

que acabamos de obter nossa velocidade de **10,33km/h**, entretanto, foram usados dados de 60 dias espalhados por todo o ano de 2014 (5 dias por mês, sempre correspondentes à uma semana de segunda a sexta). Da mesma forma, também foi calculado o valor a ser utilizado no percurso bairro-centro, e obteve-se o valor de **31,2 km/h**.

De fato, esses dados obtidos utilizando-se uma quantidade maior de dias aproximam-se significativamente dos dados fornecidos pela CET das velocidades dos ônibus no trecho.

|         | C-B   | B-C    |
|---------|-------|--------|
| CET     | 14,2  | 31,2   |
| SPTrans | 11,8  | 34,1   |
| Relação | 83,10 | 109,29 |

Figura 11

#### ANÁLISE DE RESULTADOS DE UMA REDE DE MICROSSIMULAÇÃO

Neste laboratório, utilizaremos a rede original construída para o trabalho de formatura "*Estudo de viabilidade e impactos da aplicação de ferramentas ITS em faixas e corredores de ônibus*". Os dados que caracterizam o trecho, como linhas de ônibus, paradas de ônibus e demais elementos que vimos na última aula já estão configurados de acordo com a situação real.

Porém, esta rede ainda não está calibrada. Isso significa que apesar de todos os elementos funcionarem bem, o volume e a velocidade dos veículos no trecho não correspondem a situação real observada na Pesquisa de Contagem da CET no período de pico da manhã.

O laboratório será realizado com a versão FULL do Vissim 9. A versão STUDENT está disponível gratuitamente para estudantes (pode ser baixada e utilizada fora do laboratório), no entanto, nesta versão, existem imitações no tamanho e tempo máximo de simulação, sendo possível simular apenas 600 segundos (10 minutos de operação de tráfego).

Neste roteiro, vamos realizar uma simulação de apenas 600 segundos para que possa ser realizada tanto na versão FULL quanto na STUDENT. Na coleta de dados da simulação, desprezaremos os resultados encontrados nos 300 primeiros segundo (5 primeiros minutos). Isso é feito para esperar o carregamento da rede, ou seja, o período após o início da simulação em que a operação se estabiliza.

- 14. Abra PTV Vissim 9. Vá Open. 0 programa em File > Escolha diretório arquivo 0 e E:\PTR2580\_1sem2017\_T50\Lab\_ITS\_04\situação atual\radial pico da manha situação atual.inpx.
- 15. Vá em **Evaluation** > **Configuration**. Configure conforme a Figura 12.

| Evaluation Configuration                                                      |                           |                   |            |            |                | X              |
|-------------------------------------------------------------------------------|---------------------------|-------------------|------------|------------|----------------|----------------|
| Evaluation output directory: C:\U                                             | Jsers\pedro\Dr            | opbox\Labora      | atórios_20 | 16 (2)\Lab | oratório 4_ Va | lidação de u 🛛 |
| Result Management Result Attri                                                | butes Direct (            | Dutput            |            |            |                |                |
| Additionally collect data for these                                           | classes:                  |                   |            |            |                |                |
| Vehicle Classes                                                               | Pedestrian (              | Classes           |            |            |                |                |
| 10: Car<br>20: HGV<br>30: Bus<br>40: Tram<br>50: Pedestrian<br>60: Bike<br>70 | 10: Man, W<br>30: Wheelcl | oman<br>hair User |            |            |                |                |
|                                                                               | Collect data              | From time         | To time    | Interval   |                |                |
| Area measurements                                                             |                           | 0                 | 600        | 30         |                |                |
| Areas & ramps                                                                 |                           | 0                 | 99999      | 99999      | More           |                |
| Data collections                                                              | $\checkmark$              | 300               | 600        | 300        |                |                |
| Delays                                                                        |                           | 0                 | 000        | 50         |                |                |
| Links                                                                         |                           | 0                 | 600        | 50         | More           |                |
| Meso edges                                                                    |                           | 0                 | 99999      | 99999      |                |                |
| Nodes                                                                         |                           | 0                 | 600        | 50         | More           |                |
| OD pairs                                                                      |                           | 0                 | 99999      | 99999      |                |                |
| Pedestrian network performance                                                |                           | 0                 | 99999      | 99999      |                |                |
| Pedestrian travel times                                                       |                           | 0                 | 99999      | 99999      |                |                |
| Queue counters                                                                |                           | 0                 | 600        | 50         | More           |                |
| Vehicle network performance                                                   |                           | 0                 | 600        | 50         | _              |                |
| Vehicle travel times                                                          |                           | 300               | 600        | 60         | More           |                |
|                                                                               |                           |                   |            |            | ОК             | Cancel         |

| Figura | 12 |
|--------|----|
|--------|----|

Analisaremos os dados de *data collection e* e *vehicle travel times* para obter a performance geral dos veículos, simulada em um período de cinco minutos. A seguir, serão explicados como cada um desses dados escolhidos podem ser analisados e avaliados.

#### Data collection

Na rede estudada, coletaremos os volumes na mesma seção em que foi feita o estudo da CET. É possível observar a seção considerada na parte central da rede, em que estão dispostos uma linha de coletores, como na figura 13. Para os ônibus, os dados coletados referem-se apenas a faixa de ônibus enquanto, para os outros veículos, existe pontos de coleta de dados (*data collection*) em todas as faixas.



Figura 13

#### 16. Vá em Lists > Results > Data collection results.

17. Com a lista aberta, lembre-se de desmarcar a opção "Show Simulate Run

Aggregates", **[2]** que exibe uma lista com valores máximos e mínimos.

- 18. Clique no ícone *na lista aberta no menu inferior para editar os atributos que serão obtidos nos laços de coleta de dados na rede simulada (pontos de data collection).*
- 19. Na janela aberta, adicione os itens da tabela da esquerda ou exclua os itens da coluna da direita. Não nos importam outros dados além do volume dos veículos (foco da nossa análise). Configure apenas 3 linhas conforme a Figura 14:



Figura 14

20. Clique em OK. Nesta lista serão exibidas os resultados de Data Collection, com os atributos selecionados.

#### Vehicle travel times

 21. Vá em Lists > Results > Vehicle travel time results. Os atributos que serão coletados já estão configurados. É nessa tabela que serão exibidos os tempos de viagem obtidos durante a simulação, para os diversos Links.
 22. Novamente, lembre-se de

desmarcar a opção **E** para não obter uma lista diferente.

#### SIMULAÇÃO

A simulação permite observar, em um intervalo de tempo, o comportamento da rede construída. Assim, analogamente à realidade, os veículos são carregados à via durante certo tempo e, apenas em seguida, comportam-se mais próximos dos parâmetros ajustados durante a criação da rede (Laboratório 3). Como na versão STUDENT do Vissim existe uma limitação de tempo de

simulação de 10 minutos, os primeiros cinco minutos são utilizados para estabilizar a rede e preenchê-la com os volumes carregados. Nos últimos cinco minutos, são coletados os dados simulados para posterior comparação.

O programa utiliza uma função com semente para gerar aleatoriedades durante a simulação. Logo, cada simulação corresponde a uma semente diferente. Nesse sentido, serão realizadas três simulações a partir das quais pode-se ter uma média dos resultados obtidos para comparar com o banco de dados da CET.

23. Vá em **Simulation** > **Parameters**. Na janela aberta, configure a simulação conforme a Figura 15.

| 🚦 Simulation paramet   | ters                          | ×      |
|------------------------|-------------------------------|--------|
| General Meso           |                               |        |
| Comment:               |                               |        |
|                        |                               |        |
| Period:                | 600 Simulation seconds        |        |
| Start Time:            | 00:00:00 [hh:mm:ss]           |        |
| Start Date:            | [DD.MM.YYYY]                  |        |
| Simulation resolution: | 10 Time step(s) / Sim. sec.   |        |
| Random Seed:           | 15                            |        |
| Number of runs:        | 3                             |        |
| Random seed incremen   | nt: 5                         |        |
| Dynamic assignment v   | olume increment: 0.00 %       |        |
| Simulation speed:      | 0 1.0 Sim. sec. / s           |        |
|                        | <ul> <li>Maximum</li> </ul>   |        |
|                        | Retrospective synchronization |        |
| Break at:              | 0 Simulation seconds          |        |
| Number of cores:       | use all cores                 | ~      |
|                        | ОК                            | Cancel |
|                        | Figura 15                     |        |

Figura 15

#### CALIBRAÇÃO DA REDE DE MICROSSIMULAÇÃO

Para iniciar a calibração, a primeira etapa consiste em simular a rede e verificar, visualmente e por meio dos resultados, o comportamento dos veículos, faixas e elementos da rede.

- 24. Clique no ícone para iniciar a simulação. Aparecerá uma janela, selecione **SIM** para salvar as mudanças e iniciar a simulação.
- 25. Para mudar o comportamento da velocidade (Figura 16), utilize o controle de velocidade ou utilize a opção **Quick Mode** para operar na velocidade máxima útil para acelerar a simulação no tempo reduzido de cinco minutos.
- 26. Observe como se comportam os carros na rede e demais elementos. No extremo inferior é possível notar o tempo de simulação cronometrado e o número da simulação (1,2 ou 3).





Na simulação realizada, foram obtidos os dados a serem comparados com os dados reais de tráfego na Radial Leste, descritos pela CET. Estes dados de referência podem ser observados na Figura 17 abaixo:

|                 |        | Vol | umes            |     | Velocidades |      |                 |      |  |
|-----------------|--------|-----|-----------------|-----|-------------|------|-----------------|------|--|
| Veículo         | Ônibus |     | Demais veículos |     | Ôni         | bus  | Demais veículos |      |  |
| Sentido         | C-B    | B-C | C-B             | B-C | C-B         | B-C  | C-B             | B-C  |  |
| CET/SPTra<br>ns | 9      | 9   | 275             | 491 | 21.1        | 26.3 | 33.8            | 12.4 |  |

Figura 17

Para comparar os dados, utilizamos o **Excel** e uma relação simples para verificar a semelhança entre os dados da rede de simulação e da situação real:

$$RELA \zeta \tilde{\mathbf{A}} O = \frac{SIMULADO}{\frac{CET}{SPTRANS}} \mathbf{\%}$$

O processo de calibração é iterativo. Cada parâmetro mudado altera tanto a velocidade quanto o volume. Preparamos já as abas necessárias para serem utilizadas neste estudo de caso.

27. Abra o Microsoft Excel pelo menu Iniciar.

28. Abra o arquivo E:\PTR2580\_1sem2017\_T50\Lab\_ITS\_041532\excel\_calibração.xlsx. O arquivo deve permanecer aberto junto ao VISSIM durante todo o procedimento (Figura 18).





- A tabela VARIÁVEIS DA CALIBRAÇÃO contém os valores dos parâmetros que serão utilizados em cada etapa da calibração. Nela, constam os valores com os quais iniciaremos.
- A tabela **DATA COLLECTION** receberá os dados da lista de *data collection* e fará o cálculo dos volumes simulados;
- A tabela **VEHICLE TRAVEL TIMES** receberá os dados dos *vehicle travel time* do programa e calculará as velocidades de cada tipo de veículo nas vias.
- A tabela ANÁLISE DA CALIBRAÇÃO contém os dados de referência da CET/SPTRANS e a relação entre volumes/veículos para cada sentido do trecho da Radial.

29. No VISSIM, abra a lista 'DATA COLLECTION RESULTS", e clique no *count* para selecionar todos os dados, como na Figura 19 abaixo:

| 10   | 00m                  |               | P.A.                      | 111     |      |
|------|----------------------|---------------|---------------------------|---------|------|
| Da   | ollection Results    |               |                           |         |      |
| 5    | ayout 👻              | & 2+ Z +      | <single list=""></single> | • 🗈 🛢 E | ΒΕΣΘ |
| Cour | DataCollectionMea    | asurement     | Vehs(All)                 | SimRun  |      |
| 1    | 8: B-C Metro Belem   | Meio          | 59                        | 1       |      |
| 2    | 9: B-C Radial Meio   |               | 349                       | 1       | -    |
| 3    | 10: B-C Radial Faixa | a Reversa Mei | 76                        | 1       |      |
| 4    | 11: C-B Radial Meio  | >             | 310                       | 1       |      |
| 5    | 12: Faixa B-C        |               | 9                         | 1       |      |
|      | 12 5 . 0 8           |               |                           | 4       |      |

Figura 19

30. Aperte CTRL + C para copiar todos os dados e cole na tabela de DATA COLLECTION do EXCEL, na célula de cor amarela, como na figura abaixo:



- 31. Note que na tabela **ANÁLISE DA CALIBRAÇÃO**, os volumes simulados foram atualizados e foi calculada uma relação entre os dados.
- 32. Volte ao VISSIM e na lista Vehicle Travel Time Results, clique na coluna VehicleTravelTimeMeasurement, para selecionar

os dados de toda a coluna. Depois, clique no símbolo **2** para organizar na ordem crescente, como ilustrado na figura abaixo :

| Vehicl | e Travel Time Resul | ts                 |                    |                         |             |  |  |  |  |
|--------|---------------------|--------------------|--------------------|-------------------------|-------------|--|--|--|--|
| Select | layout              |                    | ingle List>        | ingle List> 🚽 🖻 🗎 💾 🛛 Σ |             |  |  |  |  |
| Coun   | SimRun              | TimeInt            | VehicleTravelTime  | Vehs(All)               | TravTm(All) |  |  |  |  |
| 4      | 1                   | 480-540            | 1: Faixa onibus C- | 1                       | 184.63      |  |  |  |  |
| 5      | 1                   | 540-600            | 1: Faixa onibus C- | 3                       | 180.83      |  |  |  |  |
| 6      | 2                   | 300-360            | 1: Faixa onibus C- | 1                       | 245.86      |  |  |  |  |
| 7      | 2                   | 360-420            | 1: Faixa onibus C- | 1                       | 140.97      |  |  |  |  |
| 8      | 2                   | 420-480            | 1: Faixa onibus C- | 2                       | 152.31      |  |  |  |  |
| 9      | 2                   | 480-540            | 1: Faixa onibus C- | 2                       | 171.44      |  |  |  |  |
| 10     | 2                   | 540-600            | 1: Faixa onibus C- | 2                       | 175.00      |  |  |  |  |
| 11     | 3                   | 300-360            | 1: Faixa onibus C- | 2                       | 250.02      |  |  |  |  |
| 12     | 3                   | 360-420            | 1: Faixa onibus C- | 1                       | 143.76      |  |  |  |  |
| 13     | 3                   | 420-480            | 1: Faixa onibus C- | 2                       | 151.84      |  |  |  |  |
| 14     | 3                   | 480-540            | 1: Faixa onibus C- | 2                       | 170.70      |  |  |  |  |
| 15     | 2                   | 540 600            | 1. Esiya onibus C  | 2                       | 172.07      |  |  |  |  |
| Data   | Collection Results  | Vehicle Travel Tir | me Results         |                         |             |  |  |  |  |

33. Agora, .clique em COUNT para selecionar toda a tabela e depois aperte CTRL + C para copiá-la. Certifique-se de que a opção "Show Simulation Aggregates não esteja marcada, como ilustrado abaixo (Figura 20):

| 10       | 0 m                   | 1               |                     | Æ              | 4       | 1     | NÃO          | MA    | ARCADA     | S.     |  |
|----------|-----------------------|-----------------|---------------------|----------------|---------|-------|--------------|-------|------------|--------|--|
| Ve<br>St | e Travel Tr<br>Tayout | me Kesults<br>• |                     | igle List>     | -       | 62    | • • •        | Σ     | Э          |        |  |
| Coun     | SimRun                | TimeInt         | VehicleTravelTime   | Measurement    | Vehs    | (AII) | TravTm(All)  |       | -          |        |  |
| 64       | 2                     | 540-600         | 1: Faixa onibus C-E | 3              |         | 3     | 187.72       |       |            |        |  |
| 65       | 2                     | 540-600         | 2: Radial C-B 1     |                |         | 20    | 140.79       |       |            |        |  |
| 66       | 2                     | 540-600         | 3: Radial C-B       |                |         | 38    | 127.51       |       |            |        |  |
| 67       | 2                     | 540-600         | 4: Faixa Reversivel |                |         | 13    | 221.99       |       |            |        |  |
| 68       | 2                     | 540-600         | 5: Radial B-C 1     |                |         | 74    | 298.23       |       |            |        |  |
| c0       | -                     | C 40 C00        | CM 1 1 1            |                |         |       | 257.52       |       |            |        |  |
| Data     | Collection            | n Results       | Vehicle Network P   | erformance Eva | luation | n Res | ults Vehicle | e Tra | vel Time R | esults |  |

Figura 20

34. Abra o EXCEL e cole os resultados na célula amarela da tabela **VEHICLE TRAVEL TIMES**.

35. Veja que os valores da tabela "ANÁLISE DA CALIBRAÇÃO" se alteraram. Observe as relações entre os volumes e velocidades, como na imagem abaixo (Figura 21):

| ANÁLISE DA CALIBRAÇÃO                   |                                                                                                       |                                                             |  |  |  |  |  |  |  |  |  |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
|                                         | VOLUMES                                                                                               |                                                             |  |  |  |  |  |  |  |  |  |
|                                         | CARROS                                                                                                | ÔNIBUS                                                      |  |  |  |  |  |  |  |  |  |
| SIMULADOS                               |                                                                                                       |                                                             |  |  |  |  |  |  |  |  |  |
| B-C                                     | 600                                                                                                   | 9                                                           |  |  |  |  |  |  |  |  |  |
| C-B                                     | 232.3333333                                                                                           | 9                                                           |  |  |  |  |  |  |  |  |  |
| REFE                                    | RÊNCIA CET/SPT                                                                                        | RANS                                                        |  |  |  |  |  |  |  |  |  |
| B-C                                     | 491                                                                                                   | 9                                                           |  |  |  |  |  |  |  |  |  |
| C-B                                     | 275                                                                                                   | 9                                                           |  |  |  |  |  |  |  |  |  |
| Relação:                                |                                                                                                       |                                                             |  |  |  |  |  |  |  |  |  |
| B-C                                     | 122%                                                                                                  | 100%                                                        |  |  |  |  |  |  |  |  |  |
| C-B                                     | 84%                                                                                                   | 100%                                                        |  |  |  |  |  |  |  |  |  |
| VELOCIDADES                             |                                                                                                       |                                                             |  |  |  |  |  |  |  |  |  |
| v                                       | ELOCIDADI                                                                                             | ES                                                          |  |  |  |  |  |  |  |  |  |
| v                                       | ELOCIDADI<br>CARROS                                                                                   | ES<br>ÔNIBUS                                                |  |  |  |  |  |  |  |  |  |
| V                                       | ELOCIDADI<br>CARROS<br>SIMULADOS                                                                      | ES<br>ÔNIBUS                                                |  |  |  |  |  |  |  |  |  |
| V<br>B-C                                | ELOCIDAD<br>CARROS<br>SIMULADOS<br>20.3                                                               | ES<br>ÔNIBUS<br>25.1                                        |  |  |  |  |  |  |  |  |  |
| V<br>в-с<br>с-в                         | ELOCIDAD<br>CARROS<br>SIMULADOS<br>20.3<br>41.3                                                       | ES<br>ÔNIBUS<br>25.1<br>20.7                                |  |  |  |  |  |  |  |  |  |
| B-C<br>C-B<br>REFE                      | ELOCIDAD<br>CARROS<br>SIMULADOS<br>20.3<br>41.3<br>RÊNCIA CET/SPT                                     | ES<br>ÔNIBUS<br>25.1<br>20.7<br>RANS                        |  |  |  |  |  |  |  |  |  |
| B-C<br>C-B<br>REFE<br>B-C               | ELOCIDAD<br>CARROS<br>SIMULADOS<br>20.3<br>41.3<br>RÊNCIA CET/SPT<br>12.4                             | ES<br>ÔNIBUS<br>25.1<br>20.7<br>RANS<br>26.3                |  |  |  |  |  |  |  |  |  |
| B-C<br>C-B<br>REFE<br>B-C<br>C-B        | ELOCIDAD<br>CARROS<br>SIMULADOS<br>20.3<br>41.3<br>RÊNCIA CET/SPT<br>12.4<br>33.8                     | ES<br>ÔNIBUS<br>25.1<br>20.7<br>RANS<br>26.3<br>21.1        |  |  |  |  |  |  |  |  |  |
| B-C<br>C-B<br>REFE<br>B-C<br>C-B        | ELOCIDAD<br>CARROS<br>SIMULADOS<br>20.3<br>41.3<br>RÊNCIA CET/SPT<br>12.4<br>33.8<br>Relação:         | ES<br>ÔNIBUS<br>25.1<br>20.7<br>RANS<br>26.3<br>21.1        |  |  |  |  |  |  |  |  |  |
| B-C<br>C-B<br>REFE<br>B-C<br>C-B<br>B-C | ELOCIDAD<br>CARROS<br>SIMULADOS<br>20.3<br>41.3<br>RÊNCIA CET/SPT<br>12.4<br>33.8<br>Relação:<br>164% | ES<br>ÔNIBUS<br>25.1<br>20.7<br>RANS<br>26.3<br>21.1<br>95% |  |  |  |  |  |  |  |  |  |

Figura 21

Obs: Os volumes e velocidades dos ônibus já estão próximos a da situação real uma vez que na configuração da rede, determinamos os horários de partida das linhas e eles trafegam em faixa exclusiva.

Observando o comportamento da via e os resultados, iniciaremos a calibração alterando os volumes de maneira que consigamos obter valores dentro de uma margem de erro aceitável, que é até 10% de diferença na relação que calculamos. Ou seja, aceitaremos valores entre 90% e 110%.

#### **CALIBRANDO** *VEHICLE INPUTS*

O fator mais sensível para se calibrar os volumes que passam em uma seção, é a quantidade de veículos que entra na rede. Essa característica é configurada no VISSIM através dos Vehicle Inputs. Portanto, alteraremos esses parâmetros para obter uma relação mais próxima da situação real.

- 36. No VISSIM, vá em Lists > Private Transport > Inputs.
- 37. Alteraremos os volumes que entram nos diferentes trechos da rede. Entre com os seguintes valores (Figura 22) para os inputs:

| Vehicl | Vehicle Inputs                                                    |                                                         |                                     |                |                    |  |  |  |  |  |  |
|--------|-------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------|----------------|--------------------|--|--|--|--|--|--|
| Select | Select layout 🝷 🖌 🔪 👌 🤹 🕻 † 🥏 <single list=""> 🔹 🗈 😫 💾 📑</single> |                                                         |                                     |                |                    |  |  |  |  |  |  |
| Coun   | No                                                                | Name                                                    | Link                                | Volume(0)      | VehComp(0)         |  |  |  |  |  |  |
| 1      | 1                                                                 | Radial centro bairro                                    | 14: começo radial centro bairro     | 1500.0         | 2: centro-bair 🗸   |  |  |  |  |  |  |
| 2      | 2                                                                 | Dr. Fomm 7: Dr Fomm 800.0 1: Default                    |                                     |                |                    |  |  |  |  |  |  |
| 3      | 3                                                                 | Siqueira cardoso                                        | 5: siqueira cardoso - radial        | 150.0          | 4: outras          |  |  |  |  |  |  |
| 4      | 4                                                                 | Brd Moraes                                              | 11: Brg Morais                      | 800.0          | 4: outras          |  |  |  |  |  |  |
| 5      | 5                                                                 | Serra Jaire                                             | 13: Serra Jairé 2                   | 800.0          | 4: outras          |  |  |  |  |  |  |
| 6      | 6                                                                 | marginal radial centro bairro                           | 26: marginal radial centro bairro   | 3900.0         | 2: centro-bairro   |  |  |  |  |  |  |
| 7      | 7                                                                 | radial B-C                                              | 1: Alcantara Machado sentido centr  | 6000.0         | 3: bairro-centro   |  |  |  |  |  |  |
| 8      | 8                                                                 | metro belem                                             | 31                                  | 700.0          | 3: bairro-centro   |  |  |  |  |  |  |
| 9      | 9                                                                 | faixa reversa 29: Faixas reversa 600.0 3: bairro-centro |                                     |                |                    |  |  |  |  |  |  |
|        |                                                                   |                                                         |                                     |                |                    |  |  |  |  |  |  |
| Data   | Colle                                                             | ction Results Vehicle Netwo                             | rk Performance Evaluati Vehicle Tra | avel Time Resu | Its Vehicle Inputs |  |  |  |  |  |  |

Figura 22

- 38. Simularemos o efeito desta mudança. Clique novamente no ícone da simulação
  Aceite salvar as mudanças e faça a simulação. (Utilize o Quick Mode para acelerar o tempo de simulação). Aguarde o fim da simulação.
- 39. Agora, repetiremos o procedimento de comparar os resultados no Excel. Abra a planilha e mude para a aba **Etapa 1**. Foram pintados de amarelos na tabela **VARIÁVEIS DA CALIBRAÇÃO** os novos valores de inputs, que é o que mudou de nessa nova simulação.
- 40. Repita a transferência de dados para o Excel (Passos 30-35).
- 41. Veja sua tabela Análise da Calibração, como a da Figura 23:



Figura 23

Note que, apesar de obtermos bons volumes, as relações de velocidades ainda se distanciam bastante da situação desejada. Portanto, agora trabalharemos as velocidades dos veículos na rede, alterando a distribuição de velocidade dos veículos.

#### **CALIBRANDO A DESIRED SPEED**

A *desired speed* é a velocidade em que os veículos buscarão trafegar na via, desde que não haja um veículo a frente limitando a sua velocidade. (Segundo o modelo psico-físico de perseguição de carros, que o VISSIM segue)

No caso de uma via saturada, como o sentido BAIRRO-CENTRO do trecho da Radial, a percepção de congestionamento faz os veículos desejarem trafegar em uma velocidade mais lenta, para evitar grandes acelerações/desacelerações.

Portanto, configuraremos essa característica para o sentido Bairro-Centro na nossa rede de microssimulação:

42. Volte a janela do VISSIM. Vá em Lists > Private Transport > Vehicle Compositions

43. Altere a visualização para ver a sublista Relative Flows, conforme mostra a Figura 24:

| Vehicl | e Con | positions     |       |         |                    |          |                           |   |   |
|--------|-------|---------------|-------|---------|--------------------|----------|---------------------------|---|---|
| Select | layou | it •          | + ا س | 🗙 🔖   💈 | ↓ <mark>Z</mark> † | <b>*</b> | <single list=""></single> | • | ( |
| Coun   | No    | Name          |       |         |                    |          | <single list=""></single> |   | Ī |
| 1      | 1     | Default       |       |         |                    |          | Relative flows            |   | l |
| 2      | 2     | centro-bairro |       |         |                    |          |                           |   |   |
| 3      | 3     | bairro-centro |       |         |                    |          |                           |   |   |
| 4      | 4     | outras        |       |         |                    |          |                           |   |   |
| -      | -     | outrus        |       |         |                    |          |                           |   |   |

Figura 24

44. Selecione a terceira linha <u>3 3 bairro-centro</u>, e altere a distribuição de velocidades na coluna da direita, em **Relative Flows**. Deixaremos a velocidade desejada em 15 km/h, conforme a Figura 25 a seguir:

| /ehicle Compositions / Relative Flows |                                                                 |               |                   |               |                  |               |                |       |          |                |           |              |         |
|---------------------------------------|-----------------------------------------------------------------|---------------|-------------------|---------------|------------------|---------------|----------------|-------|----------|----------------|-----------|--------------|---------|
| Select                                | elect layout 🖋 🕂 🗙 💁 🕺 🛣 Relative flows - 🗟 🛢 🂾 📑 🙀 🐉 👉 🗮 🎝 + 🛣 |               |                   |               |                  |               |                |       |          |                |           |              |         |
| Coun                                  | No                                                              | Name          |                   |               |                  |               |                | Co    | unt: 3   | DesSpeedDistr  | RelFlow   | VehType      |         |
| 1                                     | 1                                                               | Default       |                   |               |                  |               |                |       | 1        | 15: 15 km/h    | 68.000    | 100: Car     |         |
| 2                                     | 2                                                               | centro-bairro |                   |               |                  |               |                |       | 2        | 15: 15 km/h    | 1.000     | 200: HGV     |         |
| 3                                     | 3                                                               | bairro-centro |                   |               |                  |               |                |       | 3        | 15: 15 km/h    | 31.000    | 600: Bike    |         |
| 4                                     | 4                                                               | outras        |                   |               |                  |               |                |       |          |                |           |              |         |
|                                       |                                                                 |               |                   |               |                  |               |                |       |          |                |           |              |         |
|                                       |                                                                 |               |                   |               |                  |               |                |       |          |                |           |              |         |
|                                       |                                                                 |               |                   |               |                  |               |                |       |          |                |           |              |         |
|                                       |                                                                 |               |                   |               |                  |               |                |       |          |                |           |              |         |
|                                       |                                                                 |               |                   |               |                  |               |                |       |          |                |           |              |         |
|                                       |                                                                 |               |                   |               |                  |               |                |       |          |                |           |              |         |
| Data                                  | Colle                                                           | ction Results | Vehicle Network F | erformance Ev | aluation Results | Vehicle Trave | el Time Result | : Veł | nicle In | puts Vehicle C | ompositio | ns / Relativ | e Flows |

Figura 25

- 45. Essa alteração garantirá uma velocidade mais próxima a situação observada no sentido bairro-centro. Simule novamente e transfira os resultados para a aba **Etapa 2** do Excel (Passos 30-35).
- 46. Verifique as alterações na tabela ANÁLISE DA CALIBRAÇÃO, no Excel. Pode-se notar que a alteração resultou em volumes e velocidades já compatíveis com o que se busca. Ou seja, já temos relações entre 90% e 110% da situação medida pela CET e SPTrans.

Quando a rede é observada, verifica – se que o comportamento das motos e dos carros ainda não se assemelha corretamente à situação real. Para o refinamento, ajustaremos parâmetros do comportamento dos motoristas.

#### ALTERAÇÃO DO COMPORTAMENTO DOS MOTORISTAS

Até o momento, utilizou-se o comportamento *default* do programa para os motoristas, correspondente ao comportamento urbano. Porém, observa-se que esse não é o comportamento original dos motoristas nesse trecho.

Devido às especificidades do trânsito brasileiro, como por exemplo as motos que trafegam no corredor formado no espaço entre veículos, alteraremos o comportamento geral dos motoristas.

No VISSIM, o comportamento é considerado em cada Link do trecho. Já configuramos, no último laboratório, parâmetros do Driving Behavior.

Para este momento, a mudança será implementada às vias. O comportamento utilizado será o de Cycle-Track (free overtaking)

#### 47. No VISSIM, vá em Lists > Network> Links.

48. Altere, na primeira linha, na coluna **LinkBehavType**, o comportamento para 5: Cycle-Track, como na Figura 26 a seguir:

| Links  |       |                                  |                                                                          |                                  |         |   |  |  |  |
|--------|-------|----------------------------------|--------------------------------------------------------------------------|----------------------------------|---------|---|--|--|--|
| Select | layou | ıt 🝷 🌽 🖉 🗙 😼 🛔                   | 🕂 🥻 t 🥏 <sing< th=""><th>gle List&gt;</th><th>- 8</th><th>2</th></sing<> | gle List>                        | - 8     | 2 |  |  |  |
| Coun   | No    | Name                             | LinkBehavType                                                            | DisplayType                      | Level   | N |  |  |  |
| 1      | 1     | Alcantara Machado sentido centro | New                                                                      |                                  |         |   |  |  |  |
| 2      | 2     | inicio radial bairro centro      | 1: Urban (motorized)                                                     |                                  |         |   |  |  |  |
| 3      | 3     | Acesso ao metro Belém 1          | 3: Freeway (free                                                         | e (motorized)<br>lane selection) |         |   |  |  |  |
| 4      | 4     | Alcantara Machado sentido bairro | 4: Footpath (no i                                                        | nteraction)                      |         |   |  |  |  |
| 5      | 5     | siqueira cardoso - radial        | 5: Cycle-Track (fi                                                       | ree overtaking)                  |         |   |  |  |  |
| 6      | 6     | radial - rua siqueira cardoso    | 7                                                                        |                                  |         |   |  |  |  |
| 7      | 7     | Dr Fomm                          | 8                                                                        |                                  |         |   |  |  |  |
| 8      | 8     | Silva Jardim                     | 1: Urban                                                                 | 1: Road gray                     | 1: Base |   |  |  |  |
| 0      | 0     | Acosso po motro Polóm            | 1. Hebon                                                                 | 1. Road aray                     | 1, Paco |   |  |  |  |

Figura 26

49. Após a mudança, clique com botão direito sobre a célula alterada e depois clique em **Copy Cells**. Agora, clique em **LinkBehavType** para selecionar todas as células da coluna, como a Figura 27.

| Links  |                                            |                                  |                      |            |  |  |  |  |  |  |  |
|--------|--------------------------------------------|----------------------------------|----------------------|------------|--|--|--|--|--|--|--|
| Select | Select layout 🝷 🎤 🖉 🗙 🍡 🐴 🕻 🕻 Single List> |                                  |                      |            |  |  |  |  |  |  |  |
| Coun   | No                                         | Name                             | LinkBehavType        | DisplayTy  |  |  |  |  |  |  |  |
| 1      | 1                                          | Alcantara Machado sentido centro | 5: Cycle-Track (free | 1: Road gr |  |  |  |  |  |  |  |
| 2      | 2                                          | inicio radial bairro centro      | 1: Urban 🗸 🗸         | 1: Road gr |  |  |  |  |  |  |  |
| 3      | 3                                          | Acesso ao metro Belém 1          | 1: Urban             | 1: Road gr |  |  |  |  |  |  |  |
| 4      | 4                                          | Alcantara Machado sentido bairro | 1: Urban             | 1: Road gr |  |  |  |  |  |  |  |
| 5      | 5                                          | siqueira cardoso - radial        | 1: Urban             | 1: Road gr |  |  |  |  |  |  |  |
| 6      | 6                                          | radial - rua siqueira cardoso    | 1: Urban             | 1: Road gr |  |  |  |  |  |  |  |
| 7      | 7                                          | Dr Fomm                          | 1: Urban             | 1: Road gr |  |  |  |  |  |  |  |
| 8      | 8                                          | Silva Jardim                     | 1: Urban             | 1: Road gr |  |  |  |  |  |  |  |
| 0      | 0                                          | Acorso po motro Polóm            | 1. Urban             | 1. Road or |  |  |  |  |  |  |  |

Figura 27

- 50. Aperte Ctrl + V para alterar o comportamento para Cycle-Track em todos os Links da rede.
- 51. Faça novamente a simulação e transferência de dados, agora para a aba **Etapa 3** (**Passos 30-35**).
- 52. Analise os resultados. Qual foi a relação obtida entre os volumes e velocidades de ônibus e demais veículos ?

| ANÁLI | SE DA CALIB    | RAÇÃO  |
|-------|----------------|--------|
|       | VOLUMES        |        |
|       | CARROS         | ÔNIBUS |
|       | SIMULADOS      |        |
| B-C   | 476            | 9      |
| C-B   | 285.6666667    | 9      |
| REFE  | RÊNCIA CET/SPI | TRANS  |
| B-C   | 491            | 9      |
| C-B   | 275            | 9      |
|       | Relação:       |        |
| B-C   | 97%            | 100%   |
| C-B   | 104%           | 100%   |
| N     | ELOCIDAD       | ES     |
|       | CARROS         | ÔNIBUS |
|       | SIMULADOS      |        |
| B-C   | 13.4           | 25.2   |
| C-B   | 33.9           | 19.9   |
| REFE  | RÊNCIA CET/SPT | RANS   |
| B-C   | 12.4           | 26.3   |
| C-B   | 33.8           | 21.1   |
|       | Relação:       |        |
|       | 108%           | 96%    |
| B-C   | 10070          |        |

53. Sua tabela deve se assemelhar a seguinte (Figura 28):

Figura 28

Agora, portanto, podemos considerar a rede como calibrada ou validada, ou seja, representativa da situação observada pelos órgãos de tráfego.

### ANEXO I MÉTODO DE ANÁLISE DA CET

#### Método da CET para a contagem de volumes

Em tráfego, o volume é definido pela quantidade de veículos que atravessa determinada seção da via em certo intervalo de tempo. Na contagem volumétrica, a CET determina os volumes em pontos da via especificando o sentido do fluxo e a sua composição (classificação em automóveis, motocicletas, ônibus e caminhões). Assim, para cada seção escolhida (Figura 1), um ou mais pesquisadores são posicionados com contadores manuais e coletam os números de cada tipo de veículo em intervalos de 15 minutos, no período da manhã, das 7h00 às 10h00, e à tarde das 17h00 às 20h00. A partir desses números, determinam-se o **volume simples** de veículos - soma de todos os tipos de veículos – e o **volume equivalente**– a soma tem cada tipo de veículo ponderado, como ônibus e caminhões com peso dois no cálculo – como descritos na Figura 2.

Em seguida, calcula-se um **Fator Hora Pico (FHP)** para medir a variação volumétrica em quinze minutos dentro da hora do maior volume equivalente. Na verdade, esse fator revela o período com maior volume equivalente encontrado, como um quociente entre o volume equivalente total da hora dividido pelo quádruplo do volume máximo encontrado em quinze minutos.





Figura 1 - Pontos determinados para a Rota 07G - Radial Leste, abordada no laboratório (CET, Companhia de Engenharia de Tráfego. Pesquisa de monitoração da Mobilidade: 2014).

|               | Pico Manhã |     |      |       |       |        |              |        |      |  |  |  |  |  |
|---------------|------------|-----|------|-------|-------|--------|--------------|--------|------|--|--|--|--|--|
| Hora          | Auto       | Ôni | bus  | Cami- | Motos | Bici-  | Volume Total |        | FHP  |  |  |  |  |  |
|               |            | Urb | Fret | nhões |       | cletas | Simp.        | Equiv. |      |  |  |  |  |  |
| 07:00 - 08:00 | 7.040      | 142 | 1    | 12    | 2.102 | 12     | 9.309        | 9.456  | 0,96 |  |  |  |  |  |
| 07:15 - 08:15 | 6.806      | 155 | 2    | 14    | 2.275 | 13     | 9.265        | 9.427  |      |  |  |  |  |  |
| 07:30 - 08:30 | 6.484      | 151 | 2    | 14    | 2.351 | 14     | 9.016        | 9.174  |      |  |  |  |  |  |
| 07:45 - 08:45 | 6.354      | 157 | 4    | 14    | 2.300 | 14     | 8.843        | 9.009  |      |  |  |  |  |  |
| 08:00 - 09:00 | 6.182      | 149 | 4    | 16    | 2.165 | 12     | 8.528        | 8.689  |      |  |  |  |  |  |
| 08:15 - 09:15 | 5.959      | 138 | 4    | 20    | 2.062 | 9      | 8.192        | 8.348  |      |  |  |  |  |  |
| 08:30 - 09:30 | 5.784      | 130 | 3    | 26    | 1.943 | 7      | 7.893        | 8.047  |      |  |  |  |  |  |
| 08:45 - 09:45 | 5.622      | 126 | 1    | 28    | 1.739 | 6      | 7.522        | 7.673  |      |  |  |  |  |  |
| 09:00 - 10:00 | 5.407      | 129 | 1    | 27    | 1.511 | 4      | 7.079        | 7.233  |      |  |  |  |  |  |
| Total 3 horas | 18.629     | 420 | 6    | 55    | 5.778 | 28     | 24.916       | 25.378 | 0,90 |  |  |  |  |  |

Av. Radial Leste, entre Viad. Alcântara Machado e R. dos Trilhos Ponto 1 \*

Figura 2 - Volumes obtidos no ponto 1 da Rota 07G - Radial Leste, no sentido bairro - centro no período da manhã (CET, Companhia de Engenharia de Tráfego. Pesquisa de monitoração da Mobilidade: 2014).

#### Método da CET para a determinação da velocidade

No método de determinação da velocidade e do tempo de retardamento, a CET subdivide a via em trechos delimitados por suas transversais, as quais funcionam como pontos de controle. A partir dessa definição, veículos-teste com dois pesquisadores embarcados com cronômetros em cada veículo e com um mapa da rota e os respectivos pontos de controle podem trafegar a via. O primeiro cronômetro registra os tempos de percurso de cada trecho e o segundo coleta os tempos parados durante o trajeto (tempos de retardamento). Com esses valores, a velocidade média (em km/h) é calculada pelo quociente entre a distância do trecho e o tempo médio gasto (tempo de percurso) para cada ponto de controle (Figura 3), nos quais o tempo de retardamento é zerado. As rotas são realizadas nos dois sentidos por dois dias, nos períod

| Sentido: Bairro - Centro        |                           |                          |          |                   | Manhã  |      |      |         |         |      |     |   |    |  |
|---------------------------------|---------------------------|--------------------------|----------|-------------------|--------|------|------|---------|---------|------|-----|---|----|--|
| Data: 19/05/2014 a 28/05/2014   |                           |                          |          | Vel. Média (km/h) |        |      |      | Tempo   | Ret (%) |      |     |   |    |  |
| Via                             | Trecho Início             | Trecho Fim               | Dist (m) | Geral             | Viagem |      |      | (mm:ss) |         |      |     |   |    |  |
|                                 |                           |                          |          |                   | 01     | 02   | 03   | Geral   | S/ Ret. | С    | F   | 0 | Т  |  |
| TOTAL DA ROTA                   |                           |                          | 7.900    | 17,5              | 13,7   | 16,0 | 28,0 | 27:00   | 18:37   | 23   | 8   | 0 | 31 |  |
| Av. Conde de Frontin            | 01.Vd. Eng. Alberto Badra | 02.Vd. Antônio de Barros | 950      | 36,8              | 29,4   | 43,0 | 41,5 | 01:32   | 01:31   | 0    | 2   | 0 | 2  |  |
| R. Melo Freire                  | 02.Vd. Antônio de Barros  | 03.Vd. Carlos Ferraci    | 1.450    | 25,3              | 17,7   | 28,2 | 37,3 | 03:26   | 02:40   | 9    | 14  | 0 | 23 |  |
| R. Melo Freire / Av. Alc. Mach. | 03.Vd. Carlos Ferraci     | 04.Av. Álvaro Ramos      | 1.650    | 19,2              | 12,5   | 18,7 | 43,4 | 05:09   | 03:48   | 23   | - 3 | 0 | 26 |  |
| Av. Alcântara Machado           | 04.Av. Álvaro Ramos       | 05.R. Siqueira Bueno     | 600      | 20,5              | 26,7   | 11,3 | 49,1 | 01:45   | 01:17   | 26   | 0   | 0 | 26 |  |
| Av. Alcântara Machado           | 05.R. Siqueira Bueno      | 06.Vd. Bresser           | 1.050    | 9,8               | - 7,4  | 7,6  | 25,0 | 06:26   | 03:35   | - 33 | 12  | 0 | 45 |  |
| Av. Alcântara Machado           | 06.Vd. Bresser            | 07.R. dos Trilhos        | 850      | 10,5              | 8,4    | 9,9  | 15,4 | 04:50   | 02:37   | 27   | 18  | 0 | 45 |  |
| Av. Alcântara Machado           | 07 R dos Tribos           | 08 R. Cameiro Leão       | 1 350    | 20.9              | 20.6   | 24.4 | 18.4 | 03:52   | 03:09   | 19   |     | 0 | 19 |  |

Rota 07G - Radial Leste (R. Melo Freire, Av. Alcântara Machado)

Figura 3 - Velocidades obtidas em 7 trechos da Rota 07G - Radial Leste no sentido bairro-centro no período da manhã (CET, Companhia de Engenharia de Tráfego. Pesquisa de monitoração da Mobilidade: 2014)

### ANEXO II

### CÁLCULO DA VELOCIDADE MÉDIA DOS ÔNIBUS

- A coluna A apresenta os IDs dos ônibus, e é meramente uma cópia da coluna B da tabela dados.
  - <u>Fórmula utilizada</u>:=**Dados!B(X)**\*Onde (X) é o número da linha
- A coluna B apresenta a diferença de longitudes entre uma linha e a linha seguinte
  - <u>Fórmula utilizada</u>:=**Dados!G(X+1)-Dados!G(X)**
- A coluna C apresenta a diferença de latitudes entre uma linha e a linha seguinte
  - o Fórmula utilizada:=Dados!H(X+1)-Dados!H(X)
- A coluna D calcula a distância efetiva entre os dois pontos. Para isso, como a distância é muito curta, podemos ignorar a circunferência da Terra e calcular essa distância como a hipotenusa de um triângulo retângulo: D<sup>2</sup> = Latitude<sup>2</sup> + Longitude<sup>2</sup>
  - <u>Fórmula utilizada</u>:=RAIZ(B2\*B2+C2\*C2)
- A coluna E calcula a diferença, em segundos, entre uma linha e a seguinte. Para isso, é preciso converter o formato utilizado de horas:minutos:segundos de forma a obter tudo em segundos.
  - o Fórmula utilizada:=(( HORA(Dados!A(X+1)-Dados!A(X))\*3600 + MINUTO(Dados!A(X+1)-Dados!A(X))\*60 +

#### SEGUNDO(Dados!A(X+1)Dados!A(X))))

- A coluna F gera um ID' para o ônibus. Esse novo ID é um ID auxiliar que identifica quando o ônibus é diferente do ID anterior e ajuda a contabilizar quandos ônibus passaram no trecho naquele período (tantos quantos foram gerados ID's, neste caso, indo para o final da tabela, é possível identificar que são 115 ônibus).
  - o <u>Fórmula utilizada</u>:=SE(A(X+1)<>A(X);F(X)+1;F(X)))
- A coluna G verifica se o ID anterior é o mesmo que o da linha seguinte, e responde 1 quando for e 0 quando não for, o que implica numa mudança do ID' (a linha onde a coluna G é igual a 0 é o último registro de um determinado ID')

- o <u>Fórmula utilizada</u>:=SE(F(X)<>F(X+1);0;1)
- A coluna I tem a função de somar as distâncias de cada registro, reconhecendo, a partir do ID', quando uma distância calculada não é pertinente (ou seja, quando houve um cálculo de distância de dois ônibus diferentes)
  - o <u>Fórmula utilizada</u>:=SE(G(X)=1;D(X);0)
- A coluna J calcula a distância acumulada, ou seja, ela vai somando as distâncias de todos os pequenos trechos percorridos pelo ônibus para obter a distância total do percurso. Utiliza a coluna I para identificar quando um trecho acaba.
  - o <u>Fórmula utilizada</u>:=SE(E(I(X+1)<>0;I(X)<>0);J(X)+I(X+1);I(X+1))
- A coluna K é preenchida com a distância total do trecho quando identifica que o trecho acabou. Caso contrário, a célula é deixada em branco.
  - o <u>Fórmula utilizada</u>:=SE(E(J(X)<>0;J(X+1)=0);J(X);"")
- A coluna M é análoga à coluna I, mas ao invés de calcular a distância, calcula o tempo.
  - <u>Fórmula utilizada</u>:=**SE(G(X)=1;E(X);0)**
- A coluna N é análoga à coluna J, mas ao invés de calcular a distância acumulada, calcula o tempo acumulado.
  - o <u>Fórmula utilizada</u>:=SE(E(M(X+1)<>0;M(X)<>0);N(X)+M(X+1);M(X+1))
- A coluna O é análoga à coluna K, mas ao invés de calcular a distância total, calcula o tempo total.
  - o <u>Fórmula utilizada</u>: =SE(E(N3(X)<>0;N(X+1)=0);N(X);"")
- A coluna Q calcula a velocidade média de cada um dos ônibus separadamente, Para isso, ele divide a distância total pelo tempo total do percurso (colunas K e O) e multiplica por 3,6 para que o valor final seja obtido em km/h.
  - o <u>Fórmula utilizada</u>: =SE(E(K(X)<>"";O(X)<>"");(K(X)/O(X))\*3,6;"")
- Por fim, a coluna S calcula a média aritmética das velocidades da coluna Q
  - <u>Fórmula utilizada</u>: **=MÉDIA(Q2:Q1000)**