Aula 5

Exemplo 3 – Atividade para entregar em 28/04/2017 pelo sistema Moodle-USP

Em uma planta de processo, deseja-se aquecer 12.000 kg/h de Suco de maracujá (32 °Brix), de 18°C a 75°C. Para o aquecimento do fluido, utiliza-se água saturada a 100°C na entrada do trocador, que resfria até 85°C. Sabe-se que o Suco de maracujá é um fluido não-newtoniano (pseudoplástico). Avalie se um trocador de calor cascotubo, que fora projetado/montado utilizando-se um total de 20 tubos com diâmetro de 5 mm e comprimento de 8 m, poderá ser utilizado neste mesmo processo. Sabese que o trocador está limpo e os tubos de aço são delgados. O trocador é operado com 2 passes nos tubos e 1 passe no casco. Considere o coeficiente convectivo da água no casco igual a 20.000 W/m².K.

Organize os cálculos, projete o trocador e determine:

- a) A vazão mássica de água a ser fornecida;
- b) Coeficiente convectivo interno, e o coeficiente global de transferência de calor;
- c) Área total de troca térmica e o comprimento total do trocador e de cada tubo, e compare-a com a área de troca disponível neste trocador.

Fluidos lei da Potência:

$$Re_{C} = \frac{d^{n} v^{2-n} \rho}{8^{n-1} K} \left(\frac{4n}{1+3n} \right)^{n}$$

Obs: Atenção ao diferenciar os seguintes termos: K_{reo} : indice de consistência do fluido (reologia) K_c : condutividade térmica (prop. termofísica)

Modelos reológicos (fluidos Lei da Potência)

$$\sigma = K_{reo} * \dot{\gamma}^n \qquad \mu_{ap} = K_{reo} * \dot{\gamma}^{n-1} \qquad \dot{\gamma} = v/D_h$$

Purê de ameixa (14 °Brix): n = 0,34; Kreo = 2,2 Suco de framboesa (41 °Brix): n = 0,75; Kreo = 1,3 Suco de maracujá (32%): n = 0,44; Kreo = 2,62

Propriedades termofísicas para solução de sacarose em diferentes concentrações

Densidade (kg/m³)

Benerada (ng/m/)					
T(°C)	20%	30%	40%	50%	60%
10	1077,8	1123,4	1173,0	1227,2	1286,7
20	1076,4	1121,9	1171,4	1225,4	1284,7
30	1074,4	1119,8	1169,2	1223,1	1282,3
40	1071,7	1117,0	1166,4	1220,2	1279,3
50	1068,3	1113,6	1162,9	1216,8	1275,9
60	1064,2	1109,5	1158,8	1212,7	1271,9
70	1059,4	1104,7	1154,1	1208,1	1267,5
80	1053,8	1099,3	1148,8	1203,0	1262,5
90	1047,6	1093,1	1142,8	1197,2	1257,0
100	1040,6	1086,3	1136,2	1190,8	1251,0

Calor específico (kJ/kg.K)

caner deposition (marrigina)					
T(°C)	20%	30%	40%	50%	60%
10	3,654	3,393	3,133	2,872	2,611
20	3,658	3,399	3,140	2,881	2,622
30	3,663	3,406	3,148	2,890	2,633
40	3,669	3,412	3,156	2,900	2,643
50	3,675	3,419	3,164	2,909	2,653
60	3,681	3,427	3,172	2,918	2,663
70	3,689	3,435	3,181	2,927	2,673
80	3,697	3,443	3,189	2,936	2,682
90	3,705	3,452	3,198	2,945	2,691
100	3,715	3,461	3,207	2,954	2,700

Condutividade térmica (W/m.K)

T(°C)	20%	30%	40%	50%	60%
10	0,538	0,509	0,478	0,445	0,408
20	0,553	0,524	0,493	0,459	0,422
30	0,567	0,538	0,506	0,472	0,435
40	0,579	0,550	0,519	0,484	0,447
50	0,591	0,562	0,530	0,496	0,458
60	0,601	0,572	0,540	0,506	0,467
70	0,610	0,581	0,549	0,514	0,476
80	0,618	0,589	0,557	0,522	0,484
90	0,624	0,595	0,564	0,529	0,491
100	0,629	0,601	0,569	0,535	0,497

Propriedades termofísicas da água saturada

	ρ	Ср	k	$\mu (10^3)$	λ
T(°C)	kg/m³	kJ/kg.K	W/m.K	Pa.s	kJ/kg
18	998,5	4,186	0,594	1,05	2461
75	974,8	4,191	0,666	0,377	2317
90	965,3	4,205	0,675	0,325	2281
100	958,3	4,216	0,679	0,281	2257
110	950,9	4,230	0,681	0,254	2225