
OpenStack and CloudStack: Open Source Solutions
for Building Public and Private Clouds

Amine Barkat, Alysson Diniz dos Santos, Thi Thao Nguyen Ho
Politecnico di Milano

Dipartimento di Elettronica Informazione e Bioingegneria

Piazza L. da Vinci, 32 - 20133 Milano, Italy

Email: amine.barkat@polimi.it, alysson@virtual.ufc.br, thithao.ho@polimi.it

Abstract—Cloud computing is continuously growing as a
prominent technology for enterprises. While several giant public
cloud providers, such as Amazon, Microsoft, IBM, Google are
competing to extend their market, there is still a large number
of organizations asking higher level of privacy and control
over cloud solutions. Therefore, the need to have private cloud
solutions is obvious. To overcome this need there are several
on-going open source software frameworks for building public
and private clouds. Among them, OpenStack and CloudStack
are growing at fast pace and gaining more attention. An analysis
on these software stacks is necessary in order to choose the most
suitable solution that matches an enterprise’s requirements. This
paper main contribution is an in depth study and comparison
of the cloud properties of these two open source frameworks,
providing useful information on open source cloud solutions that
are not available elsewhere.

Keywords—OpenStack, CloudStack, cloud computing, open
source, public cloud, private cloud, IaaS

I. INTRODUCTION

Cloud computing is a new computing model that brings
together all disciplines, technologies and business models to
deliver Information Technology (IT) resources on-demand.
This is a new trend that well fits in an environment where
resources are provisioned dynamically and exposed as a service
on the Internet [1]. In this context, open source cloud technolo-
gies such as OpenStack, CloudStack, OpenNebula, Eucalyptus,
OpenShift, and Cloud Foundry have gained significant momen-
tum in the last few years. For a researcher and practitioner,
they present a unique opportunity to analyze, contribute, and
innovate in new services using these technologies [2].

Cloud computing consists basically of three levels of
offerings [2]:

1) Infrastructure as a Service (IaaS), where the equip-
ments are provided in the form of virtual ma-
chines. The client maintains the applications, run-
time, integration SOA (Service Oriented Architec-
ture), databases, server software while the supplier
maintains the virtualization layer, server, storage, and
network hardware. Among the main actors of IaaS,
we find Amazon EC2, Rackspace, GoGrid.

2) Platform as a Service (PaaS), user can develop his
own applications using the services provided. The
client maintains only his applications, while the sup-
plier maintains all the cloud stack from hardware up
to application containers. We have among the key
players: Google Apps Engine, Windows Azure.

3) Software as a Service (SaaS), entire applications are
available remotely. Among the providers we have
GoogleApps, Salesforce, and Facebook.

At the three levels of cloud offerings are shown in Fig. 1,
the lowest level is the focus of this paper. The IaaS manages
computing resources (computing, storage, network), and the
virtualization layer that allows the access to the physical
resources (e.g, processor, memory and other devices) providing
resource isolation and security.

Fig. 1: Offering levels in cloud computing

In the need of having IaaS solutions that can give more
privacy and control over the system, open source clouds are
born to build private clouds. Eventually, these open source
solutions can be used to set up public clouds, private clouds
or a mix of them, i.e, hybrid clouds. With the emergence of
different open-source cloud solutions, the decision to choose
the most suitable one that meets users needs becomes a difficult
task, because every platform has its specific characteristics
[3]. Moreover, since hybrid clouds are the most widely used
nowadays, surveying open source middlewares that simplify
cluster management and the creation of private clouds enabled
for cloud bursting is an important matter. In this sense, several
papers begin to analyze and compare each platform, trying
to establish a starting point to look when deciding which
open source cloud technology should be adopted. [4]–[6]
give essentially an overview of Eucalyptus, Nimbus and Open-
Nebula solutions, highlighting their different characteristics.
[2], [7]–[10] conduct surveys, classify and compare different
open source solutions. Concerning specifically OpenStack and

2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing

978-1-4799-8448-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SYNASC.2014.64

427

2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing

978-1-4799-8448-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SYNASC.2014.64

429

CloudStack, [11] presents briefly both solutions and does
some general features comparison, but enter in more details
only for OpenStack. Notwithstanding, several updates imple-
mented recently to evolve and improve cloud softwares make
this kind of study quickly outdated.

With this in mind, in this paper we present the general
features of the newest versions of OpenStack and CloudStack
and compare their general features and important properties,
trying to provide useful information for users that need to
choose an open source cloud software.

The paper is organized as follows: Section II describes the
architecture of OpenStack and its important properties, Section
III presents CloudStack, Section IV performs comparisons
between the two platforms. Conclusions are finally drawn in
Section V.

II. OPENSTACK

OpenStack is a cloud software that offers capability to con-
trol large pools of compute, storage and networking resources.
It also empowers users providing on-demand resources [12].
Starting from 2010, OpenStack was developed by Rackspace
Hosting and NASA [13] aimed to provide open source cloud
solution to build public or private clouds. The mission of
OpenStack is to enable any organization to create and offer
cloud computing services running on standard hardwares. Pro-
visioned as open source solution, OpenStack is built keeping
these core principles in mind: (1) Open source: all code
will be released under the Apache 2.0 license allowing the
community to use it freely; (2) Open design: every 6 months
the development community will hold a design summit to
gather requirements and write specifications for the upcoming
releases; (3) Open development: maintains a publicly available
source code repository through the entire development process;
(4) Open community: produces a healthy, vibrant development
and user community through an open and transparent process.

A. General Architecture

As in any cloud platform, the infrastructure underneath
OpenStack is standard hardware, which can contain any pieces
of physical devices such as servers, disks or network devices.
In order to provide cloud services, OpenStack develops virtual-
ization layers giving the abstract view of physical infrastructure
to end users. These virtualization layers are built up by various
components as described in Fig. 2. The OpenStack architecture
consists of three main components: Compute (Nova), Network
(Quantum) and Storage (Swift). Beside these three pillars,
OpenStack has been developing many other services, each of
those designed to work together to provide a complete IaaS
solution. The integration of these services is facilitated through
public application programming interfaces (APIs) offered by
each service [13].

In the following, the detailed description of each compo-
nent is provided.

1) Compute (Nova): Compute is the heart of OpenStack
(codename is Nova and it is written in Python), which is
the computing fabric controller responsible for managing large
networks of virtual machines (VMs), and eventually to prop-
erly schedule VMs among available physical machines (PMs)

Fig. 2: OpenStack general architecture

[13]. Compute is a distributed application that consists of
six components: Nova-api, Message Queue, Nova-Compute,
Nova-Network, Nova-Volume and Nova-Scheduler as shown
in Fig. 3. Nova supports the complete life-cycles of an instance
in the cloud, starting from the request to initialize a VM until
its termination. It follows this architecture:

• Nova-api: accepts and responds to end user compute
API calls. Beside providing its own OpenStack Com-
pute API, Nova-api is compatible with Amazon EC2
API, offering the potential to integrate with Amazon
cloud services. It has another special Admin API
reserved for privileged users to perform administrative
actions. The orchestration activities such as running
an instance, or enforcing the policies such as quota
checks are initiated by this component.

• Nova-compute: is primarily a worker daemon that cre-
ates and terminates VM instances via hypervisor APIs.
In order to do so, it accepts actions from the queue
and performs system commands to fulfill them, while
updating the database state accordingly. OpenStack
supports several standard hypervisors (listed in Section
IV) while keeping the openness that allows to interface
other hypervisors through its standard library.

• Nova-volume: manages the creation, attaching and
detaching of persistent volumes to compute instances.
There are two types of block devices supported for an
VM instance: (1) Ephemeral Storage: is associated to
a single unique instance. Its life-cycle exists together
with the instance life-cycle, which means when the
instance is terminated, data on this storage will also
be deleted; (2) Volume Storage: is persistent and
independent from any particular instance. This storage
can be used as external disk device where the data
stored on it still remain even when the instance is
terminated.

• Nova-network: is a worker daemon that handles
network-related tasks. It accepts and performs net-
working tasks from the queue to manipulate the
network such as setting up bridging interfaces or
changing iptable rules.

• Nova-schedule: handles the scheduling of VMs among
PMs. It takes a virtual machine instance request from

428430

Fig. 3: Compute component architecture [13]

the queue and determines the physical host it should
place the instance on. While the scheduling algorithms
can be defined by users, Nova-schedule supports by
default three algorithms: (1) Simple: attempts to find
least loaded host, (2) Chance: chooses random avail-
able host from service table, (3) Zone: picks random
host from within an available zone. By allowing
users to define their own scheduling algorithms, this
component is important for building fault tolerant and
load-balanced system.

• Queue: provides a central hub for passing messages
between daemons. This is usually implemented with-
RabbitMQ today, but can support any AMPQ message
queue.

• Database: stores most of the build-time and run-time
state of a cloud infrastructure. For example, it provides
information of the instances that are available for use
or in use, networks availability or storage information.
Theoretically, OpenStack Nova can support any SQL-
based database but the most widely used databases
currently are sqlite3, MySQL and PostgreSQL.

Given this architecture, all its components follow a shared-
nothing and messaging-based policy. Shared-nothing means
that each component or each group of components can be
installed on any server, in a distributed manner; while the
messaging-based policy ensures the communication among
all components such as volume, network and scheduler is
performed via Queue Server.

2) Network (Quantum): Network is the key of cloud
computing for several reasons: (1) Offered resources and
services must be accessible; (2) Address binding between
different services is essential to support multi-tier applications;
(3) Automatic network configuration capability is important,
especially in scenarios where auto-scaling installations evolves.
The OpenStack Networking component gives operators the
ability to leverage different network technologies to power
their cloud networking through a rich set of APIs, multiple
networking models (e.g, flat or private network) and flexible
plug-in architecture. Especially, the plug-in architecture - with
the plug-in agent - enables, not only capability of using
various network technologies, but also the ability to handle
user workloads. It means, at network level, that developers

Fig. 4: Networking component architecture [13]

can implement their own load balancing algorithms and plug
it in the platform to achieve better workload control. The
architecture of Network component is shown in Fig. 4

The Network architecture consists of four distinct physical
data center networks:

• Management network: used for internal communi-
cation between OpenStack components. The IP ad-
dresses on this network should be reachable only
within the data center.

• Data network: used for VM data communication
within the cloud deployment. The IP addressing re-
quirements of this network depend on the OpenStack
Networking plug-in in use.

• External network: used to provide VMs with Internet
access in the deployment scenarios. The IP addresses
on this network should be reachable by anyone on the
Internet.

• API network: exposes all OpenStack APIs, including
the OpenStack Networking API, to tenants. The IP
addresses on this network should be reachable by
anyone on the Internet.

3) Storage: The Storage component, one of three main
pillars of OpenStack architecture, is used to manage storage
resources. OpenStack has support for both Object Storage
and Block Storage, with many deployment options for each,
depending on the use case.

Object Storage (codename Swift) is a scalable object
storage system. It provides a fully distributed, API-accessible
storage platform that can be integrated directly into applica-
tions or used for backup, archiving, and data retention [13]. In
Object Storage, data are written to multiple hardware devices,
with the OpenStack software responsible for ensuring data
replication and integrity across clusters. Object storage clusters
are scaled horizontally while adding new nodes. If a node
fails, OpenStack replicates its content from other active nodes.
Because OpenStack uses software logic to ensure data repli-
cation and distribution, inexpensive commodity hard drives
and servers can be used instead of expensive equipments.
Therefore, Object Storage is ideal for cost effective, scale-out
storage [13].

429431

Block Storage (codename Cinder), is the storage system
that allows block devices to be exposed and connected to
compute instances for expanded storage, better performance
and integration with enterprise storage platforms, such as
NetApp, Nexenta and SolidFire [13]. By managing the storage
resources in blocks, Block Storage is appropriate for perfor-
mance sensitive scenarios such as database storage, expandable
file systems, or providing a server with access to raw block
level storage.

4) User interface - Dashboard: The OpenStack dashboard
provides to administrators and users a graphical interface
to control their compute, storage and networking resources.
Through the dashboard, administrators can also manage users
and set limits on resources access for each user.

5) Shared Services: OpenStack Shared services are a set
of several services that span across three pillars of compute,
storage and networking, making it easy to perform cloud
management operations. These services include [13]:

• Identity Service (code-named Keystone): is the se-
curity service to protect resources access and usage.
This service provides a central directory management,
mapping users to OpenStack accessible services. It
acts as a common authentication system across the
cloud operating system. It supports multiple forms
of authentication including standard username and
password credentials, token-based systems and AWS-
style logins.

• Image Service (code-named Glance): is the repository
for virtual disk and server images used by the VMs. In
OpenStack, user can copy or snapshot a server image
and immediately store it away. Stored images can be
used as a template to get new servers up and running
quickly and consistently.

• Telemetry Service: aggregates resources usage and
performance data of the services deployed in Open-
Stack cloud. This powerful capability provides visi-
bility into the usage of the cloud infrastructure and
allows cloud operators to view metrics globally or
individually.

• Orchestration Service: is a template-driven engine
that allows application developers to describe and
automate the deployment of the cloud infrastructure
as well as detailed post-deployment activities of
infrastructure, services and applications.

• Database Service: allows users to quickly and easily
utilize the features of a relational database. Cloud
users and database administrators can provision and
manage multiple database instances as needed.

B. Properties

Provisioned as IaaS, OpenStack is built following an open
philosophy: avoid technology lock-ins by not requiring specific
technologies and providing user freedom to choose the best slot
that matches its needs [13]. In this section, we will analyze
some important properties of OpenStack.

• Live migration: is the process of moving a running
VM from one PM to another, while the VM is still
powered-on. It is important to remember that memory,
network connectivity and storage of the migrated VM
are also transferred to the destination PM. This ca-
pability provides efficient online system maintenance,
reconfiguration, load balancing and fault tolerance.
OpenStack supports two types of live migration: (i)
Shared storage based live migration, and (ii) Block
live migration. The former supports live migration
scenarios where the source and destination hypervisors
have access to the shared storage, while the latter does
not require shared storage.

• Load balancing: is the capability that allows to dy-
namically control the workloads among VMs or phys-
ical servers in order to achieve better performance.
OpenStack supports load balancing at different scales.
First of all, the supporting feature of live migration
has enabled system administrators to distribute appli-
cation workloads among physical servers by means
of adjusting VM placement. Moreover, it is possible
to control application workloads at VM level, service
provided by OpenStack Network layer, controlled by
Network component. This component, with a flexible
plug-in architecture allows the development of run-
time custom algorithms to distribute workloads among
VMs. Indeed, OpenStack has an on-going project
called Load Balancing as a Service (LBaaS) that
is aimed to provide load balancing service to end
users. This service has monitoring feature to determine
whether the VMs are available to handle user requests
and take routing decisions accordingly. Several routing
policies are supported such as round robin (i.e, rotates
requests evenly between multiple instances), source
IP (i.e, requests from a unique source IP address are
consistently directed to the same instance) and least
connections (i.e, allocate requests to the instance with
the least number of active connections).

• Fault tolerance: Within the flexible architecture of
OpenStack, fault tolerance can be handled at different
levels. These levels depend on the way the IaaS system
is configured and deployed. At the VMs level, in order
to prevent failures, users can develop scheduling algo-
rithms (besides the three already supported algorithms
by OpenStack) for placing the VMs that best fits to
his use cases. Some scheduling algorithms have been
designed at the present time, such as: group scheduling
(i.e, VMs that provide the same functionalities are
grouped and placed to separate PMs) and rescheduling
(i.e, rescheduling of VMs from failed host to surviving
hosts using live-migration). At storage or database
level, fault tolerance is achieved by using replication
and synchronization to ensure that a failure occurred
at one device will not break the whole system.

• Availability: this property seeks to minimize sys-
tem down time and data loss. In OpenStack, high
availability can be achieved through different setups
depending on types of services, i.e, stateless or stateful
services. Stateless services can provide answer to a
request without requiring further information of other

430432

services or historical data. OpenStack stateless ser-
vices include nova-api, nova-scheduler, etc. For these
services, high availability is achieved by providing
redundant instances and load balance them. In the
opposite, stateful services are ones that requires other
information to answer a request, which makes them
difficult to obtain high availability. These services,
e.g, database or storage, can be highly available by
using replication but at the same time the system
has to maintain the synchronization between the main
version and replicated versions in order to keep the
system consistent [14].

• Security: OpenStack has a separated service (Identity
service) which provides a central authentication man-
agement across the cloud operating system and users.
The possibility to set up VPNs and firewalls is also
available.

• Compatibility: OpenStack is highly compatible with
Amazon EC2 and Amazon S3 and thus client ap-
plications written for Amazon Web Services can be
used with OpenStack with minimal porting effort [13].
In terms of hypervisors, OpenStack supports multiple
hypervisors, e.g, Xen, KVM, HyperV, VMWare, etc.
Other hypervisors with existing standard drivers can
also be interfaced with OpenStack through standard
library, e.g, libvirt library.

III. CLOUDSTACK

CloudStack [15] is an open source software platform,
written in Java, designed for development and management
of cloud Infrastructure as a Service. It aggregates comput-
ing resources for building private, public or hybrid clouds.
CloudStack is a turnkey technology that brings together the
”Stack” of features requested by companies and users, like
data centers orchestration, management and administration of
users and NaaS (Network as a Service).

The start of CloudStack was with Cloud.com in 2008. In
May 2010, it was open source under GNU General Public
License. Citrix bought CloudStack in July 2011, then in
April 2012, Citrix donated CloudStack to Apache Software
Foundation (ASF) where it was relicensed under Apache 2.0
and accepted as an incubation project. Since March 2013,
CloudStack became a Top Level Project of Apache. Many
companies are basing on CloudStack for building and manag-
ing their cloud infrastructures. Among these companies, there
are: Nokia, Orange, Apple, Disney and many others.

A. CloudStack Architecture

In this section, we break down the logical architecture
of CloudStack, shown in Fig. 5. In CloudStack, physical re-
sources are organized and managed in a hierarchical structure.
The lowest level contains computational devices such as host
and primary storage. Hosts are attached together and access
shared storage to form a Cluster. The next level consists of
clusters which are combined by a layer 2 switch to form a
Pod. Go up to higher level, Pods are grouped together with
Secondary storage by layer 3 switch to form a Zone. At
the highest level, zones are grouped to create a Region. All
these resources are managed by a Management Server. In the

Fig. 5: CloudStack architecture

following, we describe in details each component that forms
the whole architecture.

1) Host: A host represents a physical computational ma-
chine that contains local storage. The physical hosts are virtu-
alized by hypervisors. CloudStack supports many hypervisors
for VMs management such as Xen, KVM, vSphere, Hyper-
V, VMWare, etc. as well as bare metal provisioning. All
hosts within a cluster must be homogeneous in terms of
the hypervisor, with the possibility of having heterogeneous
hypervisors in different clusters.

2) Cluster: Within a cluster, hosts are tied together into the
same computational pool with the primary storage and have
the same IP subnet. The primary storage can be any kind of
storage supported by the hypervisor. One cluster can have more
than one primary storage device.

3) Pod: A Pod is a collection of different clusters linked
with a layer 2 switch. Hosts in the same Pod are in the same
subnet. Pod is not visible to the end user.

4) Zone: The benefit of using Zone is for isolation and
redundancy. Often, it corresponds to a data center; although if
a data center is large enough, it can have multiple zones. A
zone contains Pods that are attached to the secondary storage
using a layer 3 switch. Zones are visible to the end user and
they can be private or public. Public zones are visible to all
users in the cloud while private zones are visible only to users
from a particular domain.

5) Region: A region is the largest organizational unit in
CloudStack. A region contains multiple zones distributed in
geographic locations close to each other.

6) Management Server: A Management Server is used to
manage all resources in cloud infrastructure through APIs or
UI. One management server can support around 10K hosts and
can be deployed on a physical server or a VM. In case we have
more than one management server, user interaction to either of
them will return the same result. This ensures high availability
of CloudStack. A database is required for management servers
to be persistent. In order to prevent single point of failure, we

431433

can have one primary database and several database replica
which always stay synchronized with the primary copy.

7) Storage: In addition to the host local storage, Cloud-
Stack manages two main types of storage: primary storage
and secondary storage.

• Primary storage: is a storage associated with a cluster
or a zone. In the same cluster, we can deploy multiple
primary storages. This kind of storage is basically used
to run VMs and stores application data. Since this
storage interacts directly with applications deployed in
VMs, it can be expensive in terms of I/O operations,
this is the reason why it is placed physically near to
the hosts.

• Secondary storage: is used to store ISO images, tem-
plates, snapshots, etc. It supports two different types,
NFS and Object Storage.

◦ ISO image: is used when user wants to create
a VM.

◦ Template: is the base operating system image
that the user can choose when creating new
instance. It may also include additional con-
figuration information such as installed appli-
cations.

◦ Snapshot: is used as backup for data recov-
ery service. CloudStack supports two types
of snapshot: individual snapshot and recurring
snapshot. The former is one-time full snapshot,
while the latter is either one-time full snapshot
or incremental snapshot.

8) Networking: CloudStack supports the use of different
physical networking devices (e.g. NetScaler, F5 BIG-IP, Ju-
niper SRX, etc). In CloudStack, users have the ability to choose
between two types of networks scenarios: basic and advanced.
The basic scenario is for an AWS-style networking. It provides
a single network where guest isolation is done through the
layer 3 switch. The advanced scenario is more flexible in
defining guest networks [15]. For example, the administrator
can create multiple networks for use by the guests. CloudStack
provides many networking services. Among them we cite:

• Isolation: CloudStack assures the isolation of net-
works, by allowing the access to the isolated network
only by virtual machines of a single account.

• Load Balancing: to balance the traffic in the cloud,
the user can create a rule to control and distribute
the traffic and apply it to a group of VMs. Within
the defined rule, user can choose a load balancing
algorithm among the supported ones.

• VPN: for accessing to the VM using CloudStack
account, users can create and configure VPNs. Each
network has its own virtual router, so VPNs are not
shared across different networks. Using VPN tunnels,
hosts in different zones are allowed to access each
other.

• Firewall: hosts in the same zone can access to each
other without passing through the firewall. Users can
use external firewalls.

B. Properties

Cloudstack has many properties that motivate companies
to use it to manage their infrastructure. The main properties
of CloudStack are [15]:

• Live migration: A live migration of running VMs
between hosts is allowed in CloudStack through the
Dashboard. Depending on the VMs hypervisor, mi-
gration conditions can be different. For example, live
migration using KVM hypervisor will not support the
use of local disk storage, and source and destination
hosts have to be in the same cluster; while Xen
and VMWare support local disk storage and allow to
migrate between different clusters [16].

• Load balancing: a Load balancer is an optional compo-
nent of CloudStack that allows to distribute the traffic
among different management servers [17]. In addition
to creating rules and using load balancing algorithms,
CloudStack offers the possibility to integrate with
external load balancers such as Citrix NetScaler [18].

• Fault tolerance: in CloudStack, fault tolerance is
achieved at different scales. In order to prevent failures
of management server, the server can be deployed
in multi-node configuration. Should one management
node fail, other nodes can be used without affecting
cloud functioning. Failures at database level are han-
dled by using one or more replication of the database
linked to the management server. For host’s fail-over,
CloudStack recovers the VM instances by taking the
images from secondary storage and using application
data in primary storage.

• Availability: CloudStack ensures high availability of
the system by using multiple management server
nodes which may be deployed with load balancers.

• Security: in addition to isolation using different ac-
counts, VPNs and firewalls, CloudStack offers the
isolation of traffic using the strategy of security groups
which are sets of VMs that filter the traffic on the basis
of configuration rules. CloudStack provides a default
security group with predefined rules, however they can
be modified if necessary.

• Compatibility: CloudStack is built based on a plug-
gable architecture, one cloud can support different hy-
pervisor implementations including: Hyper-V, KVM,
LXC, vSphere, Xenserver , Xen Project and also bare
metal provisioning. Moreover, CloudStack is compat-
ible with Amazon API and enables the integration of
these two platforms.

• Scalability: CloudStack has the ability to manage
thousands of servers distributed in different data cen-
ters and different locations thanks to the management
server capability (one management server node can
manage a big pool of physical resources), and the
possibility of using multiple management servers for
reducing VMs downtime.

• API extensibility: The CloudStack APIs are very pow-
erful and allows developers to create new command
line tools and UIs, and to plug them into CloudStack

432434

architecture. If the developer wants to use new hyper-
visor, new storage system or new networking service,
he just needs to write a new plug-in in Java and
integrate it.

IV. CLOUD FRAMEWORKS COMPARISON

In this section, we provide a comparison between Open-
Stack and CloudStack, looking at three different levels:

1) General comparison aimed at providing high level
comparison in terms of model, policy and architecture

2) Functional comparison whose goal is to compare
supported functionalities, and

3) Property comparison which finally considers cloud
properties implemented in these platforms.

It is important to highlight that, since the two platforms
are under continuous development, there are not complete
documentation and technical reviews provided to fully un-
derstanding their technical aspects. Hence, it is difficult to
perform a reasonable comparison between the two. However,
we attempt to provide a comparison from user perspective,
considering the properties that a user needs to look at when
choosing a IaaS cloud solution.

A. General Comparison

The general comparison is provided in Table I, considering
general aspects: licensing, cloud model compatibility, business
model, architecture, etc.

OpenStack CloudStack

Open Source License Apache 2.0 Apache 2.0

Commercial model Free Free

Compatibility with Private, public and hybrid
clouds

Private, public and hybrid
clouds

Easy installation Difficult (many choices,
not enough automation)

Medium (Few parts to in-
stall)

Architecture Fragmented into many
pieces

Monolithic controller

Large organizations
adopters

Yahoo, IBM, VMWare,
Rackspace, Redhat, Intel,
HP, etc.

Nokia, Orange, Apple,
Citrix, Huawei, TomTom,
Tata, etc.

TABLE I: General comparison between OpenStack and CloudStack

As it can be seen, the two frameworks are generally equal
with respect to business model, licensing policy and cloud
models. Each of them has been adopted by large organizations.
Nevertheless, a big difference is spotted from the architecture
viewpoint. While OpenStack is fragmented into modules,
CloudStack has a monolithic central controller. This difference
is explained by the open philosophy of Open Stack which
tries to avoid technology lock-ins and provides high degree
of flexibility and extension. As a consequence, OpenStack
is characterized by increasing complexity of installation and
configuration.

B. Functional Comparison

The functional comparison looks at the offered function-
alities or technical aspects of the two solutions, as described
in Table II. Supported hypervisors lists all hypervisors that
are currently available in these two platforms, even though
there are ways to interface with non-supported hypervisors.

Administration feature is the interface available to interact with
these platforms. Both solutions present Web interfaces (Web
UI) and command line interfaces (CLI). Also user management
is provided in both platforms. Concerning the monitoring
feature, both OpenStack and CloudStack can capture system
states and resources usage in order to identify and adapt to
occurring problems or perform optimization.

Functionality OpenStack CloudStack

Supported hypervisors Xen, KVM, HyperV,
VMWare, LXC, vSphere

Xen, KVM, HyperV,
VMWare, LXC, vSphere

Administration Web UI, CLI Web UI, CLI

User management yes yes

Monitoring Health monitoring, Re-
sources usage trend mon-
itoring

Health monitoring and us-
age data monitoring

TABLE II: Functional comparison between OpenStack and CloudStack

Other important functional aspects of open source cloud
solutions are related to the activeness of its community. A
solution that is always seeing new releases is constantly
evolving. An active community, with well documented wiki,
good bug reporting and fixing system and active users support
are fundamental features for the success of an open source
solution.

About the releases, after its insertion on Apache Incubator,
CloudStack made its first major release (4.0.0-incubating)
on November of 2012. Since then, there were three major
releases (4.1 and 4.2 and 4.3) and four minor ones. Meanwhile,
OpenStack does, since 2012, two big releases per year. In 2012,
there were Essex and Folsom, in 2013 Grizzly and Havana and
in 2014 Icehouse and the now under development Juno. In
OpenStack, the number of minor releases varies from version
to version. From this we can conclude that, even though
OpenStack is showing more updates per year, both solutions
are regularly updated.

About the activeness of the community, OpenStack remains
the largest and most active open source cloud computing
project [19]. Nevertheless, CloudStack is growing and has
an important participation in the market. Both platforms have
well updated wikis and rely on summits to get together their
developers. An active forum community for bug reporting and
user support can be also found for both solutions. In this
point, OpenStack has a bigger and more active community
but CloudStack has gained momentum in the last years.

C. Properties Comparison

Properties comparison gives deeper insights into the two
platforms, considering some important properties that an IaaS
has to provide. The comparison is given in Table III.

Property OpenStack CloudStack

Live migration Yes Yes

Load balancing VM level, PM level VM level, host level

Fault tolerance VM scheduling, replica-
tion

VM scheduling, replica-
tion

Availability Redundancy, load balancer Redundancy, load balancer

Security VPNs, firewall, user au-
thentication, others

VPNs, firewall, user man-
agement, others

Compatibility Amazon EC2, Amazon S3 Amazon EC2, Amazon S3

TABLE III: Properties comparison between OpenStack and CloudStack

433435

Live migration is an important property in IaaS solution.
Both platforms provide different ways to support live mi-
gration. OpenStack offers two types of live migration, while
CloudStack has migration conditions depending on the hyper-
visors.

The two platforms support flexible load balancing mecha-
nisms even though they are made through different strategies.
Load balancing at host level is implemented in OpenStack
through live migration, which is the same in CloudStack; while
load balancing at VM level is achieved in OpenStack through
the flexible plug-in architecture of Network component. This
capability can be also achieved at network layer in CloudStack
with ability of using external load balancers.

Fault tolerance mechanisms are provided in both platforms
under the policies to schedule VM placement or services
replication.

High availability can be achieved in both platforms by
means of using redundant service instances and load balancing
to distribute workloads among those instances.

Security is provided by the two platforms through setting
up VPNs, firewall and other services. A central user authen-
tication system is available in OpenStack, while CloudStack
has user account management. OpenStack has an extensible
architecture which allows other systems such as intrusion
detection system to be plugged in and deployed; instead,
CloudStack offers security group to isolate VMs.

OpenStack and CloudStack are also compatible with Ama-
zon APIs that enable the potential integration with this domi-
nant commercial public cloud solution.

V. CONCLUSIONS

OpenStack and CloudStack are two prominent open source
platforms that offer tools and services for building private,
public, and hybrid clouds. In this paper, we have presented
the up-to-date architecture of the two platforms, looking into
the details of the provided functionalities and their properties.
We conclude the work with the comparison between the two.
From the comparison, we realize that it is not easy to say which
is the best between them, since they are both stable and used
by many large companies, and they continue to evolve. These
two solutions support different hypervisors, storages and use
different strategies to build a IaaS system. The final choice is
for the user who decides to move his business to the cloud,
which hypervisors he wants to use, which storage style is
more adaptable for his applications, how he wants to deploy
his infrastructure, etc. Since the two platforms are on-going
developing software, it is necessary to continue updating their
development path before selecting an IaaS solution to adopt.

REFERENCES

[1] L. Schubert, K. G. Jeffery, and B. Neidecker-Lutz, The Future of Cloud
Computing: Opportunities for European Cloud Computing Beyond
2010:–expert Group Report. European Commission, Information
Society and Media, 2010.

[2] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “Comparison of multiple iaas
cloud platform solutions,” in Proceedings of the 7th WSEAS Interna-
tional Conference on Computer Engineering and Applications,(Milan-
CEA13), ISBN, 2012, pp. 978–1.

[3] X. Wen, G. Gu, Q. Li, Y. Gao, and X. Zhang, “Comparison of open-
source cloud management platforms: Openstack and opennebula,” in
Fuzzy Systems and Knowledge Discovery (FSKD), 2012 9th Interna-
tional Conference on. IEEE, 2012, pp. 2457–2461.

[4] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, “Virtual
infrastructure management in private and hybrid clouds,” Internet Com-
puting, IEEE, vol. 13, no. 5, pp. 14–22, 2009.

[5] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Yous-
eff, and D. Zagorodnov, “The eucalyptus open-source cloud-computing
system,” in Cluster Computing and the Grid, 2009. CCGRID’09. 9th
IEEE/ACM International Symposium on. IEEE, 2009, pp. 124–131.

[6] J. Peng, X. Zhang, Z. Lei, B. Zhang, W. Zhang, and Q. Li, “Comparison
of several cloud computing platforms,” in Information Science and
Engineering (ISISE), 2009 Second International Symposium on. IEEE,
2009, pp. 23–27.

[7] P. T. Endo, G. E. Gonçalves, J. Kelner, and D. Sadok, “A survey on
open-source cloud computing solutions,” in Brazilian Symposium on
Computer Networks and Distributed Systems, 2010.

[8] P. Sempolinski and D. Thain, “A comparison and critique of eucalyptus,
opennebula and nimbus,” in Cloud Computing Technology and Science
(CloudCom), 2010 IEEE Second International Conference on. Ieee,
2010, pp. 417–426.

[9] M. Mahjoub, A. Mdhaffar, R. B. Halima, and M. Jmaiel, “A compar-
ative study of the current cloud computing technologies and offers,”
in Network Cloud Computing and Applications (NCCA), 2011 First
International Symposium on. IEEE, 2011, pp. 131–134.

[10] I. Voras, B. Mihaljevic, M. Orlic, M. Pletikosa, M. Zagar, T. Pavic,
K. Zimmer, I. Cavrak, V. Paunovic, I. Bosnic et al., “Evaluating open-
source cloud computing solutions,” in MIPRO, 2011 Proceedings of the
34th International Convention. IEEE, 2011, pp. 209–214.

[11] S. A. Baset, “Open source cloud technologies,” in Proceedings of the
Third ACM Symposium on Cloud Computing. ACM, 2012, p. 28.

[12] O. C. Software, “Chapter 1. introduction to openstack,” in
http://docs.openstack.org/training-guides/content/module001-ch001-
intro-text.html. OpenStack.

[13] (2014) Openstack history. [Online]. Available:
https://www.openstack.org/

[14] OpenStack, “Introduction to openstack high availability,” in
http://docs.openstack.org/high-availability-guide/content/stateless-
vs-stateful.html. OpenStack.

[15] (2014) Cloudstack website. [Online]. Available:
https://cloudstack.apache.org/docs/

[16] (2014) Cloudstack live migration. [On-
line]. Available: http://cloudstack.apache.org/docs/en-
US/Apache CloudStack/4.1.0/html/Admin Guide/manual-live-
migration.html

[17] (2014) Management server load balancing. [On-
line]. Available: https://cloudstack.apache.org/docs/en-
US/Apache CloudStack/4.0.2/html/Installation Guide/management-
server-lb.html

[18] P. N. Sabharwal, “Integrating netscaler with cloudstack,” in Apache
CloudStack Cloud Computing. Packt Publishing.

[19] networkworld. (2014, July). [Online]. Available:
http://www.networkworld.com/article/2166407/cloud-computing/stack-
wars–openstack-v–cloudstack-v–eucalyptus.html

434436

