

FÍSICA APLICADA AO ESTUDO DE OBJETOS DO PATRIMÔNIO CULTURAL: MÉTODOS E TÉCNICAS

Profa. Dra. Márcia A. Rizzutto

MAE

rizzutto@if.usp.br

AULA 6

https://edisciplinas.usp.br/course/view.php?id=42442

23 de maio de 2017 DISCIPLINA DE PÓS-GRADUAÇÃO INTERUNIDADES EM MUSEOLOGIA

AMFI – Laboratório de Análise de Materiais por feixe iônicos

Semelhante ao acelerador do Louvre - Paris

LOUVRE-FRANÇA •Acelerador Pelletron, •Linha de feixe externo LAMFI - USP Laboratório para Análise de Materiais por Feixes Iônicos Acelerador Pelletron 1.7 MV Fonte de íons RF Alphatross e SNICS

NY INIXII

no no hat

Manfredo Harri Tabacniks

Análise PIXE Ceramicas Chimu (800AD-1476AD)

S.C. Lima, <u>M.A. Rizzutto</u>, N. Added, M.D.L. Barbosa, G.F. Trindade, M.I.D.A. Fleming, "Pre-Hispanic ceramics analyzed using PIXE and radiographic techniques", Nuclear Instruments and Methods in Physics Research B 269 (2011)3025-3031

Condições Esperimentais

Janela	25 μm kapton®
Folha de Au	50 μm/cm2
Detector 1	FWHM 160eV@MnK
Detector 2	FWHM 220eV@MnK

3635

ANÁLISE PIXE DE VASOS CERÂMICOS C DA CULTURA CHIMU MAE-USP (Dra Silvia C. Lima – tese doutorado em arqueometria)

Grupos A e B (B1,B2 e B3)concentração dos elementos químicos Al, Si, K e Ti

🔺 óleo sobre tela sobre madeira

53,9 x 74,2 x cm Doacão Francisco Matarazzo Sobrinho

Aplicações das Técnicas PIXE em Pinturas de Cavalete

Feixes iônicos para determinação de elementos químicos presentes nos pigmentos

"Paisagem" (53.9 x 74.2 cm), produzida em 1946 por Marion Sironi (pintor italiano - 1885–1961)

Bom exemplo de PIXE + RBS

Explorando um artefato arqueológico Pre-Inca - SIPÁN

Manfredo H. Tabacniks, Erich Saettone, Ricardo M. O. Galvão, José F. D. Chubaci, Walter Alva (Museu Brüning, Peru)

A cultura Mochica

• Viveram no Vale Mocha Valley, próximo aos Andes, norte do Peru, 1 AC to 7 AD.

Sociedade com grande desenvolvimento tecnológico e artístico e uma organização bastante complexa.

• Eles inovaram nas práticas tecnológicas e metalúrgicas, com extensivo uso de cobre em ornamentos, armas e utensílios.

• Desenvolveram sofisticado tecnologia de dourar o cobre com uma camada extremamente fina de de ouro homogeneamente.

Em 1987 foi descoberto as *Tombas Reais do senhor de Sipan* (Sipan = templo da Lua) Esta descoberta permitiu melhor entender esta extraordinária cultura e sua história. (Walter Alva).

Funeral do Senhor de Sipan e seus 8 companheiros, 300DC.

Artefato arqueológico Cu pré-Inca – SIPÁN Nort

Cultura Mochica

Dr. M. H. Tabacniks (IFUSP) 1987 encontrada a Tomba do Rei de Sipan (Walter Alva)

Método IOL

(Ion Luminescence = Luminescência com Ions)

Produção de luz

• Ionização dos átomos da amostra devido a energia depositada na irradiação

• Recombinação dos elétrons e átomos ionizados.

• Desexecitação e emissão de luz

A luminescência pode ser causada pelo próprio material da amostra (intrínseco) ou por impurezas presentes (extrínseco)

Método IOL

(Medidas no UNAM – Jessica F. Curado)

 $Ca_2B_5SiO_9(OH)_5$

Amazonita

600 700 800 900

KAlSi₃O₈

Estudos em Paleontologia (Paleometria) Mapas dos Fósseis

1000

900

800

Mn

1

0,8-

0,6 -

0,4

0,2

0

Dr. Tiago F. Silva equipe técnica do LAMFI

100

200

Intensity (a.u.)

Ref. Graft

Measurement

400

300

500

Wavelength (nm)

M. Gaft, Spectrochimica Acta Part A 54 (1998) 2163–2175.

600

700

Fotografia de um Mosaico com IOL

Matriz do fóssil foi determinada como Calcita (CaCO₃) com dopante Mn²⁺ usando as informações de IOL [Graft-1998].

Aplicações

Geological studies – Tourmaline mapas

Database of Brazilian rocks Watermelon Tourmaline

J. F. Curado in Collaboration with Geoscience Institute of the University of São Paulo and BAM/Bessy II

Applications

Geological studies – Tourmaline maps

Mosaic IBIL photograph

Indexed images may help in the study of distribution of elements more accurately

5mm

Mn

Zn

Applications

Geological studies – Tourmaline maps

The blue region was determined as pure quartz (SiO₂) using IBIL [Luff-1990]

B.J. Luff, J.Phys.: Condens. Matter 2 (1990) 8089-8097.

Análise em ar (sem necessidade de vácuo); Foco = 5 mm, volume sensível 0,5x0,5x0,5 mm³ Autofoco para tratar amostras rugosas; Aquisição multi-paramétrica: (luz, raios X, raios gama, prótons, alfas, colorimetria) Mesa XYZ amplo alcance (60cm) e alta precisão (± 5μm)

X-ray detector

Amptek XR-100CR 12.5-μm Be window 4.4-mm2 x 500-μm detection volume 145-eV resolution @ Fe-kα

Light spectrophotometer Ocean Optics USB4000 200-1100nm Optical range 10-nm FWHM resolution 3648 pixels/16 bits ADC 1000-µm apperture

Particle detector

Camberra 50-mm2 active area 100-mm depletion depth 12-keV resolution (7-mm air/12-um kapton foil) ~70-keV final resolution

HP-Ge plannar detector

たんやたたいと

Ortec GLP-10180/07P4 130-µm Be window 80-mm2 x 7-mm detection volume 180-eV resolution @ 5.9-keV

Projetado e construído no IFUSP com recursos do NAP-NAFNA Dr. Tiago Fiorini

Novas inovações neste tema Fazeronapas da distribuição química dos elementos (escala milimétrica)

Sistema de feixe externo do LAMFI + mesa robotizada para analise de fósseis

Estudos em Paleontologia (Paleometria) Mapas dos Fósseis

Gabriel Osés Prof. Setembrino Petri Prof. Mírian Liza Alves Forancelli Pacheco Instituto de Geociências - USP

Dr. Tiago F. Silva e equipe técnica do LAMFI

Aplicações

Estudos Paleontológico – mapas de Fósseis

Estudos em Paleontologia (Paleometria) Mapas dos Fósseis

<u>Dr. Tiago F. Silva</u> <u>e equipe técnica do LAMFI</u>

A.

5mm

Applications

Paleontological studies – Fossil maps

Investigation : the action of micro-organisms in

Fossil in Calcite found in bottom of a lake Low concentration of oxygen and high concentration of minerals

Study : Organic material replaced by elements like Fe, Cu and Zn

Sistematização das técnicas de análise

74.44	Técnica "in situ"		especificidade	resolução espacial	sensibilidade	interferencia	
CAR	Microscopia Raman	sim	excelente (molecular)	excelente	excelente	pouca	
15/15	XRD	não	boa (molecular)	pobre	aumenta como número atômico	pouca	
The The	SEM-EDX	não	boa (elementar)	excelente	boa	sem	
art of	XRF	sim	boa (elementar)	boa	boa	pouca	
151+5	PIXE/PIGE	sim	boa (elementar)	pobre	boa	sem	
The Th	IR	sim	boa (molecular)	fraca	boa	ruim	
(12) A	UV-VIS	sim	pobre (molecular)	fraca	boa	fraca	
	Microscopia ótica	sim	moderada (elementar e molecular)	boa	fraca	sem	
ina Th							

IN N. N. N.

ro

rama

• Capítulo 5 – Análises composicionais e estruturais

- Princípios Básicos das técnicas de infravermelho, Raman e Difração
 - Espectrometria Raman
- Espectrometrias de Infravermelho com Transformada de Fourier
 - Estrutura cristalina e Difração

Aplicações

- Capítulo 6 Ativação Neutrônica e Análises Isotópicas
 - Princípios Básicos da técnica de ativação neutrônica
 - Separação isotópica e análises
 - Aplicações nas análises de objetos

• Capítulo 7: Métodos de Datação

- Dendocronologia
- Datação com radiocarbono
 - Termoluminescência
- Espectroscopia de Massa com aceleradores
 - Aplicações nas análises de objetos

Particularmente estamos interessados nas transições vibracionais (observadas através do

espectro Raman ou infravermelho (IR))

As transições vibracionais podem ser observadas através do espectro infravermelho (IR) ou Raman

Origem física é diferente

Espectro Infravermelho(absorção) – são originados por fótons na região de IR que são absorvidos por transições entre dois níveis vibracionais das moléculas em um estado eletrônico fundamental.

amostra

 $I_{o}(v)$

I(v)

Espectro Raman (espalhamento) – tem sua origem na polarização eletrônica causada por luz: UV, visível ou IR próximo.

Espectroscopia Raman é baseada na detecção de luz espalhada. É uma técnica que usa uma fonte monocromática de luz (laser de v) que ao atingir um objeto, é espalhada por ele, gerando luz de mesma energia ou de energia diferente da incidente

Modos de excitação molecular

Fornecem uma ferramenta espectroscopia para analisar os componentes moleculares dos materiais principalmente os pigmentos

.

Pigment	Chemical Name	Formula	Date#	5
Azurite	Basic copper(II) carbonate	2 GaCO ₃ , Gu(OH) ₂	min.	
Cerulean blue	Cobalt(II) stannate	CoO.nSnO2	1821	1
Chinese blue	Barium copper(II) silicate	${\tt BaCuSi_4O_{10}}$	ca 480 BC	1
Cobalt blue	Cobalt(II)-doped alumina glass	CoO.nAl ₂ O ₃	ca 1550 Ming dynasty	1
Egyptian blue	Calcium copper(11) silicate	$\rm CaCuSi_4O_{10}$	ca 3100 BC	1
Fluorite (and antonozite)	Calcium fluoride (purple)	CaF2	min.	-
Lazurite (from Iapis Iazuli)	Sodalite + sulfur radical anions	$\mathrm{Na}_8[\mathrm{Al}_6\mathrm{Si}_6\mathrm{O}_{24}]\mathrm{S}_8$	min. 1828	10.00
Manganese blue	Barium manganate(V) sulfate	$Ba(MmO_4)_2 + BaSO_4$	1907	j
Maya blue	Palygorskite/ indigo/nano- material	Mg5(Si,Al)8D20 (OH)2.8H2O, etc.	Mayan	1000
Phthalocyanine blue /Winsor blue	Copper(II) phthalocyanine	$\mathrm{Cu}(\mathrm{C}_{32}\mathrm{H}_{16}\mathrm{N}_8)$	1936	1
Posnjakite	Basic copper(II) sulfate	CuSO ₄ . 3Cu(OH) ₂ .H ₂ O	min.	3
Prussian blue	Iron(III) hexa-cyanoferrate	$Fe_4[Fe(CN)_6]_3$, 14-16H ₂ O	1704	
Smalt	Cobalt(II) silicate	CoO.nSiO ₂	Earlier than 150	01
Vanadium blue	Vanadium(IV)-doped zircon	$ZrSiO_4(V(IV))$	1950?	1
Verdigris	Basic copper(II) acetate	$2Cu(O_2CCH_3)_2$ $Cu(OH)_2$	Corrosion product	Ĵ
Vivianite	Iron(II,III)- phosphate	$\mathrm{Fe_3P_2O_8-8H_2O}$	min.	1

Espectro Raman

 Primeiro postulado por Smekal em 1923
Dr. Chandrasekrahra Venkata Raman (1888-1970) foi o primeiro a observar o espalhamento Raman em 1928

Raman ganhou o prêmio Nobel de Física em 1930

No espalhamento Rayleigh (elástico), a interação da molécula com o fóton não provoca mudanças nos níveis de energia vibracional e/ou rotacional da molécula. Assim as frequências da luz incidente e espalhada são as mesmas.

No espalhamento não-elástico entre o fóton incidente e a moléculas há mudança nos níveis das energias vibracionais e ou rotacionais por um incremento (ΔE), e é possível obter muitas informações importantes sobre a composição química do objeto a partir dessa variação de energia.

Lei de conservação de energia: as energias dos fótons incidente e espalhado são diferentes

 $V_{incidente} \neq V_{espalhado}$

History

	1900	
Double monochromator Raman grating spectrometer Invention of the CCD	1910	Studies on scattering of light
	1920	Prediction of the Raman effect Discovery of the Compton effect
	1930	Discovery of the Raman effect Notions on the use of the Raman effect for chemical analyses
	1940	
	1950	Resonance Raman spectra
	1960	First laser Raman spectra Stimulated Raman effects
	1970	Hyper Raman spectra Basic principles of Raman microscopy Surface-enhanced Raman scattering
	1980	FT-Raman spectroscopy with NIR excitation
	1990	First use of CCD detectors for Raman spectroscopy
	2000	

Espectroscopia Raman

- O espectro de Raman é plotado em cm⁻¹.
- O espectro Raman é o comprimento da onda espalhada em relação ao da radiação de excitação (laser)
- As leituras são feitas na região do visível e do NIR.

O laser de 785nm é aceito como o melhor, porque: a) Bom espalhamento Raman b) Alta sensibilidade com o detector CCD c) Redução ou sem efeito de fluorescência

Espectroscopia Raman

É uma técnica complementar ao infravermelho Assim como o infravermelho, o espectro Raman pode ser usado para identificação ("finger print") Fornece informações sobre vibrações homo – nucleares simétricas como os estiramentos –c=c- e –s=s- que são fracas ou inativas no infravermelho Os anéis aromáticos possuem bandas fortes As amostras precisam de pouca ou nenhuma preparação È uma técnica não destrutiva. Analise "in situ" O vidro é um bom material para ser usado como janela para medidas por Raman Não requer acessórios especiais Não há interferência de umidade

Instrumentos Raman

O laser fornece uma fonte de excitação de fo

monocromático. Fótons emitidos são oticamente focados em rede de difração para análise espectroscópica e são registrados por um detector CCD

A análise microscópica possui resolução de ~0,5um Amostras precisam ter no mínimo o tamanho de ~5x10⁻⁷mm³ ou 10⁻⁹g

Equipamento Raman Enwave Optronics Inc. – Irvine, USA

EZRaman®-I-Dual-G Laser 785nm e 532nm

785 nm (6 cm⁻¹ resolução com espectro no intervalo de 100 até 2200 cm-1) e o laser de 532nm (6.5 cm-1 resolução com espectro no intervalo de 100 até 3100 cm-1).