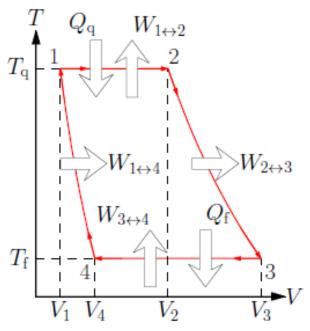
Física II Segunda Lei da Termodinâmica e Entropia

- Definição de Entropia
- Variações da Entropia
- Entropia e a Segunda Lei da Termodinâmica
- As duas Leis da Termodinâmica
- 5 Entropia em Processos Irreversíveis
- 6 A Entropia do Gás Ideal
- Termodinâmica e Mecânica Estatística
- 8 Apêndice

Definição de Entropia

Ciclo de Carnot



Ciclo de Carnot para um gás no diagrama TV.

Vimos anteriormente que para um Ciclo de Carnot, qualquer que seja a substância de trabalho:

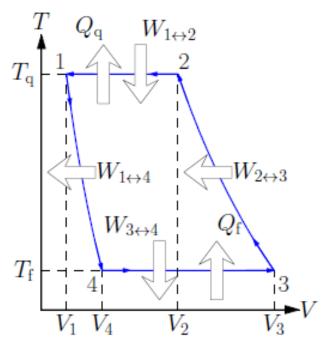
$$\frac{Q_{\mathsf{f}}}{Q_{\mathsf{g}}} = \frac{T_{\mathsf{f}}}{T_{\mathsf{g}}},\tag{1}$$

onde

- Qf e Qq são os valores absolutos dos calores trocados entre a substância de trabalho e os reservatórios térmicos, e
- Tf e Tq são as temperaturas termodinâmicas, na escala Kelvin, que são comuns ao reservatório e a substância de trabalho em cada isoterma.
- Lembre-se que este ciclo é reversível, por definição, o que exige que os quatro processos envolvidos sejam, necessariamente, quasi-estáticos.

Definição de Entropia

Ciclo de Carnot



Ciclo de Carnot para um gás no diagrama TV.

 O ciclo mostrado na figura anterior se aplica a um motor de Carnot. Neste caso, os calores absorvidos pela substância de trabalho são

$$\Delta Q_q = +Q_q e \Delta Q_f = -Q_f$$

porque ela **absorve** calor na isoterma a T_q e **rejeita** calor na isoterma a T_f .

 Para o ciclo invertido (refrigerador de Carnot), os calores absorvidos são

$$\Delta Q_q = -Q_q e \Delta Q_f = +Q_f.$$

Em ambos os casos, a equação (1) resulta que para qualquer substância de trabalho submetida a um ciclo de Carnot, em qualquer dos dois sentidos:

$$\frac{\Delta Q_{\mathsf{f}}}{T_{\mathsf{f}}} + \frac{\Delta Q_{\mathsf{q}}}{T_{\mathsf{q}}} = 0.$$
 (2)

Definição de Entropia

Processo quasi-estático reversível

- A 'lei de conservação' representada pela eq. (2), levou R. Clausius[1] a definir uma nova grandeza termodinâmica, denominada entropia (grego antigo έντροπία: transformação) associada aos estados de equilíbrio termodinâmico de qualquer sistema.
- Como a energia, a entropia é definida através de suas variações.
- Quando um sistema passa por uma transformação infinitesimal quasi-estática e reversível, a variação de sua entropia é definida como:

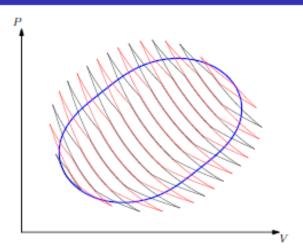
$$dS \equiv \frac{dQ}{T},\tag{3}$$

onde dQ é o calor **absorvido** na transformação e T a temperatura absoluta do sistema em que ocorre a troca de calor.

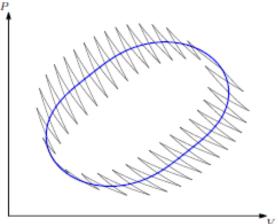
 Para computar a variação da entropia do sistema resultante de uma transformação finita, quasi-estática e reversível, basta integrar as variações infinitesimais ao longo da transformação:

$$\Delta S = \int_{\rm transformação} \frac{{\rm d}Q}{T}.$$

Ciclo reversível qualquer



Ciclo genérico reversível para um fluido, representado no diagrama PV, aproximado por uma justaposição de 16 ciclos de Carnot.



- Vamos mostrar que o resultado da equação (4) pode ser aplicado para qualquer ciclo reversível, como a da figura ao lado.
- Podemos sobrepor ao ciclo genérico uma sucessão de ciclos de Carnot adjacentes, escolhidos convenientemente e percorridos cada um no sentido do ciclo genérico.
- Os trechos em que as adiabáticas adjacentes se superpõem, podem ser eliminados, uma vez que são percorridos em sentidos opostos nos ciclos sucessivos, além de não contribuir para a variação da entropia.
- Os ciclos de Carnot justapostos são equivalentes a um ciclo constituído das isotermas ligadas ao remanescente das adiabáticas.
- Aumentando o número de ciclos de Carnot, o ciclo genérico pode ser aproximado com qualquer precisão desejada.

5

Ciclo reversível qualquer

 A variação da entropia de qualquer substância num ciclo reversível pode ser aproximada por

$$\Delta S_{\text{ciclo reversivel}} \approx \sum_{k=1}^{N} \Delta S_k = \sum_{k=1}^{N} \left(\frac{\Delta Q_{\mathsf{q}}^k}{T_{\mathsf{q}}^k} + \frac{\Delta Q_{\mathsf{f}}^k}{T_{\mathsf{f}}^k} \right) = 0,$$

onde a soma é sobre os N ciclos de Carnot justapostos que aproximam o ciclo.

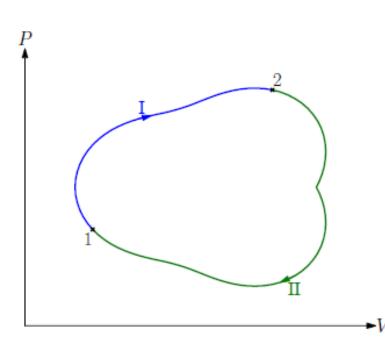
- No limite N → ∞, cada ∆Q^k se aproxima do calor infinitesimal dQ, absorvido pela substância, e cada T^k se aproxima da temperatura T da substância no ponto correspondente do ciclo.
- Neste limite a soma, cujos termos podem ser reordenados na ordem em que o ciclo é percorrido, se converte numa integral e podemos escrever,

para qualquer substância em qualquer ciclo reversível:

$$\Delta S_{\text{ciclo reversivel}} = \oint \frac{\mathrm{d}Q}{T} = 0.$$
 (5)

Entropia é uma função de estado

O resultado (5) significa que a entropia é uma **função de estado**, ou seja, a diferença de entropia entre dois estados quaisquer depende apenas dos estados e não do caminho reversível pelo qual ela é computada.



- Considere os estados 1 e 2 indicados no diagrama PV.
- Escolhendo o caminho I, a diferença de entropia entre eles será:

$$\Delta S^{\mathrm{I}} = \int_{1(\mathrm{I})}^{2} \frac{\mathrm{d}Q}{T}.$$

Escolhendo um outro caminho, II:

$$\Delta S^{\text{II}} = \int_{1(\text{II})}^{2} \frac{dQ}{T} = -\int_{2(\text{II})}^{1} \frac{dQ}{T}.$$

Assim, por causa da eq. (5)

$$\Delta S^{\rm I} - \Delta S^{\rm II} = \oint \frac{\mathrm{d}Q}{T} = 0 \Rightarrow \Delta S^{\rm I} = \Delta S^{\rm II}.$$

Entropia é uma função de estado

- Este resultado nos permite definir a função entropia para um estado de equilíbrio qualquer.
- Escolhemos um estado arbitrário de referência ao qual atribuímos à função o valor S(0) = S₀, que pode ser nulo.
- O valor da função num estado k qualquer é obtido por

$$S(k) = S_0 + \int_0^k \frac{\mathrm{d}Q}{T},$$

onde a integral pode ser realizada por **qualquer caminho reversível** entre o estado de referência 0 e o estado k.

- A entropia é uma grandeza extensiva, cuja dimensão é $[S] = \frac{\text{energia}}{\text{temperatura}}, \text{ a mesma dimensão da capacidade térmica.}$ Sua unidade no SI é, portanto, J/K.
- Como vimos anteriormente, num processo adiabático reversível a variação da entropia da substância é nula. Por isso tais processos são também denominados isentrópicos.

Entropia e Calor em Processos Quasi-estáticos

 Em processos quasi-estáticos, podemos escrever a eq. (3) como

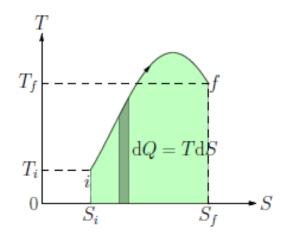
$$dQ = TdS$$
,

o que nos permite computar o calor absorvido por um sistema, ou substância, num processo infinitesimal em termos da sua entropia.

- Podemos representar a transformação num diagrama TS.
- O calor absorvido pelo sistema na transformação,

$$\Delta Q = \int_{\mathbf{i}}^{\mathbf{f}} T dS,$$

é equivalente a "área orientada" sob a curva que representa a transformação no diagrama TS.



Entropia e Calor em Processos Quasi-estáticos

 Para transformações quasi-estáticas de um sistema, a primeira lei pode ser reescrita como

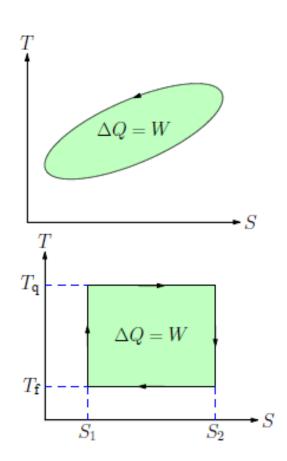
$$dU = dQ - dW = TdS - dW.$$

• Para processos cíclicos, $\Delta U = 0$ e, portanto

$$\Delta Q = W$$
.

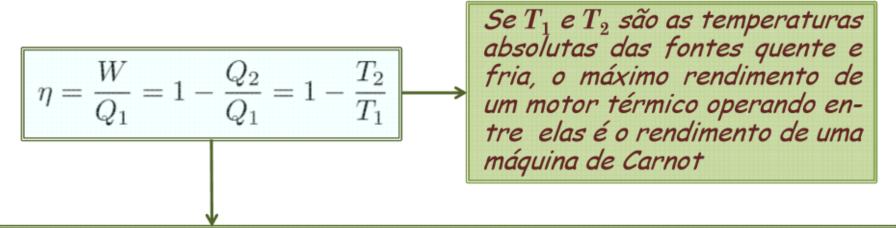
Assim, a área envolvida pelo ciclo no diagrama TS representa o calor total trocado e o trabalho total realizado pela substância.

- Ambos são positivos para o ciclo percorrido no sentido horário, e negativos no sentido oposto.
- Note que a representação do ciclo de Carnot para qualquer substância num diagrama TS tem uma forma retangular universal.



O Ciclo de Carnot

Utilizando a relação entre as quantidades de calor trocadas no ciclo de Carnot e as temperaturas das fontes, temos que o rendimento de uma máquina de Carnot é



A eficiência é nula se $T_1=T_2$ e cresce se T_2 diminui e T_1 aumenta. Em geral, $T_2\approx 300$ K e as tentativas de aumentar a eficiência das máquinas está em conseguir aumentar a temperatura (T_1) do reservatório quente. No entanto, ela pode ser igual à unidade (100%) se $T_2=0$ K, o que não é possível \Rightarrow 3ª Lei da Termodinâmica: Não é possível, por qualquer série finita de processos, atingir a temperatura zero absoluto

Entropia e a Segunda Lei da Termodinâmica

Entropia e máquinas térmicas não reversíveis

- Anteriormente, vimos que uma das consequências da segunda lei é que a eficiência das máquinas de Carnot é o limite máximo para a eficiência de qualquer máquina operando entre os mesmos dois reservatórios térmicos. Para os três tipos de máquinas cíclicas, obtivemos
 - motor:

$$\eta = \frac{W}{Q_{\mathsf{q}}} = 1 - \frac{Q_{\mathsf{f}}}{Q_{\mathsf{q}}} \le \eta_{\mathsf{f}} = 1 - \frac{T_{\mathsf{f}}}{T_{\mathsf{q}}}$$
(8a)

refrigerador:

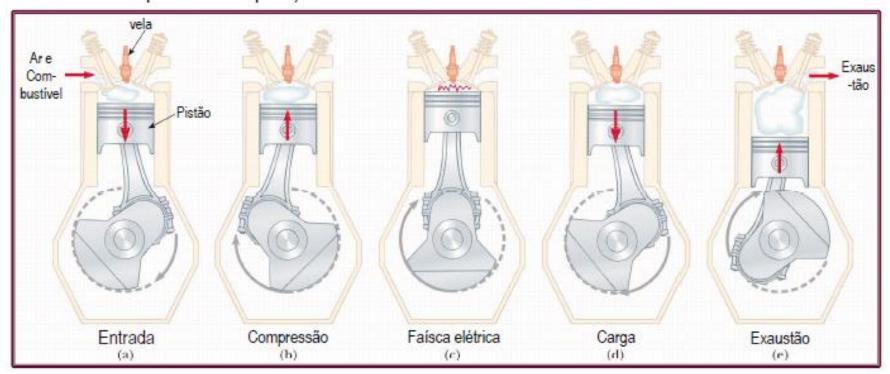
$$COD^{\mathsf{R}} = \frac{Q_{\mathsf{f}}}{W} = \frac{Q_{\mathsf{f}}}{Q_{\mathsf{q}} - Q_{\mathsf{f}}} \le COD^{\mathsf{g}}_{\mathsf{f}} = \frac{T_{\mathsf{f}}}{T_{\mathsf{q}} - T_{\mathsf{f}}}$$
(8b)

bomba de calor:

$$COD^{BC} = \frac{Q_{q}}{W} = \frac{Q_{q}}{Q_{q} - Q_{f}} \le COD_{r}^{BC} = \frac{T_{q}}{T_{q} - T_{f}}$$
(8c)

 O índice 'r' é usado para indicar a correspondente máquina reversível de Carnot, cuja eficiência é dada em termos das temperaturas termodinâmicas absolutas dos dois reservatórios térmicos.

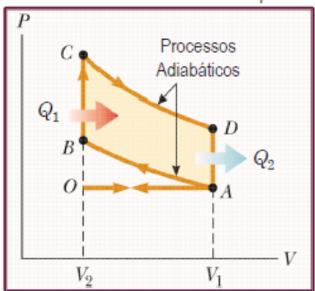
Em um motor a gasolina, seis processos ocorrem em cada ciclo, cinco dos quais estão na figura abaixo, onde consideramos o sistema sendo o interior de um cilindro acima do pistão. Em um ciclo, o pistão se move duas vezes para cima e para baixo. Este processo, em um diagrama $P \times V$ pode ser aproximado por um ciclo chamado *Ciclo de Otto* (idealização de um motor de quatro tempos)



 $\underline{O \rightarrow A}$: (a) O pistão se move para baixo e uma mistura de ar e gasolina, a pressão atmosférica, entra no cilindro (sistema). Neste processo o volume aumenta de V_2 para V_1 . Esta é a parte de entrada de energia no ciclo do sistema, carregada com a massa de combustível (energia interna).

 $A \rightarrow B$: (b) O pistão se move para cima e a mistura de ar e combustível sofre uma compressão adiabática de V_1 para V_2 e a temperatura cresce de T_A para T_B . O trabalho efetuado pelo gás (W_{AB}) é negativo e seu valor é a área sob a curva AB do gráfico.

<u>B→C</u>: (c) A combustão ocorre quando a faísca elétrica é acionada, e não faz parte do ciclo porque ocorre em um período de tempo muito curto, enquanto o pistão está em sua posição mais alta. A combustão representa uma transformação rápida da energia interna armazenada

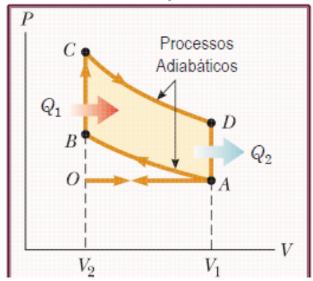


nas ligações químicas do combustível, que está relacionada com a temperatura. Neste período de tempo a pressão e a temperatura no cilindro crescem rapidamente, com a temperatura variando de T_B para T_C . O volume permanece praticamente constante e nenhum trabalho é efetuado pelo gás. No gráfico, esta parte do processo pode ser representada como se uma quantidade de calor Q_1 entrasse no sistema (na realidade é só uma transformação de energia que já estava no cilindro)

 $\underline{C} \rightarrow \underline{D}$: (d) Expansão adiabática do gás de V_2 para V_1 . Essa expansão causa uma diminuição da temperatura de T_C para T_D . O trabalho efetuado pelo gás W_{CD} empurra o pistão para baixo e seu valor é a área sob a curva CD do gráfico (positivo).

<u>D→A</u>: (Não mostrado na figura) A válvula de exaustão é aberta e a pressão rapidamente decresce. Durante este período de tempo muito curto, enquanto o pistão está em sua posição mais baixa, o volume é praticamente constante e energia é expelida do interior do cilindro, continuando a ser expelida na próxima etapa.

 $\underline{A
ightharpoolnomedolooble O$: (e) O pistão se move para cima enquanto a válvula de exaustão permanece aberta. Gases residuais são expulsos a pressão atmosférica e o volume decresce de V_1 para V_2 . O ciclo é, então, repetido.



Assumindo que a mistura ar-combustível é um <u>gás ideal</u>, podemos calcular o rendimento ideal de uma máquina operando no ciclo de Otto. Pela 1ª Lei da Termodinâmica:

$$W = Q_1 - Q_2$$

Os processos $B \rightarrow C$ e $D \rightarrow A$ acontecem a volume constante (isócoros) e, portanto

$$Q_1 = n C_V (T_C - T_B) \ e \ Q_2 = n C_V (T_D - T_A)$$

Assim, obtemos para o rendimento térmico

$$\eta = \frac{W}{Q_1} = 1 - \frac{Q_2}{Q_1} = 1 - \frac{(T_D - T_A)}{(T_C - T_B)}$$

Os processos $A \rightarrow B$ e $C \rightarrow D$ são adiabáticos (Q = 0) e portanto obedecem a relação $TV^{\gamma-1}$ = constante, e para estes processos temos que

$$A \to B: T_A V_A^{\gamma - 1} = T_B V_B^{\gamma - 1}$$

$$C \to D: T_C V_C^{\gamma - 1} = T_D V_D^{\gamma - 1}$$

Como $V_A = V_D = V_1$ e $V_B = V_C = V_2$ temos que

$$T_A = T_B \left(\frac{V_2}{V_1}\right)^{\gamma - 1} \quad e \quad T_D = T_C \left(\frac{V_2}{V_1}\right)^{\gamma - 1}$$

E o rendimento térmico é

$$\eta = 1 - \frac{1}{(V_1/V_2)^{\gamma-1}}$$
 onde $V_1/V_2 \Longrightarrow \text{razão de compressão}$

As duas Leis da Termodinâmica

- Em seu livro, Clausius enunciou assim as duas leis da Termodinâmica:
 - A energia do universo é constante.

 $\Delta U^{\mathsf{u}} = 0 \qquad \textbf{(11)}$

A entropia do universo tende a um máximo.

- $\Delta S^{\mathsf{u}} \ge 0$ (14)
- As duas leis se referem a funções de estado associadas a sistemas termodinâmicos: a energia e a entropia.
- Energia pode ser transferida entre as partes de um sistema, se transformar de uma forma em outra, mas não pode ser criada nem destruída.
- A entropia, diferentemente da energia, não é uma quantidade conservada.
 A entropia total de um sistema fechado não pode diminuir, mas pode crescer.
- O crescimento da entropia é associado a processos irreversíveis, e assim, a segunda lei estabelece uma direção temporal única, crescente, para os eventos possíveis.
- Eventos que impliquem numa diminuição da entropia do universo, mesmo que obedeçam à primeira lei, são proibidos pela segunda.
- O máximo valor que a entropia de um sistema pode assumir é determinado pela primeira lei.

Princípio do Aumento da Entropia

O princípio do aumento da entropia é equivalente à 2ª Lei da Termodinâmica

 \Rightarrow Segundo o <u>Enunciado de Clausius</u>, se fosse possível realizar um processo cujo <u>único</u> efeito fosse transferir calor ΔQ de um corpo mais frio (T_2) para um corpo mais quente (T_1) , a variação da entropia do "universo" seria

$$\Delta S = -\frac{\Delta Q}{T_2} + \frac{\Delta Q}{T_1} = \Delta Q \, \frac{(T_2 - T_1)}{T_1 T_2} < 0 \, \mathop{\rm contrário}_{\rm aumento} \, \mathop{\rm da \, entropia}_{\rm option} \, {\rm aumento} \, {\rm da \, entropia}_{\rm option} \, {\rm aumento} \, {\rm da \, entropia}_{\rm option} \, {\rm aumento}_{\rm option} \, {\rm da \, entropia}_{\rm option} \,$$

 \Rightarrow Segundo o <u>Enunciado de Kelvin</u>, se existisse um processo cujo <u>único</u> efeito fosse remover calor ΔQ de um único reservatório térmico à temperatura T, convertendo-o totalmente em trabalho, a variação da entropia do "universo" seria

$$\Delta S = -\,\frac{\Delta Q}{T} < 0 \quad {\rm contrário \ ao \ princípio \ do \ aumento \ da \ entropia}$$

Entropia

Exemplos:

Processo adiabático reversível:

$$dQ_{\mathbf{R}} = 0 \longrightarrow \Delta S = 0 \longrightarrow S = \mathrm{constante}$$
 (isentrópico)

2) Transição de fase:

 $P \in T$ são constantes (T = temperatura de transição) : isotérmico reversível

$$\Delta S = S_f - S_i = \frac{1}{T} \int_i^f dQ_{\mathbf{R}} = \frac{\Delta Q_{\mathbf{R}}}{T}$$
 $\therefore \Delta S = \frac{mL}{T}$

 \implies Fusão de 1 kg de gelo à 1 atm: $L = 79,6 \,\mathrm{cal/g}$

$$\Delta S = S_{\acute{a}gua} - S_{gelo} = \frac{79, 6 \times 10^3}{273} \approx 292 \,\mathrm{cal/K} = 1220 \,\mathrm{J/K}$$

Entropia

Exemplos:

3) Fluido incompressível, sem dilatação:

 $P \in V$ são constantes $(T_i \text{ para } T_f)$ e capacidade térmica $\mathbb C$ constante

$$dQ_{\mathbf{R}} = \mathbb{C}dT : \Delta S = \mathbb{C}\int_{T_i}^{T_f} \frac{dT}{T} = \mathbb{C}\ln\left(\frac{T_f}{T_i}\right) : S = \mathbb{C}\ln T + \text{constante}$$

4) Entropia de um gás ideal: Entropia por mol de substância s = S/n

$$ds = \frac{dQ_{\mathbf{R}}}{T} = \frac{dU}{T} + \frac{PdV}{T} \rightarrow \text{qualquer fluido}$$

 \Rightarrow Gás ideal: $dU = C_V(T)dT$ e PV = RT

Entropia

Exemplos:

$$\Rightarrow s = s(V,T)$$

$$ds = C_V(T) \, \frac{dT}{T} + \underbrace{\begin{pmatrix} RT \\ V \end{pmatrix}}_{T} \frac{dV}{T} = C_V(T) \, \frac{dT}{T} + R \, \frac{dV}{V}$$
 differencial exata

$$s_f - s_i = \int_{T_i}^{T_f} C_V(T) \frac{dT}{T} + R \int_{V_i}^{V_f} \frac{dV}{V} : \Delta s = \int_{T_i}^{T_f} C_V(T) \frac{dT}{T} + R \ln \left(\frac{V_f}{V_i}\right)$$

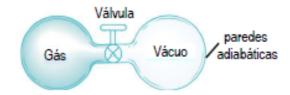
Se $C_V = \text{cte.}$ no intervalo de temperatura (T_i, T_f) :

$$s(V,T) = C_V \ln T + R \ln V + \text{ cte.}$$

Se um sistema sofre uma transformação *irreversível* de um estado inicial i a um estado final f, onde i e f são estados de equilíbrio termodinâmico, qual a variação da entropia correspondente? Como a entropia não depende do caminho seguido no processo que leva o sistema de i para f, então qual-quer processo <u>equivalente reversível</u> pode ser usado para calcular a variação da entropia

Exemplos:

Expansão livre de um gás:

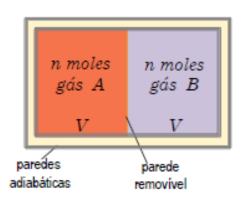


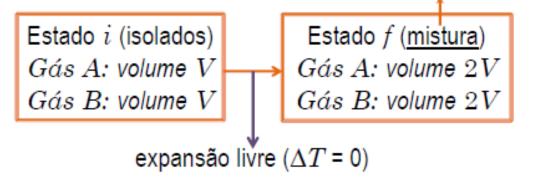
Neste processo, existe uma variação do volume $(V_i \to V_f, \text{ com } V_f > V_i)$ e temos ainda que: $\Delta U = \Delta Q_{\mathbf{I}} = \Delta W_{\mathbf{I}} = 0$ (embora PdV > 0, ou seja, $dW_{\mathbf{I}} \neq dW_{\mathbf{R}}$). Como $\Delta U = 0 \Rightarrow \Delta T = 0$, podemos tomar como processo reversível um processo isotérmico (T = constante), para calcular a variação da entropia da expansão livre do gás. Utilizando a expressão de S(V,T) com $T_f = T_i$, para um gás ideal:

$$\Delta S(V,T) = S_f - S_i = n R \ln \left(\frac{V_f}{V_i}\right) > 0$$

$$\Delta S(V,T) = n R \ln 2$$

2) Difusão de um gás em outro:



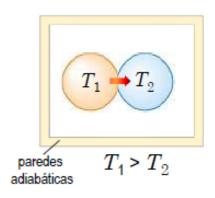


$$\Delta S = 2 n R \ln 2 > 0$$

cada gás se comporta como se ocupasse sozinho todo o

volume ocupado pela mistura

3) Condução de calor :



Calor flui do corpo ① para o corpo ②, mas a variação da quantidade de calor do <u>sistema</u> é nula. Neste processo irreversível existe variação da temperatura de cada um dos corpos:

corpo ① : $T_1 \to T_f$ e corpo ②: $T_2 \to T_f$. Para calcularmos a variação da entropia deste processo irreversível, podemos tomar

como processo reversível a remoção infinitesimal de calor ($dQ_{\bf R}$ = mcdT) do corpo à temperatura T_1 por contato térmico com um reservatório a essa temperatura e transferí-la para o corpo à temperatura T_2 utilizando um reservatório à essa temperatura. Utilizando-se uma sucessão de reservatórios com temperaturas variando gradualmente (de maneira infinitesimal) entre os extremos de temperatura, podemos obter a variação de entropia do processo de condução de calor entre os dois corpos. Antes de calcularmos ΔS , vamos calcular T_f .

$$\Delta S = \Delta S_1 + \Delta S_2 = \int_{T_1}^{T_f} \frac{dQ_{\mathbf{R}}}{T} + \int_{T_2}^{T_f} \frac{dQ_{\mathbf{R}}}{T}$$

$$= m c \int_{T_1}^{T_f} \frac{dT}{T} + m c \int_{T_2}^{T_f} \frac{dT}{T} = m c \left[\ln \left(\frac{T_f}{T_1} \right) + \ln \left(\frac{T_f}{T_2} \right) \right]$$

$$= m c \ln \left(\frac{T_f^2}{T_1 T_2} \right) = 2 m c \ln \left(\frac{T_f}{\sqrt{T_1 T_2}} \right)$$

$$\Delta S = 2 m c \ln \left[\frac{\frac{1}{2} (T_1 + T_2)}{\sqrt{T_1 T_2}} \right] > 0$$

resultado aplicável, também, para a mistura de duas massas iguais do mesmo fluido de calor específico c, inicialmente a temperaturas diferentes

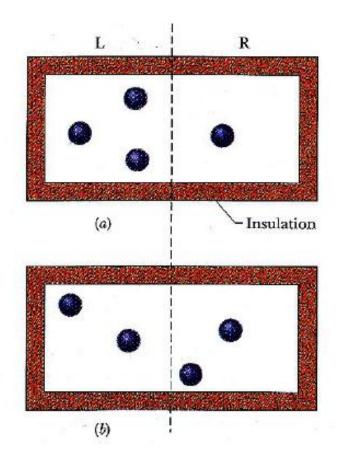
3) Exemplo de cálculo da variação da entropia de um processo de condução de calor:

Mistura-se 1 ℓ (1 kg) de água a 27°C com 1 ℓ de água a 90°C. Sabendo que $c = 1 \text{ kcal/(kg K)} = 4.816 \text{ x } 10^3 \text{ J/(kg K)}$, calcular a variação da entropia.

$$T_f = \frac{1}{2} (T_1 + T_2) = \frac{1}{2} (300 + 363) = 331,5 \text{ K}$$

$$\Delta S = 2 (1) (4, 168 \times 10^3) \ln \left[\frac{331, 5}{330} \right] = 38 \text{ J/K}$$

Entropia: Quatro moléculas em uma caixa



Equação de Boltzmann da entropia

$$S = k \ln W$$
 21.15

W é a multiplicidade da configuração

$$W = \frac{N!}{n_R! n_L!}$$

TABLE 21-1 FOUR MOLECULES IN A BOX

LOCATION OF MOLECULE				CONFIGURATION	MULTIPLICITY W (NUMBER OF	CONFIGURATION	CALCULATION OF W BY	ENTROPY (10 ⁻²³ J/K)
a	b	с	d	LABEL	MICROSTATES)	PROBABILITY	EQ. 21-14	FROM EQ. 21-15
L	L	L	L	I	1	1/16	4!/(4! 0!) = 1	0.00
R	L	L	L					
L	R	L	L	П	4	4/16	$4!/(3!\ 1!) = 4$	1.91
L	L	R	L				+	
L	L	L	R					
L	L	R	R			1998.		*
L	R	L	R			2		
R	L	L	R	m	6	6/16	$4!/(2!\ 2!) = 6$	2.47
L	R	R	L					
R	L	R	L					
R	R	L	L					
L	R	R	R					
R	L	R	R	IV	4	4/16	$4!/(1!\ 3!) = 4$	1.91
R	R	L	R					
R	R	R	L					
R	R	R	R	V	1	1/16	4!/(0! 4!) = 1	0.00
				Total number of mi	crostates 16		151 15	

Calcule a variação de entropia, usando a equação 21-15,, quando inicialmente N moléculas ocupam a metade do recipiente, e depois, quando N/2 moléculas ocupam cada metade..Use a fórmula de Stirling: $\ln N! \approx N(\ln N) - N$

$$W_i = \frac{N!}{(N)!(0)!} = 1 \qquad \Rightarrow S_i = k \ln 1 = 0$$

$$W_f = \frac{N!}{(N/2)!(N/2)!} \implies S_f = k \ln N! - 2k \ln \left[\left(\frac{N}{2} \right)! \right]$$

$$S_f = k \left[N \left(\ln N \right) - N \right] - 2k \left[\left(\frac{N}{2} \right) \ln \left(\frac{N}{2} \right) - \frac{N}{2} \right]$$

$$S_f = k \left[N \ln N - N - N \ln \left(\frac{N}{2} \right) + N \right] = kN \ln 2 = nR \ln 2$$

$$\Rightarrow \Delta S = S_f - S_i = nR \ln 2$$