

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos

PSI 3212 – LABORATÓRIO DE CIRCUITOS ELÉTRICOS

Cinthia Itiki, Inés Pereyra, Marcelo Carreño, Vitor Nascimento – 2017

Experiência 4 – Sinais Senoidais e Fasores Roteiro para Relatório e Guia de Experimento

No. USP	Nome	Nota	Bancada

Data:	Turmas:	Prof(a):
Data.	i ai iliao.	1101(a).

Objetivos

Esta experiência é dividida em três blocos, com objetivos distintos.

- Na primeira parte, pretende-se estimar o módulo da impedância de um capacitor e verificar se ele varia inversamente com a frequência. Para atingir esse objetivo, são realizadas medidas de tensão e corrente eficaz por multímetros, em um circuito RC série. Nesta parte, também se verifica se a resistência e a capacitância permanecem constantes ou se variam com a freqüência.
- Na segunda parte, usa-se o osciloscópio para medir as amplitudes de pico e fases das tensões no gerador, no resistor e no capacitor, com o objetivo de validar a segunda lei de Kirchhoff.
- Na última parte, os valores de pico e a defasagem entre tensão e corrente permitem a determinação da impedância do capacitor e sua representação fasorial nas notações polar e cartesiana. Usa-se o conceito de resistor *shunt* para estimar a corrente que passa no capacitor.

Equipamentos e materiais

- Resistor de 1kΩ
- Capacitor de 220nF
- Osciloscópio
- Multímetro de bancada
- Multímetro portátil
- Gerador de funções
- Fonte de tensão DC
- Computador
- Protoboard, fios e cabos

1. Determinação do módulo da impedância do capacitor

Monte o circuito RC da figura 1 e ajuste inicialmente um sinal DC de 6V no gerador de funções. Lembre-se de selecionar a opção " $High\ Z$ " em " $Channel\ Output\ Load$ ". Nas medidas subsequentes, zere o nível DC ("offset" nulo) e ajuste sinais senoidais de $6V_{RMS}$.

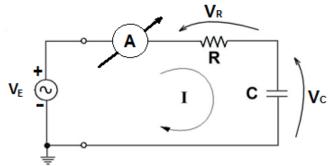
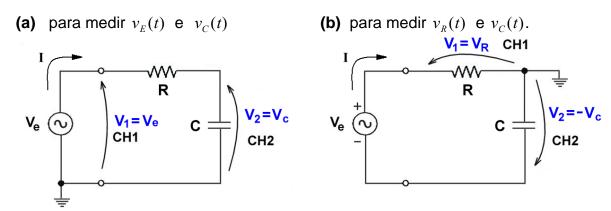


Figura 1 – Circuito RC para determinação da impedância capacitiva

1.a) Meça as tensões com o **multímetro de bancada** e a corrente com o **multímetro portátil**, em DC (0Hz) ou AC (demais frequências). Calcule os valores da resistência $R = |Z_R| = V_R/I$, do módulo da impedância do capacitor $|Z_C| = V_C/I$ e da capacitância $C = 1/(2\pi f|Z_C|)$. Preencha a tabela 1 com as medidas e cálculos.

Tabela 1 – Medidas de tensões e corrente eficazes para a determinação das impedâncias.


	Medidas		Cálculos				
f(Hz)	$V_{E}\left(V\right)$	$V_{R}\left(V\right)$	$V_{C}(V)$	I(A)	$ Z_R $ (Ω)	$ Z_C $ (Ω)	<i>C</i> (F)
0 (DC)							
100							
1.000							
10.000							

1.b) Comente se a resistência, o módulo da impedância do capacitor e a capacitância variam ou não com a frequência.

1.c) Analise a validade da 2ª lei de Kirchhoff, quando aplicada diretamente às medidas do multímetro de bancada. Note que ela parece não valer ! ... Como se explica isso ?

2. Validação da segunda lei de Kirchhoff

No gerador de funções, ajuste um sinal senoidal de **1kHz** e **6V**_{RMS}, com componente DC ("offset") nulo. Agora se pretende observar, com o **osciloscópio**, a forma dos sinais no gerador $v_E(t)$, no resistor $v_R(t)$ e no capacitor $v_C(t)$, além de analisar a defasagem (diferença de fase) em relação ao capacitor, ou seja, medir $(\theta_E - \theta_C)$ e $(\theta_R - \theta_C)$. Aqui há um problema: não é possível medir simultaneamente as três tensões no osciloscópio. Pergunte-se "por quê?" Uma forma de resolver o problema é fazer como indicado nas figuras 2.a e 2.b: meça primeiramente $v_E(t)$ e $v_C(t)$, e depois meça $v_R(t)$ e $v_C(t)$.

Figura 2 – Medição de tensões no circuito RC com terra comum (a) entre o gerador e o capacitor e (b) entre o resistor e o capacitor.

- **2.a)** Meça a amplitude pico-a-pico e a defasagem entre a tensão de alimentação e a tensão no capacitor, conforme a **figura 2.a**. Ajuste o disparo ("*trigger*") do osciloscópio para ser controlado pelo canal 2, ou seja, por $v_C(t)$. O terra das pontas de prova do osciloscópio deve ficar entre o capacitor e o gerador e nenhum dos canais deverá ser invertido. Anote os valores medidos das defasagens e os valores calculados das amplitudes de pico, na tabela 2. A tensão do capacitor como referência para a defasagem é $v_C(t) = V_C \cos(\omega t)$. Logo, tem-se que a tensão no gerador é: $v_E(t) = V_E \cos(\omega t + (\theta_E \theta_C))$. Observação: Em princípio, a fonte de disparo ("*trigger*") não precisaria ser o canal 2 (tensão sobre o capacitor), já que a tensão sobre o resistor e a tensão do gerador também têm amplitude da ordem de volts. Porém, é interessante usar a tensão no capacitor como fonte de disparo, pois a inspeção visual das telas do osciloscópio tanto na figura 2.a quanto na 2.b torna-se imediata quando se tem o mesmo sinal de tensão no capacitor cruzando o mesmo limiar de disparo.
- **2.b)** Meça a tensão pico-a-pico no resistor e a defasagem entre a tensão no resistor e no capacitor, conforme a **figura 2.b**. Novamente, ajuste a fonte de disparo para o canal 2, ou seja, para $v_C(t)$. O terra das pontas de prova deve ficar entre o resistor e o capacitor. Essa montagem muda o sinal (de + para –) da tensão medida no capacitor. Por isso, lembre-se de acionar a opção "*invert*" somente no canal 2. Anote os valores medidos das defasagens e os valores calculados das amplitudes de pico, na tabela 2. A tensão no resistor é dada por: $v_R(t) = V_R \cos(\omega t + (\theta_R \theta_C))$.

Tabela 2 – Amplitudes de pico e defasagens entre as tensões no capacitor, no resistor e no gerador.

	Figur	Figura 2.b	
Defasagem	$fase(1 \rightarrow 2) = \theta_E - \theta_C$	$fase(2 \rightarrow 2) = \theta_C - \theta_C$	$fase(1 \rightarrow 2) = \theta_R - \theta_C$
		≈ 0°	
Amplitude de pico	$amp(1)/2 = V_E$	$amp(2)/2 = V_C$	$amp(1)/2 = V_R$

2.c) Utilize a função matemática ("*Math*") do osciloscópio e obtenha $f(t) = v_R(t) + v_C(t)$ para o circuito da **figura 2.b**. Meça a amplitude pico-a-pico e a defasagem $fase(M \rightarrow 2)$ de f(t) em relação ao capacitor. Compare o resultado da soma de tensões f(t) com o valor medido para $v_E(t)$ no circuito da figura 2.a.

$$amp(M)/2 = V_E (pico) =$$

$$fase(M \rightarrow 2) = \theta_E - \theta_C$$

2.d) Analise novamente a validade da 2^a Lei de Kirchhoff. Note que ela vale para os sinais $v_R(t)$, $v_C(t)$ e $v_E(t)$ medidos com o osciloscópio. Por quê? Afinal, qual foi realmente a grandeza medida pelo multímetro na parte 1 da experiência?

2.e) Desenhe um diagrama com os fasores \hat{V}_R , \hat{V}_C e \hat{V}_E .

3. Determinação do módulo e fase da impedância do capacitor

Ajuste um sinal senoidal de $6V_{RMS}$ com componente DC (offset) nulo no gerador de funções. Utilize o circuito da figura 2.b para observar a tensão no capacitor $v_C(t)$ e no resistor $v_R(t)$. Esta é proporcional à corrente i(t) do circuito. Note que a tensão no capacitor $v_C(t)$ está defasada da corrente i(t) que o atravessa. Lembre-se de verificar se o canal 2 está com a opção "Invert" acionada. Observação: Nesta seção, use o canal 1 como trigger nas medições. Há dois motivos para a mudança da fonte de trigger entre as seções 2 e 3. Primeiramente, não há mais necessidade de se comparar os sinais medidos com duas posições distintas do terra, pois as medidas serão realizadas com uma única posição do terra comum. O segundo motivo é porque a tensão no resistor manterá a amplitude relativamente grande nas três frequências, enquanto a tensão no capacitor irá se reduzir muito para a frequência de 10kHz. Ou seja, caso o canal 2 (tensão no capacitor) fosse escolhido como fonte de disparo nesta seção, o sincronismo dos sinais na tela do osciloscópio poderia ser comprometido.

3.a) Meça a defasagem entre $v_C(t)$ e $v_R(t)$ para as frequências indicadas na tabela 3. Meça as tensões pico-a-pico no capacitor e no resistor. Calcule as amplitudes de pico V_C e V_R . Estime a corrente de pico I do circuito dividindo a tensão V_R pela resistência. Dica: os valores de $R=|Z_R|$ foram calculados na tabela 1.

Tabela 3 – Amplitudes de pico e defasagem medidas de acordo com a figura 2.b.

f(Hz)	$fase(2 \rightarrow 1) = \theta_C - \theta_R$	$amp(2)/2 = V_C$	$\operatorname{amp}(1)/2 = V_R$	$I = V_R / R$
100				
1.000				
10.000				

3.b) Utilize os dados da tabela 3 para calcular a impedância do capacitor nas três frequências e escreva-a nas formas polar e cartesiana na tabela 4. Observação: a defasagem entre $v_C(t)$ e i(t) é igual à defasagem entre $v_C(t)$ e $v_R(t)$. (Pense no porquê)

Tabela 4 – Representação da impedância do capacitor nas formas polar e cartesiana.

f(Hz)	$\hat{\mathbf{Z}}_{ ext{C}}$ (na forma polar)	$\hat{\mathbf{Z}}_{ ext{C}}$ (na forma cartesiana)
100		
1.000		
10.000		

Observação: para a forma polar, converta a fase de graus para radianos.

4. Simulaçâ	ão computacional (<u>item opcional</u>)		
4.a) Simule o circuito da figura 2.b no MultSim. Aplique uma alimentação senoidal de $\mathbf{6V_{RMS}}$ e frequências de 100Hz, 1kHz e 10kHz. Use os valores de resistência $R= Z_R $ e capacitância C calculados na Tabela 1 para a frequência correspondente.			
4.b) Compa	re os resultados da simulação com as medidas da Tabela 3.		
	6		