Primeira Lista de Exercícios

MAP0216 - Introdução à Análise Real

Docente Responsável: Prof. Dr. Pedro Aladar Tonelli Monitor: Luís Gustavo Lapinha Dalla Stella

22/03/2015

Os exercícios seguintes foram retirados do livro-texto **Curso de Análise, Vol. 1** do autor Elon Lages Lima, em sua 12ª Edição. Somente os quatro primeiros capítulos do livro foram levados em consideração na preparação desta primeira lista de exercícios.

Exercício 1. Dada a função $f: A \to B$, prove que:

- (a) $f^{-1}(f(X)) \subset X, \forall X \subset A$;
- (b) f é injetora $\iff f^{-1}(f(X)) = X, \forall X \subset A$.

Exercício 2. Dada a função $f: A \to B$, prove que:

- (a) $f(f^{-1}(Y)) \subset Y, \forall Y \subset B;$
- (b) f é sobrejetora $\iff f(f^{-1}(Y)) = Y, \forall Y \subset B.$

Exercício 3. Seja $(A_{ij})_{i,j=1}^{\infty}$ uma família de conjuntos indexada em $\mathbb{N} \times \mathbb{N}$. Decida se a seguinte igualdade é sempre verdadeira e, se não for este o caso, dê um contra-exemplo:

$$\bigcup_{j=1}^{\infty} \left(\bigcap_{i=1}^{\infty} A_{ij} \right) = \bigcap_{i=1}^{\infty} \left(\bigcup_{j=1}^{\infty} A_{ij} \right)$$

Exercício 4. Diz-se que um conjunto A é **enumerável** se existe uma sobrejeção $f: \mathbb{N} \to A$. Sejam, neste sentido, X e Y conjuntos enumeráveis. Prove que o produto cartesiano $X \times Y$ é enumerável. Como consequência, mostre que o conjunto \mathbb{Q} dos números racionais é, também, enumerável. [Sugestão: Mostre, primeiramente, que $\mathbb{N} \times \mathbb{N}$ é enumerável.]

Exercício 5. (Teorema de Cantor) Dado um conjunto arbitrário A, denotamos por 2^A o conjunto de suas partes. Mostre que nenhuma função $f: A \to 2^A$ é sobrejetora. [Sugestão: Utilize o Teorema 11, Capítulo II do livro-texto.]

Exercício 6. Sejam dados o conjunto \mathbb{N} dos números naturais e uma função $s: \mathbb{N} \to \mathbb{N}$, denominada **função sucessor**, e a seguinte lista de axiomas por eles satisfeitos:

- (P1) A função sucessor $s: \mathbb{N} \to \mathbb{N}$ é injetora;
- (P2) O conjunto $\mathbb{N} \setminus s(\mathbb{N})$ é unitário;
- (A) Vale a relação $X \setminus s(X) \neq \emptyset$, qualquer que seja o subconjunto $X \subset \mathbb{N}$.

Nestas condições, prove que esta lista de axiomas é equivalente aos três axiomas de Peano, isto é, que o axioma (A) acima, munido dos dois axiomas de Peano (P1) e (P2), é equivalente ao Princípio de Indução Finita, conforme enunciado ao longo do livro-texto.

Exercício 7. Seja X um conjunto com n elementos. Use o Princípio de Indução Finita para mostrar que o conjunto A(X) das bijeções (ou permutações) $\phi: X \to X$ possui n! elementos.

Exercício 8. Prove que se A tem n elementos, então 2^A tem 2^n elementos.

Exercício 9. Defina uma função sobrejetora $f: \mathbb{N} \to \mathbb{N}$ de forma que, para todo $n \in \mathbb{N}$, o conjunto $f^{-1}(\{n\})$ seja infinito. [Sugestão: Obtenha, primeiramente, uma decomposição $\mathbb{N} = \bigcup_{i=1}^{\infty} X_i$, onde os conjuntos X_i são infinitos e dois a dois disjuntos. Pode-se obter uma decomposição desta forma usando o fato de ser \mathbb{Q} enumerável. Finalmente, defina a função $f: \mathbb{N} \to \mathbb{N}$ levando-se em consideração tal decomposição.]

Exercício 10. Prove que o conjunto A das sequências crescentes $a: \mathbb{N} \to \mathbb{N}$, escritas como $(a_i)_{i=1}^{\infty}$, onde $i < j \implies a_i < a_j$, não é enumerável. [Sugestão: Encontre uma sobrejeção $f: A \to \{0,1\}^{\mathbb{N}}$, usando o fato de ser não-enumerável o conjunto $\{0,1\}^{\mathbb{N}}$, o qual pode ser demonstrado partindo-se do **Teorema de Cantor**. Nota: Denotamos por Y^X o conjunto de todas as funções $g: X \to Y$.]

Exercício 11. Um conjunto $X \subset \mathbb{R}$ é dito ser **denso** em \mathbb{R} se para todo intervalo aberto (a,b), com $a,b \in \mathbb{R}$, existe $x \in X \cap (a,b)$. Mostre que o conjunto dos números racionais \mathbb{Q} e o conjunto dos números irracionais $\mathbb{R} \setminus \mathbb{Q}$ são ambos densos em \mathbb{R} .

Exercício 12. Prove que o intervalo $[0,1] \subset \mathbb{R}$ não é enumerável.

Exercício 13. Sejam K e L corpos, e $f: K \to L$ tal que f(x+y) = f(x) + f(y) e $f(x \cdot y) = f(x) \cdot f(y)$, quaisquer que sejam $x, y \in K$. Nestas condições, diz-se que f é um **homomorfismo** entre os corpos K e L.

- (a) Dado um homomorfismo $f: K \to L$, prove que f(0) = 0;
- (b) Prove também que ou $f\equiv 0,$ ou f(1)=1 e f é uma função injetora de K em L.

Exercício 14. Num corpo ordenado K, prove que $a^2 + b^2 = 0 \iff a = b = 0$.

Exercício 15. Seja $a \neq 0$ elemento de um corpo K. Define-se a n-ésima potência de a indutivamente da seguinte forma: $a^1 = a$ e, para $n \in \mathbb{N}$ vale $a^{n+1} = a^n \cdot a$. Pode-se estender esta operação para expoentes em \mathbb{Z} fazendo: $a^0 = 1$ e $a^{-n} = (a^n)^{-1}$, quando $n \in \mathbb{N}$. Deste modo, prove as relações:

- (a) $a^m \cdot a^n = a^{m+n}, \forall m, n \in \mathbb{Z};$
- (b) $(a^m)^n = a^{m \cdot n}, \forall m, n \in \mathbb{Z}.$

Se a > 0 em K, definimos $f : \mathbb{Z} \to K$ pondo $f(n) = a^n$. Mostre que f é estritamente crescente quando a > 1, estritamente decrescente quando a < 1 e constante quando a = 1.

Exercício 16. Seja K um corpo ordenado, e $\mathbb{N} \subset K$ o menor subconjunto de K satisfazendo ao Princípio de Indução Finita e contendo o elemento 1. Pode-se considerar que este é um conjunto de números naturais, uma vez que satisfaz aos axiomas de Peano. Partindo-se de \mathbb{N} , pode-se construir \mathbb{Z} e \mathbb{Q} da maneira usual, conforme feito no livro-texto. Nestas condições, diz-se que um corpo ordenado K é **arquimediano** se $\mathbb{N} \subset K$ é ilimitado superiormente, isto é, se para todo $x \in K$ existe $n \in \mathbb{N}$ tal que x < n. Prove então que, dado um corpo ordenado K, as seguintes afirmações são equivalentes:

- (i) K é arquimediano;
- (ii) Z é ilimitado superior e inferiormente;
- (iii) Q é ilimitado superior e inferiormente.

Exercício 17. Seja $X = \{n^{-1} : n \in \mathbb{N}\}$. Mostre que inf X = 0.

Exercício 18. Um número real $r \in \mathbb{R}$ chama-se **algébrico** quando existe um polinômio $p(x) = a_0 + a_1 x + \ldots + a_n x^n$, não identicamente nulo e com $a_i \in \mathbb{Z}$, tal que p(r) = 0.

- (a) Prove que o conjunto dos polinômios a coeficientes inteiros é enumerável. [Sugestão: Lembre-se de que, para cada $n \in \mathbb{N}$, o conjunto \mathbb{Z}^n é enumerável.]
- (b) Utilizando o item anterior, prove que o conjunto A dos números algébricos é enumerável. Mostre que $\mathbb{Q} \subset A$ e, consequentemente, que A é denso em \mathbb{R} .

Exercício 19. Um **Corte de Dedekind** é um par ordenado (A, B), onde A e B são subconjuntos não-vazios de números racionais tais que A não possui elemento máximo, $A \cup B = \mathbb{Q}$ e, dados $x \in A$ e $y \in B$ quaisquer, tem-se x < y.

- (a) Prove que, num Corte de Dedekind (A, B), vale que sup $A = \inf B$;
- (b) Seja D o conjunto dos Cortes de Dedekind. Mostre que existe uma bijeção $\phi:D\to\mathbb{R}$.

Exercício 20. Seja K um corpo ordenado completo. Mostre que K é isomorfo a \mathbb{R} , no sentido de que existe uma função $\phi: \mathbb{R} \to K$ que é, ao mesmo tempo, uma bijeção e um homomorfismo entre corpos. [Sugestão: Veja a construção desta ϕ no **Exercício 55**, Capítulo III do livro-texto.]

Exercício 21. Seja $\phi : \mathbb{R} \to \mathbb{R}$ um isomorfismo. Prove que ϕ é a função identidade. Conclua que, se K e L são corpos ordenados completos, existe um único isomorfismo de K sobre L.

Exercício 22. Sejam $(x_n)_{n=1}^{\infty}$ uma sequência de números reais e $\mathbb{N} = \bigcup_{i=1}^{k} \mathbb{N}_i$ uma partição dos números naturais. Se $\lim_{n \in \mathbb{N}_i} x_n = a$, para todo $1 \le i \le k$, mostre que vale $\lim_{n \in \mathbb{N}} x_n = a$.

Exercício 23. Prove que a sequência $(\sqrt[n]{n})_{n=1}^{\infty}$ é limitada. Em seguida, mostre que é decrescente a partir de um certo índice, de forma a concluir que é convergente. Por fim, mostre que seu limite é 1.

Exercício 24. Mostre que toda sequência limitada de números reais admite uma subsequência convergente. [Sugestão: Prove, antes, que toda sequência de números reais admite uma subsequência monótona. Veja o Exercício 15, Capítulo IV do livro-texto.]

Exercício 25. Seja $(t_n)_{n=1}^{\infty}$ tal que $0 \le t_n \le 1$, $n \in \mathbb{N}$. Se $(x_n)_{n=1}^{\infty}$ e $(y_n)_{n=1}^{\infty}$ são sequências de números reais com $\lim x_n = \lim y_n = a$, prove que $\lim [t_n x_n + (1 - t_n)y_n] = a$.

Exercício 26. Diz-se que uma sequência $(x_n)_{n=1}^{\infty}$ tem **variação limitada** quando a sequência $(v_n)_{n=1}^{\infty}$ dada por $v_n = \sum_{i=1}^{n} |x_{i+1} - x_i|$ é limitada. Mostre que, em tal caso, $(v_n)_{n=1}^{\infty}$ converge. Prove as seguintes afirmações abaixo:

- (a) Se a sequência $(x_n)_{n=1}^{\infty}$ tem variação limitada, então é convergente;
- (b) Se existe 0 < c < 1 tal que $|x_{n+2} x_{n+1}| \le c|x_{n+1} x_n|$, para todo $n \in \mathbb{N}$, então a sequência $(x_n)_{n=1}^{\infty}$ tem variação limitada;
- (c) A sequência $(x_n)_{n=1}^{\infty}$ tem variação limitada se, e somente se, $x_n = y_n z_n$, onde $(y_n)_{n=1}^{\infty}$ e $(z_n)_{n=1}^{\infty}$ são sequências crescentes e limitadas;
- (d) Dê um exemplo de uma sequência convergente que não possui variação limitada.