Digital
 Fundamentals

Tenth Edition
Floyd

Half-Adder

Basic rules of binary addition are performed by a half adder, which has two binary inputs (A and B) and two binary outputs (Carry out and Sum).

The inputs and outputs can be summarized on a truth table.

Inputs			Outputs	
A	B	$C_{\text {out }}$	Σ	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	0	

The logic symbol and equivalent circuit are:

Full-Adder

By contrast, a full adder has three binary inputs (A, B, and Carry in) and two binary outputs (Carry out and Sum). The truth table summarizes the operation.
A full-adder can be constructed from two half adders as shown:

Symbol

Summary

```
Full-Adder
```

Notice that the result from the previous example can be read directly on the truth table for a full adder.

Inputs			Outputs	
A	B	C_{n}	$C_{\text {out }}$	Σ
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Parallel Adders

Full adders are combined into parallel adders that can add binary numbers with multiple bits. A 4-bit adder is shown.

The output carry $\left(C_{4}\right)$ is not ready until it propagates through all of the full adders. This is called ripple carry, delaying the addition process.

Parallel Adders

The logic symbol for a 4-bit parallel adder is shown. This 4-bit adder includes a carry in (labeled $\left(C_{0}\right)$ and a Carry out (labeled C_{4}).

The 74LS283 is an example. It features look-ahead carry, which adds logic to minimize the output carry delay. For the 74LS283, the maximum delay to the output carry is 17 ns .

Comparators

The function of a comparator is to compare the magnitudes of two binary numbers to determine the relationship between them. In the simplest form, a comparator can test for equality using XNOR gates.

How could you test two 4-bit numbers for equality?

AND the outputs of four XNOR gates.

Comparators

IC comparators provide outputs to indicate which of the numbers is larger or if they are equal. The bits are numbered starting at 0 , rather than 1 as in the case of adders. Cascading inputs are provided to expand the comparator to larger numbers.

Outputs

The IC shown is the 4-bit 74LS85.

Comparators

IC comparators can be expanded using the cascading inputs as shown. The lowest order comparator has a HIGH on the $A=B$ input.

A decoder is a logic circuit that detects the presence of a specific combination of bits at its input. Two simple decoders that detect the presence of the binary code 0011 are shown. The first has an active HIGH output; the second has an active LOW output.

Active HIGH decoder for 0011

Active LOW decoder for 0011

Summary

100

Decoders

The 74LS138 is a 3-to-8 decoder with three chip select inputs (two active LOW, one active HIGH). In this Multisim circuit, the word generator (XWG1) is set up as an up counter. The logic analyzer (XLA1) compares the input and outputs of the decoder.

The chip select inputs can be used to expand a decoder. In this circuit, two 74LS138s are configured as a 16 line decoder. Notice how the MSB is connected to one active LOW and one active HIGH chip select.

The next slide shows the logic analyzer output...

BCD Decoder/Driver

Another useful decoder is the 74LS47. This is a BCD-toseven segment display with active LOW outputs.

The a-g outputs are designed for much higher current than most devices (hence the word driver in the name).

Encoders

An encoder accepts an active logic level on one of its inputs and converts it to a coded output, such as BCD or binary.

The decimal to BCD is an encoder with an input for each of the ten decimal digits and four outputs that represent the BCD code for the active digit. The basic logic diagram is shown. There is no zero input because the outputs are all LOW when the input is zero.

Summary

Encoders

The 74 HC 147 is an example of an IC encoder. It is has ten active-LOW inputs and converts the active input to an active-LOW BCD output.

This device is offers additional flexibility in that it is a priority encoder. This means that if more than one input is active, the one with the highest order decimal digit will be active.

Multiplexers

A multiplexer (MUX) selects one data line from two or more input lines and routes data from the selected line to the output. The particular data line that is selected is determined by the select inputs.

Two select lines are shown here to choose any of the four data inputs.

Which data line is selected if $S_{1} S_{0}=10 ? D_{2}$

Summary

Demultiplexers

A demultiplexer (DEMUX) performs the opposite function from a MUX. It switches data from one input line to two or more data lines depending on the select inputs.

The 74LS138 was introduced previously as a decoder but can also serve as a DEMUX. When connected as a DEMUX, data is applied to one of the enable inputs, and routed to the selected output line depending on the select variables. Note that the outputs are active-LOW as illustrated in the
 following example...

Selected Key Terms

Full-adder A digital circuit that adds two bits and an input carry bit to produce a sum and an output carry.

Cascading Connecting two or more similar devices in a manner that expands the capability of one device.

Ripple carry A method of binary addition in which the output carry from each adder becomes the input carry of the next higher order adder.

Look-ahead A method of binary addition whereby carries from carry the preceding adder stages are anticipated, thus eliminating carry propagation delays.

Selected Key Terms

Decoder A digital circuit that converts coded information into a familiar or noncoded form.

Encoder A digital circuit that converts information into a coded form.

Priority An encoder in which only the highest value input encoder digit is encoded and any other active input is ignored.

Multiplexer A circuit that switches digital data from several input (MUX) lines onto a single output line in a specified time sequence.

Demultiplexe A circuit that switches digital data from one input line \boldsymbol{r} (DEMUX) onto a several output lines in a specified time

Quin

1. For the full-adder shown, assume the input bits are as shown with $A=0, B=0, C_{\mathrm{in}}=1$. The Sum and $C_{\text {out }}$ will be

$$
\begin{aligned}
& \text { a. } \text { Sum }=0 C_{\text {out }}=0 \\
& \text { b. } \text { Sum }=0 C_{\text {out }}=1 \\
& \text { c. } \text { Sum }=1 \quad C_{\text {out }}=0 \\
& \text { d. } \text { Sum }=1 C_{\text {out }}=1
\end{aligned}
$$

Quiz

2. The output will be LOW if
a. $A<B$
b. $A>B$
c. both a and b are correct
d. $A=B$

Quiz.

3. If you expand two 4-bit comparators to accept two 8-bit numbers, the output of the least significant comparator is
a. equal to the final output
b. connected to the cascading inputs of the most significant comparator
c. connected to the output of the most significant comparator
d. not used

Quiz.

4. Assume you want to decode the binary number 0011 with an active-LOW decoder. The missing gate should be

a. an AND gate
b. an OR gate
c. a NAND gate
d. a NOR gate

Cul

5. Assume you want to decode the binary number 0011 with an active-HIGH decoder. The missing gate should be

a. an AND gate
b. an OR gate
c. a NAND gate
d. a NOR gate

Quiz

6. The 74138 is a 3 -to- 8 decoder. Together, two of these ICs can be used to form one 4 -to- 16 decoder. To do this, connect
a. one decoder to the LSBs of the input; the other decoder to the MSBs of the input
b. all chip select lines to ground
c. all chip select lines to their active levels
d. one chip select line on each decoder to the input MSB

Quin

7. The decimal-to-binary encoder shown does not have a zero input. This is because
a. when zero is the input, all lines should be LOW
b. zero is not important
c. zero will produce illegal logic levels
d. another encoder is used for zero

Quiz

8. If the data select lines of the MUX are $S_{1} S_{0}=11$, the output will be

a. LOW
b. HIGH
c. equal to D_{0}
d. equal to D_{3}

Quin

9. The 74138 decoder can also be used as

a. an encoder
b. a DEMUX
c. a MUX
d. none of the above

Quiz

10. The 74LS280 can generate even or odd parity. It can also be used as
a. an adder
b. a parity tester
c. a MUX
d. an encoder

Quiz

Answers:

1. c 6. d
2. c
3. a
4. b
5. d
6. c
7. b
8. a 10.b
