Digital
 Fundamentals

Tenth Edition
Floyd

Combinational Logic Circuits

When the output of a SOP form is inverted, the circuit is called an AND-OR-Invert circuit. The AOI configuration lends itself to product-of-sums (POS) implementation. An example of an AOI implementation is shown. The output expression can be changed to a POS expression by applying DeMorgan's theorem twice.

Karnaugh Map Implementation

For basic combinational logic circuits, the Karnaugh map can be read and the circuit drawn as a minimum SOP.

A Karnaugh map is drawn from a truth table. Read the minimum SOP expression and draw the circuit.

1. Group the 1 's into two overlapping groups as indicated.
2. Read each group by eliminating any variable that changes across a boundary.
3. The vertical group is read $\bar{A} \bar{C}$.
4. The horizontal group is read $\bar{A} B$.

The circuit is on the next slide:

Summary

```
NAND Logic
```


Convert the circuit in the previous example to one that uses only NAND gates.

Recall from Boolean algebra that double inversion cancels. By adding inverting bubbles to above circuit, it is easily converted to NAND gates:

Universal Gates

NOR gates are also universal gates and can form all of the basic gates.

AND gate

NAND Logic

Recall from DeMorgan's theorem that $\overline{A B}=\bar{A}+\bar{B}$. By using equivalent symbols, it is simpler to read the logic of SOP forms. The earlier example shows the idea:

The logic is easy to read if you (mentally) cancel the two connected bubbles on a line.

Again, the logic is easy to read if you cancel the two connected bubbles on a line.

the circuit and enter 0 's and 1 's on the waveforms. Then read the output from the table.

A	0	1	0	1	0	1	0	1	0	1
B	0	1	1	0	0	1	1	0	0	0
C	0	0	0	1	1	1	1	0	0	0
D	0	0	0	0	0	0	0	1	1	0
G_{3}	0	0	0	0	1	1	1	0	1	0

Inputs	Output
$A B C D$	X
$\begin{array}{llll}0 & 0 & 0 & 0\end{array}$	0
$\begin{array}{llll}0 & 0 & 0 & 1\end{array}$	1
$\begin{array}{lllll}0 & 0 & 1 & 0\end{array}$	1
$\begin{array}{llll}0 & 0 & 1 & 1\end{array}$	1
$\begin{array}{lllll}0 & 1 & 0 & 0\end{array}$	0
$\begin{array}{llll}0 & 1 & 0 & 1\end{array}$	1
$\begin{array}{llll}0 & 1 & 1 & 0\end{array}$	1
$\begin{array}{lllll}0 & 1 & 1 & 1\end{array}$	1
$1 \begin{array}{llll}1 & 0 & 0 & 0\end{array}$	0
$1 \begin{array}{llll}1 & 0 & 0 & 1\end{array}$	0
$1 \begin{array}{llll}1 & 0 & 1 & 0\end{array}$	0
$\begin{array}{llll}1 & 0 & 1 & 1\end{array}$	0
$\begin{array}{llll}1 & 1 & 0 & 0\end{array}$	0
$1 \begin{array}{llll}1 & 1 & 0 & 1\end{array}$	1
$\begin{array}{llll}1 & 1 & 1 & 0\end{array}$	1
$1 \quad 1 \quad 1$	1

Selected Key Terms

Universal gate Either a NAND or a NOR gate. The term universal refers to a property of a gate that permits any logic function to be implemented by that gate or by a combination of gates of that kind.

Negative-OR The dual operation of a NAND gate when the inputs are active-LOW.

Negative-AND The dual operation of a NOR gate when the inputs are active-LOW.

Quiz

1. Assume an AOI expression is $A B+C D$. The equivalent POS expression is
a. $(A+B)(C+D)$
b. $(\bar{A}+\bar{B})(\bar{C}+\bar{D})$
c. $(\overline{A+B})(\overline{C+D})$
d. none of the above

Quiz

2. The truth table shown is for
a. a NAND gate
b. a NOR gate
c. an exclusive-OR gate
d. an exclusive-NOR gate

Quiz

3. An LED that should be ON is
a. LED-1
b. LED-2
c. neither
d. both

Quin

4. To implement the SOP expression $X=\bar{A} \overline{B C}+\overline{A B} D+\overline{B D} E$ the type of gate that is needed is a
a. 3-input AND gate
b. 3-input NAND gate
c. 3-input OR gate
d. 3-input NOR gate

Quiz

5. Reading the Karnaugh map, the logic expression is
a. $\bar{A} \bar{C}+\bar{A} B$
b. $\bar{A} B+\bar{A} \bar{C}$
c. $A \bar{B}+\overline{B C}$
d. $\bar{A} B+\bar{A} \bar{C}$

Quiz

6. The circuit shown will have identical logic out if all gates are changed to
a. AND gates
b. OR gates
c. NAND gates
d. NOR gates

Quiz

7. The two types of gates which are called universal gates are

a. AND/OR
b. NAND/NOR
c. AND/NAND
d. OR/NOR

Quiz

8. The circuit shown is equivalent to an
a. AND gate
b. XOR gate
c. OR gate

d. none of the above

Quiz.

9. The circuit shown is equivalent to

> a. an AND gate
> b. an XOR gate
> c. an OR gate

d. none of the above

Quin

10. During the first three intervals for the pulsed circuit shown, the output of
a. G_{1} is LOW and G_{2} is LOW
b. G_{1} is LOW and G_{2} is HIGH
c. G_{1} is HIGH and G_{2} is LOW
d. G_{1} is HIGH and G_{2} is HIGH

Quiz

Answers:

1. b 6. c
2. d 7. b
3. a
4. c
5. c
6. a
7. d 10. c
