I. OBJETIVOS

Propiciar o contato com técnicas básicas de laboratório, tais como pesagem, transferência de líquidos e filtração. Determinar, de forma aproximada, a densidade de um material sólido. Manipular o bico de Bunsen e estudar as várias regiões de sua chama.

II. INTRODUÇÃO

Esta prática está baseada em arquivos disponíveis na página da disciplina no STOA (http://disciplinas.stoa.usp.br) . Prepare-se para esta prática através da consulta aos arquivos que forem indicados.

III. PROCEDIMENTO

II.1. Pesagem

Serão utilizados dois tipos de balança:

- a) balança eletrônica de legibilidade 0,01 g.
- **b**) balança semi-analítica (legibilidade 0,001 g).

Siga as recomendações do professor para o manuseio das balanças e pese, <u>nas duas balanças</u>, o cilindro metálico fornecido (<u>anote o número de identificação do mesmo, o qual deverá ser citado no relatório</u>). Compare os valores obtidos nas duas pesagens e guarde o metal para ser utilizado no experimento do ítem II.3. **Atenção: compare sempre valores obtidos na mesma balança!**

II.2. Medida de volume

Utilize uma bureta para transferir 30,00 mL de água para um béquer. Observe e anote o volume marcado no béquer. Utilize um bastão de vidro para transferir o líquido contido no béquer para uma proveta. Observe e anote o volume marcado na proveta. Repita esse procedimento usando uma pipeta para transferir 10,00 mL de água para um béquer. Compare os valores dos volumes obtidos em cada caso.

II.3. Determinação da densidade de um sólido

Escolha uma proveta adequada e adicione água até a metade de sua capacidade. Anote o valor do volume e da temperatura da água (cada bancada tem erlenmeyer com água e um termômetro; utilize-o para medir a temperatura).

Introduza, a seguir, na proveta o metal pesado anteriormente (item II.1). Anote o valor do volume do conteúdo da proveta (faça as leituras de volume sempre com a proveta sobre a bancada).

Seque com papel o cilindro de metal e, utilizando uma régua, <u>meça e anote seu diâmetro e</u> <u>altura</u>.

II.4. Filtração

a) Encaixe um funil de vidro em uma argola fixa a um suporte.

- b) Adicione 25,0 mL de água a um funil contendo papel de filtro dobrado em cone simples e anote o tempo necessário para que todo o líquido escoe. Repita o mesmo procedimento utilizando papel de filtro pregueado, ao invés do cone simples.
- c) Monte um sistema de filtração a vácuo, como mostrado na Fig. 1; utilize a bomba de vácuo disponível em cada bancada. Efetue filtração a vácuo de uma mistura água/areia comparável à do item anterior. Faça uma comparação aproximada do tempo necessário para que a água escoe completamente nos dois tipos de filtração.

Figura 1. Sistema para filtração por sucção

II.5. Estudo do bico de Bunsen

- a) Examine cuidadosamente o bico de Bunsen, notando todas as partes, particularmente as ajustáveis.
- b) Ligue o bico à fonte de gás por meio da mangueira que o acompanha. Feche a entrada de ar na parte inferior do bico, abra a válvula de gás e acenda a chama (essa é a maneira correta de acender o bico de Bunsen). Observe o tipo de chama obtido. Note o que acontece à chama quando a entrada de ar é aberta.
- c) Com a entrada de ar aberta, coloque uma cápsula de porcelana (limpa externamente) cheia de água sobre um tripé (sem a tela de amianto). Aguarde 2 minutos, desligue
- cone externo

 cone interno
- o bico e observe o aspecto exterior da cápsula; a água entrou em ebulição? Descarte a água, lave a cápsula e repita o procedimento, agora com a entrada de ar do bico fechada. Anote o tempo que a água demora para entrar em ebulição e observe o aspecto externo da cápsula.
- d) Abra a entrada de ar e coloque um fio de níquel-cromo nas duas regiões cônicas da chama. Anote suas observações.

III. BIBLIOGRAFIA

- 1. E. Giesbrecht, coord., *PEQ Projetos de Ensino de Química Técnicas e Conceitos Básicos*, Ed. Moderna/EDUSP, São Paulo, 1982.
- 2. R.R. Silva, N. Bocchi, R.C. Rocha Filho, Introdução à Química Experimental, McGraw-Hill, 1990.
- 3. A. I. Vogel, "Química Analítica Qualitativa", Ed. Mestre Jou, São Paulo, 1ª ed., 1981, cap. II.1.
- 4. N. Baccan, J. C. Andrade, O. E. S. Godinho e J. S. Barone, "Química Analítica Quantitativa Elementar", Edgard Blucher, São Paulo, 3ª Edição, 2001, cap. 1, 7 e apêndice 2.