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Consequences of sample size,
variable selection, and model
validation and optimisation, for
predicting classification ability

from analytical data

Richard G. Brereton

This article discusses problems of validating classification models especially
in datasets where sample sizes are small and the number of variables is large.
It describes the use of percentage correctly classified (%CC) as an indicator
for success of a classification model. For small datasets, % CC should not be
used uncritically and its interpretation depends on sample size. It illustrates
the use of a common classification method, discriminant partial least squares
(D-PLS) on a randomly generated dataset of 200 samples and 200 variables.

An aim of the classifier is to determine whether the null hypothesis (there
is no distinction between two classes) can be rejected. Autoprediction gives
an 84.5% CC. It is shown that, if there is variable selection, it must be
performed independently on the training set to obtain a CC close to 50% on
the test set; otherwise, over-optimistic and false conclusions can be reached
about the ability to classify samples into groups.

Finally, two aims of determining the quality of a model are frequently
confused, namely optimisation (often used to determine the most appropri-
ate number of components in a model) and independent validation; to
overcome this, the data should be split into three groups.

There are often difficulties with model building if validation and optimi-
sation have been done on different groups of samples, especially using
iterative methods, each group being modelled using properties, such as a
different number of components or different variables.
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1. Introduction
Richard G. Brereton

Centre for Chemometrics, L. .
There is increasing use of pattern recog-

nition in chemistry, especially in applica-
tions to biology and medicine where
analytical chemical data are employed to
make predictions about the origins of
samples [1-3]. Many applications involve
obtaining a large number of variables (e.g.,
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chromatographic peak areas, mass spec-
tral intensities or nuclear magnetic reso-
nance (NMR) peak heights) and trying to
use these for classification of samples (e.g.,
using measurements on extracts from
plasma to predict disease state, or plant
extracts to predict future productivity).

An example involved the use of gas
chromatography combined with mass
spectrometry (GC-MS) to determine the
sexes of subjects from their sweat. From a
population in Carinthia (Southern Aus-
tria), 910 samples were obtained, ex-
tracted using stir bars, and their GC-MS
results recorded. The aim was to use the
relative intensities and the presence or
the absence of 337 peaks detected in the
chromatograms from human emanations
for predictive modelling [4]. In reality, this
would allow the sex of an unknown indi-
vidual to be determined from human
emanations and the principles could be
extended to predict other aspects of indi-
vidual identity and personal habits.

With the advent of proteomics, there is
an even more severe problem with vari-
able-rich datasets often recorded on very
few samples; typically, tens of thousands
of variables can be obtained from 30 or 40
samples.

A common theme is that a model is
formed between two blocks of data, as
illustrated in Fig. 1. The model has two
main purposes. The first is exploratory.
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Figure 1. Modelling analytical information, relating information to a matrix of observations.
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Such a model may be used to answer questions as to
whether there is a genuine connection between the two
sets of data (e.g., whether we can use liquid chroma-
tography combined with mass spectrometry (LC-MS) to
predict whether a patient has a disease), and also what
variables are best for discriminating between classes
(e.g., marker compounds). The second is predictive. The
aim of such a model is to determine whether the origin of
a sample of unknown nature can be predicted using
analytical data, and, if so, how well.

In this article, we will discuss primarily class models,
and, for simplicity, we will focus on a two-class problem,
where samples originate from one of two possible sour-
ces, class A or class B. There are numerous approaches
ranging from Mahalanobis distance [5], soft independent
modelling of class analogy (SIMCA) [6] and discriminant
partial least squares (D-PLS) [7] to support vector
machines (SVM) [8]. There are several common chal-
lenges. One of the most serious relates to the ability of
modern analytical methods to produce a large number of
variables (e.g., in chromatography, typically several
hundred peaks can be detected per chromatogram, espe-
cially using modern extraction techniques and sensitive
chromatography). However, the number of samples is often
limited, and we will look at the problems associated with
these “short, fat, datasets’’, where variables can some-
times exceed samples by one to three orders of magni-
tude. Because there are so many variables, it is possible
to find fortuitous correlations between variables and the
origins of samples, especially if the ratio of variables to
samples is high, which, if incorrectly handled, can lead
to an unduly optimistic assessment of predictive ability.

2. Sample size

Typically, the success of a classification model is deter-
mined using an indicator such as the percentage of
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samples correctly classified (%CC). This statistic is com-
monly cited in the chemometrics literature, and it is
usually agreed that the higher the %CC the better the
model.

Often, an elaborate strategy is employed to determine
whether a model is suitable or not. Usually, a number of
samples is left out from the main dataset and are not
used for forming the model that is then developed using
the remaining (or training set) samples. There are vari-
ous strategies; the simplest is to have a test set that may,
for example, involve a third to a quarter of the original
samples being removed. Cross-validation [9] involves
removing one or more samples in turn, until each
sample has been removed once. The boot-strap [10]
involves removing a portion of samples and then
repeating the calculation removing the same portion
each time, but selecting the samples to be removed
randomly; often, 100 or so iterations are performed.
Common to all of these strategies, the quality of the
model can be determined according to %CC of the
samples that have been removed.

A fallacy in the chemometrics literature is to accept
this value uncritically; however, it should be interpreted
according to sample size. In order to determine whether
the underlying data is indeed sufficient in quality for us
to be able to assign samples to one or more groups, we
are interested in whether the classification ability is
significantly better than a random classifier. For exam-
ple, if we record 100 GC-MS results for urine extracts
from male subjects, then, if a classification predicts that
50% of the samples are from male and 50% from female
subjects, it is of no predictive value and suggests that the
particular analytical technique has no discriminant
ability. However, if the model predicts the sex of 90% of
the samples correctly as male, is this now significant
evidence that a classification model can be applied to the
GC-MS data to predict an unknown person’s sex (even
though there may be errors associated with prediction)?
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It probably is, but then consider the case when the model
was tested on only 10 males and 9 are predicted cor-
rectly, is there still sufficient evidence that the model
contains sufficient predictive power to be useful?

In order to interpret the %CC statistic, it is useful to
consider the distribution of a toss of a coin. If a coin is
tossed 10 times, and it comes up Heads 8 times, and
Tails 2 times, is this sufficient evidence that a coin is
biassed? This is analogous to asking if a predictive model
is tested on 10 samples and 8 are correctly classified, is
this sufficient evidence to be convinced that this model
really has potential predictive power or could this arise
simply as a chance event?

The null hypothesis is that the coin is unbiassed, and,
in statistical terms, we are interested in whether we can
reject this null hypothesis. The binomial theorem comes
to our rescue here. The chance of an outcome of M Heads
when an unbiased coin is tossed N times is given by
NI/(MYN — M)1)0.5". These outcomes are illustrated in
Fig. 2 for 10 and 100 tosses of a coin. It can be shown
that, when an unbiassed coin is tossed 10 times, we
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expect to obtain 8 or more Heads 5.4% of the time:
analogously, 80% CC could be obtained even using a
random dataset more than one time out of 20. Hence
validating models on small sample sizes can lead to false
optimism about the quality of a model even when the
%CC is high. If for example, 40 samples are analysed from
a specific group which a quarter of these (10) are
removed to test the model we end up we expect 80% CC at
least once in 20 times, even if the underlying distribution
of variables arises from entirely random processes.

Fig. 3 illustrates the %CC required to obtain a given
level of confidence that there is genuinely a distinction
between two classes for different sample sizes and so to
reject the null hypothesis that the analytical data does
not show a distinction between the classes (e.g., if there
are 20 samples in the test set, 70% CC could be obtained
from an unbiassed (random) distribution around one
time in 10 (90% confidence limit)). If one quarter of the
samples is removed as a test set, this implies that it is
necessary to analyse 80 samples to achieve this level of
confidence in prediction.
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Figure 3. Percent correctly classified (%CC) against sample size

required to provide differing degrees of confidence in the classifica-

tion model. Note that the numbers have been rounded up to the

nearest integer and divided by the number of samples.

It can therefore be dangerous to use the %CC as an
indication of the quality of a model on small datasets, so
the size of the experiments must be planned in advance.
In addition, tables of %CC in the analytical chemistry
literature should ideally be accompanied by a statement
of the number of samples used to obtain this statistic. It is
also possible to attach confidence limits to the %CC that
the null hypothesis can be rejected.

It is quite common for analytical chemists, especially
in biological and medical areas where sampling can be
expensive, to report %CC on quite small test sets. How-
ever, as will be shown in Section 3, it is always impor-
tant to determine whether a model is of sufficient quality
by dividing the data into a training set and a test set, so
quite large numbers of samples (relative to the variables
measured) are always desirable unless the trends are
very pronounced.

3. Variable selection and model validation

A common and related problem in many areas of
chemical-pattern recognition is that most variables are
usually irrelevant for the particular classification prob-
lem (e.g., in a typical metabolomic dataset, 1000 or
more unique chromatographic peaks may be identified).
The aim is often to see which peaks are markers for
specific groups and then determine the optimum subset
of peaks for a classification model. Many peaks (or
variables) will be due to the background (e.g., the ana-
lytical procedure) and factors irrelevant to the problem at
hand (e.g., if we want to predict a person’s sex from their
urine, there will be numerous other compounds detected
from different origins, such as their diet, metabolism,
age, whether they have a disease, and personal habits).
Including these extra variables may add noise to the
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model. In some cases, the interesting trends might be
masked by other trends (e.g., there is no reason why a
person’s sex should be the main factor influencing the
distribution of compounds found in urine, yet we might
want to form a model that determines their sex and we
suspect that some chromatographic peaks will be related
to a person’s gender).

Often only a small combination of variables is neces-
sary for classification. Finding the optimum combination
of variables is an important task. However, it is rarely
possible to determine models on all possible combinations
of variables. Consider, for example, a situation where we
want to form a model from 10 out of a potential 1000
possible marker peaks. There are 1000!/(10! 900!)
combinations or 2.63 x 10%? such combinations. If we
were to try to perform a model on all possible combina-
tions of variables, and it took 1 second per model, it
would take 8.35 x 10" ’years to complete the work. Since
the age of the universe is estimated at slightly over
10'%years, the calculation would take 10,000 times
longer than the time between the Big Bang and now.
Hence, it is not possible to test all combinations of vari-
ables and it is usual to reduce or to select variables from
the original number to a small subset. Generally, these
variables are those that are best for the purpose in hand
(e.g., if the aim is to discriminate between two classes,
those with the highest discriminatory power, measured
in a variety of possible ways, ranging from t-statistics to
D-PLS weights, are selected).

The problem is that variable selection is often per-
formed on an entire experimental dataset. This can have
a serious consequence when assessing the quality of a
model. In order to illustrate it, we will use a small sim-
ulated dataset consisting of 200 samples, each a member
of one of two groups, denoted by +1 (class A) and -1
(class B), with 200 variables. Each variable has a value
of O (=absent) and 1 (=present). The variables are gen-
erated using a random-number generator with a prob-
ability of 0.5 that they take the values of 1 or 0. This is
illustrated in Fig. 4 and represents the null hypothesis
that there is no difference between the two groups,

200 variables

CLASS A 100 samples
200 samples

CLASS B 100 samples

v

Figure 4. Dataset for example in Section 3. Each variable has a
value of O (absent) or 1 (present), with 50% probability.
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which is a valuable benchmark from which to compare
results obtained from real data. Since the numbers were
generated randomly, we expect no significant difference
between the groups, and would anticipate a %CC of
around 50%. The number of times a variable is detected
in samples arising from each of the two classes is plotted
against each other in Fig. 5, and has a correlation
coefficient of -0.0209. The graph of the scores of the first
two principal components using centred data on the
entire dataset is presented in Fig. 6, suggesting no real
separation between the classes. In order to investigate
how the quality of a discriminatory model is assessed, D-
PLS is performed on these data. In this small example,
we consider only a 1 PLS component model, as the aim is
not to discuss the choice of models (in fact there is very
little difference using different numbers of components in
this example), but the effect of variable selection.
Autoprediction involves modelling the data without
taking out samples for testing (i.e. all the samples are
included in the model). We use the criterion that, if
D-PLS predicts a value of the classifier (c¢) greater than O,
we assign it to class A and if less than O to class B. Using
autoprediction and 1 PLS component, we obtain 84.5%
correctly classified, which is a high percentage correctly
classified and we may incorrectly conclude, from this
randomly generated dataset, that there is very good
classification ability. What the algorithm has done is to
determine whether there are any correlations between
variables and the classifier and tried to maximise this
(commonly called a covariance) to obtain the best pos-
sible separation between the groups. However, as most
advocates of chemometrics agree, autoprediction can
provide a falsely optimistic view of the quality of the
model. A more realistic approach is to remove some
samples that are not used for the model, called a test set,
as discussed in Section 2. In this simulation, we remove
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Figure 6. Principal components analysis (PCA) plot of the data in
Section 3.

25% of samples, equally distributed among each class,
form a model (using 1 PLS component) on the remaining
150 samples (the training set), and then test it on the
remainder. Using this new approach we obtain a train-
ing set predictive ability of 88% on the 150 samples, but
a test set predictive ability of 48% (24 out of 50 samples
correctly classified in the test set). This gap between the
autoprediction and test set error suggests that the data
has been over-fitted. The 48% test set error is around
what would be expected, so probably faithfully allows us
to assess the quality of the predictive model.

What happens if we reduce the original 200 variables?
The best 20 variables can be selected as follows. The 10
variables for which the number of times they are de-
tected in class A minus the number of times they are
detected in class B is most are retained, as are the other
10 variables with the opposite property. These variables
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Figure 5. Number of times a variable is present in each class in the simulation in Section 3.

1107

http://www elsevier.com/locate/trac



Trends

are best potential candidates as markers for each class
according to the presence / absence criterion used in this
example. One false, but frequently employed, strategy is
to select these variables over the entire dataset. Using
these new variables, the autopredictive ability on a
model formed using all 200 samples is 71%. This is down
from 88%, but reflects primarily that there are fewer
variables, although better ones; no variable is over-
whelmingly good as a marker, in this specific case.
Dividing the same samples into a training set and a test
set, as above, the training set predictive ability is 73.33%
but the test set predictive ability has increased to 60%,
giving a falsely optimistic prediction of how well the
model is performing. The correct approach is to select
variables from the training set only. Using this approach,
the training set predictive ability increases somewhat to
76.67%, but the test set predictive ability reduces to
52%, which is a realistic assessment of the performance

Trends in Analytical Chemistry, Vol. 25, No. 11, 2006

of the classifier. This can be understood visually in Fig. 7.
If variables are chosen from both the training set and the
test set there is a correlation between their distributions
(0.38 in the case in question), whereas, if they are
chosen just from the training set, there is no correlation
(0.00 in this example).

When the ratio of variables to samples is higher, the
problem becomes even more severe. A simulation
involving 40 samples divided equally into two classes,
and 1000 random variables, gave a 100% autopredic-
tive ability using 1 PLS component, but a 40% test set
predictive ability on 10 samples, 5 randomly chosen
from each class. Selecting the best 10 (out of 1000
variables) from both the training set and the test set
increases the predictive ability to 90% on the 10 test set
samples. However, in many chromatographic experi-
ments, these are typical of the sorts of numbers of
samples and variables that are often employed.
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Figure 7. Different strategies for variable selection: (a) selecting variables over both the training set and test set and choosing the 20 best markers;
and, (b) selecting variables over the training set and choosing the 20 best markers.
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There are two principal computational solutions to
this dilemma. The simplest is not to select variables at all.
In the first example above, the number of variables and
samples is equal, and this may be feasible; but, when the
number of variables far exceeds the number of samples
as in the second example, often this approach is not
practicable. Diagnostic variables are likely to be hidden;
if we measure 100 variables, perhaps 10 or 20 will be
useful, so some form of variable selection is required. The
greater the ratio of variables to samples the more nec-
essary it is to consider variable selection: in many cases,
this is mandatory, as there will often be variables due to
the background or other factors that are irrelevant to the
classifier and in future samples may not be present or
will be irrelevant due to completely different factors.
Consider using extracts from urine to determine the
onset of a disease: the majority of compounds will have
no diagnostic value and should not be used in the clas-
sifier. Under these circumstances, a second alternative is
to select variables just from the training set. This may
seem the ideal solution given the discussion above, but
many methods for model building and validation do not
use a single training set but several different training set
and test set splits of the data each comprising different
subsets of samples (see Section 4), the overall assessment
of modelling ability being an average of each iteration. A
common approach — leave-one-out cross validation —
involves cycling round each sample once, and reforming
the model on a training set minus that sample. Hence
variable selection should ideally be performed afresh
each time a sample is removed. This means that each
model is formed on a different subset of variables, but
this then causes problems because each model is not
completely comparable. How serious this problem is
depends partly on the size of the test set. If the test set is
quite small, it is not so serious a problem, because the
number of samples in the test set is limited, so it will not
have a large influence on whether a variable is retained
or not. However, if the test set is large relative to the
overall sample size, it will have a significant influence, so
variable selection must be repeated each time a test set is
generated. But many methods in chemometrics, such as
the bootstrap, do advocate quite large test sets (typically
a third of the dataset), repetitively generated, because
obtaining reliable confidence in predictive power
requires quite large test sets, as discussed in Section 2.

Of course, the experimental solution is to increase the
number of samples assayed, but this in turn may cause
problems. Often sampling is expensive, particularly in
clinical work, and there may be problems of stability, for
example, long-term instrumental and measurement
stability, meaning that when a sample is recorded
becomes an additional factor in the data interpretation.
In addition if analysis times are slow, there may be a
differential time between storage and running of
samples, which could increase as a backlog builds up.
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Fast throughput using autoinjectors and constant
checking of chromatographic quality is one possible
additional experimental answer to the problem,
although there is no universal solution and every prob-
lem must be considered on its merits. The most impor-
tant issue is to always consider the motivation of the
analyses, and ideally to perform some pilot experiments
to determine how serious these problems are, and not to
divorce the chemometrics, which may dictate the ideal
sample sizes for a specific type of problem, from the
experimental sampling design.

4. Model validation and optimisation

A final difficulty is that optimisation of a model can be
confused with its validation. Often, methods such as
cross-validation are employed to optimise a model (e.g.,
to determine the number of PLS components required to
produce the best model).

Many people calculate the %CC or an equivalent
indicator of the quality of the classification (or calibra-
tion) model using the samples that are left out during
cross-validation (or an equivalent method, such as the
bootstrap) using the training set. A problem here is that
the model is optimised for these samples that are left out,
so, if we use the %CC for the samples used for model
optimisation, we are not truly assessing the quality of
the model using an independent criterion. The most
common way around this is to have a third, and inde-
pendent, test set, which is used to determine how well
the model is obeyed (see Fig. 8). From the training set,
one or more groups of samples are removed, often
repetitively until all samples are removed at least once,
to optimise the model. A separate group of samples is left
out from the original data to form the test set. The
quality of the model is assessed using this group of
samples left out to form the test set rather than the
samples used to optimise the model.

Sometimes, this can be done iteratively, with different
test sets created in a loop, often many times over, and the
average %CC is determined using a model that is opti-
mised using the training sets. Remember that each
model will be calculated using a different training set,
often, if employing principal components analysis (PCA)
or PLS-based methods, using a different number of
components. If variable selection is employed, each
model may well be formed using different variables also,
as discussed in Section 3.

The dilemma is that, if a successful predictive model is
obtained, it is then necessary to choose a model that will
be applicable to the overall dataset and to new samples,
yet the assessment of the model has been performed on
one or more subsets of samples, each with its own
number of components, data scaling and variable
selection. There are no accepted criteria for the way to
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Samples removed for
model optimisation

Training set

Figure 8. Dividing data into three blocks for optimisation, autoprediction and testing.

Test set

choose the overall model, but often one may then return
to the full dataset, using the overall dataset as a training
set, and form a model afresh using this.

5. Conclusions

This article has focussed on assessing the quality of
methods for classification. With the wide availability of
chemometrics software, there are numerous reports in
the literature. An important growth area concerns
datasets where there is a large number of variables,
especially in coupled chromatography of biomedical data.
A problem emerges in that large datasets are expensive to
obtain, but that the number of variables recorded is often
quite large. It is easy to obtain falsely optimistic estimates
of predictive ability under such circumstances and great

care is required to determine the correct interpretation of
the results of classification. Yet, with the expansion
especially of the application of chemometrics in biology,
such problems are becoming more common and it is
important to understand the consequences of handling
such large datasets, common in metabolomics and pro-
teomics, to avoid coming to false conclusions.

The examples and numbers presented in this article
should provide useful starting points that can be ex-
tended in individual circumstances. The article also
provides an example of how simulations of the null
hypothesis (i.e. there is no difference between groups)
can be used to validate methods and interpret results of
pattern recognition. Table 1 summarises some common
problems discussed in this article and their solutions.

With the widespread availability of classification
methods in modern analytical chemistry, especially at

Table 1. Some common problems associated with pattern recognition and their solutions

Common problems

Solutions

Quoting %CC without providing information on the sample size
used for testing the validity of the model

Using sample sizes that are too small to determine whether a
high %CC could have arisen by chance

Not considering the null hypothesis

Selecting variables from the overall dataset including test samples

Obtaining test set and training set predictions that differ
significantly

Confusing optimisation with testing

Quote the test set sample size together with the %CC

If the confidence level is low, use a larger sample size

Under certain circumstances, it is helpful to use null simulations that

are as close as possible in size to the observed dataset and compare %CC

Select variables only from the training set

Often the data are not sufficient for the determination of an adequate
predictive model: increase sample size or modify analytical technique

Divide samples into three groups, one for independent testing, one for
determining the optimal model and one for autoprediction,
often using iterative methods
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the biological interface, having an understanding of
relatively simple principles is crucial for their use to be
valid.

References

[1] R.G. Brereton, Chemometrics: Data Analysis for the Laboratory
and Chemical Plant, Wiley, Chichester, West Sussex, UK, 2003
Chapter 4.

[2] R.G. Brereton, Applied Chemometrics for Scientists, Wiley,
Chichester West Sussex UK (In press, publication due February
2007).

Trends

[3] R.G. Brereton (Editor), Multivariate Pattern Recognition in
Chemometrics (illustrated by case studies), Elsevier, Amsterdam,
The Netherlands, 1992.

[4] S.J. Dixon, Y. Xu, R.G. Brereton, H.A. Soini, M.V. Novotny,
E. Oberzaucher, K. Grammer, D.J]. Penn, Chemom. Intell. Lab.
Syst., submitted for publication.

[5] R. De Maesschalck, D. Jouan-Rimbaud, D.L. Massart, Chemom.
Intell. Lab. Syst. 50 (2000) 1.

[6] S. Wold, Patt. Recognit. 8 (1976) 127.

[7] M. Defernez, K. Kemsley, Trends Anal. Chem. 16 (1997) 216.

[8] Y. Xu, S. Zomer, R.G. Brereton, Crit. Rev. Anal. Chem. (In press).

[9] S. Wold, Technometrics 20 (1978) 397.

[10] B. Efron, R.J. Tibshirani, An Introduction to the Bootstrap,
Chapman and Hall, New York, USA, 1993.

http://www elsevier.com/locate/trac 1111



	Consequences of sample size, variable selection, and model validation and optimisation, for predicting classification ability  from analytical data
	Introduction
	Sample size
	Variable selection and model validation
	Model validation and optimisation
	Conclusions
	References


