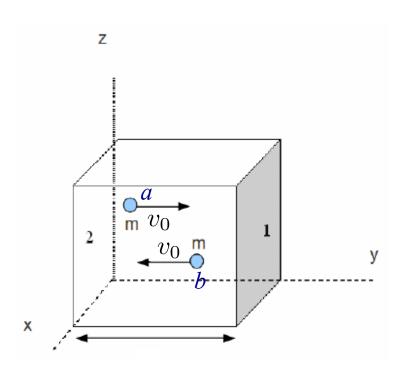


4300259 – Termoestatística

Teoria Cinética dos Gases:

Função de Distribuição de Maxwell

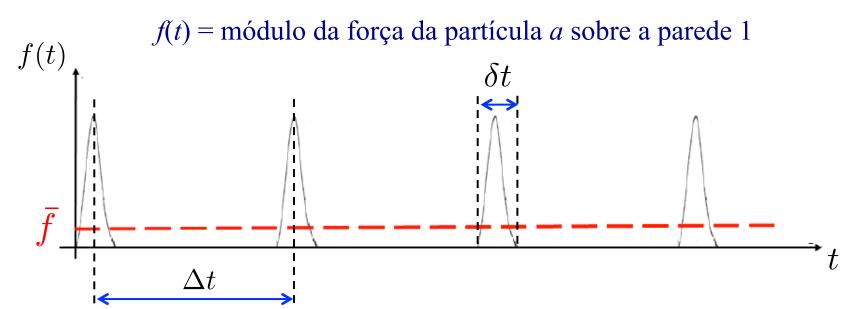


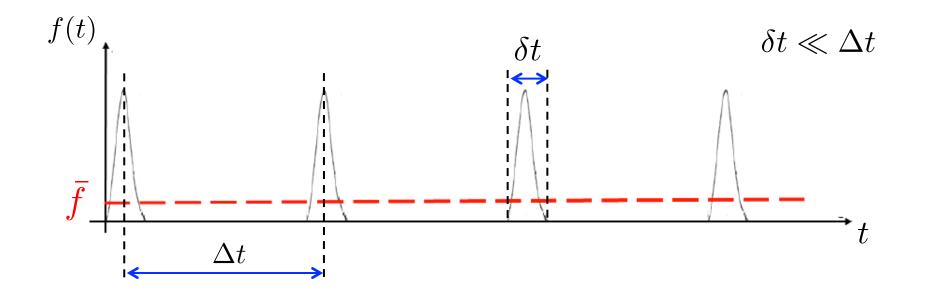
– Escalas de tempo:

 Δt = intervalo entre colisões sucessivas de uma mesma molécula contra uma mesma parede.

 δt = duração de uma colisão contra a parede.

$$\delta t \ll \Delta t$$





- Intervalo entre colisões sucessivas: $\Delta t = \frac{2L}{v_0}$
- Momento linear transferido à parede (Δp) em uma colisão:

$$\Delta p = -\Delta p_{\text{particula}} = -(p_f - p_i) = -[-mv_0 - (mv_0)] = 2mv_0$$

Força média sobre a parede 1 (média temporal):

$$\langle f \rangle \equiv \bar{f} = \frac{\Delta p}{\Delta t} = \frac{m v_0^2}{L}$$

— Havendo N/3 partículas movendo-se na direção x, a pressão (força perpendicular média por unidade de área) sobre a parede 1 será:

$$P = \frac{N}{3} \frac{\langle f \rangle}{L^2} = \frac{N}{3} \frac{m v_0^2}{L^3}$$

$$PV = N \left(\frac{1}{3}mv_0^2\right)$$

 Admitindo que a Equação de Estado (empírica) seja válida para o modelo:

$$PV = N \left(\frac{1}{3}mv_0^2\right) = Nk_BT$$

$$k_B T = \left(\frac{1}{3}mv_0^2\right) = \frac{2}{3}\left(\frac{1}{2}mv_0^2\right)$$

 A expressão acima relaciona a temperatura à energia cinética das moléculas. **Exercício**: No modelo apresentado, considere que o gás contém 2 tipos de moléculas, com massas $m_{\rm A}$ e $m_{\rm B}$, e velocidades escalares $v_{\rm A}$ e $v_{\rm B}$. Há N moléculas no total (N/3 movendo-se em cada direção), sendo $N_{\rm A}$ do tipo A e $N_{\rm B}$ do tipo B, de forma que $N = N_{\rm A} + N_{\rm B}$ ($N_{\rm A}$ /3 e $N_{\rm B}$ /3 em cada direção). Obtenha a pressão do gás e sua temperatura.

Sugestão: siga os passos discutidos anteriormente:

- (i) Obtenha a força média exercida por uma molécula do tipo A e uma molécula do tipo B sobre uma das paredes.
- (ii) Obtenha a pressão exercida por uma molécula do tipo A e uma molécula do tipo B sobre uma das paredes.
- (iii) Obtenha a pressão exercida por $N_{\rm A}/3$ moléculas do tipo A e $N_{\rm B}/3$ moléculas do tipo B sobre uma das paredes.
- (iv) Relacione a temperatura do gás à energia cinética média das moléculas, dada por $\langle K \rangle = (N_{\rm A}/N)^{-1/2} m_{\rm A} v_{\rm A}^{-2} + (N_{\rm B}/N)^{-1/2} m_{\rm B} v_{\rm B}^{-2}$, admitindo que a relação $PV = Nk_{\rm B}T$ seja válida para o modelo.

- Força média sobre uma parede devido a uma molécula de cada tipo:

$$\langle f \rangle = \langle f_A \rangle + \langle f_B \rangle = \frac{mv_A^2}{L} + \frac{mv_B^2}{L}$$

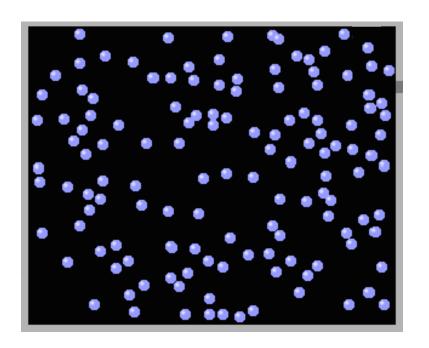
- Pressão devido a *N*/3 moléculas (note que a expressão abaixo está em acordo com a ideia de pressões parciais associadas a cada tipo de partícula):

$$P = \frac{N_A}{3} \frac{\langle f_A \rangle}{L^2} + \frac{N_B}{3} \frac{\langle f_B \rangle}{L^2}$$
$$= \frac{N_A}{3} \frac{m_A v_A^2}{L^3} + \frac{N_B}{3} \frac{m_B v_B^2}{L^3}$$

 Manipulando a expressão acima, obtemos a temperatura em função da energia cinética média das partículas do gás:

$$PV = \frac{2N}{3} \left[\frac{N_A}{N} \frac{1}{2} m_A v_A^2 + \frac{N_B}{N} \frac{1}{2} m_B v_B^2 \right] = Nk_B T$$

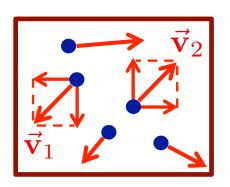
$$k_B T = \frac{2}{3} \left[\frac{N_A}{N} \frac{1}{2} m_A v_A^2 + \frac{N_B}{N} \frac{1}{2} m_B v_B^2 \right]$$



- O gás ideal é um meio homogêneo (a densidade do gás em equilíbrio não varia entre diferentes regiões do recipiente).
- No gás, não há direções
 privilegiadas, isto é:

$$= =$$

- E energia interna do gás ideal monoatômico corresponde à soma das *energias cinéticas de translação* das moléculas: não há interação entre as partículas (portanto não há energia potencial) no modelo do gás ideal.
- Dessa forma, a função de distribuição associada às velocidades das moléculas é uma quantidade essencial na Teoria Cinética dos Gases Ideais.



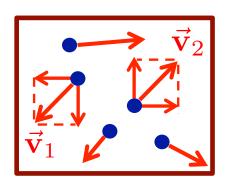
Propriedade 1: Como o gás é homogêneo, a probabilidade de encontrar uma molécula com componente de velocidade v_x deve ser igual à probabilidade de encontrar uma molécula com componente $-v_x$. O mesmo vale para as demais direções (não há direções privilegiadas), de forma que a função de distribuição de velocidades deve satisfazer:

$$f(v_x, v_y, v_z) = f(-v_x, v_y, v_z)$$

$$f(v_x, v_y, v_z) = f(v_x, -v_y, v_z)$$

$$f(v_x, v_y, v_z) = f(v_x, v_y, -v_z)$$

OBS: isso significa que a função de distribuição é uma função par em relação às variáveis v_x , v_y e v_z .



Propriedade 2: Também postulamos que encontrar uma molécula com componente de velocidade no intervalo dv_x em torno de v_x , e no intervalo dv_y em torno de v_v são eventos independentes. (Claro, o mesmo vale para as direções x e z, y e z, ou mesmo $x, y \in z$):

$$dP(v_x|v_y)dP(v_y) = dP(v_y)dP(v_x)$$

probabilidade condicional probabilidade no intervalo

 (v_x, dv_x) dado (v_v, dv_v) dv_v em torno de v_v : (v_v, dv_v)

Em geral:

$$dP(v_x, v_y, v_z) = f(v_x, v_y, v_z) dv_x dv_y dv_z = f(v_x) dv_x f(v_y) dv_y f(v_z) dv_z$$

ou:

$$f(v_x, v_y, v_z) = f(v_x) f(v_y) f(v_z)$$

- Podemos garantir a propriedade 1, admitindo que a função de distribuição depende apenas da magnitude $v^2 = v_x^2 + v_y^2 + v_z^2$:

$$f(v_x, v_y, v_z) = f(v^2) = f(v_x^2 + v_y^2 + v_z^2)$$

– Para combinar a expressão acima com a propriedade 2, também iremos admitir $f(v_x) = f(v_x^2)$, $f(v_y) = f(v_y^2)$ e $f(v_z) = f(v_z^2)$. (Perceba que, em razão das propriedades 1 e 2, $f(v_x)$, $f(v_y)$ e $f(v_z)$ devem ser funções pares.) Assim:

$$f(v_x, v_y, v_z) = f(v_x^2 + v_y^2 + v_z^2) = f(v_x^2) f(v_y^2) f(v_z^2)$$

Note que a função exponencial satisfaz

$$f(a+b+c) = f(a) f(b) f(c)$$

- Em vista dos argumentos anteriores: (como as direções são equivalentes, $\alpha_x = \alpha_y = \alpha_z = \alpha$)

$$f(v_x) = N_x e^{-\alpha v_x^2}$$

$$f(v_y) = N_y e^{-\alpha v_y^2}$$

$$f(v_z) = N_z e^{-\alpha v_z^2}$$

– Iremos impor a condição usual de normalização para as funções de distribuição (direções equivalentes, $N_x = N_y = N_z = N$):

$$\int_{-\infty}^{+\infty} f(v_x) dv_x = 1 \implies N_x = \left(\frac{\alpha}{\pi}\right)^{1/2}$$
$$\int_{-\infty}^{+\infty} f(v_y) dv_y = 1 \implies N_y = \left(\frac{\alpha}{\pi}\right)^{1/2}$$
$$\int_{-\infty}^{+\infty} f(v_z) dv_z = 1 \implies N_z = \left(\frac{\alpha}{\pi}\right)^{1/2}$$

- Portanto:

$$f(v_x, v_y, v_z) = \left(\frac{\alpha}{\pi}\right)^{3/2} e^{-\alpha(v_x^2 + v_y^2 + v_z^2)} = \left(\frac{\alpha}{\pi}\right)^{3/2} e^{-\alpha(v_z^2)}$$