
clearly made θi larger as well. (All four angles got bigger.) There must
be a cancellation of the effects of changing the two terms on the right in
the same way, and the only way to get such a cancellation is if the two
terms in the angle equation have opposite signs:

θf = +θi − θo

or
θf = −θi + θo .

Step 2: Now which is the positive term and which is negative? Since the
image angle is bigger than the object angle, the angle equation must be

θf = θi − θo ,

in order to give a positive result for the focal angle. The signs of the
distance equation behave the same way:

1
f

=
1
di
− 1

do
.

Solving for di , we find

di =
(

1
f

+
1
do

)−1

= 2.1 m .

The image of the store is reduced by a factor of 2.1/7.0 = 0.3, i.e., it is
smaller by 70%.

h / A diverging mirror in the shape
of a sphere. The image is re-
duced (M < 1). This is similar
to example 5, but here the image
is distorted because the mirror’s
curve is not shallow.

A shortcut for real images example 6
In the case of a real image, there is a shortcut for step 1, the determi-
nation of the signs. In a real image, the rays cross at both the object
and the image. We can therefore time-reverse the ray diagram, so that
all the rays are coming from the image and reconverging at the object.
Object and image swap roles. Due to this time-reversal symmetry, the
object and image cannot be treated differently in any of the equations,
and they must therefore have the same signs. They are both positive,
since they must add up to a positive result.
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3.3 ? Aberrations
An imperfection or distortion in an image is called an aberration.
An aberration can be produced by a flaw in a lens or mirror, but
even with a perfect optical surface some degree of aberration is un-
avoidable. To see why, consider the mathematical approximation
we’ve been making, which is that the depth of the mirror’s curve
is small compared to do and di. Since only a flat mirror can sat-
isfy this shallow-mirror condition perfectly, any curved mirror will
deviate somewhat from the mathematical behavior we derived by
assuming that condition. There are two main types of aberration in
curved mirrors, and these also occur with lenses.

(1) An object on the axis of the lens or mirror may be imaged
correctly, but off-axis objects may be out of focus or distorted. In
a camera, this type of aberration would show up as a fuzziness or
warping near the sides of the picture when the center was perfectly
focused. An example of this is shown in figure i, and in that partic-
ular example, the aberration is not a sign that the equipment was
of low quality or wasn’t right for the job but rather an inevitable
result of trying to flatten a panoramic view; in the limit of a 360-
degree panorama, the problem would be similar to the problem of
representing the Earth’s surface on a flat map, which can’t be ac-
complished without distortion.

(2) The image may be sharp when the object is at certain dis-
tances and blurry when it is at other distances. The blurriness
occurs because the rays do not all cross at exactly the same point.
If we know in advance the distance of the objects with which the
mirror or lens will be used, then we can optimize the shape of the
optical surface to make in-focus images in that situation. For in-
stance, a spherical mirror will produce a perfect image of an object
that is at the center of the sphere, because each ray is reflected di-
rectly onto the radius along which it was emitted. For objects at
greater distances, however, the focus will be somewhat blurry. In
astronomy the objects being used are always at infinity, so a spher-
ical mirror is a poor choice for a telescope. A different shape (a
parabola) is better specialized for astronomy.

One way of decreasing aberration is to use a small-diameter mir-
ror or lens, or block most of the light with an opaque screen with a
hole in it, so that only light that comes in close to the axis can get
through. Either way, we are using a smaller portion of the lens or
mirror whose curvature will be more shallow, thereby making the
shallow-mirror (or thin-lens) approximation more accurate. Your
eye does this by narrowing down the pupil to a smaller hole. In
a camera, there is either an automatic or manual adjustment, and
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i / This photo was taken using a
“fish-eye lens,” which gives an ex-
tremely large field of view.

j / Spherical mirrors are the
cheapest to make, but parabolic
mirrors are better for making
images of objects at infinity.
A sphere has equal curvature
everywhere, but a parabola has
tighter curvature at its center and
gentler curvature at the sides.

narrowing the opening is called “stopping down.” The disadvantage
of stopping down is that light is wasted, so the image will be dimmer
or a longer exposure must be used.

What I would suggest you take away from this discussion for the
sake of your general scientific education is simply an understanding
of what an aberration is, why it occurs, and how it can be reduced,
not detailed facts about specific types of aberrations.
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k / Even though the spherical mir-
ror (solid line) is not well adapted
for viewing an object at infinity,
we can improve its performance
greatly by stopping it down. Now
the only part of the mirror be-
ing used is the central portion,
where its shape is virtually in-
distinguishable from a parabola
(dashed line).

l / The Hubble Space Telescope
was placed into orbit with faulty
optics in 1990. Its main mir-
ror was supposed to have been
nearly parabolic, since it is an as-
tronomical telescope, meant for
producing images of objects at in-
finity. However, contractor Perkin
Elmer had delivered a faulty mir-
ror, which produced aberrations.
The large photo shows astronauts
putting correcting mirrors in place
in 1993. The two small pho-
tos show images produced by the
telescope before and after the
fix.

Summary
Selected Vocabulary
focal length . . . a property of a lens or mirror, equal to the

distance from the lens or mirror to the image
it forms of an object that is infinitely far away

Notation
f . . . . . . . . . . the focal length
do . . . . . . . . . the distance of the object from the mirror
di . . . . . . . . . the distance of the image from the mirror
θf . . . . . . . . . the focal angle, defined as 1/f
θo . . . . . . . . . the object angle, defined as 1/do

θi . . . . . . . . . the image angle, defined as 1/di

Other Terminology and Notation
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f > 0 . . . . . . . describes a converging lens or mirror; in this
book, all focal lengths are positive, so there is
no such implication

f < 0 . . . . . . . describes a diverging lens or mirror; in this
book, all focal lengths are positive

M < 0 . . . . . .
indicates an inverted image; in this book, all
magnifications are positive

Summary

Every lens or mirror has a property called the focal length, which
is defined as the distance from the lens or mirror to the image it
forms of an object that is infinitely far away. A stronger lens or
mirror has a shorter focal length.

The relationship between the locations of an object and its image
formed by a lens or mirror can always be expressed by equations of
the form

θf = ±θi ± θo

1
f

= ± 1
di
± 1

do
.

The choice of plus and minus signs depends on whether we are deal-
ing with a lens or a mirror, whether the lens or mirror is converging
or diverging, and whether the image is real or virtual. A method
for determining the plus and minus signs is as follows:

1. Use ray diagrams to decide whether θi and θo vary in the same
way or in opposite ways. Based on this, decide whether the
two signs in the equation are the same or opposite. If the signs
are opposite, go on to step 2 to determine which is positive
and which is negative.

2. It is normally only physically possible for either θi or θo to
be zero, not both. Imagine the case where that variable is
zero. Since the left-hand side of the equation is positive by
definition, the term on the right that we didn’t eliminate must
be the one that has a plus sign.

Once the correct form of the equation has been determined, the
magnification can be found via the equation

M =
di

do
.

This equation expresses the idea that the entire image-world is
shrunk consistently in all three dimensions.
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Problem 5.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 Apply the equation M = di/do to the case of a flat mirror.

2 Use the method described in the text to derive the equation
relating object distance to image distance for the case of a virtual
image produced by a converging mirror. . Solution, p. 108

3 (a) Make up a numerical example of a virtual image formed by
a converging mirror with a certain focal length, and determine the
magnification. (You will need the result of problem 2.) Make sure
to choose values of do and f that would actually produce a virtual
image, not a real one. Now change the location of the object a little
bit and redetermine the magnification, showing that it changes. At
my local department store, the cosmetics department sells mirrors
advertised as giving a magnification of 5 times. How would you
interpret this?

(b) Suppose a Newtonian telescope is being used for astronomical
observing. Assume for simplicity that no eyepiece is used, and as-
sume a value for the focal length of the mirror that would be rea-
sonable for an amateur instrument that is to fit in a closet. Is the
angular magnification different for objects at different distances?
For example, you could consider two planets, one of which is twice
as far as the other.

4 (a) Find a case where the magnification of a curved mirror
is infinite. Is the angular magnification infinite from any realistic
viewing position? (b) Explain why an arbitrarily large magnification
can’t be achieved by having a sufficiently small value of do.
5 The figure shows a device for constructing a realistic optical
illusion. Two mirrors of equal focal length are put against each
other with their silvered surfaces facing inward. A small object
placed in the bottom of the cavity will have its image projected in
the air above. The way it works is that the top mirror produces a
virtual image, and the bottom mirror then creates a real image of
the virtual image. (a) Show that if the image is to be positioned
as shown, at the mouth of the cavity, then the focal length of the
mirrors is related to the dimension h via the equation

1
f

=
1
h

+
1

h +
(

1
h −

1
f

)−1 .

(b) Restate the equation in terms of a single variable x = h/f , and
show that there are two solutions for x. Which solution is physically
consistent with the assumptions of the calculation? ?
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Problem 8.

6 A hollowed-out surface that reflects sound waves can act just
like an in-bending mirror. Suppose that, standing near such a sur-
face, you are able to find point where you can place your head so
that your own whispers are focused back on your head, so that they
sound loud to you. Given your distance to the surface, what is the
surface’s focal length?

7 Find the focal length of the mirror in problem 5 of chapter 1.

8 Rank the focal lengths of the mirrors, from shortest to longest.

9 (a) A converging mirror is being used to create a virtual image.
What is the range of possible magnifications? (b) Do the same for
the other types of images that can be formed by curved mirrors
(both converging and diverging).

10 (a) A converging mirror with a focal length of 20 cm is used
to create an image, using an object at a distance of 10 cm. Is the
image real, or is it virtual? (b) How about f = 20 cm and do = 30
cm? (c) What if it was a diverging mirror with f = 20 cm and
do = 10 cm? (d) A diverging mirror with = 20 cm and do = 30 cm?

. Solution, p. 108
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Three stages in the evolution of the eye. The flatworm has two eye pits. The nautilus’s eyes are pinhole
cameras. The human eye incorporates a lens.

Chapter 4

Refraction

Economists normally consider free markets to be the natural way of
judging the monetary value of something, but social scientists also
use questionnaires to gauge the relative value of privileges, disad-
vantages, or possessions that cannot be bought or sold. They ask
people to imagine that they could trade one thing for another and
ask which they would choose. One interesting result is that the av-
erage light-skinned person in the U.S. would rather lose an arm than
suffer the racist treatment routinely endured by African-Americans.
Even more impressive is the value of sight. Many prospective par-
ents can imagine without too much fear having a deaf child, but
would have a far more difficult time coping with raising a blind one.

So great is the value attached to sight that some have imbued
it with mystical aspects. Moses “had vision,” George Bush did not.
Christian fundamentalists who perceive a conflict between evolution
and their religion have claimed that the eye is such a perfect device
that it could never have arisen through a process as helter-skelter as
evolution, or that it could not have evolved because half of an eye
would be useless. In fact, the structure of an eye is fundamentally
dictated by physics, and it has arisen separately by evolution some-
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a / A human eye.

b / The anatomy of the eye.

c / A simplified optical dia-
gram of the eye. Light rays are
bent when they cross from the
air into the eye. (A little of the
incident rays’ energy goes into
the reflected rays rather than the
ones transmitted into the eye.)

where between eight and 40 times, depending on which biologist you
ask. We humans have a version of the eye that can be traced back
to the evolution of a light-sensitive “eye spot” on the head of an
ancient invertebrate. A sunken pit then developed so that the eye
would only receive light from one direction, allowing the organism
to tell where the light was coming from. (Modern flatworms have
this type of eye.) The top of the pit then became partially covered,
leaving a hole, for even greater directionality (as in the nautilus).
At some point the cavity became filled with jelly, and this jelly fi-
nally became a lens, resulting in the general type of eye that we
share with the bony fishes and other vertebrates. Far from being
a perfect device, the vertebrate eye is marred by a serious design
flaw due to the lack of planning or intelligent design in evolution:
the nerve cells of the retina and the blood vessels that serve them
are all in front of the light-sensitive cells, blocking part of the light.
Squids and other molluscs, whose eyes evolved on a separate branch
of the evolutionary tree, have a more sensible arrangement, with the
light-sensitive cells out in front.

4.1 Refraction

Refraction
The fundamental physical phenomenon at work in the eye is

that when light crosses a boundary between two media (such as air
and the eye’s jelly), part of its energy is reflected, but part passes
into the new medium. In the ray model of light, we describe the
original ray as splitting into a reflected ray and a transmitted one
(the one that gets through the boundary). Of course the reflected
ray goes in a direction that is different from that of the original one,
according to the rules of reflection we have already studied. More
surprisingly — and this is the crucial point for making your eye
focus light — the transmitted ray is bent somewhat as well. This
bending phenomenon is called refraction. The origin of the word
is the same as that of the word “fracture,” i.e., the ray is bent or
“broken.” (Keep in mind, however, that light rays are not physical
objects that can really be “broken.”) Refraction occurs with all
waves, not just light waves.

The actual anatomy of the eye, b, is quite complex, but in essence
it is very much like every other optical device based on refraction.
The rays are bent when they pass through the front surface of the
eye, c. Rays that enter farther from the central axis are bent more,
with the result that an image is formed on the retina. There is
only one slightly novel aspect of the situation. In most human-built
optical devices, such as a movie projector, the light is bent as it
passes into a lens, bent again as it reemerges, and then reaches a
focus beyond the lens. In the eye, however, the “screen” is inside
the eye, so the rays are only refracted once, on entering the jelly,
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d / The incident, reflected,
and transmitted (refracted) rays
all lie in a plane that includes the
normal (dashed line).

e / The angles θ1 and θ2 are
related to each other, and also
depend on the properties of the
two media. Because refraction
is time-reversal symmetric, there
is no need to label the rays with
arrowheads.

f / Refraction has time-reversal
symmetry. Regardless of whether
the light is going into or out of the
water, the relationship between
the two angles is the same, and
the ray is closer to the normal
while in the water.

and never emerge again.

A common misconception is that the “lens” of the eye is what
does the focusing. All the transparent parts of the eye are made
of fairly similar stuff, so the dramatic change in medium is when a
ray crosses from the air into the eye (at the outside surface of the
cornea). This is where nearly all the refraction takes place. The lens
medium differs only slightly in its optical properties from the rest
of the eye, so very little refraction occurs as light enters and exits
the lens. The lens, whose shape is adjusted by muscles attached to
it, is only meant for fine-tuning the focus to form images of near or
far objects.

Refractive properties of media

What are the rules governing refraction? The first thing to ob-
serve is that just as with reflection, the new, bent part of the ray lies
in the same plane as the normal (perpendicular) and the incident
ray, d.

If you try shooting a beam of light at the boundary between
two substances, say water and air, you’ll find that regardless of the
angle at which you send in the beam, the part of the beam in the
water is always closer to the normal line, e. It doesn’t matter if the
ray is entering the water or leaving, so refraction is symmetric with
respect to time-reversal, f.

If, instead of water and air, you try another combination of sub-
stances, say plastic and gasoline, again you’ll find that the ray’s
angle with respect to the normal is consistently smaller in one and
larger in the other. Also, we find that if substance A has rays closer
to normal than in B, and B has rays closer to normal than in C, then
A has rays closer to normal than C. This means that we can rank-
order all materials according to their refractive properties. Isaac
Newton did so, including in his list many amusing substances, such
as “Danzig vitriol” and “a pseudo-topazius, being a natural, pellu-
cid, brittle, hairy stone, of a yellow color.” Several general rules can
be inferred from such a list:

• Vacuum lies at one end of the list. In refraction across the
interface between vacuum and any other medium, the other
medium has rays closer to the normal.

• Among gases, the ray gets closer to the normal if you increase
the density of the gas by pressurizing it more.

• The refractive properties of liquid mixtures and solutions vary
in a smooth and systematic manner as the proportions of the
mixture are changed.

• Denser substances usually, but not always, have rays closer to
the normal.
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g / The relationship between
the angles in refraction.

The second and third rules provide us with a method for measur-
ing the density of an unknown sample of gas, or the concentration
of a solution. The latter technique is very commonly used, and the
CRC Handbook of Physics and Chemistry, for instance, contains
extensive tables of the refractive properties of sugar solutions, cat
urine, and so on.

Snell’s law
The numerical rule governing refraction was discovered by Snell,

who must have collected experimental data something like what is
shown on this graph and then attempted by trial and error to find
the right equation. The equation he came up with was

sin θ1

sin θ2
= constant .

The value of the constant would depend on the combination of media
used. For instance, any one of the data points in the graph would
have sufficed to show that the constant was 1.3 for an air-water
interface (taking air to be substance 1 and water to be substance
2).

Snell further found that if media A and B gave a constant KAB

and media B and C gave a constant KBC , then refraction at an inter-
face between A and C would be described by a constant equal to the
product, KAC = KABKBC . This is exactly what one would expect
if the constant depended on the ratio of some number characteriz-
ing one medium to the number characteristic of the second medium.
This number is called the index of refraction of the medium, written
as n in equations. Since measuring the angles would only allow him
to determine the ratio of the indices of refraction of two media, Snell
had to pick some medium and define it as having n = 1. He chose
to define vacuum as having n = 1. (The index of refraction of air
at normal atmospheric pressure is 1.0003, so for most purposes it is
a good approximation to assume that air has n = 1.) He also had
to decide which way to define the ratio, and he chose to define it so
that media with their rays closer to the normal would have larger in-
dices of refraction. This had the advantage that denser media would
typically have higher indices of refraction, and for this reason the
index of refraction is also referred to as the optical density. Written
in terms of indices of refraction, Snell’s equation becomes

sin θ1

sin θ2
=

n1

n2
,

but rewriting it in the form
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h / Example 1.

n1 sin θ1 = n2 sin θ2

[relationship between angles of rays at the interface be-
tween media with indices of refraction n1 and n2; angles
are defined with respect to the normal]

makes us less likely to get the 1’s and 2’s mixed up, so this the way
most people remember Snell’s law. A few indices of refraction are
given in the back of the book.

self-check A
(1) What would the graph look like for two substances with the same
index of refraction?

(2) Based on the graph, when does refraction at an air-water interface
change the direction of a ray most strongly? . Answer, p. 106

Finding an angle using Snell’s law example 1
. A submarine shines its searchlight up toward the surface of the water.
What is the angle α shown in the figure?

. The tricky part is that Snell’s law refers to the angles with respect to
the normal. Forgetting this is a very common mistake. The beam is at
an angle of 30 ◦ with respect to the normal in the water. Let’s refer to
the air as medium 1 and the water as 2. Solving Snell’s law for θ1, we
find

θ1 = sin−1
(

n2

n1
sin θ2

)
.

As mentioned above, air has an index of refraction very close to 1, and
water’s is about 1.3, so we find θ1 = 40 ◦. The angle α is therefore
50 ◦.

The index of refraction is related to the speed of light.

What neither Snell nor Newton knew was that there is a very
simple interpretation of the index of refraction. This may come as
a relief to the reader who is taken aback by the complex reasoning
involving proportionalities that led to its definition. Later experi-
ments showed that the index of refraction of a medium was inversely
proportional to the speed of light in that medium. Since c is defined
as the speed of light in vacuum, and n = 1 is defined as the index
of refraction of vacuum, we have

n =
c

v
.

[n = medium’s index of refraction, v = speed of light
in that medium, c = speed of light in a vacuum]

Many textbooks start with this as the definition of the index
of refraction, although that approach makes the quantity’s name
somewhat of a mystery, and leaves students wondering why c/v was
used rather than v/c. It should also be noted that measuring angles
of refraction is a far more practical method for determining n than
direct measurement of the speed of light in the substance of interest.
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i / A mechanical model of re-
fraction.

A mechanical model of Snell’s law

Why should refraction be related to the speed of light? The
mechanical model shown in the figure may help to make this more
plausible. Suppose medium 2 is thick, sticky mud, which slows down
the car. The car’s right wheel hits the mud first, causing the right
side of the car to slow down. This will cause the car to turn to the
right until is moves far enough forward for the left wheel to cross
into the mud. After that, the two sides of the car will once again be
moving at the same speed, and the car will go straight.

Of course, light isn’t a car. Why should a beam of light have
anything resembling a “left wheel” and “right wheel?” After all,
the mechanical model would predict that a motorcycle would go
straight, and a motorcycle seems like a better approximation to a
ray of light than a car. The whole thing is just a model, not a
description of physical reality.

j / A derivation of Snell’s law.

A derivation of Snell’s law

However intuitively appealing the mechanical model may be,
light is a wave, and we should be using wave models to describe
refraction. In fact Snell’s law can be derived quite simply from
wave concepts. Figure j shows the refraction of a water wave. The
water in the upper left part of the tank is shallower, so the speed
of the waves is slower there, and their wavelengths is shorter. The
reflected part of the wave is also very faintly visible.
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In the close-up view on the right, the dashed lines are normals
to the interface. The two marked angles on the right side are both
equal to θ1, and the two on the left to θ2.

Trigonometry gives

sin θ1 = λ1/h and
sin θ2 = λ2/h .

Eliminating h by dividing the equations, we find

sin θ1

sin θ2
=

λ1

λ2
.

The frequencies of the two waves must be equal or else they would
get out of step, so by v = fλ we know that their wavelengths are
proportional to their velocities. Combining λ ∝ v with v ∝ 1/n
gives λ ∝ 1/n, so we find

sin θ1

sin θ2
=

n2

n1
,

which is one form of Snell’s law.

Ocean waves near and far from shore example 2
Ocean waves are formed by winds, typically on the open sea, and the
wavefronts are perpendicular to the direction of the wind that formed
them. At the beach, however, you have undoubtedly observed that
waves tend come in with their wavefronts very nearly (but not exactly)
parallel to the shoreline. This is because the speed of water waves in
shallow water depends on depth: the shallower the water, the slower
the wave. Although the change from the fast-wave region to the slow-
wave region is gradual rather than abrupt, there is still refraction, and
the wave motion is nearly perpendicular to the normal in the slow re-
gion.

Color and refraction

In general, the speed of light in a medium depends both on the
medium and on the wavelength of the light. Another way of saying it
is that a medium’s index of refraction varies with wavelength. This
is why a prism can be used to split up a beam of white light into a
rainbow. Each wavelength of light is refracted through a different
angle.

How much light is reflected, and how much is transmitted?

In book 3 we developed an equation for the percentage of the
wave energy that is transmitted and the percentage reflected at a
boundary between media. This was only done in the case of waves
in one dimension, however, and rather than discuss the full three di-
mensional generalization it will be more useful to go into some qual-
itative observations about what happens. First, reflection happens
only at the interface between two media, and two media with the
same index of refraction act as if they were a single medium. Thus,
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k / Total internal reflection in
a fiber-optic cable.

l / A simplified drawing of a
surgical endoscope. The first
lens forms a real image at
one end of a bundle of optical
fibers. The light is transmitted
through the bundle, and is finally
magnified by the eyepiece.

m / Endoscopic images of a
duodenal ulcer.

at the interface between media with the same index of refraction,
there is no reflection, and the ray keeps going straight. Continuing
this line of thought, it is not surprising that we observe very lit-
tle reflection at an interface between media with similar indices of
refraction.

The next thing to note is that it is possible to have situations
where no possible angle for the refracted ray can satisfy Snell’s law.
Solving Snell’s law for θ2, we find

θ2 = sin−1

(
n1

n2
sin θ1

)
,

and if n1 is greater than n2, then there will be large values of θ1

for which the quantity (n1/n2) sin θ is greater than one, meaning
that your calculator will flash an error message at you when you
try to take the inverse sine. What can happen physically in such
a situation? The answer is that all the light is reflected, so there
is no refracted ray. This phenomenon is known as total internal
reflection, and is used in the fiber-optic cables that nowadays carry
almost all long-distance telephone calls. The electrical signals from
your phone travel to a switching center, where they are converted
from electricity into light. From there, the light is sent across the
country in a thin transparent fiber. The light is aimed straight into
the end of the fiber, and as long as the fiber never goes through any
turns that are too sharp, the light will always encounter the edge
of the fiber at an angle sufficiently oblique to give total internal
reflection. If the fiber-optic cable is thick enough, one can see an
image at one end of whatever the other end is pointed at.

Alternatively, a bundle of cables can be used, since a single thick
cable is too hard to bend. This technique for seeing around corners
is useful for making surgery less traumatic. Instead of cutting a
person wide open, a surgeon can make a small “keyhole” incision
and insert a bundle of fiber-optic cable (known as an endoscope)
into the body.

Since rays at sufficiently large angles with respect to the normal
may be completely reflected, it is not surprising that the relative
amount of reflection changes depending on the angle of incidence,
and is greatest for large angles of incidence.
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Discussion Questions

A What index of refraction should a fish have in order to be invisible to
other fish?

B Does a surgeon using an endoscope need a source of light inside
the body cavity? If so, how could this be done without inserting a light
bulb through the incision?

C A denser sample of a gas has a higher index of refraction than a
less dense sample (i.e., a sample under lower pressure), but why would
it not make sense for the index of refraction of a gas to be proportional to
density?

D The earth’s atmosphere gets thinner and thinner as you go higher in
altitude. If a ray of light comes from a star that is below the zenith, what
will happen to it as it comes into the earth’s atmosphere?

E Does total internal reflection occur when light in a denser medium
encounters a less dense medium, or the other way around? Or can it
occur in either case?
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4.2 Lenses
Figures n/1 and n/2 show examples of lenses forming images. There
is essentially nothing for you to learn about imaging with lenses
that is truly new. You already know how to construct and use ray
diagrams, and you know about real and virtual images. The concept
of the focal length of a lens is the same as for a curved mirror. The
equations for locating images and determining magnifications are
of the same form. It’s really just a question of flexing your mental
muscles on a few examples. The following self-checks and discussion
questions will get you started.

n / 1. A converging lens forms an
image of a candle flame. 2. A di-
verging lens.

self-check B
(1) In figures n/1 and n/2, classify the images as real or virtual.

(2) Glass has an index of refraction that is greater than that of air. Con-
sider the topmost ray in figure n/1. Explain why the ray makes a slight
left turn upon entering the lens, and another left turn when it exits.

(3) If the flame in figure n/2 was moved closer to the lens, what would
happen to the location of the image? . Answer, p. 106

Discussion Questions

A In figures n/1 and n/2, the front and back surfaces are parallel to
each other at the center of the lens. What will happen to a ray that enters
near the center, but not necessarily along the axis of the lens? Draw a
BIG ray diagram, and show a ray that comes from off axis.

B Suppose you wanted to change the setup in figure n/1 so that the
location of the actual flame in the figure would instead be occupied by an
image of a flame. Where would you have to move the candle to achieve
this? What about in n/2?

C There are three qualitatively different types of image formation that
can occur with lenses, of which figures n/1 and n/2 exhaust only two.
Figure out what the third possibility is. Which of the three possibilities can
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result in a magnification greater than one?

D Classify the examples shown in figure o according to the types of
images delineated in the previous discussion question.

E In figures n/1 and n/2, the only rays drawn were those that happened
to enter the lenses. Discuss this in relation to figure o.

F In the right-hand side of figure o, the image viewed through the lens
is in focus, but the side of the rose that sticks out from behind the lens is
not. Why?

G In general, the index of refraction depends on the color of the light.
What effect would this have on images formed by lenses?

o / Two images of a rose created by the same lens and recorded with the same camera.

Section 4.2 Lenses 69



q / The principle of least time
applied to refraction.

p / The radii of curvature ap-
pearing in the lensmaker’s
equation.

4.3 ? The Lensmaker’s Equation
The focal length of a spherical mirror is simply r/2, but we can-

not expect the focal length of a lens to be given by pure geometry,
since it also depends on the index of refraction of the lens. Suppose
we have a lens whose front and back surfaces are both spherical.
(This is no great loss of generality, since any surface with a suffi-
ciently shallow curvature can be approximated with a sphere.) Then
if the lens is immersed in a medium with an index of refraction of
1, its focal length is given approximately by

f =
[
(n− 1)

∣∣∣∣ 1
r1
± 1

r2

∣∣∣∣]−1

,

where n is the index of refraction and r1 and r2 are the radii of
curvature of the two surfaces of the lens. This is known as the
lensmaker’s equation. In my opinion it is not particularly worthy
of memorization. The positive sign is used when both surfaces are
curved outward or both are curved inward; otherwise a negative
sign applies. The proof of this equation is left as an exercise to
those readers who are sufficiently brave and motivated.

4.4 ? The Principle of Least Time for
Refraction

We have seen previously how the rules governing straight-line
motion of light and reflection of light can be derived from the prin-
ciple of least time. What about refraction? In the figure, it is indeed
plausible that the bending of the ray serves to minimize the time
required to get from a point A to point B. If the ray followed the un-
bent path shown with a dashed line, it would have to travel a longer
distance in the medium in which its speed is slower. By bending
the correct amount, it can reduce the distance it has to cover in the
slower medium without going too far out of its way. It is true that
Snell’s law gives exactly the set of angles that minimizes the time
required for light to get from one point to another. The proof of
this fact is left as an exercise.
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Summary
Selected Vocabulary
refraction . . . . the change in direction that occurs when a

wave encounters the interface between two me-
dia

index of refrac-
tion . . . . . . . .

an optical property of matter; the speed of
light in a vacuum divided by the speed of light
in the substance in question

Notation
n . . . . . . . . . . the index of refraction

Summary

Refraction is a change in direction that occurs when a wave en-
counters the interface between two media. Together, refraction and
reflection account for the basic principles behind nearly all optical
devices.

Snell discovered the equation for refraction,

n1 sin θ1 = n2 sin θ2 ,

[angles measured with respect to the normal]

through experiments with light rays, long before light was proven
to be a wave. Snell’s law can be proven based on the geometrical
behavior of waves. Here n is the index of refraction. Snell invented
this quantity to describe the refractive properties of various sub-
stances, but it was later found to be related to the speed of light in
the substance,

n =
c

v
,

where c is the speed of light in a vacuum. In general a material’s
index of refraction is different for different wavelengths of light.

As discussed in the third book of this series, any wave is par-
tially transmitted and partially reflected at the boundary between
two media in which its speeds are different. It is not particularly im-
portant to know the equation that tells what fraction is transmitted
(and thus refracted), but important technologies such as fiber optics
are based on the fact that this fraction becomes zero for sufficiently
oblique angles. This phenomenon is referred to as total internal
reflection. It occurs when there is no angle that satisfies Snell’s law.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 Suppose a converging lens is constructed of a type of plastic
whose index of refraction is less than that of water. How will the
lens’s behavior be different if it is placed underwater?

2 There are two main types of telescopes, refracting (using lenses)
and reflecting (using mirrors). (Some telescopes use a mixture of
the two types of elements: the light first encounters a large curved
mirror, and then goes through an eyepiece that is a lens.) What
implications would the color-dependence of focal length have for the
relative merits of the two types of telescopes? What would happen
with white starlight, for example?

3 Based on Snell’s law, explain why rays of light passing through
the edges of a converging lens are bent more than rays passing
through parts closer to the center. It might seem like it should
be the other way around, since the rays at the edge pass through
less glass — shouldn’t they be affected less? In your answer:

• Include a ray diagram showing a huge close-up view of the
relevant part of the lens.

• Make use of the fact that the front and back surfaces aren’t
always parallel; a lens in which the front and back surfaces are
always parallel doesn’t focus light at all, so if your explanation
doesn’t make use of this fact, your argument must be incorrect.

• Make sure your argument still works even if the rays don’t
come in parallel to the axis.

4 When you take pictures with a camera, the distance between
the lens and the film has to be adjusted, depending on the distance
at which you want to focus. This is done by moving the lens. If
you want to change your focus so that you can take a picture of
something farther away, which way do you have to move the lens?
Explain using ray diagrams. [Based on a problem by Eric Mazur.]

5 (a) Light is being reflected diffusely from an object 1.000 m
under water. The light that comes up to the surface is refracted at
the water-air interface. If the refracted rays all appear to come from
the same point, then there will be a virtual image of the object in
the water, above the object’s actual position, which will be visible
to an observer above the water. Consider three rays, A, B and C,
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Problem 6.

Problem 8.

whose angles in the water with respect to the normal are θi = 0.000 ◦,
1.000 ◦and 20.000 ◦respectively. Find the depth of the point at which
the refracted parts of A and B appear to have intersected, and do
the same for A and C. Show that the intersections are at nearly the
same depth, but not quite. [Check: The difference in depth should
be about 4 cm.]

(b) Since all the refracted rays do not quite appear to have come
from the same point, this is technically not a virtual image. In
practical terms, what effect would this have on what you see?

(c) In the case where the angles are all small, use algebra and trig to
show that the refracted rays do appear to come from the same point,
and find an equation for the depth of the virtual image. Do not put
in any numerical values for the angles or for the indices of refraction
— just keep them as symbols. You will need the approximation
sin θ ≈ tan θ ≈ θ, which is valid for small angles measured in radians.

?
6 The drawing shows the anatomy of the human eye, at twice life
size. Find the radius of curvature of the outer surface of the cornea
by measurements on the figure, and then derive the focal length of
the air-cornea interface, where almost all the focusing of light occurs.
You will need to use physical reasoning to modify the lensmaker’s
equation for the case where there is only a single refracting surface.
Assume that the index of refraction of the cornea is essentially that
of water. ?

7 When swimming underwater, why is your vision made much
clearer by wearing goggles with flat pieces of glass that trap air
behind them? [Hint: You can simplify your reasoning by considering
the special case where you are looking at an object far away, and
along the optic axis of the eye.]

8 The figure shows four lenses. Lens 1 has two spherical surfaces.
Lens 2 is the same as lens 1 but turned around. Lens 3 is made by
cutting through lens 1 and turning the bottom around. Lens 4 is
made by cutting a central circle out of lens 1 and recessing it.

(a) A parallel beam of light enters lens 1 from the left, parallel to
its axis. Reasoning based on Snell’s law, will the beam emerging
from the lens be bent inward or outward, or will it remain parallel
to the axis? Explain your reasoning. As part of your answer, make
an huge drawing of one small part of the lens, and apply Snell’s law
at both interfaces. Recall that rays are bent more if they come to
the interface at a larger angle with respect to the normal.

(b) What will happen with lenses 2, 3, and 4? Explain. Drawings
are not necessary.

9 Prove that the principle of least time leads to Snell’s law. ?
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Problem 13.

10 An object is more than one focal length from a converging lens.
(a) Draw a ray diagram. (b) Using reasoning like that developed in
chapter 3, determine the positive and negative signs in the equation
1/f = ±1/di ± 1/do. (c) The images of the rose in section 4.2 were
made using a lens with a focal length of 23 cm. If the lens is placed
80 cm from the rose, locate the image.

√

11 An object is less than one focal length from a converging lens.
(a) Draw a ray diagram. (b) Using reasoning like that developed in
chapter 3, determine the positive and negative signs in the equation
1/f = ±1/di ± 1/do. (c) The images of the rose in section 4.2 were
made using a lens with a focal length of 23 cm. If the lens is placed
10 cm from the rose, locate the image.

√

12 Nearsighted people wear glasses whose lenses are diverging.
(a) Draw a ray diagram. For simplicity pretend that there is no
eye behind the glasses. (b) Using reasoning like that developed in
chapter 3, determine the positive and negative signs in the equation
1/f = ±1/di ± 1/do. (c) If the focal length of the lens is 50.0 cm,
and the person is looking at an object at a distance of 80.0 cm,
locate the image.

√

13 Two standard focal lengths for camera lenses are 50 mm
(standard) and 28 mm (wide-angle). To see how the focal lengths
relate to the angular size of the field of view, it is helpful to visualize
things as represented in the figure. Instead of showing many rays
coming from the same point on the same object, as we normally do,
the figure shows two rays from two different objects. Although the
lens will intercept infinitely many rays from each of these points, we
have shown only the ones that pass through the center of the lens,
so that they suffer no angular deflection. (Any angular deflection at
the front surface of the lens is canceled by an opposite deflection at
the back, since the front and back surfaces are parallel at the lens’s
center.) What is special about these two rays is that they are aimed
at the edges of one 35-mm-wide frame of film; that is, they show
the limits of the field of view. Throughout this problem, we assume
that do is much greater than di. (a) Compute the angular width
of the camera’s field of view when these two lenses are used. (b)
Use small-angle approximations to find a simplified equation for the
angular width of the field of view, θ, in terms of the focal length,
f , and the width of the film, w. Your equation should not have
any trig functions in it. Compare the results of this approximation
with your answers from part a. (c) Suppose that we are holding
constant the aperture (amount of surface area of the lens being
used to collect light). When switching from a 50-mm lens to a 28-
mm lens, how many times longer or shorter must the exposure be
in order to make a properly developed picture, i.e., one that is not
under- or overexposed? [Based on a problem by Arnold Arons.]

. Solution, p. 108
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14 A nearsighted person is one whose eyes focus light too strongly,
and who is therefore unable to relax the lens inside her eye suffi-
ciently to form an image on her retina of an object that is too far
away.

(a) Draw a ray diagram showing what happens when the person
tries, with uncorrected vision, to focus at infinity.

(b) What type of lenses do her glasses have? Explain.

(c) Draw a ray diagram showing what happens when she wears
glasses. Locate both the image formed by the glasses and the fi-
nal image.

(d) Suppose she sometimes uses contact lenses instead of her glasses.
Does the focal length of her contacts have to be less than, equal to,
or greater than that of her glasses? Explain.

15 Diamond has an index of refraction of 2.42, and part of the
reason diamonds sparkle is that this encourages a light ray to un-
dergo many total internal reflections before it emerges. Calculate the
critical angle at which total internal reflection occurs in diamond.
Explain the interpretation of your result: Is it measured from the
normal, or from the surface? Is it a minimum, or a maximum? How
would the critical angle have been different for a substance such as
glass or plastic, with a lower index of refraction?

16 Fred’s eyes are able to focus on things as close as 5.0 cm.
Fred holds a magnifying glass with a focal length of 3.0 cm at a
height of 2.0 cm above a flatworm. (a) Locate the image, and find
the magnification. (b) Without the magnifying glass, from what
distance would Fred want to view the flatworm to see its details
as well as possible? With the magnifying glass? (c) Compute the
angular magnification.

Problem 17.

17 Panel 1 of the figure shows the optics inside a pair of binoc-
ulars. They are essentially a pair of telescopes, one for each eye.
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But to make them more compact, and allow the eyepieces to be the
right distance apart for a human face, they incorporate a set of eight
prisms, which fold the light path. In addition, the prisms make the
image upright. Panel 2 shows one of these prisms, known as a Porro
prism. The light enters along a normal, undergoes two total internal
reflections at angles of 45 degrees with respect to the back surfaces,
and exits along a normal. The image of the letter R has been flipped
across the horizontal. Panel 3 shows a pair of these prisms glued
together. The image will be flipped across both the horizontal and
the vertical, which makes it oriented the right way for the user of
the binoculars.
(a) Find the minimum possible index of refraction for the glass used
in the prisms.
(b) For a material of this minimal index of refraction, find the frac-
tion of the incoming light that will be lost to reflection in the four
Porro prisms on a each side of a pair of binoculars. (See chapter
4 or Vibrations and Waves, or section 6.2 of Simple Nature.) In
real, high-quality binoculars, the optical surfaces of the prisms have
antireflective coatings, but carry out your calculation for the case
where there is no such coating.
(c) Discuss the reasons why a designer of binoculars might or might
not want to use a material with exactly the index of refraction found
in part a. ?
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This image of the Pleiades star cluster shows haloes around the stars due to the wave nature of light.

Chapter 5

Wave Optics

Electron microscopes can make images of individual atoms, but why
will a visible-light microscope never be able to? Stereo speakers
create the illusion of music that comes from a band arranged in
your living room, but why doesn’t the stereo illusion work with bass
notes? Why are computer chip manufacturers investing billions of
dollars in equipment to etch chips with x-rays instead of visible
light?

The answers to all of these questions have to do with the subject
of wave optics. So far this book has discussed the interaction of
light waves with matter, and its practical applications to optical
devices like mirrors, but we have used the ray model of light almost
exclusively. Hardly ever have we explicitly made use of the fact that
light is an electromagnetic wave. We were able to get away with the
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a / In this view from overhead, a
straight, sinusoidal water wave
encounters a barrier with two
gaps in it. Strong wave vibration
occurs at angles X and Z, but
there is none at all at angle Y.
(The figure has been retouched
from a real photo of water waves.
In reality, the waves beyond the
barrier would be much weaker
than the ones before it, and they
would therefore be difficult to
see.)

b / This doesn’t happen.

simple ray model because the chunks of matter we were discussing,
such as lenses and mirrors, were thousands of times larger than a
wavelength of light. We now turn to phenomena and devices that
can only be understood using the wave model of light.

5.1 Diffraction
Figure a shows a typical problem in wave optics, enacted with

water waves. It may seem surprising that we don’t get a simple
pattern like figure b, but the pattern would only be that simple
if the wavelength was hundreds of times shorter than the distance
between the gaps in the barrier and the widths of the gaps.

Wave optics is a broad subject, but this example will help us
to pick out a reasonable set of restrictions to make things more
manageable:

(1) We restrict ourselves to cases in which a wave travels through
a uniform medium, encounters a certain area in which the medium
has different properties, and then emerges on the other side into a
second uniform region.

(2) We assume that the incoming wave is a nice tidy sine-wave
pattern with wavefronts that are lines (or, in three dimensions,
planes).

(3) In figure a we can see that the wave pattern immediately
beyond the barrier is rather complex, but farther on it sorts itself
out into a set of wedges separated by gaps in which the water is
still. We will restrict ourselves to studying the simpler wave patterns
that occur farther away, so that the main question of interest is how
intense the outgoing wave is at a given angle.

The kind of phenomenon described by restriction (1) is called
diffraction. Diffraction can be defined as the behavior of a wave
when it encounters an obstacle or a nonuniformity in its medium.
In general, diffraction causes a wave to bend around obstacles and
make patterns of strong and weak waves radiating out beyond the
obstacle. Understanding diffraction is the central problem of wave
optics. If you understand diffraction, even the subset of diffraction
problems that fall within restrictions (2) and (3), the rest of wave
optics is icing on the cake.

Diffraction can be used to find the structure of an unknown
diffracting object: even if the object is too small to study with
ordinary imaging, it may be possible to work backward from the
diffraction pattern to learn about the object. The structure of a
crystal, for example, can be determined from its x-ray diffraction
pattern.

Diffraction can also be a bad thing. In a telescope, for example,
light waves are diffracted by all the parts of the instrument. This will
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c / A practical, low-tech setup for
observing diffraction of light.

d / The bottom figure is sim-
ply a copy of the middle portion
of the top one, scaled up by a
factor of two. All the angles are
the same. Physically, the angular
pattern of the diffraction fringes
can’t be any different if we scale
both λ and d by the same factor,
leaving λ/d unchanged.

cause the image of a star to appear fuzzy even when the focus has
been adjusted correctly. By understanding diffraction, one can learn
how a telescope must be designed in order to reduce this problem
— essentially, it should have the biggest possible diameter.

There are two ways in which restriction (2) might commonly be
violated. First, the light might be a mixture of wavelengths. If we
simply want to observe a diffraction pattern or to use diffraction as
a technique for studying the object doing the diffracting (e.g., if the
object is too small to see with a microscope), then we can pass the
light through a colored filter before diffracting it.

A second issue is that light from sources such as the sun or a
lightbulb does not consist of a nice neat plane wave, except over
very small regions of space. Different parts of the wave are out of
step with each other, and the wave is referred to as incoherent. One
way of dealing with this is shown in figure c. After filtering to select
a certain wavelength of red light, we pass the light through a small
pinhole. The region of the light that is intercepted by the pinhole is
so small that one part of it is not out of step with another. Beyond
the pinhole, light spreads out in a spherical wave; this is analogous
to what happens when you speak into one end of a paper towel roll
and the sound waves spread out in all directions from the other end.
By the time the spherical wave gets to the double slit it has spread
out and reduced its curvature, so that we can now think of it as a
simple plane wave.

If this seems laborious, you may be relieved to know that modern
technology gives us an easier way to produce a single-wavelength,
coherent beam of light: the laser.

The parts of the final image on the screen in c are called diffrac-
tion fringes. The center of each fringe is a point of maximum bright-
ness, and halfway between two fringes is a minimum.

Discussion Question

A Why would x-rays rather than visible light be used to find the structure
of a crystal? Sound waves are used to make images of fetuses in the
womb. What would influence the choice of wavelength?

5.2 Scaling of Diffraction
This chapter has “optics” in its title, so it is nominally about light,
but we started out with an example involving water waves. Water
waves are certainly easier to visualize, but is this a legitimate com-
parison? In fact the analogy works quite well, despite the fact that
a light wave has a wavelength about a million times shorter. This
is because diffraction effects scale uniformly. That is, if we enlarge
or reduce the whole diffraction situation by the same factor, includ-
ing both the wavelengths and the sizes of the obstacles the wave
encounters, the result is still a valid solution.
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e / Christiaan Huygens (1629-
1695).

This is unusually simple behavior! In the first book of this series
we saw many examples of more complex scaling, such as the impos-
sibility of bacteria the size of dogs, or the need for an elephant to
eliminate heat through its ears because of its small surface-to-volume
ratio, whereas a tiny shrew’s life-style centers around conserving its
body heat.

Of course water waves and light waves differ in many ways, not
just in scale, but the general facts you will learn about diffraction
are applicable to all waves. In some ways it might have been more
appropriate to insert this chapter at the end of book 3, Vibrations
and Waves, but many of the important applications are to light
waves, and you would probably have found these much more difficult
without any background in optics.

Another way of stating the simple scaling behavior of diffraction
is that the diffraction angles we get depend only on the unitless ratio
λ/d, where λ is the wavelength of the wave and d is some dimension
of the diffracting objects, e.g., the center-to-center spacing between
the slits in figure a. If, for instance, we scale up both λ and d by a
factor of 37, the ratio λ/d will be unchanged.

5.3 The Correspondence Principle
The only reason we don’t usually notice diffraction of light in ev-
eryday life is that we don’t normally deal with objects that are
comparable in size to a wavelength of visible light, which is about a
millionth of a meter. Does this mean that wave optics contradicts
ray optics, or that wave optics sometimes gives wrong results? No.
If you hold three fingers out in the sunlight and cast a shadow with
them, either wave optics or ray optics can be used to predict the
straightforward result: a shadow pattern with two bright lines where
the light has gone through the gaps between your fingers. Wave op-
tics is a more general theory than ray optics, so in any case where
ray optics is valid, the two theories will agree. This is an example
of a general idea enunciated by the physicist Niels Bohr, called the
correspondence principle: when flaws in a physical theory lead to
the creation of a new and more general theory, the new theory must
still agree with the old theory within its more restricted area of ap-
plicability. After all, a theory is only created as a way of describing
experimental observations. If the original theory had not worked in
any cases at all, it would never have become accepted.

In the case of optics, the correspondence principle tells us that
when λ/d is small, both the ray and the wave model of light must
give approximately the same result. Suppose you spread your fingers
and cast a shadow with them using a coherent light source. The
quantity λ/d is about 10 -4, so the two models will agree very closely.
(To be specific, the shadows of your fingers will be outlined by a
series of light and dark fringes, but the angle subtended by a fringe
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f / Double-slit diffraction.

g / A wavefront can be analyzed
by the principle of superposition,
breaking it down into many small
parts.

h / If it was by itself, each of
the parts would spread out as a
circular ripple.

i / Adding up the ripples pro-
duces a new wavefront.

will be on the order of 10−4 radians, so they will be invisible and
washed out by the natural fuzziness of the edges of sun-shadows,
caused by the finite size of the sun.)

self-check A
What kind of wavelength would an electromagnetic wave have to have
in order to diffract dramatically around your body? Does this contradict
the correspondence principle? . Answer, p. 106

5.4 Huygens’ Principle
Returning to the example of double-slit diffraction, f, note the

strong visual impression of two overlapping sets of concentric semi-
circles. This is an example of Huygens’ principle, named after a
Dutch physicist and astronomer. (The first syllable rhymes with
“boy.”) Huygens’ principle states that any wavefront can be broken
down into many small side-by-side wave peaks, g, which then spread
out as circular ripples, h, and by the principle of superposition, the
result of adding up these sets of ripples must give the same result
as allowing the wave to propagate forward, i. In the case of sound
or light waves, which propagate in three dimensions, the “ripples”
are actually spherical rather than circular, but we can often imagine
things in two dimensions for simplicity.

In double-slit diffraction the application of Huygens’ principle is
visually convincing: it is as though all the sets of ripples have been
blocked except for two. It is a rather surprising mathematical fact,
however, that Huygens’ principle gives the right result in the case of
an unobstructed linear wave, h and i. A theoretically infinite number
of circular wave patterns somehow conspire to add together and
produce the simple linear wave motion with which we are familiar.

Since Huygens’ principle is equivalent to the principle of super-
position, and superposition is a property of waves, what Huygens
had created was essentially the first wave theory of light. However,
he imagined light as a series of pulses, like hand claps, rather than
as a sinusoidal wave.

The history is interesting. Isaac Newton loved the atomic theory
of matter so much that he searched enthusiastically for evidence that
light was also made of tiny particles. The paths of his light particles
would correspond to rays in our description; the only significant
difference between a ray model and a particle model of light would
occur if one could isolate individual particles and show that light
had a “graininess” to it. Newton never did this, so although he
thought of his model as a particle model, it is more accurate to say
he was one of the builders of the ray model.

Almost all that was known about reflection and refraction of
light could be interpreted equally well in terms of a particle model
or a wave model, but Newton had one reason for strongly opposing
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j / Thomas Young

k / Double-slit diffraction.

l / Use of Huygens’ principle.

m / Constructive interference
along the center-line.

Huygens’ wave theory. Newton knew that waves exhibited diffrac-
tion, but diffraction of light is difficult to observe, so Newton be-
lieved that light did not exhibit diffraction, and therefore must not
be a wave. Although Newton’s criticisms were fair enough, the de-
bate also took on the overtones of a nationalistic dispute between
England and continental Europe, fueled by English resentment over
Leibniz’s supposed plagiarism of Newton’s calculus. Newton wrote
a book on optics, and his prestige and political prominence tended
to discourage questioning of his model.

Thomas Young (1773-1829) was the person who finally, a hun-
dred years later, did a careful search for wave interference effects
with light and analyzed the results correctly. He observed double-
slit diffraction of light as well as a variety of other diffraction ef-
fects, all of which showed that light exhibited wave interference ef-
fects, and that the wavelengths of visible light waves were extremely
short. The crowning achievement was the demonstration by the ex-
perimentalist Heinrich Hertz and the theorist James Clerk Maxwell
that light was an electromagnetic wave. Maxwell is said to have re-
lated his discovery to his wife one starry evening and told her that
she was the only person in the world who knew what starlight was.

5.5 Double-Slit Diffraction
Let’s now analyze double-slit diffraction, k, using Huygens’ princi-
ple. The most interesting question is how to compute the angles
such as X and Z where the wave intensity is at a maximum, and
the in-between angles like Y where it is minimized. Let’s measure
all our angles with respect to the vertical center line of the figure,
which was the original direction of propagation of the wave.

If we assume that the width of the slits is small (on the order
of the wavelength of the wave or less), then we can imagine only a
single set of Huygens ripples spreading out from each one, l. White
lines represent peaks, black ones troughs. The only dimension of the
diffracting slits that has any effect on the geometric pattern of the
overlapping ripples is then the center-to-center distance, d, between
the slits.

We know from our discussion of the scaling of diffraction that
there must be some equation that relates an angle like θZ to the
ratio λ/d,

λ

d
↔ θZ .

If the equation for θZ depended on some other expression such as
λ + d or λ2/d, then it would change when we scaled λ and d by the
same factor, which would violate what we know about the scaling
of diffraction.

Along the central maximum line, X, we always have positive
waves coinciding with positive ones and negative waves coinciding
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n / The waves travel distances L1

and L2 from the two slits to get
to the same point in space, at an
angle θ from the center line.

o / A close-up view of figure
n, showing how the path length
difference L − L′ is related to d
and to the angle θ.

with negative ones. (I have arbitrarily chosen to take a snapshot of
the pattern at a moment when the waves emerging from the slit are
experiencing a positive peak.) The superposition of the two sets of
ripples therefore results in a doubling of the wave amplitude along
this line. There is constructive interference. This is easy to explain,
because by symmetry, each wave has had to travel an equal number
of wavelengths to get from its slit to the center line, m: Because
both sets of ripples have ten wavelengths to cover in order to reach
the point along direction X, they will be in step when they get there.

At the point along direction Y shown in the same figure, one
wave has traveled ten wavelengths, and is therefore at a positive
extreme, but the other has traveled only nine and a half wavelengths,
so it at a negative extreme. There is perfect cancellation, so points
along this line experience no wave motion.

But the distance traveled does not have to be equal in order to
get constructive interference. At the point along direction Z, one
wave has gone nine wavelengths and the other ten. They are both
at a positive extreme.

self-check B
At a point half a wavelength below the point marked along direction X,
carry out a similar analysis. . Answer, p. 107

To summarize, we will have perfect constructive interference at
any point where the distance to one slit differs from the distance to
the other slit by an integer number of wavelengths. Perfect destruc-
tive interference will occur when the number of wavelengths of path
length difference equals an integer plus a half.

Now we are ready to find the equation that predicts the angles
of the maxima and minima. The waves travel different distances
to get to the same point in space, n. We need to find whether the
waves are in phase (in step) or out of phase at this point in order to
predict whether there will be constructive interference, destructive
interference, or something in between.

One of our basic assumptions in this chapter is that we will only
be dealing with the diffracted wave in regions very far away from the
object that diffracts it, so the triangle is long and skinny. Most real-
world examples with diffraction of light, in fact, would have triangles
with even skinner proportions than this one. The two long sides are
therefore very nearly parallel, and we are justified in drawing the
right triangle shown in figure o, labeling one leg of the right triangle
as the difference in path length , L−L′, and labeling the acute angle
as θ. (In reality this angle is a tiny bit greater than the one labeled
θ in figure n.)

The difference in path length is related to d and θ by the equation

L− L′

d
= sin θ .
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p / Cutting d in half doubles
the angles of the diffraction
fringes.

q / Double-slit diffraction pat-
terns of long-wavelength red light
(top) and short-wavelength blue
light (bottom).

Constructive interference will result in a maximum at angles for
which L− L′ is an integer number of wavelengths,

L− L′ = mλ . [condition for a maximum;
m is an integer]

Here m equals 0 for the central maximum, −1 for the first maximum
to its left, +2 for the second maximum on the right, etc. Putting
all the ingredients together, we find mλ/d = sin θ, or

λ

d
=

sin θ

m
. [condition for a maximum;

m is an integer]

Similarly, the condition for a minimum is

λ

d
=

sin θ

m
. [condition for a minimum;

m is an integer plus 1/2]

That is, the minima are about halfway between the maxima.

As expected based on scaling, this equation relates angles to the
unitless ratio λ/d. Alternatively, we could say that we have proven
the scaling property in the special case of double-slit diffraction. It
was inevitable that the result would have these scaling properties,
since the whole proof was geometric, and would have been equally
valid when enlarged or reduced on a photocopying machine!

Counterintuitively, this means that a diffracting object with
smaller dimensions produces a bigger diffraction pattern, p.

Double-slit diffraction of blue and red light example 1
Blue light has a shorter wavelength than red. For a given double-slit
spacing d , the smaller value of λ/d for leads to smaller values of sin θ,
and therefore to a more closely spaced set of diffraction fringes, (g)

The correspondence principle example 2
Let’s also consider how the equations for double-slit diffraction relate
to the correspondence principle. When the ratio λ/d is very small, we
should recover the case of simple ray optics. Now if λ/d is small, sin θ

must be small as well, and the spacing between the diffraction fringes
will be small as well. Although we have not proven it, the central fringe
is always the brightest, and the fringes get dimmer and dimmer as we
go farther from it. For small values of λ/d , the part of the diffraction pat-
tern that is bright enough to be detectable covers only a small range of
angles. This is exactly what we would expect from ray optics: the rays
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passing through the two slits would remain parallel, and would continue
moving in the θ = 0 direction. (In fact there would be images of the two
separate slits on the screen, but our analysis was all in terms of angles,
so we should not expect it to address the issue of whether there is struc-
ture within a set of rays that are all traveling in the θ = 0 direction.)

Spacing of the fringes at small angles example 3
At small angles, we can use the approximation sin θ ≈ θ, which is valid
if θ is measured in radians. The equation for double-slit diffraction be-
comes simply

λ

d
=

θ

m
,

which can be solved for θ to give

θ =
mλ

d
.

The difference in angle between successive fringes is the change in θ

that results from changing m by plus or minus one,

∆θ =
λ

d
.

For example, if we write θ7 for the angle of the seventh bright fringe on
one side of the central maximum and θ8 for the neighboring one, we
have

θ8 − θ7 =
8λ

d
− 7λ

d

=
λ

d
,

and similarly for any other neighboring pair of fringes.

Although the equation λ/d = sin θ/m is only valid for a double
slit, it is can still be a guide to our thinking even if we are observing
diffraction of light by a virus or a flea’s leg: it is always true that

(1) large values of λ/d lead to a broad diffraction pattern, and

(2) diffraction patterns are repetitive.

In many cases the equation looks just like λ/d = sin θ/m but
with an extra numerical factor thrown in, and with d interpreted as
some other dimension of the object, e.g., the diameter of a piece of
wire.
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r / A triple slit.

5.6 Repetition
Suppose we replace a double slit with a triple slit, r. We can

think of this as a third repetition of the structures that were present
in the double slit. Will this device be an improvement over the
double slit for any practical reasons?

The answer is yes, as can be shown using figure s. For ease
of visualization, I have violated our usual rule of only considering
points very far from the diffracting object. The scale of the drawing
is such that a wavelengths is one cm. In s/1, all three waves travel
an integer number of wavelengths to reach the same point, so there
is a bright central spot, as we would expect from our experience
with the double slit. In figure s/2, we show the path lengths to
a new point. This point is farther from slit A by a quarter of a
wavelength, and correspondingly closer to slit C. The distance from
slit B has hardly changed at all. Because the paths lengths traveled
from slits A and C differ from half a wavelength, there will be perfect
destructive interference between these two waves. There is still some
uncanceled wave intensity because of slit B, but the amplitude will
be three times less than in figure s/1, resulting in a factor of 9
decrease in brightness. Thus, by moving off to the right a little, we
have gone from the bright central maximum to a point that is quite
dark.

s / 1. There is a bright central maximum. 2. At this point just off the central maximum, the path lengths traveled
by the three waves have changed.

Now let’s compare with what would have happened if slit C had
been covered, creating a plain old double slit. The waves coming
from slits A and B would have been out of phase by 0.23 wavelengths,
but this would not have caused very severe interference. The point
in figure s/2 would have been quite brightly lit up.

To summarize, we have found that adding a third slit narrows
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u / Single-slit diffraction of
water waves.

v / Single-slit diffraction of
red light. Note the double width
of the central maximum.

w / A pretty good simulation
of the single-slit pattern of figure
u, made by using three motors to
produce overlapping ripples from
three neighboring points in the
water.

t / A double-slit diffraction pattern
(top), and a pattern made by five
slits (bottom).

down the central fringe dramatically. The same is true for all the
other fringes as well, and since the same amount of energy is con-
centrated in narrower diffraction fringes, each fringe is brighter and
easier to see, t.

This is an example of a more general fact about diffraction: if
some feature of the diffracting object is repeated, the locations of
the maxima and minima are unchanged, but they become narrower.

Taking this reasoning to its logical conclusion, a diffracting ob-
ject with thousands of slits would produce extremely narrow fringes.
Such an object is called a diffraction grating.

5.7 Single-Slit Diffraction
If we use only a single slit, is there diffraction? If the slit is not

wide compared to a wavelength of light, then we can approximate
its behavior by using only a single set of Huygens ripples. There
are no other sets of ripples to add to it, so there are no constructive
or destructive interference effects, and no maxima or minima. The
result will be a uniform spherical wave of light spreading out in all
directions, like what we would expect from a tiny lightbulb. We
could call this a diffraction pattern, but it is a completely feature-
less one, and it could not be used, for instance, to determine the
wavelength of the light, as other diffraction patterns could.

All of this, however, assumes that the slit is narrow compared to
a wavelength of light. If, on the other hand, the slit is broader, there
will indeed be interference among the sets of ripples spreading out
from various points along the opening. Figure u shows an example
with water waves, and figure v with light.

self-check C
How does the wavelength of the waves compare with the width of the
slit in figure u? . Answer, p. 107

We will not go into the details of the analysis of single-slit diffrac-
tion, but let us see how its properties can be related to the general
things we’ve learned about diffraction. We know based on scaling
arguments that the angular sizes of features in the diffraction pat-
tern must be related to the wavelength and the width, a, of the slit
by some relationship of the form

λ

a
↔ θ .

This is indeed true, and for instance the angle between the maximum
of the central fringe and the maximum of the next fringe on one side
equals 1.5λ/a. Scaling arguments will never produce factors such as
the 1.5, but they tell us that the answer must involve λ/a, so all the
familiar qualitative facts are true. For instance, shorter-wavelength
light will produce a more closely spaced diffraction pattern.
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y / A radio telescope.

x / An image of the Pleiades
star cluster. The circular rings
around the bright stars are due to
single-slit diffraction at the mouth
of the telescope’s tube.

An important scientific example of single-slit diffraction is in
telescopes. Images of individual stars, as in figure x, are a good way
to examine diffraction effects, because all stars except the sun are so
far away that no telescope, even at the highest magnification, can
image their disks or surface features. Thus any features of a star’s
image must be due purely to optical effects such as diffraction. A
prominent cross appears around the brightest star, and dimmer ones
surround the dimmer stars. Something like this is seen in most tele-
scope photos, and indicates that inside the tube of the telescope
there were two perpendicular struts or supports. Light diffracted
around these struts. You might think that diffraction could be elim-
inated entirely by getting rid of all obstructions in the tube, but the
circles around the stars are diffraction effects arising from single-
slit diffraction at the mouth of the telescope’s tube! (Actually we
have not even talked about diffraction through a circular opening,
but the idea is the same.) Since the angular sizes of the diffracted
images depend on λ/a, the only way to improve the resolution of
the images is to increase the diameter, a, of the tube. This is one
of the main reasons (in addition to light-gathering power) why the
best telescopes must be very large in diameter.

self-check D
What would this imply about radio telescopes as compared with visible-
light telescopes? . Answer, p.
107

Double-slit diffraction is easier to understand conceptually than
single-slit diffraction, but if you do a double-slit diffraction experi-
ment in real life, you are likely to encounter a complicated pattern
like figure z/1, rather than the simpler one, 2, you were expecting.
This is because the slits are fairly big compared to the wavelength
of the light being used. We really have two different distances in
our pair of slits: d, the distance between the slits, and w, the width
of each slit. Remember that smaller distances on the object the
light diffracts around correspond to larger features of the diffraction
pattern. The pattern 1 thus has two spacings in it: a short spac-
ing corresponding to the large distance d, and a long spacing that
relates to the small dimension w.

Discussion Question

A Why is it optically impossible for bacteria to evolve eyes that use
visible light to form images?

88 Chapter 5 Wave Optics



aa / Light could take many
different paths from A to B.

z / 1. A diffraction pattern formed by a real double slit. The width of each slit is fairly big compared to
the wavelength of the light. This is a real photo. 2. This idealized pattern is not likely to occur in real life. To get
it, you would need each slit to be so narrow that its width was comparable to the wavelength of the light, but
that’s not usually possible. This is not a real photo. 3. A real photo of a single-slit diffraction pattern caused by
a slit whose width is the same as the widths of the slits used to make the top pattern.

5.8
∫

? The Principle of Least Time
In sections 1.5 and 4.4, we saw how in the ray model of light,

both refraction and reflection can be described in an elegant and
beautiful way by a single principle, the principle of least time. We
can now justify the principle of least time based on the wave model
of light. Consider an example involving reflection, aa. Starting at
point A, Huygens’ principle for waves tells us that we can think of
the wave as spreading out in all directions. Suppose we imagine all
the possible ways that a ray could travel from A to B. We show
this by drawing 25 possible paths, of which the central one is the
shortest. Since the principle of least time connects the wave model
to the ray model, we should expect to get the most accurate results
when the wavelength is much shorter than the distances involved —
for the sake of this numerical example, let’s say that a wavelength is
1/10 of the shortest reflected path from A to B. The table, 2, shows
the distances traveled by the 25 rays.

Note how similar are the distances traveled by the group of 7
rays, indicated with a bracket, that come closest to obeying the
principle of least time. If we think of each one as a wave, then
all 7 are again nearly in phase at point B. However, the rays that
are farther from satisfying the principle of least time show more
rapidly changing distances; on reuniting at point B, their phases
are a random jumble, and they will very nearly cancel each other
out. Thus, almost none of the wave energy delivered to point B
goes by these longer paths. Physically we find, for instance, that
a wave pulse emitted at A is observed at B after a time interval
corresponding very nearly to the shortest possible path, and the
pulse is not very “smeared out” when it gets there. The shorter
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the wavelength compared to the dimensions of the figure, the more
accurate these approximate statements become.

Instead of drawing a finite number of rays, such 25, what hap-
pens if we think of the angle, θ, of emission of the ray as a continu-
ously varying variable? Minimizing the distance L requires

dL

dθ
= 0 .

Because L is changing slowly in the vicinity of the angle that
satisfies the principle of least time, all the rays that come out close
to this angle have very nearly the same L, and remain very nearly in
phase when they reach B. This is the basic reason why the discrete
table, aa/2, turned out to have a group of rays that all traveled
nearly the same distance.

As discussed in section 1.5, the principle of least time is really a
principle of least or greatest time. This makes perfect sense, since
dL/dθ = 0 can in general describe either a minimum or a maximum

The principle of least time is very general. It does not apply just
to refraction and reflection — it can even be used to prove that light
rays travel in a straight line through empty space, without taking
detours! This general approach to wave motion was used by Richard
Feynman, one of the pioneers who in the 1950’s reconciled quantum
mechanics with relativity (book 6 in this series). A very readable
explanation is given in a book Feynman wrote for laypeople, QED:
The Strange Theory of Light and Matter.
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Summary
Selected Vocabulary
diffraction . . . . the behavior of a wave when it encounters an

obstacle or a nonuniformity in its medium;
in general, diffraction causes a wave to bend
around obstacles and make patterns of strong
and weak waves radiating out beyond the ob-
stacle.

coherent . . . . . a light wave whose parts are all in phase with
each other

Other Terminology and Notation
wavelets . . . . . the ripples in Huygens’ principle

Summary

Wave optics is a more general theory of light than ray optics.
When light interacts with material objects that are much larger then
one wavelength of the light, the ray model of light is approximately
correct, but in other cases the wave model is required.

Huygens’ principle states that, given a wavefront at one moment
in time, the future behavior of the wave can be found by breaking
the wavefront up into a large number of small, side-by-side wave
peaks, each of which then creates a pattern of circular or spherical
ripples. As these sets of ripples add together, the wave evolves and
moves through space. Since Huygens’ principle is a purely geomet-
rical construction, diffraction effects obey a simple scaling rule: the
behavior is unchanged if the wavelength and the dimensions of the
diffracting objects are both scaled up or down by the same factor. If
we wish to predict the angles at which various features of the diffrac-
tion pattern radiate out, scaling requires that these angles depend
only on the unitless ratio λ/d, where d is the size of some feature of
the diffracting object.

Double-slit diffraction is easily analyzed using Huygens’ princi-
ple if the slits are narrower than one wavelength. We need only
construct two sets of ripples, one spreading out from each slit. The
angles of the maxima (brightest points in the bright fringes) and
minima (darkest points in the dark fringes) are given by the equa-
tion

λ

d
=

sin θ

m
,

where d is the center-to-center spacing of the slits, and m is an
integer at a maximum or an integer plus 1/2 at a minimum.

If some feature of a diffracting object is repeated, the diffraction
fringes remain in the same places, but become narrower with each
repetition. By repeating a double-slit pattern hundreds or thou-
sands of times, we obtain a diffraction grating.

A single slit can produce diffraction fringes if it is larger than
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one wavelength. Many practical instances of diffraction can be in-
terpreted as single-slit diffraction, e.g., diffraction in telescopes. The
main thing to realize about single-slit diffraction is that it exhibits
the same kind of relationship between λ, d, and angles of fringes as
in any other type of diffraction.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 Why would blue or violet light be the best for microscopy?

2 Match gratings A-C with the diffraction patterns 1-3 that they
produce. Explain.

3 The beam of a laser passes through a diffraction grating, fans
out, and illuminates a wall that is perpendicular to the original
beam, lying at a distance of 2.0 m from the grating. The beam
is produced by a helium-neon laser, and has a wavelength of 694.3
nm. The grating has 2000 lines per centimeter. (a) What is the
distance on the wall between the central maximum and the maxima
immediately to its right and left? (b) How much does your answer
change when you use the approximation ?

√

4 When white light passes through a diffraction grating, what is
the smallest value of m for which the visible spectrum of order m
overlaps the next one, of order m + 1? (The visible spectrum runs
from about 400 nm to about 700 nm.)

5 Ultrasound, i.e., sound waves with frequencies too high to be
audible, can be used for imaging fetuses in the womb or for break-
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ing up kidney stones so that they can be eliminated by the body.
Consider the latter application. Lenses can be built to focus sound
waves, but because the wavelength of the sound is not all that small
compared to the diameter of the lens, the sound will not be concen-
trated exactly at the geometrical focal point. Instead, a diffraction
pattern will be created with an intense central spot surrounded by
fainter rings. About 85% of the power is concentrated within the
central spot. The angle of the first minimum (surrounding the cen-
tral spot) is given by sin θ = λ/b, where b is the diameter of the lens.
This is similar to the corresponding equation for a single slit, but
with a factor of 1.22 in front which arises from the circular shape of
the aperture. Let the distance from the lens to the patient’s kidney
stone be L = 20 cm. You will want f > 20 kHz, so that the sound
is inaudible. Find values of b and f that would result in a usable
design, where the central spot is small enough to lie within a kidney
stone 1 cm in diameter.

6 For star images such as the ones in figure 4.4, estimate the
angular width of the diffraction spot due to diffraction at the mouth
of the telescope. Assume a telescope with a diameter of 10 meters
(the largest currently in existence), and light with a wavelength in
the middle of the visible range. Compare with the actual angular
size of a star of diameter 109 m seen from a distance of 1017m. What
does this tell you?

7 Under what circumstances could one get a mathematically
undefined result by solving the double-slit diffraction equation for θ?
Give a physical interpretation of what would actually be observed.

8 When ultrasound is used for medical imaging, the frequency
may be as high as 5-20 MHz. Another medical application of ultra-
sound is for therapeutic heating of tissues inside the body; here, the
frequency is typically 1-3 MHz. What fundamental physical reasons
could you suggest for the use of higher frequencies for imaging?
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9 The figure below shows two diffraction patterns, both made
with the same wavelength of red light. (a) What type of slits made
the patterns? Is it a single slit, double slits, or something else?
Explain. (b) Compare the dimensions of the slits used to make the
top and bottom pattern. Give a numerical ratio, and state which
way the ratio is, i.e., which slit pattern was the larger one. Explain.

10 The figure below shows two diffraction patterns. The top one
was made with yellow light, and the bottom one with red. Could
the slits used to make the two patterns have been the same?
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Problems 12 and 13.

11 The figure below shows three diffraction patterns. All were
made under identical conditions, except that a different set of double
slits was used for each one. The slits used to make the top pattern
had a center-to-center separation d = 0.50 mm, and each slit was
w = 0.04 mm wide. (a) Determine d and w for the slits used to
make the pattern in the middle. (b) Do the same for the slits used
to make the bottom pattern.

12 The figure shows a diffraction pattern made by a double slit,
along with an image of a meter stick to show the scale. The slits
were 146 cm away from the screen on which the diffraction pattern
was projected. The spacing of the slits was 0.050 mm. What was
the wavelength of the light?

13 The figure shows a diffraction pattern made by a double slit,
along with an image of a meter stick to show the scale. Sketch the
diffraction pattern from the figure on your paper. Now consider
the four variables in the equation λ/d = sin θ/m. Which of these
are the same for all five fringes, and which are different for each
fringe? Which variable would you naturally use in order to label
which fringe was which? Label the fringes on your sketch using the
values of that variable.
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Appendix 1: Exercises

Exercise 2A: Exploring Images With a Curved Mirror

Equipment:

curved mirrors like the ones described in this chapter

curved mirrors that bulge outward (for part 6 only)

1. Obtain a curved mirror from your instructor. If it is silvered on both sides, make sure you’re
working with the hollowed-out side, which bends light rays inward. Look at your own face in
the mirror. Now change the distance between your face and the mirror, and see what happens.
How do you explain your observations?

2. With the mirror held far away from you, observe the image of something behind you, over
your shoulder. Now bring your eye closer and closer to the mirror. Can you see the image with
your eye very close to the mirror? Explain what’s happening.

3. Now imagine the following new situation, but don’t actually do it yet. Suppose you lay the
mirror face-up on a piece of tissue paper, put your finger a few cm above the mirror, and look
at the image of your finger. As in part 2, you can bring your eye closer and closer to the mirror.

Write down a prediction of what will happen. Will you be able to see the image with your eye
very close to the mirror?

Prediction:

Now test your prediction. If your prediction was incorrect, can you explain your results?

4. Lay the mirror on the tissue paper, and use it to create an image of the overhead lights on
a piece of paper above it and a little off to the side. What do you have to do in order to make
the image clear? Can you explain this observation?

5. Now imagine the following experiment, but don’t do it yet. What will happen to the image
on the paper if you cover half of the mirror with your hand?

Prediction:

Test your prediction. If your prediction was incorrect, can you explain what happened?

6. Now imagine forming an image with a curved mirror that bulges outward, and that therefore
bends light rays away from the central axis. Draw a typical ray diagram. Is the image real, or
virtual? Will there be more than one type of image?

Prediction:

Test your prediction with the new type of mirror.



Exercise 3A: Object and Image Distances

Equipment:

optical benches

inbending mirrors

illuminated objects

1. Set up the optical bench with the mirror at zero on the centimeter scale. Set up the
illuminated object on the bench as well.

2. Each group will locate the image for their own value of the object distance, by finding where
a piece of paper has to be placed in order to see the image on it. (The instructor will do one
point as well.) Note that you will have to tilt the mirror a little so that the paper on which you
project the image doesn’t block the light from the illuminated object.

Is the image real or virtual? How do you know? Is it inverted or uninverted?

Draw a ray diagram.

3. Measure the image distance and write your result in the table on the board. Do the same for
the magnification.

4. What do you notice about the trend of the data on the board? Draw a second ray diagram
with a different object distance, and show why this makes sense. Some tips for doing this
correctly: (1) For simplicity, use the point on the object that is on the mirror’s axis. (2) You
need to trace two rays to locate the image. To save work, don’t just do two rays at random
angles. You can either use the on-axis ray as one ray, or do two rays that come off at the same
angle, one above and one below the axis. (3) Where each ray hits the mirror, draw the normal
line, and make sure the ray is at equal angles on both sides of the normal.

5. We will find the mirror’s focal length from the instructor’s data-point. Then, using this focal
length, calculate a theoretical prediction of the image distance, and write it on the board next
to the experimentally determined image distance.

98 Appendix 1: Exercises



Exercise 4A: How strong are your glasses?

This exercise was created by Dan MacIsaac.

Equipment:

eyeglasses

outbending lenses for students who don’t wear glasses, or who use inbending glasses

rulers and metersticks

scratch paper

marking pens

Most people who wear glasses have glasses whose lenses are outbending, which allows them to
focus on objects far away. Such a lens cannot form a real image, so its focal length cannot be
measured as easily as that of an inbending lens. In this exercise you will determine the focal
length of your own glasses by taking them off, holding them at a distance from your face, and
looking through them at a set of parallel lines on a piece of paper. The lines will be reduced
(the lens’s magnification is less than one), and by adjusting the distance between the lens and
the paper, you can make the magnification equal 1/2 exactly, so that two spaces between lines
as seen through the lens fit into one space as seen simultaneously to the side of the lens. This
object distance can be used in order to find the focal length of the lens.

1. Use a marker to draw three evenly spaced parallel lines on the paper. (A spacing of a few
cm works well.)

2. Does this technique really measure magnification or does it measure angular magnification?
What can you do in your experiment in order to make these two quantities nearly the same, so
the math is simpler?

3. Before taking any numerical data, use algebra to find the focal length of the lens in terms of
do, the object distance that results in a magnification of 1/2.

4. Measure the object distance that results in a magnification of 1/2, and determine the focal
length of your lens.
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Exercise 5A: Double-Source Interference

Equipment:

ripple tank

1. Observe the wave pattern formed by a single source. Try adjusting the frequency at which
the motor runs. What do you have to do to the frequency in order to increase the wavelength,
and what do you have to do to decrease it?

2. Observe the interference pattern formed by two sources. For convenience, try to get your
wavelength as close as possible to 1 cm. We’ll call this setup, with λ = 1 cm and d = 2.5 cm,
the default setup.

3. Imagine that you were to double the wavelength and double the distance between the sources.
How would a snapshot of this wave pattern compare with a snapshot of the pattern made by
the default setup? Based on this, how do you predict the angles of the maxima and minima will
compare?

Test your predictions.

4. On a piece of paper, make a life-size drawing of the two sources in the default setup, and
locate the following points:

A. The point that is 10 wavelengths from source #1 and 10 wavelengths from source #2.

B. The point that is 11 wavelengths from #1 and 11 from #2.

C. The point that is 10 wavelengths from #1 and 10.5 from #2.

D. The point that is 11 wavelengths from #1 and 11.5 from #2.

E. The point that is 10 wavelengths from #1 and 11 from #2.

F. The point that is 11 wavelengths from #1 and 12 from #2.

You can do this either using a compass or by putting the next page under your paper and
tracing.

What do these points correspond to in the real wave pattern?

5. Make a fresh copy of your drawing, showing only point E and the two sources, which form a
long, skinny triangle. Now suppose you were to change the default setup by doubling d, while
leaving λ the same. Realistically this involves moving one peg over one hole, while leaving the
other peg in the same place, but it’s easier to understand what’s happening on the drawing if you
move both sources outward, keeping the center fixed. Based on your drawing, what will happen
to the position of point E when you double d? How has the angle of point E changed?

Test your prediction.

6. In the previous part of the exercise, you saw the effect of doubling d while leaving λthe same.
Now what do you think would happen to your angles if, starting from the standard setup, you
doubled λ while leaving d the same?

Try it.

7. Suppose λ was a millionth of a centimeter, while d was still as in the standard setup. What
would happen to the angles? What does this tell you about observing diffraction of light?
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