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Chapter 1

The Ray Model of Light

Ads for one Macintosh computer bragged that it could do an arith-
metic calculation in less time than it took for the light to get from the
screen to your eye. We find this impressive because of the contrast
between the speed of light and the speeds at which we interact with
physical objects in our environment. Perhaps it shouldn’t surprise
us, then, that Newton succeeded so well in explaining the motion of
objects, but was far less successful with the study of light.

These books are billed as the Light and Matter series, but only
now, in the fifth of the six volumes, are we ready to focus on light.
If you are reading the series in order, then you know that the climax
of our study of electricity and magnetism was discovery that light
is an electromagnetic wave. Knowing this, however, is not the same
as knowing everything about eyes and telescopes. In fact, the full
description of light as a wave can be rather cumbersome. We will
instead spend most of this book making use of a simpler model
of light, the ray model, which does a fine job in most practical
situations. Not only that, but we will even backtrack a little and
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start with a discussion of basic ideas about light and vision that
predated the discovery of electromagnetic waves.

1.1 The Nature of Light

The cause and effect relationship in vision

Despite its title, this chapter is far from your first look at light.
That familiarity might seem like an advantage, but most people have
never thought carefully about light and vision. Even smart people
who have thought hard about vision have come up with incorrect
ideas. The ancient Greeks, Arabs and Chinese had theories of light
and vision, all of which were mostly wrong, and all of which were
accepted for thousands of years.

One thing the ancients did get right is that there is a distinction
between objects that emit light and objects that don’t. When you
see a leaf in the forest, it’s because three different objects are doing
their jobs: the leaf, the eye, and the sun. But luminous objects
like the sun, a flame, or the filament of a light bulb can be seen by
the eye without the presence of a third object. Emission of light
is often, but not always, associated with heat. In modern times,
we are familiar with a variety of objects that glow without being
heated, including fluorescent lights and glow-in-the-dark toys.

How do we see luminous objects? The Greek philosophers Pythago-
ras (b. ca. 560 BC) and Empedocles of Acragas (b. ca. 492
BC), who unfortunately were very influential, claimed that when
you looked at a candle flame, the flame and your eye were both
sending out some kind of mysterious stuff, and when your eye’s stuff
collided with the candle’s stuff, the candle would become evident to
your sense of sight.

Bizarre as the Greek “collision of stuff theory” might seem, it
had a couple of good features. It explained why both the candle
and your eye had to be present for your sense of sight to function.
The theory could also easily be expanded to explain how we see
nonluminous objects. If a leaf, for instance, happened to be present
at the site of the collision between your eye’s stuff and the candle’s
stuff, then the leaf would be stimulated to express its green nature,
allowing you to perceive it as green.

Modern people might feel uneasy about this theory, since it sug-
gests that greenness exists only for our seeing convenience, implying
a human precedence over natural phenomena. Nowadays, people
would expect the cause and effect relationship in vision to be the
other way around, with the leaf doing something to our eye rather
than our eye doing something to the leaf. But how can you tell?
The most common way of distinguishing cause from effect is to de-
termine which happened first, but the process of seeing seems to
occur too quickly to determine the order in which things happened.
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a / Light from a candle is bumped
off course by a piece of glass.
Inserting the glass causes the
apparent location of the candle
to shift. The same effect can
be produced by taking off your
eyeglasses and looking at which
you see near the edge of the
lens, but a flat piece of glass
works just as well as a lens for
this purpose.

Certainly there is no obvious time lag between the moment when
you move your head and the moment when your reflection in the
mirror moves.

Today, photography provides the simplest experimental evidence
that nothing has to be emitted from your eye and hit the leaf in order
to make it “greenify.” A camera can take a picture of a leaf even
if there are no eyes anywhere nearby. Since the leaf appears green
regardless of whether it is being sensed by a camera, your eye, or
an insect’s eye, it seems to make more sense to say that the leaf’s
greenness is the cause, and something happening in the camera or
eye is the effect.

Light is a thing, and it travels from one point to another.

Another issue that few people have considered is whether a can-
dle’s flame simply affects your eye directly, or whether it sends out
light which then gets into your eye. Again, the rapidity of the effect
makes it difficult to tell what’s happening. If someone throws a rock
at you, you can see the rock on its way to your body, and you can
tell that the person affected you by sending a material substance
your way, rather than just harming you directly with an arm mo-
tion, which would be known as “action at a distance.” It is not easy
to do a similar observation to see whether there is some “stuff” that
travels from the candle to your eye, or whether it is a case of action
at a distance.

Newtonian physics includes both action at a distance (e.g. the
earth’s gravitational force on a falling object) and contact forces
such as the normal force, which only allow distant objects to exert
forces on each other by shooting some substance across the space
between them (e.g., a garden hose spraying out water that exerts a
force on a bush).

One piece of evidence that the candle sends out stuff that travels
to your eye is that as in figure a, intervening transparent substances
can make the candle appear to be in the wrong location, suggesting
that light is a thing that can be bumped off course. Many peo-
ple would dismiss this kind of observation as an optical illusion,
however. (Some optical illusions are purely neurological or psycho-
logical effects, although some others, including this one, turn out to
be caused by the behavior of light itself.)

A more convincing way to decide in which category light belongs
is to find out if it takes time to get from the candle to your eye; in
Newtonian physics, action at a distance is supposed to be instan-
taneous. The fact that we speak casually today of “the speed of
light” implies that at some point in history, somebody succeeded in
showing that light did not travel infinitely fast. Galileo tried, and
failed, to detect a finite speed for light, by arranging with a person
in a distant tower to signal back and forth with lanterns. Galileo
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b / An image of Jupiter and
its moon Io (left) from the Cassini
probe.

c / The earth is moving to-
ward Jupiter and Io. Since the
distance is shrinking, it is taking
less and less time for the light to
get to us from Io, and Io appears
to circle Jupiter more quickly than
normal. Six months later, the
earth will be on the opposite side
of the sun, and receding from
Jupiter and Io, so Io will appear
to revolve around Jupiter more
slowly.

uncovered his lantern, and when the other person saw the light, he
uncovered his lantern. Galileo was unable to measure any time lag
that was significant compared to the limitations of human reflexes.

The first person to prove that light’s speed was finite, and to
determine it numerically, was Ole Roemer, in a series of measure-
ments around the year 1675. Roemer observed Io, one of Jupiter’s
moons, over a period of several years. Since Io presumably took the
same amount of time to complete each orbit of Jupiter, it could be
thought of as a very distant, very accurate clock. A practical and ac-
curate pendulum clock had recently been invented, so Roemer could
check whether the ratio of the two clocks’ cycles, about 42.5 hours
to 1 orbit, stayed exactly constant or changed a little. If the process
of seeing the distant moon was instantaneous, there would be no
reason for the two to get out of step. Even if the speed of light was
finite, you might expect that the result would be only to offset one
cycle relative to the other. The earth does not, however, stay at a
constant distance from Jupiter and its moons. Since the distance is
changing gradually due to the two planets’ orbital motions, a finite
speed of light would make the “Io clock” appear to run faster as the
planets drew near each other, and more slowly as their separation
increased. Roemer did find a variation in the apparent speed of Io’s
orbits, which caused Io’s eclipses by Jupiter (the moments when Io
passed in front of or behind Jupiter) to occur about 7 minutes early
when the earth was closest to Jupiter, and 7 minutes late when it
was farthest. Based on these measurements, Roemer estimated the
speed of light to be approximately 2×108 m/s, which is in the right
ballpark compared to modern measurements of 3×108 m/s. (I’m not
sure whether the fairly large experimental error was mainly due to
imprecise knowledge of the radius of the earth’s orbit or limitations
in the reliability of pendulum clocks.)

Light can travel through a vacuum.

Many people are confused by the relationship between sound
and light. Although we use different organs to sense them, there are
some similarities. For instance, both light and sound are typically
emitted in all directions by their sources. Musicians even use visual
metaphors like “tone color,” or “a bright timbre” to describe sound.
One way to see that they are clearly different phenomena is to note
their very different velocities. Sure, both are pretty fast compared to
a flying arrow or a galloping horse, but as we have seen, the speed of
light is so great as to appear instantaneous in most situations. The
speed of sound, however, can easily be observed just by watching a
group of schoolchildren a hundred feet away as they clap their hands
to a song. There is an obvious delay between when you see their
palms come together and when you hear the clap.

The fundamental distinction between sound and light is that
sound is an oscillation in air pressure, so it requires air (or some
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other medium such as water) in which to travel. Today, we know
that outer space is a vacuum, so the fact that we get light from the
sun, moon and stars clearly shows that air is not necessary for the
propagation of light.

Discussion Questions

A If you observe thunder and lightning, you can tell how far away the
storm is. Do you need to know the speed of sound, of light, or of both?

B When phenomena like X-rays and cosmic rays were first discovered,
suggest a way one could have tested whether they were forms of light.

C Why did Roemer only need to know the radius of the earth’s orbit,
not Jupiter’s, in order to find the speed of light?

1.2 Interaction of Light with Matter

Absorption of light

The reason why the sun feels warm on your skin is that the
sunlight is being absorbed, and the light energy is being transformed
into heat energy. The same happens with artificial light, so the net
result of leaving a light turned on is to heat the room. It doesn’t
matter whether the source of the light is hot, like the sun, a flame,
or an incandescent light bulb, or cool, like a fluorescent bulb. (If
your house has electric heat, then there is absolutely no point in
fastidiously turning off lights in the winter; the lights will help to
heat the house at the same dollar rate as the electric heater.)

This process of heating by absorption is entirely different from
heating by thermal conduction, as when an electric stove heats
spaghetti sauce through a pan. Heat can only be conducted through
matter, but there is vacuum between us and the sun, or between us
and the filament of an incandescent bulb. Also, heat conduction can
only transfer heat energy from a hotter object to a colder one, but a
cool fluorescent bulb is perfectly capable of heating something that
had already started out being warmer than the bulb itself.

How we see nonluminous objects

Not all the light energy that hits an object is transformed into
heat. Some is reflected, and this leads us to the question of how
we see nonluminous objects. If you ask the average person how we
see a light bulb, the most likely answer is “The light bulb makes
light, which hits our eyes.” But if you ask how we see a book, they
are likely to say “The bulb lights up the room, and that lets me
see the book.” All mention of light actually entering our eyes has
mysteriously disappeared.

Most people would disagree if you told them that light was re-
flected from the book to the eye, because they think of reflection as
something that mirrors do, not something that a book does. They
associate reflection with the formation of a reflected image, which
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d / Two self-portraits of the
author, one taken in a mirror and
one with a piece of aluminum foil.

e / Specular and diffuse re-
flection.

does not seem to appear in a piece of paper.

Imagine that you are looking at your reflection in a nice smooth
piece of aluminum foil, fresh off the roll. You perceive a face, not a
piece of metal. Perhaps you also see the bright reflection of a lamp
over your shoulder behind you. Now imagine that the foil is just
a little bit less smooth. The different parts of the image are now
a little bit out of alignment with each other. Your brain can still
recognize a face and a lamp, but it’s a little scrambled, like a Picasso
painting. Now suppose you use a piece of aluminum foil that has
been crumpled up and then flattened out again. The parts of the
image are so scrambled that you cannot recognize an image. Instead,
your brain tells you you’re looking at a rough, silvery surface.

Mirror-like reflection at a specific angle is known as specular
reflection, and random reflection in many directions is called diffuse
reflection. Diffuse reflection is how we see nonluminous objects.
Specular reflection only allows us to see images of objects other
than the one doing the reflecting. In top part of figure d, imagine
that the rays of light are coming from the sun. If you are looking
down at the reflecting surface, there is no way for your eye-brain
system to tell that the rays are not really coming from a sun down
below you.

Figure f shows another example of how we can’t avoid the con-
clusion that light bounces off of things other than mirrors. The
lamp is one I have in my house. It has a bright bulb, housed in a
completely opaque bowl-shaped metal shade. The only way light
can get out of the lamp is by going up out of the top of the bowl.
The fact that I can read a book in the position shown in the figure
means that light must be bouncing off of the ceiling, then bouncing
off of the book, then finally getting to my eye.

This is where the shortcomings of the Greek theory of vision
become glaringly obvious. In the Greek theory, the light from the
bulb and my mysterious “eye rays” are both supposed to go to the
book, where they collide, allowing me to see the book. But we now
have a total of four objects: lamp, eye, book, and ceiling. Where
does the ceiling come in? Does it also send out its own mysterious
“ceiling rays,” contributing to a three-way collision at the book?
That would just be too bizarre to believe!

The differences among white, black, and the various shades of
gray in between is a matter of what percentage of the light they
absorb and what percentage they reflect. That’s why light-colored
clothing is more comfortable in the summer, and light-colored up-
holstery in a car stays cooler that dark upholstery.
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f / Light bounces off of the
ceiling, then off of the book.

g / Discussion question C.

Numerical measurement of the brightness of light
We have already seen that the physiological sensation of loudness

relates to the sound’s intensity (power per unit area), but is not
directly proportional to it. If sound A has an intensity of 1 nW/m2,
sound B is 10 nW/m2, and sound C is 100 nW/m2, then the increase
in loudness from C to B is perceived to be the same as the increase
from A to B, not ten times greater. That is, the sensation of loudness
is logarithmic.

The same is true for the brightness of light. Brightness is re-
lated to power per unit area, but the psychological relationship is
a logarithmic one rather than a proportionality. For doing physics,
it’s the power per unit area that we’re interested in. The relevant
unit is W/m2. One way to determine the brightness of light is to
measure the increase in temperature of a black object exposed to
the light. The light energy is being converted to heat energy, and
the amount of heat energy absorbed in a given amount of time can
be related to the power absorbed, using the known heat capacity
of the object. More practical devices for measuring light intensity,
such as the light meters built into some cameras, are based on the
conversion of light into electrical energy, but these meters have to
be calibrated somehow against heat measurements.

Discussion Questions

A The curtains in a room are drawn, but a small gap lets light through,
illuminating a spot on the floor. It may or may not also be possible to see
the beam of sunshine crossing the room, depending on the conditions.
What’s going on?

B Laser beams are made of light. In science fiction movies, laser
beams are often shown as bright lines shooting out of a laser gun on a
spaceship. Why is this scientifically incorrect?

C A documentary film-maker went to Harvard’s 1987 graduation cer-
emony and asked the graduates, on camera, to explain the cause of the
seasons. Only two out of 23 were able to give a correct explanation, but
you now have all the information needed to figure it out for yourself, as-
suming you didn’t already know. The figure shows the earth in its winter
and summer positions relative to the sun. Hint: Consider the units used
to measure the brightness of light, and recall that the sun is lower in the
sky in winter, so its rays are coming in at a shallower angle.
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1.3 The Ray Model of Light

Models of light

Note how I’ve been casually diagramming the motion of light
with pictures showing light rays as lines on the page. More formally,
this is known as the ray model of light. The ray model of light
seems natural once we convince ourselves that light travels through
space, and observe phenomena like sunbeams coming through holes
in clouds. Having already been introduced to the concept of light
as an electromagnetic wave, you know that the ray model is not the
ultimate truth about light, but the ray model is simpler, and in any
case science always deals with models of reality, not the ultimate
nature of reality. The following table summarizes three models of
light.

h / Three models of light.

The ray model is a generic one. By using it we can discuss the
path taken by the light, without committing ourselves to any specific
description of what it is that is moving along that path. We will
use the nice simple ray model for most of this book, and with it we
can analyze a great many devices and phenomena. Not until the
last chapter will we concern ourselves specifically with wave optics,
although in the intervening chapters I will sometimes analyze the
same phenomenon using both the ray model and the wave model.

Note that the statements about the applicability of the various
models are only rough guides. For instance, wave interference effects
are often detectable, if small, when light passes around an obstacle
that is quite a bit bigger than a wavelength. Also, the criterion for
when we need the particle model really has more to do with energy
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scales than distance scales, although the two turn out to be related.

The alert reader may have noticed that the wave model is re-
quired at scales smaller than a wavelength of light (on the order of a
micrometer for visible light), and the particle model is demanded on
the atomic scale or lower (a typical atom being a nanometer or so in
size). This implies that at the smallest scales we need both the wave
model and the particle model. They appear incompatible, so how
can we simultaneously use both? The answer is that they are not
as incompatible as they seem. Light is both a wave and a particle,
but a full understanding of this apparently nonsensical statement is
a topic for the following book in this series.

i / Examples of ray diagrams.

Ray diagrams

Without even knowing how to use the ray model to calculate
anything numerically, we can learn a great deal by drawing ray
diagrams. For instance, if you want to understand how eyeglasses
help you to see in focus, a ray diagram is the right place to start.
Many students under-utilize ray diagrams in optics and instead rely
on rote memorization or plugging into formulas. The trouble with
memorization and plug-ins is that they can obscure what’s really
going on, and it is easy to get them wrong. Often the best plan is to
do a ray diagram first, then do a numerical calculation, then check
that your numerical results are in reasonable agreement with what
you expected from the ray diagram.

j / 1. Correct. 2. Incorrect: im-
plies that diffuse reflection only
gives one ray from each reflecting
point. 3. Correct, but unneces-
sarily complicated

Figure j shows some guidelines for using ray diagrams effectively.
The light rays bend when then pass out through the surface of the
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water (a phenomenon that we’ll discuss in more detail later). The
rays appear to have come from a point above the goldfish’s actual
location, an effect that is familiar to people who have tried spear-
fishing.

• A stream of light is not really confined to a finite number of
narrow lines. We just draw it that way. In j/1, it has been
necessary to choose a finite number of rays to draw (five),
rather than the theoretically infinite number of rays that will
diverge from that point.

• There is a tendency to conceptualize rays incorrectly as ob-
jects. In his Optics, Newton goes out of his way to caution
the reader against this, saying that some people “consider ...
the refraction of ... rays to be the bending or breaking of them
in their passing out of one medium into another.” But a ray
is a record of the path traveled by light, not a physical thing
that can be bent or broken.

• In theory, rays may continue infinitely far into the past and
future, but we need to draw lines of finite length. In j/1, a
judicious choice has been made as to where to begin and end
the rays. There is no point in continuing the rays any farther
than shown, because nothing new and exciting is going to
happen to them. There is also no good reason to start them
earlier, before being reflected by the fish, because the direction
of the diffusely reflected rays is random anyway, and unrelated
to the direction of the original, incoming ray.

• When representing diffuse reflection in a ray diagram, many
students have a mental block against drawing many rays fan-
ning out from the same point. Often, as in example j/2, the
problem is the misconception that light can only be reflected
in one direction from one point.

• Another difficulty associated with diffuse reflection, example
j/3, is the tendency to think that in addition to drawing many
rays coming out of one point, we should also be drawing many
rays coming from many points. In j/1, drawing many rays
coming out of one point gives useful information, telling us,
for instance, that the fish can be seen from any angle. Drawing
many sets of rays, as in j/3, does not give us any more useful
information, and just clutters up the picture in this example.
The only reason to draw sets of rays fanning out from more
than one point would be if different things were happening to
the different sets.

Discussion Question

A Suppose an intelligent tool-using fish is spear-hunting for humans.
Draw a ray diagram to show how the fish has to correct its aim. Note
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that although the rays are now passing from the air to the water, the same
rules apply: the rays are closer to being perpendicular to the surface when
they are in the water, and rays that hit the air-water interface at a shallow
angle are bent the most.
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k / The geometry of specular
reflection.

1.4 Geometry of Specular Reflection
To change the motion of a material object, we use a force. Is there
any way to exert a force on a beam of light? Experiments show
that electric and magnetic fields do not deflect light beams, so ap-
parently light has no electric charge. Light also has no mass, so
until the twentieth century it was believed to be immune to gravity
as well. Einstein predicted that light beams would be very slightly
deflected by strong gravitational fields, and he was proved correct
by observations of rays of starlight that came close to the sun, but
obviously that’s not what makes mirrors and lenses work!

If we investigate how light is reflected by a mirror, we will find
that the process is horrifically complex, but the final result is sur-
prisingly simple. What actually happens is that the light is made
of electric and magnetic fields, and these fields accelerate the elec-
trons in the mirror. Energy from the light beam is momentarily
transformed into extra kinetic energy of the electrons, but because
the electrons are accelerating they re-radiate more light, convert-
ing their kinetic energy back into light energy. We might expect
this to result in a very chaotic situation, but amazingly enough, the
electrons move together to produce a new, reflected beam of light,
which obeys two simple rules:

• The angle of the reflected ray is the same as that of the incident
ray.

• The reflected ray lies in the plane containing the incident ray
and the normal (perpendicular) line. This plane is known as
the plane of incidence.

The two angles can be defined either with respect to the normal,
like angles B and C in the figure, or with respect to the reflecting
surface, like angles A and D. There is a convention of several hundred
years’ standing that one measures the angles with respect to the
normal, but the rule about equal angles can logically be stated either
as B=C or as A=D.

The phenomenon of reflection occurs only at the boundary be-
tween two media, just like the change in the speed of light that
passes from one medium to another. As we have seen in book 3 of
this series, this is the way all waves behave.

Most people are surprised by the fact that light can be reflected
back from a less dense medium. For instance, if you are diving and
you look up at the surface of the water, you will see a reflection of
yourself.
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self-check A
Each of these diagrams is supposed to show two different rays being
reflected from the same point on the same mirror. Which are correct,
and which are incorrect?

. Answer, p. 106

Reversibility of light rays

The fact that specular reflection displays equal angles of inci-
dence and reflection means that there is a symmetry: if the ray had
come in from the right instead of the left in the figure above, the an-
gles would have looked exactly the same. This is not just a pointless
detail about specular reflection. It’s a manifestation of a very deep
and important fact about nature, which is that the laws of physics
do not distinguish between past and future. Cannonballs and plan-
ets have trajectories that are equally natural in reverse, and so do
light rays. This type of symmetry is called time-reversal symmetry.

Typically, time-reversal symmetry is a characteristic of any pro-
cess that does not involve heat. For instance, the planets do not
experience any friction as they travel through empty space, so there
is no frictional heating. We should thus expect the time-reversed
versions of their orbits to obey the laws of physics, which they do.
In contrast, a book sliding across a table does generate heat from
friction as it slows down, and it is therefore not surprising that this
type of motion does not appear to obey time-reversal symmetry. A
book lying still on a flat table is never observed to spontaneously
start sliding, sucking up heat energy and transforming it into kinetic
energy.

Similarly, the only situation we’ve observed so far where light
does not obey time-reversal symmetry is absorption, which involves
heat. Your skin absorbs visible light from the sun and heats up,
but we never observe people’s skin to glow, converting heat energy
into visible light. People’s skin does glow in infrared light, but
that doesn’t mean the situation is symmetric. Even if you absorb
infrared, you don’t emit visible light, because your skin isn’t hot
enough to glow in the visible spectrum.

These apparent heat-related asymmetries are not actual asym-
metries in the laws of physics. The interested reader may wish to
learn more about this from the optional thermodynamics chapter of
book 2 in this series.

Ray tracing on a computer example 1
A number of techniques can be used for creating artificial visual scenes
in computer graphics. Figure l shows such a scene, which was cre-
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ated by the brute-force technique of simply constructing a very detailed
ray diagram on a computer. This technique requires a great deal of
computation, and is therefore too slow to be used for video games and
computer-animated movies. One trick for speeding up the computation
is to exploit the reversibility of light rays. If one was to trace every ray
emitted by every illuminated surface, only a tiny fraction of those would
actually end up passing into the virtual “camera,” and therefore almost
all of the computational effort would be wasted. One can instead start
a ray at the camera, trace it backward in time, and see where it would
have come from. With this technique, there is no wasted effort.

l / This photorealistic image of a nonexistent countertop was pro-
duced completely on a computer, by computing a complicated ray
diagram.
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m / Discussion question B.

n / Discussion question C.

o / The solid lines are physi-
cally possible paths for light rays
traveling from A to B and from
A to C. They obey the principle
of least time. The dashed lines
do not obey the principle of
least time, and are not physically
possible.

Discussion Questions

A If a light ray has a velocity vector with components cx and cy , what
will happen when it is reflected from a surface that lies along the y axis?
Make sure your answer does not imply a change in the ray’s speed.

B Generalizing your reasoning from discussion question A, what will
happen to the velocity components of a light ray that hits a corner, as
shown in the figure, and undergoes two reflections?

C Three pieces of sheet metal arranged perpendicularly as shown in
the figure form what is known as a radar corner. Let’s assume that the
radar corner is large compared to the wavelength of the radar waves, so
that the ray model makes sense. If the radar corner is bathed in radar
rays, at least some of them will undergo three reflections. Making a fur-
ther generalization of your reasoning from the two preceding discussion
questions, what will happen to the three velocity components of such a
ray? What would the radar corner be useful for?

1.5 ? The Principle of Least Time for Reflection
We had to choose between an unwieldy explanation of reflection at
the atomic level and a simpler geometric description that was not as
fundamental. There is a third approach to describing the interaction
of light and matter which is very deep and beautiful. Emphasized
by the twentieth-century physicist Richard Feynman, it is called the
principle of least time, or Fermat’s principle.

Let’s start with the motion of light that is not interacting with
matter at all. In a vacuum, a light ray moves in a straight line. This
can be rephrased as follows: of all the conceivable paths light could
follow from P to Q, the only one that is physically possible is the
path that takes the least time.

What about reflection? If light is going to go from one point to
another, being reflected on the way, the quickest path is indeed the
one with equal angles of incidence and reflection. If the starting and
ending points are equally far from the reflecting surface, o, it’s not
hard to convince yourself that this is true, just based on symmetry.
There is also a tricky and simple proof, shown in figure p, for the
more general case where the points are at different distances from
the surface.
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p / Paths AQB and APB are
two conceivable paths that a ray
could follow to get from A to B
with one reflection, but only AQB
is physically possible. We wish
to prove that the path AQB, with
equal angles of incidence and
reflection, is shorter than any
other path, such as APB. The
trick is to construct a third point,
C, lying as far below the surface
as B lies above it. Then path
AQC is a straight line whose
length is the same as AQB’s, and
path APC has the same length as
path APB. Since AQC is straight,
it must be shorter than any other
path such as APC that connects
A and C, and therefore AQB must
be shorter than any path such as
APB.

q / Light is emitted at the center
of an elliptical mirror. There are
four physically possible paths by
which a ray can be reflected and
return to the center.

Not only does the principle of least time work for light in a
vacuum and light undergoing reflection, we will also see in a later
chapter that it works for the bending of light when it passes from
one medium into another.

Although it is beautiful that the entire ray model of light can
be reduced to one simple rule, the principle of least time, it may
seem a little spooky to speak as if the ray of light is intelligent,
and has carefully planned ahead to find the shortest route to its
destination. How does it know in advance where it’s going? What
if we moved the mirror while the light was en route, so conditions
along its planned path were not what it “expected?” The answer
is that the principle of least time is really a shortcut for finding
certain results of the wave model of light, which is the topic of the
last chapter of this book.

There are a couple of subtle points about the principle of least
time. First, the path does not have to be the quickest of all pos-
sible paths; it only needs to be quicker than any path that differs
infinitesimally from it. In figure p, for instance, light could get from
A to B either by the reflected path AQB or simply by going straight
from A to B. Although AQB is not the shortest possible path, it
cannot be shortened by changing it infinitesimally, e.g., by moving
Q a little to the right or left. On the other hand, path APB is phys-
ically impossible, because it is possible to improve on it by moving
point P infinitesimally to the right.

It’s not quite right to call this the principle of least time. In fig-
ure q, for example, the four physically possible paths by which a ray
can return to the center consist of two shortest-time paths and two
longest-time paths. Strictly speaking, we should refer to the prin-
ciple of least or greatest time, but most physicists omit the niceties,
and assume that other physicists understand that both maxima and
minima are possible.
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Summary
Selected Vocabulary
absorption . . . . what happens when light hits matter and gives

up some of its energy
reflection . . . . . what happens when light hits matter and

bounces off, retaining at least some of its en-
ergy

specular reflec-
tion . . . . . . . .

reflection from a smooth surface, in which the
light ray leaves at the same angle at which it
came in

diffuse reflection reflection from a rough surface, in which a sin-
gle ray of light is divided up into many weaker
reflected rays going in many directions

normal . . . . . . the line perpendicular to a surface at a given
point

Notation
c . . . . . . . . . . the speed of light

Summary

We can understand many phenomena involving light without
having to use sophisticated models such as the wave model or the
particle model. Instead, we simply describe light according to the
path it takes, which we call a ray. The ray model of light is useful
when light is interacting with material objects that are much larger
than a wavelength of light. Since a wavelength of visible light is so
short compared to the human scale of existence, the ray model is
useful in many practical cases.

We see things because light comes from them to our eyes. Ob-
jects that glow may send light directly to our eyes, but we see an
object that doesn’t glow via light from another source that has been
reflected by the object.

Many of the interactions of light and matter can be understood
by considering what happens when light reaches the boundary be-
tween two different substances. In this situation, part of the light is
reflected (bounces back) and part passes on into the new medium.
This is not surprising — it is typical behavior for a wave, and light is
a wave. Light energy can also be absorbed by matter, i.e., converted
into heat.

A smooth surface produces specular reflection, in which the re-
flected ray exits at the same angle with respect to the normal as
that of the incoming ray. A rough surface gives diffuse reflection,
where a single ray of light is divided up into many weaker reflected
rays going in many directions.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 Draw a ray diagram showing why a small light source (a can-
dle, say) produces sharper shadows than a large one (e.g. a long
fluorescent bulb).

2 A Global Positioning System (GPS) receiver is a device that
lets you figure out where you are by receiving timed radio signals
from satellites. It works by measuring the travel time for the signals,
which is related to the distance between you and the satellite. By
finding the ranges to several different satellites in this way, it can
pin down your location in three dimensions to within a few meters.
How accurate does the measurement of the time delay have to be to
determine your position to this accuracy?

3 Estimate the frequency of an electromagnetic wave whose wave-
length is similar in size to an atom (about a nm). Referring back
to your electricity and magnetism text, in what part of the electro-
magnetic spectrum would such a wave lie (infrared, gamma-rays,...)?

4 The Stealth bomber is designed with flat, smooth surfaces.
Why would this make it difficult to detect via radar?

5 The figure on the next page shows a curved (parabolic) mirror,
with three parallel light rays coming toward it. One ray is approach-
ing along the mirror’s center line. (a) Trace the drawing accurately,
and continue the light rays until they are about to undergo their
second reflection. To get good enough accuracy, you’ll need to pho-
tocopy the page (or download the book and print the page) and
draw in the normal at each place where a ray is reflected. What
do you notice? (b) Make up an example of a practical use for this
device. (c) How could you use this mirror with a small lightbulb to
produce a parallel beam of light rays going off to the right?

6 The natives of planet Wumpus play pool using light rays on
an eleven-sided table with mirrors for bumpers, shown in the figure
on the next page. Trace this shot accurately with a ruler to reveal
the hidden message. To get good enough accuracy, you’ll need to
photocopy the page (or download the book and print the page) and
draw in the normal at each place where the ray strikes a bumper.
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Problem 5.

Problem 6.
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Narcissus, by Michelangelo Car-
avaggio, ca. 1598.

Chapter 2

Images by Reflection

Infants are always fascinated by the antics of the Baby in the Mirror.
Now if you want to know something about mirror images that most
people don’t understand, try this. First bring this page closer wand
closer to your eyes, until you can no longer focus on it without
straining. Then go in the bathroom and see how close you can
get your face to the surface of the mirror before you can no longer
easily focus on the image of your own eyes. You will find that
the shortest comfortable eye-mirror distance is much less than the
shortest comfortable eye-paper distance. This demonstrates that
the image of your face in the mirror acts as if it had depth and
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a / An image formed by a
mirror.

existed in the space behind the mirror. If the image was like a flat
picture in a book, then you wouldn’t be able to focus on it from
such a short distance.

In this chapter we will study the images formed by flat and
curved mirrors on a qualitative, conceptual basis. Although this
type of image is not as commonly encountered in everyday life as
images formed by lenses, images formed by reflection are simpler
to understand, so we discuss them first. In chapter 3 we will turn
to a more mathematical treatment of images made by reflection.
Surprisingly, the same equations can also be applied to lenses, which
are the topic of chapter 4.

2.1 A Virtual Image
We can understand a mirror image using a ray diagram. Figure

a shows several light rays, 1, that originated by diffuse reflection at
the person’s nose. They bounce off the mirror, producing new rays,
2. To anyone whose eye is in the right position to get one of these
rays, they appear to have come from a behind the mirror, 3, where
they would have originated from a single point. This point is where
the tip of the image-person’s nose appears to be. A similar analysis
applies to every other point on the person’s face, so it looks as
though there was an entire face behind the mirror. The customary
way of describing the situation requires some explanation:

Customary description in physics: There is an image of the face
behind the mirror.

Translation: The pattern of rays coming from the mirror is exactly
the same as it would be if there was a face behind the mirror.
Nothing is really behind the mirror.

This is referred to as a virtual image, because the rays do not
actually cross at the point behind the mirror. They only appear to
have originated there.

self-check A

Imagine that the person in figure a moves his face down quite a bit — a
couple of feet in real life, or a few inches on this scale drawing. Draw a
new ray diagram. Will there still be an image? If so, where is it visible
from?

. Answer, p. 106

The geometry of specular reflection tells us that rays 1 and 2
are at equal angles to the normal (the imaginary perpendicular line
piercing the mirror at the point of reflection). This means that ray
2’s imaginary continuation, 3, forms the same angle with the mirror
as ray 3. Since each ray of type 3 forms the same angles with the
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b / An image formed by a
curved mirror.

mirror as its partner of type 1, we see that the distance of the image
from the mirror is the same as the actual face from the mirror, and
lies directly across from it. The image therefore appears to be the
same size as the actual face.

Discussion Question

A The figure shows an object that is off to one side of a mirror. Draw
a ray diagram. Is an image formed? If so, where is it, and from which
directions would it be visible?

2.2 Curved Mirrors
An image in a flat mirror is a pretechnological example: even

animals can look at their reflections in a calm pond. We now pass
to our first nontrivial example of the manipulation of an image by
technology: an image in a curved mirror. Before we dive in, let’s
consider why this is an important example. If it was just a ques-
tion of memorizing a bunch of facts about curved mirrors, then you
would rightly rebel against an effort to spoil the beauty of your lib-
erally educated brain by force-feeding you technological trivia. The
reason this is an important example is not that curved mirrors are
so important in and of themselves, but that the results we derive for
curved bowl-shaped mirrors turn out to be true for a large class of
other optical devices, including mirrors that bulge outward rather
than inward, and lenses as well. A microscope or a telescope is sim-
ply a combination of lenses or mirrors or both. What you’re really
learning about here is the basic building block of all optical devices
from movie projectors to octopus eyes.

Because the mirror in figure b is curved, it bends the rays back
closer together than a flat mirror would: we describe it as converging.
Note that the term refers to what it does to the light rays, not to the
physical shape of the mirror’s surface . (The surface itself would be
described as concave. The term is not all that hard to remember,
because the hollowed-out interior of the mirror is like a cave.) It
is surprising but true that all the rays like 3 really do converge on
a point, forming a good image. We will not prove this fact, but it
is true for any mirror whose curvature is gentle enough and that
is symmetric with respect to rotation about the perpendicular line
passing through its center (not asymmetric like a potato chip). The
old-fashioned method of making mirrors and lenses is by grinding
them in grit by hand, and this automatically tends to produce an
almost perfect spherical surface.

Bending a ray like 2 inward implies bending its imaginary contin-
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c / The image is magnified
by the same factor in depth and
in its other dimensions.

uation 3 outward, in the same way that raising one end of a seesaw
causes the other end to go down. The image therefore forms deeper
behind the mirror. This doesn’t just show that there is extra dis-
tance between the image-nose and the mirror; it also implies that
the image itself is bigger from front to back. It has been magnified
in the front-to-back direction.

It is easy to prove that the same magnification also applies to the
image’s other dimensions. Consider a point like E in figure c. The
trick is that out of all the rays diffusely reflected by E, we pick the
one that happens to head for the mirror’s center, C. The equal-angle
property of specular reflection plus a little straightforward geometry
easily leads us to the conclusion that triangles ABC and CDE are
the same shape, with ABC being simply a scaled-up version of CDE.
The magnification of depth equals the ratio BC/CD, and the up-
down magnification is AB/DE. A repetition of the same proof shows
that the magnification in the third dimension (out of the page) is
also the same. This means that the image-head is simply a larger
version of the real one, without any distortion. The scaling factor
is called the magnification, M . The image in the figure is magnified
by a factor M = 1.9.

Note that we did not explicitly specify whether the mirror was
a sphere, a paraboloid, or some other shape. However, we assumed
that a focused image would be formed, which would not necessarily
be true, for instance, for a mirror that was asymmetric or very deeply
curved.

2.3 A Real Image
If we start by placing an object very close to the mirror, d/1, and
then move it farther and farther away, the image at first behaves
as we would expect from our everyday experience with flat mirrors,
receding deeper and deeper behind the mirror. At a certain point,
however, a dramatic change occurs. When the object is more than
a certain distance from the mirror, d/2, the image appears upside-
down and in front of the mirror.

Here’s what’s happened. The mirror bends light rays inward, but
when the object is very close to it, as in d/1, the rays coming from a
given point on the object are too strongly diverging (spreading) for
the mirror to bring them back together. On reflection, the rays are
still diverging, just not as strongly diverging. But when the object
is sufficiently far away, d/2, the mirror is only intercepting the rays
that came out in a narrow cone, and it is able to bend these enough
so that they will reconverge.

Note that the rays shown in the figure, which both originated at
the same point on the object, reunite when they cross. The point
where they cross is the image of the point on the original object.
This type of image is called a real image, in contradistinction to the
virtual images we’ve studied before. The use of the word “real” is
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perhaps unfortunate. It sounds as though we are saying the image
was an actual material object, which of course it is not.

d / 1. A virtual image. 2. A
real image. As you’ll verify in
homework problem 6, the image
is upside-down

The distinction between a real image and a virtual image is an
important one, because a real image can projected onto a screen or
photographic film. If a piece of paper is inserted in figure d/2 at
the location of the image, the image will be visible on the paper
(provided the object is bright and the room is dark). Your eye uses
a lens to make a real image on the retina.

self-check B
Sketch another copy of the face in figure d/1, even farther from the
mirror, and draw a ray diagram. What has happened to the location of
the image? . Answer, p. 106

2.4 Images of Images
If you are wearing glasses right now, then the light rays from the
page are being manipulated first by your glasses and then by the lens
of your eye. You might think that it would be extremely difficult
to analyze this, but in fact it is quite easy. In any series of optical
elements (mirrors or lenses or both), each element works on the rays
furnished by the previous element in exactly the same manner as if
the image formed by the previous element was an actual object.

Figure e shows an example involving only mirrors. The Newto-
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f / A Newtonian telescope
being used for visual rather than
photographic observing. In real
life, an eyepiece lens is normally
used for additional magnification,
but this simpler setup will also
work.

e / A Newtonian telescope
being used with a camera.

nian telescope, invented by Isaac Newton, consists of a large curved
mirror, plus a second, flat mirror that brings the light out of the
tube. (In very large telescopes, there may be enough room to put
a camera or even a person inside the tube, in which case the sec-
ond mirror is not needed.) The tube of the telescope is not vital; it
is mainly a structural element, although it can also be helpful for
blocking out stray light. The lens has been removed from the front
of the camera body, and is not needed for this setup. Note that the
two sample rays have been drawn parallel, because an astronomical
telescope is used for viewing objects that are extremely far away.
These two “parallel” lines actually meet at a certain point, say a
crater on the moon, so they can’t actually be perfectly parallel, but
they are parallel for all practical purposes since we would have to
follow them upward for a quarter of a million miles to get to the
point where they intersect.

The large curved mirror by itself would form an image I, but the
small flat mirror creates an image of the image, I′. The relationship
between I and I′ is exactly the same as it would be if I was an actual
object rather than an image: I and I′ are at equal distances from
the plane of the mirror, and the line between them is perpendicular
to the plane of the mirror.

One surprising wrinkle is that whereas a flat mirror used by itself
forms a virtual image of an object that is real, here the mirror is
forming a real image of virtual image I. This shows how pointless it
would be to try to memorize lists of facts about what kinds of images
are formed by various optical elements under various circumstances.
You are better off simply drawing a ray diagram.

Although the main point here was to give an example of an image
of an image, figure f shows an interesting case where we need to make
the distinction between magnification and angular magnification. If
you are looking at the moon through this telescope, then the images
I and I′ are much smaller than the actual moon. Otherwise, for
example, image I would not fit inside the telescope! However, these
images are very close to your eye compared to the actual moon. The
small size of the image has been more than compensated for by the
shorter distance. The important thing here is the amount of angle
within your field of view that the image covers, and it is this angle
that has been increased. The factor by which it is increased is called
the angular magnification, Ma.

g / The angular size of the flower
depends on its distance from the
eye.
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Discussion Questions

A Locate the images of you that will be formed if you stand between
two parallel mirrors.

B Locate the images formed by two perpendicular mirrors, as in the
figure. What happens if the mirrors are not perfectly perpendicular?
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C Locate the images formed by the periscope.
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Summary
Selected Vocabulary
real image . . . . a place where an object appears to be, be-

cause the rays diffusely reflected from any
given point on the object have been bent so
that they come back together and then spread
out again from the new point

virtual image . . like a real image, but the rays don’t actually
cross again; they only appear to have come
from the point on the image

converging . . . . describes an optical device that brings light
rays closer to the optical axis

diverging . . . . .
bends light rays farther from the optical axis

magnification . . the factor by which an image’s linear size is
increased (or decreased)

angular magnifi-
cation . . . . . . .

the factor by which an image’s apparent angu-
lar size is increased (or decreased)

concave . . . . . . describes a surface that is hollowed out like a
cave

convex . . . . . . describes a surface that bulges outward

Notation
M . . . . . . . . . the magnification of an image
Ma . . . . . . . . the angular magnification of an image

Summary

A large class of optical devices, including lenses and flat and
curved mirrors, operates by bending light rays to form an image. A
real image is one for which the rays actually cross at each point of
the image. A virtual image, such as the one formed behind a flat
mirror, is one for which the rays only appear to have crossed at a
point on the image. A real image can be projected onto a screen; a
virtual one cannot.

Mirrors and lenses will generally make an image that is either
smaller than or larger than the original object. The scaling factor
is called the magnification. In many situations, the angular magni-
fication is more important than the actual magnification.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 A man is walking at 1.0 m/s directly towards a flat mirror. At
what speed is his separation from his image decreasing?

√

2 If a mirror on a wall is only big enough for you to see your-
self from your head down to your waist, can you see your entire
body by backing up? Test this experimentally and come up with an
explanation for your observations, including a ray diagram.

Note that when you do the experiment, it’s easy to confuse yourself
if the mirror is even a tiny bit off of vertical. One way to check
yourself is to artificially lower the top of the mirror by putting a
piece of tape or a post-it note where it blocks your view of the top
of your head. You can then check whether you are able to see more
of yourself both above and below by backing up.

3 In this chapter we’ve only done examples of mirrors with
hollowed-out shapes (called concave mirrors). Now draw a ray dia-
gram for a curved mirror that has a bulging outward shape (called a
convex mirror). (a) How does the image’s distance from the mirror
compare with the actual object’s distance from the mirror? From
this comparison, determine whether the magnification is greater
than or less than one. (b) Is the image real or virtual? Could
this mirror ever make the other type of image?

4 As discussed in question 3, there are two types of curved mir-
rors, concave and convex. Make a list of all the possible combi-
nations of types of images (virtual or real) with types of mirrors
(concave and convex). (Not all of the four combinations are phys-
ically possible.) Now for each one, use ray diagrams to determine
whether increasing the distance of the object from the mirror leads
to an increase or a decrease in the distance of the image from the
mirror.

Draw BIG ray diagrams! Each diagram should use up about half a
page of paper.

Some tips: To draw a ray diagram, you need two rays. For one of
these, pick the ray that comes straight along the mirror’s axis, since
its reflection is easy to draw. After you draw the two rays and locate
the image for the original object position, pick a new object position
that results in the same type of image, and start a new ray diagram,
in a different color of pen, right on top of the first one. For the two
new rays, pick the ones that just happen to hit the mirror at the
same two places; this makes it much easier to get the result right
without depending on extreme accuracy in your ability to draw the

40 Chapter 2 Images by Reflection



Problem 7.

reflected rays.

5 If the user of an astronomical telescope moves her head closer
to or farther away from the image she is looking at, does the magni-
fication change? Does the angular magnification change? Explain.
(For simplicity, assume that no eyepiece is being used.)

6 In figure d in on page 35, only the image of my forehead was
located by drawing rays. Either photocopy the figure or download
the book and print out the relevant page. On this copy of the figure,
make a new set of rays coming from my chin, and locate its image.
To make it easier to judge the angles accurately, draw rays from the
chin that happen to hit the mirror at the same points where the two
rays from the forehead were shown hitting it. By comparing the
locations of the chin’s image and the forehead’s image, verify that
the image is actually upside-down, as shown in the original figure.

7 The figure shows four points where rays cross. Of these, which
are image points? Explain.

8 Here’s a game my kids like to play. I sit next to a sunny
window, and the sun reflects from the glass on my watch, making a
disk of light on the wall or floor, which they pretend to chase as I
move it around. Is the spot a disk because that’s the shape of the
sun, or because it’s the shape of my watch? In other words, would
a square watch make a square spot, or do we just have a circular
image of the circular sun, which will be circular no matter what?
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Breakfast Table, by Willem Clasz. de Heda, 17th century. The painting shows a variety of images, some of
them distorted, resulting both from reflection and from refraction (ch. 4).

Chapter 3

Images, Quantitatively

It sounds a bit odd when a scientist refers to a theory as “beauti-
ful,” but to those in the know it makes perfect sense. One mark
of a beautiful theory is that it surprises us by being simple. The
mathematical theory of lenses and curved mirrors gives us just such
a surprise. We expect the subject to be complex because there are
so many cases: a converging mirror forming a real image, a diverg-
ing lens that makes a virtual image, and so on for a total of six
possibilities. If we want to predict the location of the images in all
these situations, we might expect to need six different equations,
and six more for predicting magnifications. Instead, it turns out
that we can use just one equation for the location of the image and
one equation for its magnification, and these two equations work
in all the different cases with no changes except for plus and minus
signs. This is the kind of thing the physicist Eugene Wigner referred
to as “the unreasonable effectiveness of mathematics.” Sometimes
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a / The relationship between
the object’s position and the
image’s can be expressed in
terms of the angles θo and θi .

we can find a deeper reason for this kind of unexpected simplicity,
but sometimes it almost seems as if God went out of Her way to
make the secrets of universe susceptible to attack by the human
thought-tool called math.

3.1 A Real Image Formed by a Converging
Mirror

Location of the image
We will now derive the equation for the location of a real image

formed by a converging mirror. We assume for simplicity that the
mirror is spherical, but actually this isn’t a restrictive assumption,
because any shallow, symmetric curve can be approximated by a
sphere. The shape of the mirror can be specified by giving the
location of its center, C. A deeply curved mirror is a sphere with a
small radius, so C is close to it, while a weakly curved mirror has
C farther away. Given the point O where the object is, we wish to
find the point I where the image will be formed.

To locate an image, we need to track a minimum of two rays
coming from the same point. Since we have proved in the previous
chapter that this type of image is not distorted, we can use an on-axis
point, O, on the object, as in figure a/1. The results we derive will
also hold for off-axis points, since otherwise the image would have
to be distorted, which we know is not true. We let one of the rays be
the one that is emitted along the axis; this ray is especially easy to
trace, because it bounces straight back along the axis again. As our
second ray, we choose one that strikes the mirror at a distance of 1
from the axis. “One what?” asks the astute reader. The answer is
that it doesn’t really matter. When a mirror has shallow curvature,
all the reflected rays hit the same point, so 1 could be expressed
in any units you like. It could, for instance, be 1 cm, unless your
mirror is smaller than 1 cm!

The only way to find out anything mathematical about the rays
is to use the sole mathematical fact we possess concerning specular
reflection: the incident and reflected rays form equal angles with
respect to the normal, which is shown as a dashed line. Therefore
the two angles shown in figure a/2 are the same, and skipping some
straightforward geometry, this leads to the visually reasonable result
that the two angles in figure a/3 are related as follows:

θi + θo = constant

(Note that θi and θo, which are measured from the image and the
object, not from the eye like the angles we referred to in discussing
angular magnification on page 36.) For example, move O farther
from the mirror. The top angle in figure a/2 is increased, so the
bottom angle must increase by the same amount, causing the image
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b / The geometrical interpre-
tation of the focal angle.

c / Example 1, an alternative
test for finding the focal angle.
The mirror is the same as in
figure b.

point, I, to move closer to the mirror. In terms of the angles shown in
figure a/3, the more distant object has resulted in a smaller angle θo,
while the closer image corresponds to a larger θi; One angle increases
by the same amount that the other decreases, so their sum remains
constant. These changes are summarized in figure a/4.

The sum θi + θo is a constant. What does this constant repre-
sent? Geometrically, we interpret it as double the angle made by
the dashed radius line. Optically, it is a measure of the strength of
the mirror, i.e., how strongly the mirror focuses light, and so we call
it the focal angle, θf ,

θi + θo = θf

Suppose, for example, that we wish to use a quick and dirty optical
test to determine how strong a particular mirror is. We can lay
it on the floor as shown in figure c, and use it to make an image
of a lamp mounted on the ceiling overhead, which we assume is
very far away compared to the radius of curvature of the mirror,
so that the mirror intercepts only a very narrow cone of rays from
the lamp. This cone is so narrow that its rays are nearly parallel,
and θo is nearly zero. The real image can be observed on a piece of
paper. By moving the paper nearer and farther, we can bring the
image into focus, at which point we know the paper is located at
the image point. Since θo ≈ 0, we have θi ≈ θf , and we can then
determine this mirror’s focal angle either by measuring θi directly
with a protractor, or indirectly via trigonometry. A strong mirror
will bring the rays together to form an image close to the mirror,
and these rays will form a blunt-angled cone with a large θi and θf .

An alternative optical test example 1
. Figure c shows an alternative optical test. Rather than placing the
object at infinity as in figure b, we adjust it so that the image is right on
top of the object. Points O and I coincide, and the rays are reflected
right back on top of themselves. If we measure the angle θ shown in
figure c, how can we find the focal angle?

. The object and image angles are the same; the angle labeled θ in
the figure equals both of them. We therefore have θi + θo = θ = θf .
Comparing figures b and c, it is indeed plausible that the angles are
related by a factor of two.

At this point, we could consider our work to be done. Typically,
we know the strength of the mirror, and we want to find the image
location for a given object location. Given the mirror’s focal angle
and the object location, we can determine θo by trigonometry, sub-
tract to find θi = θf − θo, and then do more trig to find the image
location.

There is, however, a shortcut that can save us from doing so
much work. Figure a/3 shows two right triangles whose legs of
length 1 coincide and whose acute angles are θo and θi. These can
be related by trigonometry to the object and image distances shown
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d / The object and image dis-
tances

e / Mirror 1 is weaker than
mirror 2. It has a shallower
curvature, a longer focal length,
and a smaller focal angle. It
reflects rays at angles not much
different than those that would be
produced with a flat mirror.

in figure d:
tan θo = 1/do tan θi = 1/di

Ever since chapter 2, we’ve been assuming small angles. For small
angles, we can use the small-angle approximation tanx ≈ x (for x
in radians), giving simply

θo = 1/do θi = 1/di .

We likewise define a distance called the focal length, f according to
θf = 1/f . In figure b, f is the distance from the mirror to the place
where the rays cross. We can now reexpress the equation relating
the object and image positions as

1
f

=
1
di

+
1
do

.

Figure e summarizes the interpretation of the focal length and focal
angle.1

Which form is better, θf = θi + θo or 1/f = 1/di + 1/do? The
angular form has in its favor its simplicity and its straightforward
visual interpretation, but there are two reasons why we might prefer
the second version. First, the numerical values of the angles depend
on what we mean by “one unit” for the distance shown as 1 in
figure a/1. Second, it is usually easier to measure distances rather
than angles, so the distance form is more convenient for number
crunching. Neither form is superior overall, and we will often need
to use both to solve any given problem.2

A searchlight example 2
Suppose we need to create a parallel beam of light, as in a searchlight.
Where should we place the lightbulb? A parallel beam has zero angle
between its rays, so θi = 0. To place the lightbulb correctly, however,
we need to know a distance, not an angle: the distance do between
the bulb and the mirror. The problem involves a mixture of distances
and angles, so we need to get everything in terms of one or the other
in order to solve it. Since the goal is to find a distance, let’s figure out
the image distance corresponding to the given angle θi = 0. These are
related by di = 1/θi , so we have di = ∞. (Yes, dividing by zero gives

1There is a standard piece of terminology which is that the “focal point” is
the point lying on the optical axis at a distance from the mirror equal to the focal
length. This term isn’t particularly helpful, because it names a location where
nothing normally happens. In particular, it is not normally the place where the
rays come to a focus! — that would be the image point. In other words, we
don’t normally have di = f , unless perhaps do = ∞. A recent online discussion
among some physics teachers (https://carnot.physics.buffalo.edu/archives, Feb.
2006) showed that many disliked the terminology, felt it was misleading, or didn’t
know it and would have misinterpreted it if they had come across it. That is, it
appears to be what grammarians call a “skunked term” — a word that bothers
half the population when it’s used incorrectly, and the other half when it’s used
correctly.

2I would like to thank Fouad Ajami for pointing out the pedagogical advan-
tages of using both equations side by side.
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infinity. Don’t be afraid of infinity. Infinity is a useful problem-solving
device.) Solving the distance equation for do, we have

do = (1/f − 1/di )− 1

= (1/f − 0)− 1

= (1/f )− 1

= f

The bulb has to be placed at a distance from the mirror equal to its focal
point.

Diopters example 3
An equation like di = 1/θi really doesn’t make sense in terms of units.
Angles are unitless, since radians aren’t really units, so the right-hand
side is unitless. We can’t have a left-hand side with units of distance if
the right-hand side of the same equation is unitless. This is an artifact
of my cavalier statement that the conical bundles of rays spread out
to a distance of 1 from the axis where they strike the mirror, without
specifying the units used to measure this 1. In real life, optometrists
define the thing we’re calling θi = 1/di as the “dioptric strength” of a
lens or mirror, and measure it in units of inverse meters (m−1), also
known as diopters (1 D=1 m−1).

Magnification

We have already discussed in the previous chapter how to find
the magnification of a virtual image made by a curved mirror. The
result is the same for a real image, and we omit the proof, which
is very similar. In our new notation, the result is M = di/do. A
numerical example is given in section 3.2

3.2 Other Cases With Curved Mirrors
The equation di = can easily produce a negative result, but we have
been thinking of di as a distance, and distances can’t be negative.
A similar problem occurs with θi = θf − θo for θo > θf . What’s
going on here?

The interpretation of the angular equation is straightforward.
As we bring the object closer and closer to the image, θo gets bigger
and bigger, and eventually we reach a point where θo = θf and
θi = 0. This large object angle represents a bundle of rays forming
a cone that is very broad, so broad that the mirror can no longer
bend them back so that they reconverge on the axis. The image
angle θi = 0 represents an outgoing bundle of rays that are parallel.
The outgoing rays never cross, so this is not a real image, unless we
want to be charitable and say that the rays cross at infinity. If we
go on bringing the object even closer, we get a virtual image.
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f / A graph of the image distance
di as a function of the object dis-
tance do.

To analyze the distance equation, let’s look at a graph of di as
a function of do. The branch on the upper right corresponds to the
case of a real image. Strictly speaking, this is the only part of the
graph that we’ve proven corresponds to reality, since we never did
any geometry for other cases, such as virtual images. As discussed in
the previous section, making do bigger causes di to become smaller,
and vice-versa.

Letting do be less than f is equivalent to θo > θf : a virtual image
is produced on the far side of the mirror. This is the first example
of Wigner’s “unreasonable effectiveness of mathematics” that we
have encountered in optics. Even though our proof depended on
the assumption that the image was real, the equation we derived
turns out to be applicable to virtual images, provided that we either
interpret the positive and negative signs in a certain way, or else
modify the equation to have different positive and negative signs.

self-check A
Interpret the three places where, in physically realistic parts of the graph,
the graph approaches one of the dashed lines. [This will come more
naturally if you have learned the concept of limits in a math class.] .

Answer, p. 106

A flat mirror example 4
We can even apply the equation to a flat mirror. As a sphere gets big-
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ger and bigger, its surface is more and more gently curved. The planet
Earth is so large, for example, that we cannot even perceive the curva-
ture of its surface. To represent a flat mirror, we let the mirror’s radius of
curvature, and its focal length, become infinite. Dividing by infinity gives
zero, so we have

1/do = −1/di ,

or

do = −di .

If we interpret the minus sign as indicating a virtual image on the far
side of the mirror from the object, this makes sense.

It turns out that for any of the six possible combinations of
real or virtual images formed by converging or diverging lenses or
mirrors, we can apply equations of the form

θf = θi + θo

and

1
f

=
1
di

+
1
do

,

with only a modification of plus or minus signs. There are two pos-
sible approaches here. The approach we have been using so far is
the more popular approach in American textbooks: leave the equa-
tion the same, but attach interpretations to the resulting negative
or positive values of the variables. The trouble with this approach
is that one is then forced to memorize tables of sign conventions,
e.g. that the value of di should be negative when the image is a
virtual image formed by a converging mirror. Positive and negative
signs also have to be memorized for focal lengths. Ugh! It’s highly
unlikely that any student has ever retained these lengthy tables in
his or her mind for more than five minutes after handing in the final
exam in a physics course. Of course one can always look such things
up when they are needed, but the effect is to turn the whole thing
into an exercise in blindly plugging numbers into formulas.

As you have gathered by now, there is another method which I
think is better, and which I’ll use throughout the rest of this book.
In this method, all distances and angles are positive by definition,
and we put in positive and negative signs in the equations depending
on the situation. (I thought I was the first to invent this method, but
I’ve been told that this is known as the European sign convention,
and that it’s fairly common in Europe.) Rather than memorizing
these signs, we start with the generic equations

θf = ±θi ± θo

1
f

= ± 1
di
± 1

do
,
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g / Example 5.

and then determine the signs by a two-step method that depends on
ray diagrams. There are really only two signs to determine, not four;
the signs in the two equations match up in the way you’d expect.
The method is as follows:

1. Use ray diagrams to decide whether θo and θi vary in the same
way or in opposite ways. (In other words, decide whether making θo

greater results in a greater value of θi or a smaller one.) Based on
this, decide whether the two signs in the angle equation are the same
or opposite. If the signs are opposite, go on to step 2 to determine
which is positive and which is negative.

2. If the signs are opposite, we need to decide which is the
positive one and which is the negative. Since the focal angle is never
negative, the smaller angle must be the one with a minus sign.

In step 1, many students have trouble drawing the ray diagram
correctly. For simplicity, you should always do your diagram for a
point on the object that is on the axis of the mirror, and let one
of your rays be the one that is emitted along the axis and reflect
straight back on itself, as in the figures in section 3.1. As shown in
figure a/4 in section 3.1, there are four angles involved: two at the
mirror, one at the object (θo), and one at the image (θi). Make sure
to draw in the normal to the mirror so that you can see the two
angles at the mirror. These two angles are equal, so as you change
the object position, they fan out or fan in, like opening or closing
a book. Once you’ve drawn this effect, you should easily be able to
tell whether θo and θi change in the same way or in opposite ways.

Although focal lengths are always positive in the method used
in this book, you should be aware that diverging mirrors and lenses
are assigned negative focal lengths in the other method, so if you
see a lens labeled f = −30 cm, you’ll know what it means.

An anti-shoplifting mirror example 5
. Convenience stores often install a diverging mirror so that the clerk
has a view of the whole store and can catch shoplifters. Use a ray dia-
gram to show that the image is reduced, bringing more into the clerk’s
field of view. If the focal length of the mirror is 3.0 m, and the mirror is
7.0 m from the farthest wall, how deep is the image of the store?

. As shown in ray diagram g/1, di is less than do. The magnification,
M = di/do, will be less than one, i.e., the image is actually reduced
rather than magnified.

Apply the method outlined above for determining the plus and minus
signs. Step 1: The object is the point on the opposite wall. As an
experiment, g/2, move the object closer. I did these drawings using
illustration software, but if you were doing them by hand, you’d want
to make the scale much larger for greater accuracy. Also, although I
split figure g into two separate drawings in order to make them easier to
understand, you’re less likely to make a mistake if you do them on top
of each other.

The two angles at the mirror fan out from the normal. Increasing θo has
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