Introduction to Theory of Computation

Introduction to Theory of Computation CSC-4890

Division of Computer Science and Engineering, LSU Fall 2015

- Instructor: Konstantin (Costas) Busch
 - Page: http://www.csc.lsu.edu/~busch/courses/theorycomp/fall2015/
 - Extra Slides
 - Other models of computation

Other Models of Computation

Models of computation:

- •Turing Machines
- Recursive Functions
- Post Systems
- Rewriting Systems

Church's Thesis:

All models of computation are equivalent

Turing's Thesis:

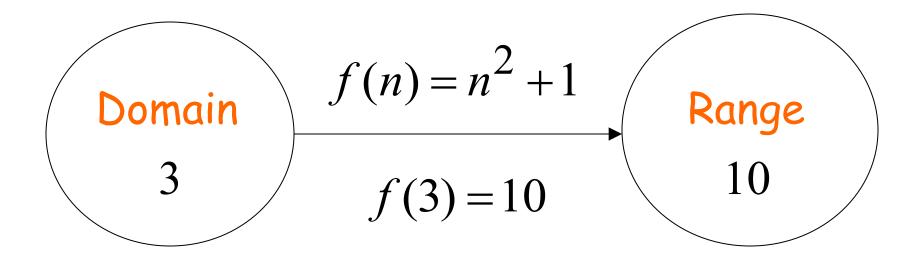
A computation is mechanical if and only if it can be performed by a Turing Machine

Church's and Turing's Thesis are similar:

Church-Turing Thesis

Recursive Functions

An example function:



We need a way to define functions

We need a set of basic functions

Basic Primitive Recursive Functions

Zero function: z(x) = 0

Successor function: s(x) = x + 1

Projection functions: $p_1(x_1, x_2) = x_1$

 $p_2(x_1, x_2) = x_2$

Building complicated functions:

Composition:
$$f(x,y) = h(g_1(x,y),g_2(x,y))$$

Primitive Recursion:

$$f(x,0) = g_1(x)$$

$$f(x, y+1) = h(g_2(x, y), f(x, y))$$

Any function built from the basic primitive recursive functions is called:

Primitive Recursive Function

A Primitive Recursive Function: add(x, y)

$$add(x,0) = x$$
 (projection)

add(x, y+1) = s(add(x, y))

(successor function)

add(3,2) = s(add(3,1))= s(s(add(3,0)))= s(s(3))= s(4)= 5

Another Primitive Recursive Function: mult(x, y)

mult(x,0) = 0

mult(x, y+1) = add(x, mult(x, y))

Theorem:

The set of primitive recursive functions is countable

Proof:

Each primitive recursive function can be encoded as a string

Enumerate all strings in proper order

Check if a string is a function

Theorem

there is a function that is not primitive recursive

Proof: Enumerate the primitive recursive functions

 f_1, f_2, f_3, \dots

Define function $g(i) = f_i(i) + 1$

g differs from every f_i

g is not primitive recursive

END OF PROOF

A specific function that is <u>not</u> Primitive Recursive:

Ackermann's function:

$$A(0, y) = y + 1$$

$$A(x, 0) = A(x - 1, 1)$$

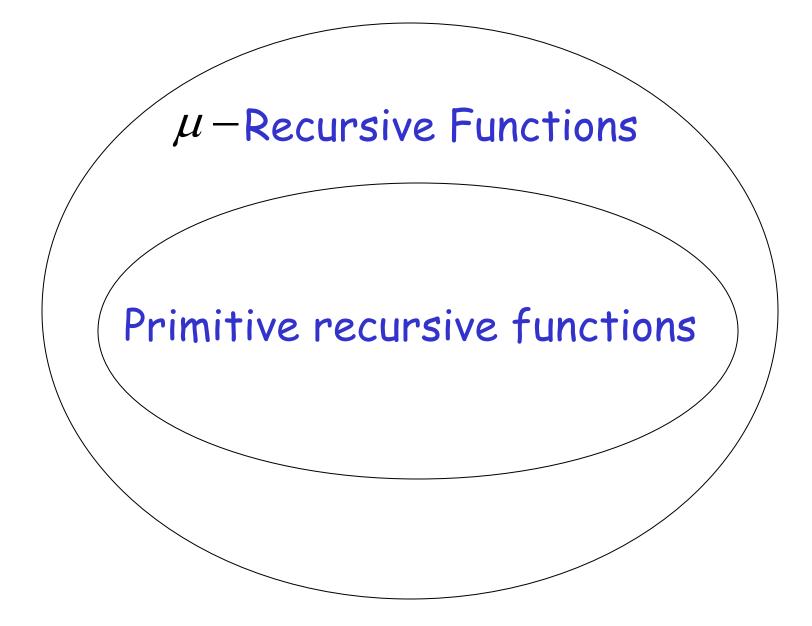
$$A(x, y + 1) = A(x - 1, A(x, y))$$

Grows very fast, faster than any primitive recursive function

μ -Recursive Functions

$\mu y(g(x, y)) = \text{smallest } y \text{ such that } g(x, y) = 0$

Accerman's function is a μ -Recursive Function



Post Systems

Have Axioms

Have Productions

Very similar with unrestricted grammars

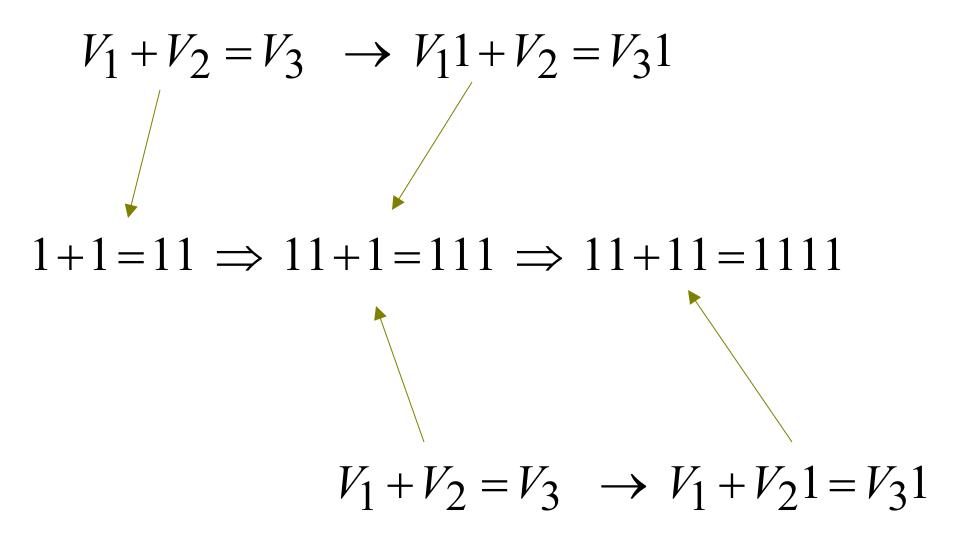
Example: Unary Addition

Axiom: 1+1=11

Productions:

$V_1 + V_2 = V_3 \rightarrow V_1 1 + V_2 = V_3 1$ $V_1 + V_2 = V_3 \rightarrow V_1 + V_2 1 = V_3 1$

A production:



Post systems are good for proving mathematical statements from a set of Axioms

Theorem:

A language is recursively enumerable if and only if a Post system generates it

Rewriting Systems

They convert one string to another

Matrix Grammars

- Markov Algorithms
- Lindenmayer-Systems

Very similar to unrestricted grammars

Matrix Grammars

Example:
$$P_1: S \rightarrow S_1S_2$$

 $P_2: S_1 \rightarrow aS_1, S_2 \rightarrow bS_2c$
 $P_3: S_1 \rightarrow \lambda, S_2 \rightarrow \lambda$

Derivation:

 $S \Rightarrow S_1S_2 \Rightarrow aS_1bS_2c \Rightarrow aaS_1bbS_2cc \Rightarrow aabbcc$

A set of productions is applied simultaneously

$$P_{1}: S \to S_{1}S_{2}$$

$$P_{2}: S_{1} \to aS_{1}, S_{2} \to bS_{2}c$$

$$P_{3}: S_{1} \to \lambda, S_{2} \to \lambda$$

$$L = \{a^n b^n c^n : n \ge 0\}$$

Theorem:

A language is recursively enumerable if and only if a Matrix grammar generates it

Markov Algorithms

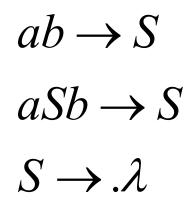
Grammars that produce λ

Example:

$$ab \to S$$
$$aSb \to S$$
$$S \to \lambda$$

Derivation:

$aaabbb \Rightarrow aaSbb \Rightarrow aSb \Rightarrow S \Rightarrow \lambda$



 $L = \{a^n b^n : n \ge 0\}$

In general:
$$L = \{w: w \Rightarrow \lambda\}$$

Theorem:

A language is recursively enumerable if and only if a Markov algorithm generates it

*

Lindenmayer-Systems

They are parallel rewriting systems

Example: $a \rightarrow aa$

Derivation: $a \Rightarrow aa \Rightarrow aaaa \Rightarrow aaaaaaaa$

$$L = \{a^{2^n} : n \ge 0\}$$

Lindenmayer-Systems are not general As recursively enumerable languages

Extended Lindenmayer-Systems: $(x, a, y) \rightarrow u$

Theorem:

A language is recursively enumerable if and only if an Extended Lindenmayer-System generates it