# Universidade de São Paulo / Faculdade de Filosofia, Letras e Ciências Humanas 

Departamento de Ciência Política
FLP-0468 \& FLS-6183
$2^{\circ}$ semestre/2016

## Lista - Post-Estimation Regression Diagnostics

This lab is based on follow-up of the previous lab on interactions and the following paper and corresponding replication files:

William Roberts Clark, Michael Gilligan and Matt Golder. 2006. "A Simple Multivariate Test for Asymmetric Hypotheses." Political Analysis 14: 311-331.

Please also review the relevant discussion in Chapter 10 of The Fundamentals of Doing Political Science Research and Section 13.10 of Gujarti and Porter's textbook.

As you will recall, we are interested in exploring Duverger's (1954) theory that multi-member electoral districts are necessary to produce a multiparty system (see Figure 1). We will explore this argument using the data collected and reported in:

Amorim Neto, Octavio \&\& Gary Cox. 1997. "Electoral Institutions: Cleavage Structures and the Number of Parties." American Journal of Political Science 41: 149-174.

Figure 1. Number of Legislative Parties and Log Median District Magnitude


Specifically, Duverger argued that social forces are more likely to produce additional parties when countries employ multimember districts than when they do not. We tested Duverger's
claims on the determinants of party system size with the following model and obtained the following regression results:

Legislative Parties $=\beta_{0}+\beta_{1}$ Multimember District $+\beta_{2}$ Social Heterogeneity $+\beta_{3}$ Multimember District $\times$ Social Heterogeneity $+\varepsilon$

- regress enps eneth lnml lmleneth

| Source | SS | df | MS |
| ---: | ---: | ---: | ---: |
| Model | 39.7248824 | 3 <br> 69.744403 | 13.2416275 <br> Residual |
| Total | 109.469285 | 53 | 2.06545822 |


| Number of obs | $=$ | 54 |
| ---: | ---: | ---: |
| F $3, ~ 50)$ | $=9.49$ |  |
| Prob $>$ | $=0.0000$ |  |
| R-squared | $=0.3629$ |  |
| Adj R-squared | $=0.3247$ |  |
| Root MSE | $=1.1811$ |  |


| enps | Coef. | Std. Err. | $t$ | P>\|t| | [95\% Conf. Interval] |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| eneth | -.3619712 | .3486305 | -1.04 | 0.304 | -1.062216 | .3382738 |
| lnml | -.1911174 | .2967357 | -0.64 | 0.522 | -.7871287 | .4048939 |
| lmleneth | .4833254 | .1805094 | 2.68 | 0.010 | .1207616 | .8458893 |
| _cons | 2.671367 | .6072149 | 4.40 | 0.000 | 1.45174 | 3.890994 |

## Part I. Outliers

Please review the help files in Stata to learn about the following five commands: "predict r , rstudent", "hilo" and "predict lev, leverage"; "lvr2plot" and "DFBETA".

Figure 2. Number of Legislative Parties, Effective Number of Ethnic Groups and Log Median District Magnitude


Exercise 1. As Figure 2 makes clear, some cases seem that may be possible outliers and may be influencing our regression results including the notable cases of Bolivia, Brazil and the

Netherlands. To explore whether these outliers may be influencing our results, we will examine the studentized residuals and their overall leverage on the regression results. Use the Stata commands to examine the studentized residuals and identify extreme values. Are our concerns regarding the three countries verified?

Answer: Based on the studentized residuals, the cases that have the largest divergence include Brazil and Bolivia, but we do not observe worrisome results for the Netherlands.


Exercise 2. As Gujarati and Porter explain, "A data point is said to exert (high) leverage if it is disproportionately distant from the bulk of the values of a regressor(s)." Now, let's examine the high leverage cases. Let's ask Stata to report the cases that have $5 \%$ or higher leverage by executing the command "list lev country if lev $>.05$." What do you observe?

|  | lev | country |
| :---: | :---: | :---: |
| 2. | . 0631595 | AUSTRALIA |
| 3. | . 0823729 | AUSTRIA |
| 6. | . 057302 | BELGIUM |
| 7. | . 3455021 | BELIZE |
| 8. | . 5108224 | BOLIVIA |
| 9. | . 0631595 | BOTSWANA |
| 10. | . 1276521 | BRAZIL |
| 11. | . 3552358 | CANADA |
| 12. | . 0723374 | COLOMBIA |
| 15. | . 0602766 | CZECH Rep |
| 20. | . 0633979 | EQUADOR |
| 22. | . 0578504 | FRANCE |
| 23. | . 0595895 | GERMANY |
| 25. | . 0669979 | GRENADA |
| 30. | . 1272372 | ISRAEL |
| 31. | . 0675156 | ITALY |
| 34. | . 0721723 | KOREA |
| 39. | . 1938402 | NETHERLANDS |
| 40. | . 0510892 | NEW Zealand |
| 42. | . 1094856 | PERU |
| 43. | . 0522309 | PORTUGAL |
| 45. | . 0548266 | ST.KITTS and Nevis |
| 46. | . 0545296 | ST.LUCIA |
| 49. | . 0557068 | SWITZERLAND |
| 50. | . 1563072 | TRINIDAD \& Tobago |

hilo lev country, show(10) high

$$
0 \text { highest observations on lev }
$$

| lev | country |
| ---: | ---: |
| .0723374 | COLOMBIA |
| .0823729 | AUSTRIA |
| .1094856 | PERU |
| .1272372 | ISRAEL |
| .1276521 | BRAZIL |
| .1563072 | TRINIDAD \& Tobago |
| .1938402 | NETHERLANDS |
| .3455021 | BELIZE |
| .3552358 | CANADA |
| .5108224 | BOLIVIA |

Answer: The cases that have the largest leverage include Bolivia, Canada, Belize, the Netherlands and Trinidad and Tobago. Some other cases also should concern us now. These include Brazil and Israel.

Exercise 3. Let's now compare the leverage-versus-residuals using the stata command lvr2plot. What can we conclude?

Answer: Based on the lvr2plot, Bolivia has the largest leverage and Brazil has the largest residual. Other important cases include Canada and Belize that have a large leverage and Ecuador and Belgium that present a large residual.


Exercise 4. Following a regression, we can calculate the DFBETA scores to detect the influence with and without individual cases on our regression results for each coefficient. Let's now compare the highest DFBETA scores using the stata command "dfbeta (lnml)" and then asking to see the cases with the highest cutoff values "list country _dfbeta_l if abs(_dfbeta_l ) , $2 / \operatorname{sqrt}(54)$ ". What can we conclude regarding influential cases with respect to the $\log$ of the median district magnitude?

Answer: Bolivia and Brazil are influential cases. The value for DFbeta for Bolivia is 1.197, which means that by being included in the analysis (as compared to being excluded), Bolivia increases the coefficient for "lnml" by 1.19 standard errors (1.19*0.297). On the other hand, the value for DFbeta for Brazil is -0.547 , which means that by being included in the analysis as compared to being excluded, Brazil decreases the coefficient for "lnml" by .54 standard errors ( $-0.54 * 0.297$ ). However, it is important to highlight that this interpretation is not quite straightforward since we are working with an interaction model.

```
. list country _dfbeta_1 if abs(_dfbeta_1 ) > 2/sqrt(54)
    **re
```

Exercise 5. Following a regression, we can calculate the DFBETA scores to detect the influence with and without individual cases on our results for each coefficient. Let's now compare the highest DFBETA scores using the stata command "dfbeta (eneth)" and then asking to see the cases with the highest cutoff values "list country_dfbeta_2 if abs(_dfbeta_2 ) > 2/sqrt(54)". What
can we conclude regarding influential cases with respect to the effective number of ethnic groups?

Answer: Brazil and Ecuador are influential cases. The value for DFbeta for Brazil is -0.27 , which means that by being included in the analysis as compared to being excluded, Brazil decreases the coefficient for "eneth" by 0.27 standard errors $\left(-0.27^{*} 0.34\right)$. On the other hand, the value for DFbeta for Ecuador is 0.46, which means that by being included in the analysis (as compared to being excluded), Ecuador increases the coefficient for "eneth" by 0.46 standard errors ( $0.46^{*} 0.34$ ). However, it is important to highlight that this interpretation is not quite straightforward since we are working with an interaction model.

```
. list country _dfbeta_2 if abs(_dfbeta_2 ) > 2/sqrt(54)
```

|  | country | debeta_2 |
| ---: | ---: | ---: |
| 10. | BRAZIL | -.2756748 |
| 20. | EQUADOR | .4660389 |

Exercise 6. Following a regression, we can calculate the DFBETA scores to detect the influence with and without individual cases on our results for each coefficient. Let's now compare the highest DFBETA scores using the stata command "dfbeta (lmleneth)" and then asking to see the cases with the highest cutoff values "list country _dfbeta_3 if abs(_dfbeta_3 ) > 2/sqrt(54)". What can we conclude regarding influential cases with respect to the interaction of the $\log$ of the median district magnitude and the effective number of parties?

Answer: Bolivia, Brazil, Belgium and Peru are important influential cases; the first two countries are the most influential observations. The value for DFbeta for Bolivia is -1.53 , which means that by being included in the analysis (as compared to being excluded), Bolivia decreases the coefficient for "lmleneth" by 1.53 standard errors ( $-1.53^{*} 0.18$ ). On the other hand, the value for DFbeta for Brazil is positive; by being included in the analysis as compared to being excluded, Brazil increases the coefficient for "lmleneth" by 0.96 standard errors ( $0.96^{*} 0.18$ ). However, it is important to highlight that this interpretation is not quite straightforward since we are working with an interaction model.

```
. list country _dfbeta_3 if abs(_dfbeta_3) > 2/sqrt(54)
```

| country | dfbeta_3 |
| ---: | ---: |
| BELGIUM | .3058015 |
| BOLIVIA | -1.531085 |
| BRAZIL | .9633007 |
| PERU | -.292579 |

. list country _dfbeta_1 _dfbeta_2 _dfbeta_3

|  | country | _dfbeta_1 | _dfbeta_2 | _dfbeta_3 |
| :---: | :---: | :---: | :---: | :---: |
| 1. | ARGENTINA | -. 0233911 | . 0152105 | . 0060767 |
| 2. | AUStralia | -. 0155597 | -. 0146171 | . 0098239 |
| 3. | AUSTRIA | -. 1250779 | -. 0223001 | . 0876152 |
| 4. | BAhamas | . 0207071 | . 0146819 | -. 0090969 |
| 5. | barbados | . 0575283 | . 0224862 | -. 0100158 |
| 6. | belgium | -. 1936575 | . 1240692 | . 3058015 |
| 7. | belize | . 0762741 | . 1283863 | -. 0954498 |
| 8. | bolivia | 1.196778 | . 1856355 | -1.531085 |
| 9. | Botswana | . 1283199 | . 1205462 | -. 0810174 |
| 10. | BRAZIL | -. 5457442 | -. 2756748 | . 9633007 |
| 11. | CANADA | . 1235906 | . 2074943 | -. 154215 |
| 12. | COLOMBIA | . 1001016 | -. 0658059 | -. 1507552 |
| 13. | costa Rica | -. 0513025 | . 0211342 | . 0340012 |
| 14. | cyprus | . 0012149 | -. 0006251 | . 0011612 |
| 15. | CZECH Rep | -. 180451 | -. 0187879 | . 1132395 |
| 16. | denmark | . 1598216 | -. 0465467 | -. 1131682 |
| 17. | DOMINICA | . 0099765 | -. 0064545 | . 0068942 |
| 18. | dominican Rep | . 0061669 | -. 0056552 | -. 0090764 |
| 19. | El Salvador | . 0114851 | . 0327314 | -. 0072106 |
| 20. | EQUADOR | . 0741539 | . 4660389 | -. 1111373 |
| 21. | finland | . 1942716 | -. 0027043 | -. 1209966 |
| 22. | FRANCE | -. 0542465 | -. 0483063 | . 0320373 |
| 23. | germany | -. 1174688 | -. 106704 | . 0711249 |
| 24. | greece | -. 0132145 | . 0370701 | . 0099313 |
| 25. | grenada | -. 1166173 | -. 1127302 | . 0762776 |
| 26. | Honduras | -. 012128 | . 0073632 | . 0060808 |
| 27. | ICElAnd | . 0365711 | -. 050017 | -. 0255697 |
| 28. | INDIA | . 0091408 | -. 0113536 | . 0108513 |
| 29. | Ireland | . 000092 | -. 0045183 | -. 0001268 |
| 30. | ISRAEL | -. 1025648 | -. 0175509 | . 0280225 |
| 31. | ITALY | . 1254592 | . 0150757 | -. 0858844 |
| 32. | JAMAICA | . 0182482 | -. 0061239 | . 0078737 |
| 33. | Japan | . 0027037 | . 0109922 | -. 0016047 |
| 34. | KOREA | -. 1993724 | -. 1986672 | . 1353583 |
| 35. | LIEChtenstein | -. 1145586 | . 0080481 | . 073507 |
| 36. | Luxembourg | -. 0139993 | . 0078035 | -. 0242075 |
| 37. | MALTA | -. 0002977 | . 0438175 | . 0003532 |
| 38. | mauritius | . 0053827 | -. 0222119 | . 0029843 |
| 39. | NETHERLANDS | -. 1618759 | -. 0548922 | . 105664 |
| 40. | NEW Zealand | . 0237551 | . 0188011 | -. 0120682 |
| 41. | norway | . 0053164 | -. 0021596 | -. 0037035 |
| 42. | peru | . 2043299 | -. 0901003 | -. 292579 |
| 43. | PORTUGAL | . 0307137 | -. 0007345 | -. 0215323 |
| 44. | Spain | . 0014937 | . 0013047 | -. 0088438 |
| 45. | ST.KITTS and Nevis | -. 0272515 | -. 0232578 | . 0152529 |
| 46. | ST.LUCIA | . 0274372 | . 0233023 | -. 0152618 |
| 47. | St.vincent \& Grenadines | . 0120433 | -. 0050582 | . 0060438 |
| 48. | SWEDEN | . 007541 | -. 0019115 | -. 0035102 |
| 49. | SWItzerland | -. 071731 | . 000184 | . 1313888 |
| 50. | TRINIDAD \& Tobago | -. 0894446 | -. 1680144 | . 1264854 |
| 51. | U.K. | . 0030508 | . 001348 | -. 0006608 |
| 52. | U.S.A. | . 0211503 | . 0145927 | -. 0089553 |
| 53. | URUGUAY | . 005459 | -. 0018537 | -. 0023515 |
| 54. | venezuela | . 047535 | -. 0018905 | -. 1022612 |

## Part II. Multicollinearity

Exercise 7. Using the VIF command, let's now examine if there are any specific multicollinearities that may be inflating the standard errors in our models.

Answer:

The VIF results are worrisome, especially with respect to $\log$ of median district magnitude and the interaction term. The inflation in the standard errors is worrisome especially for our hypothesis tests. As Kellstedt and Whitten recommend, this is a case where more data collection would be merited.

| . Vif |  |  |
| ---: | ---: | ---: |
| Variable |  |  |
| VIF | $1 /$ VIF |  |
| lnml | 6.99 | 0.143130 |
| eneth | 6.29 | 0.158968 |
| 2.15 | 0.465440 |  |
| Mean VIF | 5.14 |  |

## Part III. Normality of Residuals

Exercise 8. Let's now check the normality of the residuals, you already used the "predict r, resid" command to generate residuals in part I. Now use the "kdensity r, normal" command to produce a kernel density plot with the normal option requesting that a normal density be overlaid on the plot. What can we conclude regarding the normality of residuals?

Answer:
The graph shows that the residual distribution does not present clearly a normal distribution shape.


## Part IV. Checking Homoscedasticity of Residuals

Exercise 9. Let's now check the homoscedasticity of residuals. One of the main assumptions for the ordinary least squares regression is the homogeneity of variance of the residuals. If the model is well-fitted, there should be no pattern to the residuals plotted against the fitted values. A graphical method for detecting heteroscedasticity is using the "rvfplot, yline(0)" command which plots the residuals versus fitted (predicted) values.

Answer:

We see that the pattern of the data points is getting broader towards the right end, which is an indication of heteroscedasticity.


Exercise 10. Please estimate the regression results with robust standard errors and compare them to the results reported earlier. What do you conclude?

Answer:

In the model with robust standard errors, we see smaller standard errors. However, the difference is not significant, since all variables, which were significant before use it remain significant after using robust standard errors.

| Model l | Model 2 <br> (Robust standard errors) <br> $\mathrm{b} / \mathrm{t}$ |  |
| :--- | :---: | :---: |
| eneth | $\mathrm{b} / \mathrm{t}$ | -0.362 |
| lnml | -0.362 | $(-1.63)$ |
|  | $(-1.04)$ | -0.191 |
| lmleneth | -0.191 | $(-0.68)$ |
|  | $(-0.64)$ | $0.483^{*}$ |
| _cons | $0.483^{*}$ | $(2.19)$ |
|  | $(2.68)$ | $2.671^{* * *}$ |

## Part V. Reviewing interaction

Exercise ll. Below please find two different models and the partial effects derivatives that show how changes in each explanatory variable influence changes in the dependent variable. Please explain the difference between the following two models in terms of which interaction is being tested and concentrate your discussion only on X (Hint: draw Venn diagrams if helpful).

Model 1:
$y=\alpha+\beta_{1} X+\beta_{2} Z+\beta_{3} X Z+\varepsilon$
$\frac{\partial y}{\partial x}=\beta_{1}+\beta_{3} Z$
$\frac{\partial y}{\partial z}=\beta_{2}+\beta_{3} X$

Model 2:
$y=\alpha+\beta_{1} X+\beta_{2} Z+\varepsilon$
$\frac{\partial y}{\partial x}=\beta_{1}$
$\frac{\partial y}{\partial z}=\beta_{2}$

Answer:

In the model with the interaction term (Model 1), we are testing the hypothesis that the effect of $X$ on $Y$ depends on $Z$ whereas in 2 we hypothesize that the effect of $X$ on $Y$ depends only on itself.

