PME 2479 - MÁQUINAS TÉRMICAS - 2ª Prova de Teoria - Exemplo para Aluno 01

Nome:	_USP:	
-------	-------	--

1) (3.5 ptos) Uma turbina a gás industrial utiliza metano (CH₄ / PCI= 50000 kJ/kg) como combustível e é queimado com 180% de excesso de ar. Metano é fornecido numa linha a P_C = 300 kPa e T_C = 25 $^{\circ}$ C, passa por um compressor "booster", sendo comprimido com eficiência isoentrópica de 0,85 até a pressão do combustor. Ar ambiente entra no compressor a P_A = 100 kPa e T_A = 25 °C. A relação de pressão no compressor da turbina é de 15 e a sua eficiência isoentrópica é de 0,85. Um gerador elétrico, acoplado ao eixo da turbina a gás, produz 100 MW de potência elétrica. A eficiência isoentrópica da turbina é de 0,90. Determine: (a) Razão ar-combustível, em massa (RAC_{ar,CH4}); (b) Temperaturas na saída do compressor da turbina (T_B) e na saída do compressor "booster" (T_D); (c) Temperatura na saída da câmara de combustão (T_E); (d) Temperatura na saída da turbina (T_F); (e) Vazão de metano (mcH4); (f) Vazão em massa dos gases na turbina a gas (mgases). Dados: Tref (PCI) = 25 °C; k=1,3 (metano), k = 1,4 (ar, gases de combustão); Cp médio: Cp_{metano} = 2,25 kJ/kg K ("booster"), $Cp_{ar} = 1.0 \text{ kJ/kg K (compressor)}$, $Cp_{gas,comb} = 1.28 \text{ kJ/kg K (combustor)}$, $Cp_{gas,tur} = 1.15 \text{ kJ/kg k (turbina)}$. 2) (2,0 ptos) A turbina a gás descrita acima está acoplada a uma caldeira de recuperação com queima suplementar que gera vapor superaquecido para uma turbina a vapor. Considere que óleo combustível de PCI (T_{ent}=T_{ref} = 25 °C) = 42000 kJ/kg_{oleo} é consumido na queima suplementar de tal forma que todo o oxigênio excedente (na saída da turbina a gás) é utilizado nesta queima. A relação de massa de ar de combustão do óleo combustível é de RAC_{ar,oleo} = 20 kg_{ar seco}/ kg_{oleo}. A temperatura dos gases na saída da caldeira de recuperação é de T_H = 450 °C. Nestas condições, determine: (a) Vazão de óleo combustível (m_{oleo}); (b) Temperatura máxima (adiabática) dos gases na fornalha (T_G); (c) Calor fornecido ao vapor pela caldeira de recuperação (Qcald). Dados: Cpgas,rec = 1,19 kJ/kg k (caldeira de recuperação).

3) (3,5 ptos) Considere que a temperatura do vapor na saída da caldeira de recuperação é $T_3 = 400\,^{\circ}\text{C}$ e a pressão $P_3 = 5$ MPa. 75% do vapor gerado na caldeira de recuperação são utilizados para acionar uma turbina a vapor de condensação. Os 25% restantes são utilizados para fornecer calor para um processo industrial, que retorna como líquido à pressão de $P_7 = 200$ kPa e $T_7 = 50$ °C. A bomba B1 é alimentada com líquido saturado vindo do condensador à pressão de $P_4 = P_5 = 10$ kPa e descarrega o líquido à pressão $P_6 = 200$ kPa. Esta corrente é misturada com o retorno do processo industrial e entra na bomba B2 à pressão $P_1 = 200$ kPa, que comprime esta corrente até a pressão $P_2 = 5$ MPa (entrada da caldeira). As bombas têm eficiência isoentrópica de 0,83 e a eficiência isoentrópica da turbina é de 0,87. Nestas condições, determine: (a) Vazão em massa de vapor d'água (m_{Vap}); (b) Potência da turbina a vapor ($W_{\text{tur,vap}}$); (c) Potência das bombas (W_{B1} , W_{B2}); (d) Potência líquida do ciclo combinado ($W_{\text{liq,cc}}$), considerando que a energia para acionar o compressor "booster" é retirada do gerador elétrico deste sistema; (e) Calor fornecido ao processo industrial (Q_{proc}); (f) Rendimento térmico global do ciclo combinado de cogeração (η_{cc}). Faça um diagrama esquemático do ciclo combinado de cogeração, com a indicação de todos os pontos.

4) (1,0 pto) Pergunta.