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Abstract

The most expressive way humans display emotions is through facial expressions. In this

work we report on several advances we have made in building a system for classification of

facial expressions from continuous video input. We introduce and test different Bayesian net-

work classifiers for classifying expressions from video, focusing on changes in distribution as-

sumptions, and feature dependency structures. In particular we use Naive–Bayes classifiers

and change the distribution from Gaussian to Cauchy, and use Gaussian Tree-Augmented

Naive Bayes (TAN) classifiers to learn the dependencies among different facial motion fea-

tures. We also introduce a facial expression recognition from live video input using temporal

cues. We exploit the existing methods and propose a new architecture of hidden Markov mod-

els (HMMs) for automatically segmenting and recognizing human facial expression from vi-

deo sequences. The architecture performs both segmentation and recognition of the facial

expressions automatically using a multi-level architecture composed of an HMM layer and

a Markov model layer. We explore both person-dependent and person-independent recogni-

tion of expressions and compare the different methods.

� 2003 Elsevier Inc. All rights reserved.
* Corresponding author.

E-mail addresses: iracohen@ifp.uiuc.edu (I. Cohen), nicu@science.uva.nl (N. Sebe), ashutosh@

us.ibm.com (A. Garg), lawrence.chen@kodak.com (L. Chen), huang@ifp.uiuc.edu (T.S. Huang).

1077-3142/$ - see front matter � 2003 Elsevier Inc. All rights reserved.

doi:10.1016/S1077-3142(03)00081-X

mail to: iracohen@ifp.uiuc.edu


I. Cohen et al. / Computer Vision and Image Understanding 91 (2003) 160–187 161
1. Introduction

In recent years there has been a growing interest in improving all aspects of the

interaction between humans and computers. It is argued that to truly achieve effec-

tive human–computer intelligent interaction (HCII), there is a need for the computer
to be able to interact naturally with the user, similar to the way human–human in-

teraction takes place. Humans interact with each other mainly through speech, but

also through body gestures, to emphasize a certain part of the speech and display of

emotions. Emotions are displayed by visual, vocal, and other physiological means.

There is a growing amount of evidence showing that emotional skills are part of

what is called ‘‘intelligence’’ [16,36]. One of the important way humans display emo-

tions is through facial expressions.

This work describes our real-time automatic facial expression recognition system
using video input. Our work focuses on the design of the classifiers used for perform-

ing the recognition following extraction of features using our real-time face tracking

system. We describe classification schemes in two types of settings: dynamic and

�static� classification.
The �static� classifiers classify a frame in the video to one of the facial expression

categories based on the tracking results of that frame. More specifically, we use

Bayesian network classifiers and compare two different models: (1) Naive–Bayes

classifiers where the features are assumed to be either Gaussian or Cauchy distrib-
uted, and (2) Gaussian Tree-Augmented Naive (TAN) Bayes classifiers. The Gauss-

ian Naive–Bayes classifier is a standard classifier which has been used extensively in

many classification problems. We propose changing the assumed distribution of the

features from Gaussian to Cauchy because of the ability of Cauchy to account for

heavy tail distributions. While Naive–Bayes classifiers are often successful in prac-

tice, they use a very strict and often unrealistic assumption, that the features are in-

dependent given the class. We propose using the Gaussian TAN classifiers which

have the advantage of modeling dependencies between the features without much
added complexity compared to the Naive–Bayes classifiers. TAN classifiers have

an additional advantage in that the dependencies between the features, modeled as

a tree structure, are efficiently learned from data and the resultant tree structure is

assured to maximize the likelihood function.

Dynamic classifiers take into account the temporal pattern in displaying facial ex-

pression. We first describe the hidden Markov model (HMM) based classifiers for

facial expression recognition which have been previously used in recent works

[23,29,30]. We further advance this line of research and propose a multi-level
HMM classifier, combining the temporal information which allows not only to per-

form the classification of a video segment to the corresponding facial expression, as

in the previous works on HMM based classifiers, but also to automatically segment

an arbitrary long video sequence to the different expressions segments without re-

sorting to heuristic methods of segmentation.

An important aspect is that while the �static� classifiers are easier to train and

implement, the dynamic classifiers require more training samples and many more

parameters to learn.
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The rest of the paper is organized as follows. Section 2 reviews facial expression

recognition studies. In Section 3 we briefly describe our real-time face tracking sys-

tem and the features extracted for classification of facial expressions. Section 4 de-

scribes the Bayesian network classifiers used for classifying frames in the video

sequence to the different expressions. In Section 5 we describe HMM based classifiers
for facial expression recognition from presegmented video sequences and introduce

the multi-level HMM classifier for both recognizing facial expression sequences and

automatically segmenting the video sequence. We perform experiments for all the de-

scribed methods using two databases in Section 6. The first is our database of sub-

jects displaying facial expressions. The second is the Cohn–Kanade database [19].

We have concluding remarks in Section 7.
2. Review of facial expression recognition

Since the early 1970s, Paul Ekman and his colleagues [10] have performed exten-

sive studies of human facial expressions. They found evidence to support universality

in facial expressions. These ‘‘universal facial expressions’’ are those representing hap-

piness, sadness, anger, fear, surprise, and disgust. They studied facial expressions in

different cultures, including preliterate cultures, and found much commonality in the

expression and recognition of emotions on the face. However, they observed differ-
ences in expressions as well, and proposed that facial expressions are governed by

‘‘display rules’’ in different social contexts. For example, Japanese subjects and

American subjects showed similar facial expressions while viewing the same stimulus

film. However, in the presence of authorities, the Japanese viewers were more reluc-

tant to show their real expressions. Babies seem to exhibit a wide range of facial ex-

pressions without being taught, thus suggesting that these expressions are innate [18].

Ekman and Friesen [11] developed the Facial Action Coding System (FACS) to

code facial expressions where movements on the face are described by a set of action
units (AUs). Each AU has some related muscular basis. This system of coding facial

expressions is done manually by following a set of prescribed rules. The inputs are

still images of facial expressions, often at the peak of the expression. This process

is very time-consuming.

Ekman�s work inspired many researchers to analyze facial expressions by means

of image and video processing. By tracking facial features and measuring the amount

of facial movement, they attempt to categorize different facial expressions. Recent

work on facial expression analysis and recognition [2,9,12,21,23–26,28,30,35,40]
has used these ‘‘basic expressions’’ or a subset of them. In [32], Pantic and Roth-

krantz provide an in depth review of many of the research done in automatic facial

expression recognition in recent years.

The work in computer-assisted quantification of facial expressions did not start

until the 1990s. Mase [25] used optical flow (OF) to recognize facial expressions.

He was one of the first to use image processing techniques to recognize facial expres-

sions. Lanitis et al. [21] used a flexible shape and appearance model for image cod-

ing, person identification, pose recovery, gender recognition, and facial expression
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recognition. Black and Yacoob [2] used local parameterized models of image motion

to recover non-rigid motion. Once recovered, these parameters were used as inputs

to a rule-based classifier to recognize the six basic facial expressions. Yacoob and

Davis [41] computed optical flow and used similar rules to classify the six facial ex-

pressions. Rosenblum et al. [35] also computed optical flow of regions on the face,
then applied a radial basis function network to classify expressions. Essa and Pent-

land [12] used an optical flow region-based method to recognize expressions. Donato

et al. [9] tested different features for recognizing facial AUs and inferring the facial

expression in the frame. Otsuka and Ohya [30] first computed optical flow, then com-

puted the 2D Fourier transform coefficients, which were used as feature vectors for a

hidden Markov model (HMM) to classify expressions. The trained system was able

to recognize one of the six expressions near real-time (about 10Hz). Furthermore,

they used the tracked motions to control the facial expression of an animated Ka-
buki system [31]. A similar approach, using different features, was used by Lien

[23]. Nefian and Hayes [26] proposed an embedded HMM approach for face recog-

nition that uses an efficient set of observation vectors based on the DCT coefficients.

Martinez [24] introduced an indexing approach based on the identification of frontal

face images under different illumination conditions, facial expressions, and occlu-

sions. A Bayesian approach was used to find the best match between the local obser-

vations and the learned local features model and an HMM was employed to achieve

good recognition even when the new conditions did not correspond to the conditions
previously encountered during the learning phase. Oliver et al. [28] used lower face

tracking to extract mouth shape features and used them as inputs to an HMM based

facial expression recognition system (recognizing neutral, happy, sad, and an open

mouth).

These methods are similar in that they first extract some features from the images,

then these features are used as inputs into a classification system, and the outcome is

one of the preselected emotion categories. They differ mainly in the features ex-

tracted from the video images and in the classifiers used to distinguish between
the different emotions.

As mentioned in the previous section, the classifiers used can either be �static� clas-
sifiers or dynamic ones. �Static� classifiers use feature vectors related to a single frame

to perform classification (e.g., Neural networks, Bayesian networks, and linear dis-

criminant analysis). Temporal classifiers try to capture the temporal pattern in the

sequence of feature vectors related to each frame such as the HMM based methods

of [23,28,30].
3. Face tracking and feature extraction

The face tracking we use in our system is based on a system developed by Tao and

Huang [39] called the Piecewise B�eezier Volume Deformation (PBVD) tracker.

This face tracker uses a model-based approach where an explicit 3D wireframe

model of the face is constructed. In the first frame of the image sequence, landmark

facial features such as the eye corners and mouth corners are selected interactively.



Fig. 1. (a) The wireframe model and (b) the facial motion measurements.
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The generic face model is then warped to fit the selected facial features. The face

model consists of 16 surface patches embedded in B�eezier volumes. The surface

patches defined this way are guaranteed to be continuous and smooth. The shape

of the mesh can be changed by changing the locations of the control points in the

B�eezier volume.

Once the model is constructed and fitted, head motion and local deformations of
the facial features such as the eyebrows, eyelids, and mouth can be tracked. First the

2D image motions are measured using template matching between frames at different

resolutions. Image templates from the previous frame and from the very first frame

are both used for more robust tracking. The measured 2D image motions are mod-

eled as projections of the true 3D motions onto the image plane. From the 2D mo-

tions of many points on the mesh, the 3D motion can be estimated by solving an

overdetermined system of equations of the projective motions in the least-squared

sense. Fig. 1a shows an example from one frame of the wireframe model overlayed
on a face being tracked.

The recovered motions are represented in terms of magnitudes of some predefined

motion of various facial features. Each feature motion corresponds to a simple de-

formation on the face, defined in terms of the B�eezier volume control parameters.

We refer to these motions vectors as Motion-Units (MUs). Note that they are similar

but not equivalent to Ekman�s AUs and are numeric in nature, representing not only

the activation of a facial region, but also the direction and intensity of the motion.

The MUs used in the face tracker are shown in Fig. 1b and are described in Table 1.
The MUs are used as the basic features for the classification scheme described in

the next sections.
4. Bayesian network classifiers for facial expression recognition

Bayesian networks can represent joint distributions in an intuitive and efficient

way; as such, Bayesian networks are naturally suited to classification. We can use



Table 1

Action units used in our face tracker

MU Description

1 Vertical movement of the center of upper lip

2 Vertical movement of the center of lower lip

3 Horizontal movement of left mouth corner

4 Vertical movement of left mouth corner

5 Horizontal movement of right mouth corner

6 Vertical movement of right mouth corner

7 Vertical movement of right brow

8 Vertical movement of left brow

9 Lifting of right cheek

10 Lifting of left cheek

11 Blinking of right eye

12 Blinking of left eye

I. Cohen et al. / Computer Vision and Image Understanding 91 (2003) 160–187 165
a Bayesian network to compute the posterior probability of a set of labels given

the observable features, and then we classify the features with the most probable

label.

A Bayesian network classifier represents the dependencies among features and la-

bels by a directed acyclic graph. This graph is the structure of the Bayesian network.

Typically, Bayesian network classifiers are learned with a fixed structure—the para-

digmatic example is the Naive–Bayes classifier. More flexible learning methods allow

Bayesian network classifiers to be selected from a small subset of possible struc-
tures—for example, the Tree-Augmented Naive–Bayes structures [14]. After a struc-

ture is selected, the parameters of the classifier are usually learned using maximum

likelihood estimation.

We propose using Bayesian network classifiers for recognizing facial expressions

given the tracking results provided by the face tracking algorithm. Our classifiers are

�static� in the sense that their features are tracking results at each point in time.

Given a Bayesian network classifier with parameter set H, the optimal classifica-

tion rule under the maximum likelihood (ML) framework to classify an observed
feature vector of n dimensions, X 2 Rn, to one of jCj class labels, c 2 f1; . . . ; jCjg,
is given as:
ĉc ¼ argmax
c

P ðX jc;HÞ: ð1Þ
There are two design decisions when building Bayesian network classifiers. The

first is to choose the structure of the network, which will determine the dependencies
among the variables in the graph. The second is to determine the distribution of the

features. The features can be discrete, in which case the distributions are probability

mass functions. The features can also be continuous, in which case one typically has

to choose a distribution, with the most common being the Gaussian distribution.

Both these design decisions determine the parameter set H which defines the distri-

bution needed to compute the decision function in Eq. (1). Designing the Bayesian

network classifiers for facial expression recognition is the focus of this section.
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4.1. Continuous Naive–Bayes: Gaussian and Cauchy Naive–Bayes classifiers

A Naive–Bayes classifier is a probabilistic classifier in which the features are as-

sumed independent given the class. Naive–Bayes classifiers have a surprisingly very

good record in many classification problems, although the independence assumption
is usually violated in practice. Examples of applications that use the Naive–Bayes

classifiers are abundant such as text classification [27] and face pose estimation [1].

Although the Naive–Bayes model does not reflect in many cases the true underlying

model generating the data, it is still observed to be successful as a classifier in prac-

tice. The reason for the Naive–Bayes model�s success as a classifier is attributed to

the small number of parameters needed to be estimated, thus offsetting the large

modeling bias with a small estimation variance [13]. Recently, Garg and Roth [15]

showed using information theoretic arguments additional reasons for the success
of Naive–Bayes classifiers. Thus, it is natural to explore the performance of the Na-

ive–Bayes classifier before more complex structures. An example of a Naive–Bayes

classifier is given in Fig. 2.

If the features in X are assumed to be independent of each other conditioned upon

the class label c (the Naive–Bayes framework), Eq. (1) reduces to:
ĉc ¼ argmax
c

Yn
i¼1

Pðxijc;HÞ: ð2Þ
Now the problem is how to model P ðxijc;HÞ, which is the probability of feature xi
given the class label. In practice, the common assumption is that we have a Gaussian

distribution and the ML can be used to obtain the estimate of the parameters (mean

and variance). However, Sebe et al. [37] have shown that the Gaussian assumption is

often invalid and proposed the Cauchy distribution as an alternative model. Intui-

tively, this distribution can be thought of as being able to model the heavy tails

observed in the empirical distribution. This model is referred to as Cauchy Naive–

Bayes.
The difficulty of this model is in estimating the parameters of the Cauchy distri-

bution. For a feature of size N having a Cauchy distribution the likelihood is given

by:
Lðxijc; ai; biÞ ¼
YN
d¼1

bi
pðb2i þ ðxdi � aiÞ2Þ

" #
; ð3Þ
Fig. 2. An example of a Naive–Bayes classifier.
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where ai is the location parameter, bi is the scale parameter, and i ¼ 1; . . . ; n. Note

that similar with the Gaussian case we have to estimate only two parameters.

Let âai and b̂bi be the maximum likelihood estimators for ai and bi. The logarithm of

the likelihood is:
log L ¼ �N logpþ N log b̂bi �
XN
d¼1

logðb̂b2i þ ðxdi � âaiÞ2Þ: ð4Þ
Hence, the maximum likelihood equations are:
o logL
oai

¼
XN
d¼1

xdi � âai
b̂b2i þ ðxdi � âaiÞ2

¼ 0; ð5Þ

o logL
obi

¼
XN
d¼1

b̂b2i
b̂b2i þ ðxdi � âaiÞ2

� N
2
¼ 0: ð6Þ
Eqs. (5) and (6) are high order polynomials and therefore a numerical procedure

must be used in order to solve them for âa and b̂b. For solving these equations we used

a Newton–Raphson iterative method with the starting points given by the mean and

the variance of the data. We were always able to find unique positive solutions for âa
and b̂b which is in accordance with the conjecture stated by Hass et al. [17]. In certain
cases, however, the Newton–Raphson iteration diverged, in which cases we selected

new starting points.

An interesting problem is determining when to use the Cauchy assumption versus

the Gaussian assumption. Our solution is to compute the distribution for the train-

ing data and to match this distribution using a Kolmogorov–Smirnov test with the

model distribution (Cauchy or Gaussian) estimated using the ML approach de-

scribed above.

The Naive–Bayes classifier was successful in many applications mainly due to its
simplicity. Also, this type of classifier is working well even if there is not too much

training data. However, the strong independence assumption may seem unreason-

able in our case because the facial motion measurements are highly correlated when

humans display emotions. Therefore, when sufficient training data is available we

want to learn and to use these dependencies.
4.2. Beyond the Naive–Bayes assumption: finding dependencies among features using a

Gaussian TAN classifier

The goal of this section is to provide a way to search for a structure that captures

the dependencies among the features. Of course, to attempt to find all the dependen-

cies is an NP-complete problem. So, we restrict ourselves to a smaller class of struc-

tures called the Tree-Augmented-Naive Bayes (TAN) classifiers. TAN classifiers

have been introduced by Friedman et al. [14] and are represented as Bayesian net-

works. The joint probability distribution is factored to a collection of conditional

probability distributions of each node in the graph.
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In the TAN classifier structure the class node has no parents and each feature has

as parents the class node and at most one other feature, such that the result is a tree

structure for the features (see Fig. 3). Friedman et al. [14] proposed using the TAN

model as a classifier, to enhance the performance over the simple Naive–Bayes clas-

sifier. TAN models are more complicated than the Naive–Bayes, but are not fully
connected graphs. The existence of an efficient algorithm to compute the best

TAN model makes it a good candidate in the search for a better structure over

the simple NB.

Learning the TAN classifier is more complicated. In this case, we do not fix the

structure of the Bayesian network, but try to find the TAN structure that maximizes

the likelihood function given the training data out of all possible TAN structures.

In general, searching for the best structure has no efficient solution, however,

searching for the best TAN structure does have one. The method is using the mod-
ified Chow–Liu algorithm [5] for constructing tree augmented Bayesian networks

[14]. The algorithm finds the tree structure among the features that maximizes the

likelihood of the data by computation of the pairwise class conditional mutual infor-

mation among the features and building a maximum weighted spanning tree using

the pairwise mutual information as the weights of the arcs in the tree. The problem

of finding a maximum weighted spanning is defined as finding the set of arcs connect-

ing the features such that the resultant graph is a tree and the sum of the weights of

the arcs is maximized. There have been several algorithms proposed for building a
maximum weighted spanning tree [7] and in our implementation we use the Krus-

kal�s algorithm described in Fig. 4.

The five steps of the TAN algorithm are described in Fig. 5. This procedure en-

sures to find the TAN model that maximizes the likelihood of the data we have.

The algorithm is computed in polynomial time (Oðn2 logNÞ, with N being the num-

ber of instances and n the number of features).

The learning algorithm for the TAN classifier as proposed by Friedman et al. [14]

relies on computations of the class conditional mutual information of discrete fea-
tures. In our problem the features are continuous, and computation of the mutual

information for a general distribution is very complicated. However, if we assume

that the features are Gaussian, computation of the conditional mutual information

is feasible and is given by (see Appendix A for more details):
Fig. 3. An example of a TAN classifier.



Fig. 4. Kruskal�s Maximum Weighted Spanning Tree algorithm.

Fig. 5. TAN learning algorithm.
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IðXi;XjjCÞ ¼ � 1

2

XjCj
c¼1

PðC ¼ cÞ logð1� q2
ðijÞjcÞ; ð7Þ
where qðijÞjc is the correlation coefficient between Xi and Xj given the class label c. We

replace the expression for the mutual information in Step 1 of the TAN algorithm

with the expression in Eq. (7), to find the maximum likelihood Gaussian-TAN

classifier.

The full joint distribution of the Gaussian-TAN model can be written as:
pðc; x1; x2; . . . ; xnÞ ¼ pðcÞ
Yn
i¼1

pðxijpaxi ; cÞ; ð8Þ
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where paxi is the feature that is the additional parent of feature xi. paxi is empty for

the root feature in the directed tree graph of Step 4 in Fig. 5.

Using the Gaussian assumption, the pdf�s of the distribution in the product above

are:
Fig. 6

weaker
pðXi ¼ xijpaxi ;C ¼ cÞ ¼ Ncðlxi þ a � paxi ; r2
xi
� ð1� q2ÞÞ; ð9Þ
where Ncðl; r2Þ refers to the Gaussian distribution with mean and variance given that

the class is c, lxi ; r
2
xi
are the mean and variance of the feature xi,
q ¼ COVðxi; paxiÞ
rxirpaxi
is the correlation coefficient between xi and paxi , and
a ¼ COVðxi; paxiÞ
r2
paxi

:

For further details on the derivation of the parameters see the Appendix A.

After learning the structure, the Gaussian-TAN classifier�s added complexity

compared to the Naive-Bayes classifier is small: there are jCj � ðn� 1Þ extra param-

eters to estimate (the covariances between features and their parents). For learning
the structure, all pairwise mutual information are estimated using the estimates for

the covariances.

For facial expression recognition, the learned TAN structure can provide addi-

tional insight on the interaction between facial features in determining facial expres-

sions. Fig. 6 shows a learned tree structure of the features (our Motion Units)

learned using our database of subjects displaying different facial expressions (more

details on the experiments are in Section 6). The arrows are from parents to children

MUs. From the tree structure we see that the TAN learning algorithm produced a
structure in which the bottom half of the face is almost disjoint from the top portion,

except for a weak link between MU 4 and MU 11.
. The learned TAN structure for the facial features. Dashed lines represent links that are relatively

than the others.
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5. The dynamic approach: facial expression recognition using multi-level HMMs

As discussed in Section 1, the second approach to perform classification of video

sequences to facial expression is the dynamic approach. The dynamic approach uses

classifiers that can use temporal information to discriminate different expressions.
The logic behind using the temporal information is that expressions have a unique

temporal pattern. When recognizing expressions from video, using the temporal in-

formation can lead to more robust and accurate classification results compared to

methods that are �static.�
The method we propose automatically segments the video to the different facial

expression sequences, using a multi-level HMM structure. The first level of the archi-

tecture is comprised of independent HMMs related to the different emotions. This

level of HMMs is very similar to the one used in [23,29,30] who used the likelihood
of a given sequence in a ML classifier to classify a given video sequence. Instead of

classifying using the output of each HMM, we use the state sequence of the HMMs

as the input of the higher-level Markov model. This is meant to segment the video

sequence, which is the main problem facing the previous works using HMMs for ex-

pression recognition. Moreover, this also increases the discrimination between the

classes since it tries to find not only the probability of each the sequence displaying

one emotion, but also the probability of the sequence displaying one emotion and

not displaying all the other emotions at the same time.

5.1. Hidden Markov models

Hidden Markov models have been widely used for many classification and mod-

eling problems. Perhaps the most common application of HMM is in speech rec-

ognition [34]. One of the main advantages of HMMs is their ability to model

non-stationary signals or events. Dynamic programming methods allow one to

align the signals so as to account for the non-stationarity. However, the main dis-
advantage of this approach is that it is very time-consuming since all of the stored

sequences are used to find the best match. The HMM finds an implicit time warp-

ing in a probabilistic parametric fashion. It uses the transition probabilities

between the hidden states and learns the conditional probabilities of the observa-

tions given the state of the model. In the case of emotion expression, the signal

is represented by the measurements of the facial motion. This signal is non-station-

ary in nature, since an expression can be displayed at varying rates and with vary-

ing intensities even for the same individual.
An HMM is given by the following set of parameters:
k ¼ ðA;B; pÞ;

aij ¼ P ðqtþ1 ¼ Sjjqt ¼ SiÞ; 16 i; j6N ;

B ¼ fbjðOtÞg ¼ P ðOtjqt ¼ SjÞ; 16 j6N ;

pj ¼ P ðq1 ¼ SjÞ;
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where A is the state transition probability matrix, B is the observation probability

distribution, and p is the initial state distribution. The number of states of the HMM

is given by N . It should be noted that the observations (Ot) can be either discrete or

continuous, and can be vectors. In the discrete case, B becomes a matrix of proba-

bility entries (Conditional Probability Table), and in the continuous case, B will be
given by the parameters of the probability distribution function of the observations

(normally chosen to be the Gaussian distribution or a mixture of Gaussians). Given

an HMM, there are three basic problems of interest. The first is how to efficiently

compute the probability of the observations given the model. This problem is related

to classification in the sense that it gives a measure of how well a certain model

describes an observation sequence. The second is how to find the corresponding state

sequence in some optimal way, given a set of observations and the model. This will

become an important part of the algorithm to recognize the expressions from live
input and will be described later in this paper. The third is how to learn the pa-

rameters of the model k given the set of observations so as to maximize the prob-

ability of observations given the model. This problem relates to the learning phase of

the HMMs which describe each facial expression sequence. A comprehensive tutorial

on HMMs is given by Rabiner [33].

5.2. Expression recognition using emotion-specific HMMs

Since the display of a certain facial expression in video is represented by a tempo-

ral sequence of facial motions it is natural to model each expression using an HMM

trained for that particular type of expression. There will be six such HMMs, one for

each expression: {happy(1), angry(2), surprise(3), disgust(4), fear(5), sad(6)}. There

are several choices of model structure that can be used. The two main models are

the left-to-right model and the ergodic model. In the left-to-right model, the proba-

bility of going back to the previous state is set to zero, and therefore the model will

always start from a certain state and end up in an �exiting� state. In the ergodic
model, every state can be reached from any other state in a finite number of time

steps. In [30], Otsuka and Ohya used left-to-right models with three states to model

each type of facial expression. The advantage of using this model lies in the fact that

it seems natural to model a sequential event with a model that also starts from a fixed

starting state and always reaches an end state. It also involves fewer parameters and

therefore is easier to train. However, it reduces the degrees of freedom the model has

to try to account for the observation sequence. There has been no study to indicate

that the facial expression sequence is indeed modeled well by the left-to-right model.
On the other hand, using the ergodic HMM allows more freedom for the model to

account for the observation sequences, and in fact, for an infinite amount of training

data it can be shown that the ergodic model will reduce to the left-to-right model, if

that is indeed the true model. In this work, both types of models were tested with

various numbers of states in an attempt to study the best structure that can model

facial expressions.

The observation vector Ot for the HMM represents continuous motion of the

facial action units. Therefore, B is represented by the probability density functions
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(pdf) of the observation vector at time t given the state of the model. The Gaussian

distribution is chosen to represent these pdfs, i.e.,
B ¼ fbiðOtÞg � Nðlj;RjÞ; 16 j6N ; ð10Þ
where lj and Rj are the mean vector and full covariance matrix, respectively.

The parameters of the model of emotion-expression specific HMM are learned

using the well-known Baum–Welch reestimation formulas (see [22] for details of
the algorithm). For learning, hand labeled sequences of each of the facial expressions

are used as ground truth sequences, and the Baum algorithm is used to derive the

maximum likelihood (ML) estimation of the model parameters (k).
Parameter learning is followed by the construction of a ML classifier. Given an

observation sequence Ot, where t 2 ð1; T Þ, the probability of the observation given

each of the six models PðOtjkjÞ is computed using the forward–backward procedure

[33]. The sequence is classified as the emotion corresponding to the model that

yielded the highest probability, i.e.,
c� ¼ argmax
16 c6 6

½PðOjkcÞ�: ð11Þ
5.3. Automatic segmentation and recognition of emotions using multi-level HMM

The main problem with the approach taken in the previous section is that it works

on isolated facial expression sequences or on presegmented sequences of the expres-

sions from the video. In reality, this segmentation is not available, and therefore

there is a need to find an automatic way of segmenting the sequences. Concatenation
of the HMMs representing phonemes in conjunction with the use of grammar has

been used in many systems for continuous speech recognition [34]. Dynamic pro-

gramming for continuous speech has also been proposed in different researches. It

is not very straightforward to try and apply these methods to the emotion recogni-

tion problem since there is no clear notion of language in displaying emotions.

Otsuka and Ohya [30] used a heuristic method based on changes in the motion of

several regions of the face to decide that an expression sequence is beginning and

ending. After detecting the boundaries, the sequence is classified to one of the emo-
tions using the emotion-specific HMM. This method is prone to errors because of the

sensitivity of the classifier to the segmentation result. Although the result of the

HMMs are independent of each other, if we assume that they model realistically

the motion of the facial features related to each emotion, the combination of the

state sequence of the six HMMs together can provide very useful information and

enhance the discrimination between the different classes. Since we will use a left-

to-right model (with return), the changing of the state sequence can have a physical

attribute attached to it (such as opening and closing of mouth when smiling), and
therefore there we can gain useful information from looking at the state sequence

and using it to discriminate between the emotions at each point in time.

To solve the segmentation problem and enhance the discrimination between the

classes, a different kind of architecture is needed. Fig. 7 shows the proposed architec-

ture for automatic segmentation and recognition of the displayed expression at each



Fig. 7. Multi-level HMM architecture for automatic segmentation and recognition of emotion.
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time instance. The motion features are continuously used as input to the six emotion-

specific HMMs. The state sequence of each of the HMMs is decoded and used as the

observation vector for the high-level Markov model. The high-level Markov model

consists of seven states, one for each of the six emotions and one for neutral. The

neutral state is necessary as for the large portion of time, there is no display of emo-
tion on a person�s face. In this implementation of the system, the transitions between

emotions are imposed to pass through the neutral state since our training data con-

sists of facial expression sequences that always go through the neutral state.

It is possible (although less likely) for a person to go from one expression to an-

other without passing through a neutral expression, as has been reported in [30].

Handling such cases is done by slightly modifying the high-level HMM of Fig. 7.

We simply have to set the transition probabilities of passing from all states to all

states to values higher than zero (which appears as arcs between the different states
of the expressions in the high-level HMM).

The recognition of the expression is done by decoding the state that the high-level

Markov model is in at each point in time since the state represents the displayed

emotion.

The training procedure of the system is as follows:

• Train the emotion-specific HMMs using a hand segmented sequence as described

in the previous section.

• Feed all six HMMs with the continuous (labeled) facial expression sequence. Each
expression sequence contains several instances of each facial expression with neu-

tral instances separating the emotions.

• Obtain the state sequence of each HMM to form the six-dimensional observation

vector of the higher-level Markov model, i.e., Oh
t ¼ ½qð1Þt ; . . . ; qð6Þt �T, where qðiÞt is the

state of the ith emotion-specific HMM. The decoding of the state sequence is done

using the Viterbi algorithm [33].

• Learn the probability observation matrix for each state of the high-level Markov

model using P ðqðiÞj jSkÞ¼ {expected frequency of model i being in state j given that
the true state was k}, and
BðhÞ ¼ fbkðOh
t Þg ¼

Y6
i¼1

ðPðqðiÞj jSkÞ
( )

; ð12Þ
where j 2 ð1;Number of States for Lower-Level HMMÞ.
• Compute the transition probability A ¼ faklg of the high-level HMM using the

frequency of transiting from each of the six emotion classes to the neutral state

in the training sequences and from the neutral state to the other emotion states.

For notation, the neutral state is numbered 7 and the other states are numbered

as in the previous section. All the transition probabilities could also be set using

expert knowledge.

• Set the initial probability of the high-level Markov model to be 1 for the neutral

state and 0 for all other states. This forces the model to always start at the neutral

state and assumes that a person will display a neutral expression in the beginning

of any video sequence. This assumption is made just for simplicity of the testing.
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The steps followed during the testing phase are very similar to the ones followed

during training. The face tracking sequence is used as input into the lower-level

HMMs and a decoded state sequence is obtained using the Viterbi algorithm. The

decoded lower-level state sequence Oh
t is used as input to the higher-level HMM

and the observation probabilities are computed using Eq. (12). Note that in this
way of computing the probability, it is assumed that the state sequences of the low-

er-level HMMs are independent given the true labeling of the sequence. This as-

sumption is reasonable since the HMMs are trained independently and on

different training sequences. In addition, without this assumption, the size of B will

be enormous, since it will have to account for all possible combinations of states of

the six lower-level HMMs, and it would require a huge amount of training

data.

Using the Viterbi algorithm again for the high-level Markov model, a most likely
state sequence is produced. The state that the HMM was in at time t corresponds to
the expressed emotion in the video sequence at time t. To make the classification re-

sult robust to undesired fast changes, a smoothing of the state sequence is done by

preserving the actual classification result if the HMM did not stay in a particular

state for more than T times, where T can vary between 1 and 15 samples (assuming

a 30-Hz sampling rate). The introduction of the smoothing factor T will cause a de-

lay in the decision of the system, but of no more than T sample times.
6. Experiments

In order to test the algorithms described in the previous sections we use two dif-

ferent databases, a database collected by us and the Cohn–Kanade [19] AU code fa-

cial expression database.

The first is a database we collected of subjects that were instructed to display fa-

cial expressions corresponding to the six types of emotions. The data collection
method is described in detail in [4]. All the tests of the algorithms are performed

on a set of five people, each one displaying six sequences of each one of the six emo-

tions, and always coming back to a neutral state between each emotion sequence. We

imposed the restriction of coming back to the neutral state after each emotion for the

sake of simplicity in labeling the sequence. However, as mentioned in the previous

section our system is also able to deal with the situation where a person can go from

one expression to another without passing through a neutral expression.

The video was used as input to the face tracking algorithm described in Section 3.
The sampling rate was 30Hz, and a typical emotion sequence is about 70 samples

long (�2 s). Fig. 8 shows one frame of each emotion for each subject.

The data were collected in an open recording scenario, where the person was

asked to display the expression corresponding to the emotion being induced. This

is of course not the ideal way of collecting emotion data. The ideal way would be

using a hidden recording, inducing the emotion through events in the normal envi-

ronment of the subject, not in a studio. The main problem with collecting the data

this way is the impracticality of it and the ethical issue of hidden recording.
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We use our database in two types of experiments. First we performed person-de-

pendent experiments, in which part of the data for each subject was used as training

data, and another part as test data. Second, we performed person-independent ex-

periments, in which we used the data of all but one person as training data, and

tested on the person that was left out.
For the TAN classifiers we used the dependencies shown in Fig. 6, learned using

the algorithm described in Section 4.2. For the HMM-based models, several states

were tried (3–12) and both the ergodic and left-to-right with return were tested.

The results presented below are of the best configuration (an ergodic model using

11 states), determined using leave-one-out cross-validation over the training set

(leaving an expression sequence out for each validation).

The Cohn–Kanade database [19] consists of expression sequences of subjects,

starting from a Neutral expression and ending in the peak of the facial expression.
There are 104 subjects in the database. Because for some of the subjects not all of

the six facial expressions sequences were available to us, we used a subset of 53 sub-

jects, for which at least four of the sequences were available. For each person there

are on average 8 frames for each expression, which makes insufficient data to per-

form person-dependent tests. Also, the fact that each sequence ends in the peak of

the facial expression makes the use of our dynamic multi-level HMM classifier im-

practical since in this case each sequence counts for an incomplete temporal pattern.

In these conditions, we only used this database for performing person-independent
tests using the �static� Bayesian network classifiers.

A summary of both databases is presented in Table 2.

For the frame based methods (NB-Gaussian, NB-Cauchy, and TAN), we measure

the accuracy with respect to the classification result of each frame, where each frame

in the video sequence was manually labeled to one of the expressions (including Neu-

tral). This manual labeling can introduce some �noise� in our classification because

the boundary between Neutral and the expression of a sequence is not necessarily

optimal, and frames near this boundary might cause confusion between the expres-
sion and the Neutral. A different labeling scheme is to label only some of the frames

that are around the peak of the expression leaving many frames in between unla-

beled. We did not take this approach because a real-time classification system would

not have this information available to it. The accuracy for the temporal based meth-

ods is measured with respect to the misclassification rate of an expression sequence,

not with respect to each frame.
Table 2

Summary of the databases

Database # of subjects Overall # of

sequences per

expression

# of sequences

per subject per

expression

Average # of

frames per

expression

Our DB 5 30 6 70

Cohn–Kanade DB 53 53 1 8
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In order to show the statistical significance of our results we also present the 95%

confidence intervals.

6.1. Results using our database

6.1.1. Person-dependent tests

A person-dependent test is first tried. Tables 3 and 4 show the recognition rate of

each subject and the average recognition rate of the classifiers.

The fact that subject 5 was poorly classified can be attributed to the inaccurate

tracking result and lack of sufficient variability in displaying the emotions. It can also

be seen that the multi-level HMM achieves similar recognition rate (and improves it

in some cases) compared to the emotion-specific HMM, even though the input is un-

segmented continuous video.
The NB-Cauchy assumption does not give a significant improvement in recogni-

tion rate compared to the NB-Gaussian assumption. This is mainly due to the fact

that in this case there are not many outliers in the data (we train and test with se-

quences of the same person in the same environment). However, this may not be

the case in a natural setting experiment. Note that only in the case of subject 2

the Gaussian assumption gave better results than the Cauchy assumption. This result

can be attributed to the fact that this subject shows the expressions in a more con-

sistent way over time and this counts for fewer outliers in the recorded data. It is also
Table 3

Person-dependent facial expression recognition rates together with their 95% confidence intervals for

frame based methods

Subject NB-Gaussian (%) NB-Cauchy (%) TAN (%)

1 80.97 81.69 85.94

2 87.09 84.54 89.39

3 82.5 83.05 86.58

4 77.18 79.25 82.84

5 69.06 71.74 71.78

Average 79.36� 0.3 80.05� 0.29 83.31� 0.27

Table 4

Person-dependent facial expression recognition rates together with their 95% confidence intervals for the

emotion-specific HMM and multi-level HMM

Subject Single HMM (%) Multi-level HMM (%)

1 82.86 80

2 91.43 85.71

3 80.56 80.56

4 83.33 88.89

5 54.29 77.14

Average 78.49� 2.98 82.46� 2.76
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important to observe that taking into account the dependencies in the features (the

TAN model) gives significantly improved results.

In average the best results are obtained by TAN followed by the NB-Cauchy and

NB-Gaussian.

The confusion matrix for the TAN classifier is presented in Table 5. The analysis
of the confusion between different emotions shows that most of the confusion of the

classes is with the Neutral class. This can be attributed to the arbitrary labeling of

each frame in the expression sequence. The first and last few frames of each sequence

are very close to the Neutral expression and thus are more prone to become confused

with it. We also see that most expression do not confuse with Happy.

The confusion matrices for the HMM based classifiers (described in details in [6])

show similar results, with Happy achieving near 100%, and Surprise approximately

90%.

6.1.2. Person-independent tests

In the previous section it was seen that a good recognition rate was achieved when

the training sequences were taken from the same subject as the test sequences. A

more challenging application is to create a system which is person-independent. In

this case, the variation of the data is more significant and we expect that using a Cau-

chy-based classifier we will obtain significantly better results.

For this test all of the sequences of one subject are used as the test sequences and
the sequences of the remaining four subjects are used as training sequences. This test

is repeated five times, each time leaving a different person out (leave-one-out cross-

validation). Table 6 shows the recognition rate of the test for all classifiers. In this

case, the recognition rates are lower compared with the person-dependent results.

This means that the confusions between subjects are larger than those within the

same subject.
Table 5

Person-dependent confusion matrix using the TAN classifier

Emotion Neutral Happy Anger Disgust Fear Sad Surprise

Neutral 79.58 1.21 3.88 2.71 3.68 5.61 3.29

Happy 1.06 87.55 0.71 3.99 2.21 1.71 2.74

Anger 5.18 0 85.92 4.14 3.27 1.17 0.30

Disgust 2.48 0.19 1.50 83.23 3.68 7.13 1.77

Fear 4.66 0 4.21 2.28 83.68 2.13 3.00

Sad 13.61 0.23 1.85 2.61 0.70 80.97 0

Surprise 5.17 0.80 0.52 2.45 7.73 1.08 82.22

Table 6

Recognition rate for person-independent test together with their 95% confidence intervals

Classifier NB-Gaussian

(%)

NB-Cauchy

(%)

TAN

(%)

Single HMM

(%)

Multi-level

HMM (%)

Recognition rate 60.23� 0.36 64.77� 0.3 66.53� 0.28 55.71� 3.61 58.63� 3.58
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The TAN classifier provides the best results. It is important to observe that the

Cauchy assumption also yields a larger improvement compared to the Gaussian clas-

sifier, due to the capability of the Cauchy distribution to handle outliers. One of the

reasons for the misclassifications is the fact that the subjects are very different from

each other (three females, two males, and different ethnic backgrounds); hence, they
display their emotion differently. Although it appears to contradict the universality

of the facial expressions as studied by Ekman and Friesen [11], the results show that

for practical automatic emotion recognition, consideration of gender and race play a

role in the training of the system.

Table 7 shows the confusion matrix for the TAN classifier. We see that Happy,

Fear, and Surprise are detected with high accuracy, and other expressions are greatly

confused mostly with Neutral. Here the differences in the intensity of the expressions

among the different subjects played a significant role in the confusion among the dif-
ferent expressions.

6.2. Results using the Cohn–Kanade database

For this test we first divided our database in five sets which contain the sequences

corresponding to 10 or 11 subjects (three sets with 11 subjects, two sets with 10 sub-

jects). We used the sequences from a set as test sequences and the remaining se-

quences were used as training sequences. This test was repeated five times, each
time leaving a different set out (leave-one-out cross-validation). Table 8 shows the

recognition rate of the test for all classifiers. Note that the results obtained with this

database are much better than the ones obtained with our database. This is because

in this case we have more training data. For training we had available the data from

more than 40 different persons. Therefore, the learned model is more accurate and

can achieve better classification rates when using the test data.
Table 7

Person-independent average confusion matrix using the TAN classifier

Emotion Neutral Happy Anger Disgust Fear Sad Surprise

Neutral 76.95 0.46 3.39 3.78 7.35 6.53 1.50

Happy 3.21 77.34 2.77 9.94 0 2.75 3.97

Anger 14.33 0.89 62.98 10.60 1.51 9.51 0.14

Disgust 6.63 8.99 7.44 52.48 2.20 10.90 11.32

Fear 10.06 0 3.53 0.52 73.67 3.41 8.77

Sad 13.98 7.93 5.47 10.66 13.98 41.26 6.69

Surprise 4.97 6.83 0.32 7.41 3.95 5.38 71.11

Table 8

Recognition rates for Cohn–Kanade database together with their 95% confidence intervals

Classifier NB-Gaussian (%) NB-Cauchy (%) TAN (%)

Recognition rate 67.03� 1.33 68.14� 1.29 73.22� 1.24



Table 9

Person-independent average confusion matrix using the TAN classifier

Emotion Neutral Happy Anger Disgust Fear Sad Surprise

Neutral 78.59 1.03 3.51 8.18 1.85 5.78 1.03

Happy 0 86.22 4.91 5.65 3.19 0 0

Anger 2.04 4.76 66.46 14.28 5.21 6.09 1.14

Disgust 3.40 1.13 10.90 62.27 10.90 9.09 2.27

Fear 1.19 13.57 7.38 7.61 63.80 3.80 1.90

Sad 5.55 1.58 13.25 11.19 3.96 61.26 3.17

Surprise 0 0 0 0 2.02 4.04 93.93
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In average the best results were obtained using the TAN followed by NB-Cauchy

and NB-Gaussian which is consistent with the results obtained with our database.

The confusion matrix for the TAN classifier is presented in Table 9. In this case,

Surprise was detected with over 93% accuracy and Happy with over 86% accuracy.

The other expressions are greatly confused with each other.
7. Summary and discussion

In this work, we presented several methods for expression recognition from video.

Our intention was to perform an extensive evaluation of our methods using static

and dynamic classification.

In the case of �static� classifiers the idea was to classify each frame of a video to
one of the facial expressions categories based on the tracking results of that frame.

The classification in this case was done using Bayesian networks classifiers. We

showed that there are two design decisions for building such classifiers: (1) determin-

ing the distribution of the features and (2) choosing the structure of the network

which determines the dependencies among the features.

We first presented Naive–Bayes classifiers which assumed that the features are

independent given the class. The common assumption is that we have a Gaussian dis-

tribution for the features but we showed that in practice using the Cauchy distribu-
tion we obtained improved classification results. The problem with the Naive–Bayes

approach is that the independence assumption may be too strong for our application

because the facial motion measurements are highly correlated when humans display

emotions. Therefore, our next effort was in developing another classifier that took

into account these dependencies among features. We used the TAN classifier and

showed a method to search for the optimal TAN structure when the features were

assumed to be Gaussian. We showed that after learning the structure from data,

the Gaussian-TAN classifier added only small complexity to the Naive–Bayes
approach and improved significantly the classification results.

A legitimate question here is, ‘‘Is it always possible to learn the TAN structure

from the data and use it in classification?’’ Provided that there is sufficient training

data, the TAN structure indeed can be extracted and used in classification. However,

when the data is insufficient the learned structure is unreliable and the use of the
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Naive–Bayes classifier is recommended. Note also that in the Naive–Bayes approach

one can use a better distribution assumption than the Gaussian (e.g., Cauchy) while

in TAN this would be extremely difficult.

In the case of dynamic classifiers the temporal information was used to discriminate

different expressions. The idea is that expressions have a unique temporal pattern and
recognizing these patterns can lead to improved classification results. We introduced

the multi-level HMM architecture and compared it to the straight forward emotion-

specific HMM.We showed that comparable results can be achieved with this architec-

ture, although it does not rely on any presegmentation of the video stream.

When one should use a dynamic classifier versus a �static� classifier? This is a

difficult question to ask. It seems, both from intuition and from our results, that

dynamic classifiers are more suited for systems that are person-dependent due

to their higher sensitivity not only to changes in appearance of expressions among
different individuals, but also to the differences in temporal patterns. �Static� classifi-
ers are easier to train and implement, but when used on a continuous video sequence,

they can be unreliable especially for frames that are not at the peak of an expression.

Another important aspect is that the dynamic classifiers are more complex, therefore

they require more training samples and many more parameters to learn compared

with the static approach. A hybrid of classifiers using expression dynamics and static

classification is the topic of our future research.

In conclusion, our main contributions are as follows. We applied Bayesian net-
work classifiers to the problem of facial expression recognition and we proposed in

the case of Naive–Bayes classifiers the use of Cauchy distribution assumption. More-

over, for the same application we used the TAN classifier and we modified the learn-

ing algorithm proposed by Friedman et al. [14] to deal with continuous features. We

also proposed the multi-level HMM architecture. We integrated the classifiers and the

face tracking system to build a real-time facial expression recognition system.

An important problem in the facial expression analysis field is the lack of agreed

upon benchmark datasets and methods for evaluating performance. A well-defined
and commonly used database is a necessary prerequisite to compare the perfor-

mances of different methods in an objective manner. The Cohn–Kanade database

is a step in this direction, although there is still a need for an agreement on how

to measure performance: frame based classification, sequence based classification,

and even the number and names of the classes. The large deviations in the reported

performance of different methods surveyed by Pantic and Rothkrantz [32] demon-

strate the need to resolve these issues. As a consequence, it is hard to compare our

results with the one reported in the literature and assert superiority or inferiority
of our methods over others.

Are these recognition rates sufficient for real world use? We think that it depends

upon the particular application. In the case of image and video retrieval from large

databases, the current recognition rates could aid in finding the right image or video

by giving additional options for the queries. For future research, the integration of

multiple modalities such as voice analysis and context would be expected to improve

the recognition rates and eventually improve the computer�s understanding of hu-

man emotional states. Voice and gestures are widely believed to play an important
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role as well [4,8], and physiological states such as heart beat and skin conductivity

are being suggested [3]. People also use context as an indicator of the emotional state

of a person. This work is just another step on the way toward achieving the goal of

building more effective computers that can serve us better.
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Appendix A. Gaussian-TAN parameters computation

The purpose of this appendix is to complete the derivation of the Gaussian mutual

information andparameters of theTANclassifier for purpose of completeness (see Sec-

tion 4.2). We note that these definitions can be found elsewhere, such as in [20,38].

The mutual information between two continuous random variables, X ; Y is given

as:
IðX ; Y Þ ¼
ZZ

pðx; yÞ log pðx; yÞ
pðxÞpðyÞ

� �
dxdy ¼ HðxÞ þ HðyÞ � Hðx; yÞ; ðA:1Þ
where Hð�Þ is the differential entropy, analogous to the entropy of discrete variables,

defined as:
HðZÞ ¼ �
Z

pðzÞ log pðzÞdz: ðA:2Þ
Here pðzÞ is the probability density function of Z and the integral is over all di-

mensions in z.
For a Gaussian random vector Z of N dimensions with covariance matrix R,

by inserting the Gaussian pdf to Eq. (A.2) and taking the integral, we get that the

differential entropy of Z is:
HðZÞ ¼ 1

2
log ð2peÞN jRj
� �

; ðA:3Þ
where jRj is the determinant of R.
Suppose now that X and Y are jointly Gaussian. Then,
pðX ; Y Þ � N
lX

lY

� �
;RXY

� �
; ðA:4Þ

http://www.cs.cmu.edu/~javabayes
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where RXY is the covariance matrix given as:
RXY ¼ r2
X COVðX ; Y Þ

COVðX ; Y Þ r2
Y

� �
: ðA:5Þ
Using Eqs. (A.1) and (A.3) we get that the mutual information of X and Y is given

by:
IðX ; Y Þ ¼ � 1

2
log

r2
Xr

2
Y

r2
Xr

2
Y � COVðX ; Y Þ2

 !
¼ � 1

2
log

1

1� COVðX ;Y Þ2
r2X r

2
Y

0
@

1
A

¼ � 1

2
log

1

1� q2
XY

� �
; ðA:6Þ
where
qXY ¼ COVðX ; Y Þ2

r2
Xr

2
Y

is the correlation coefficient between X and Y .
In the TAN classifiers, the class is the parent of all features, and the features are

Gaussian given a class label. Thus all the results above apply with an understanding

that the distributions are conditioned on the class label (which is omitted for clarity).
The class conditional mutual information between the pair X and Y is derived as

follows:
IðX ; Y jCÞ ¼
XjCj
c¼1

Z Z
pðx; y; cÞ log pðx; yjcÞ

pðxjcÞpðyjcÞ

� �
dxdy

¼
XjCj
c¼1

Z Z
pðcÞpðx; yjcÞ log pðx; yjcÞ

pðxjcÞpðyjcÞ

� �

¼
XjCj
c¼1

pðcÞIðX ; Y jC ¼ cÞ ¼ � 1

2

XjCj
c¼1

pðcÞ log 1

1� q2
XY jc

 !
: ðA:7Þ
After finding the TAN structure, suppose that we find that feature X is the parent of

Y . Given the class label, X and Y are jointly Gaussian with mean vector and co-

variance as defined in Eqs. (A.4) and (A.5) (again omitting the conditioning on the

class variable for clarity). Since X is the parent of Y , we are interested in finding the

parameters of the conditional distribution pðY jX Þ as a function of the parameters of

the joint distribution. Because X and Y are jointly Gaussian, Y jX is also Gaussian.

Using pðX ; Y Þ ¼ pðX ÞpðY jX Þ and the Gaussian pdf, after some manipulations we get:
pðY jX Þ ¼ pðX ; Y Þ
pðX Þ ¼ 1

ð2pr2
Y ð1� q2

XY ÞÞ
1=2

exp

 
� ðy � lY � axÞ2

2r2
Y ð1� q2

XY Þ

!

¼ N lY

�
þ ax; r2

Y ð1� q2
XY Þ
�
; ðA:8Þ
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where
a ¼ COVðX ; Y Þ
r2
X

:
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