
Data Mining with R
Learning with Case Studies

Chapman & Hall/CRC
Data Mining and Knowledge Discovery Series

UNDERSTANDING COMPLEX DATASETS:
DATA MINING WITH MATRIX DECOMPOSITIONS
David Skillicorn

COMPUTATIONAL METHODS OF FEATURE
SELECTION
Huan Liu and Hiroshi Motoda

CONSTRAINED CLUSTERING: ADVANCES IN
ALGORITHMS, THEORY, AND APPLICATIONS
Sugato Basu, Ian Davidson, and Kiri L. Wagstaff

KNOWLEDGE DISCOVERY FOR
COUNTERTERRORISM AND LAW ENFORCEMENT
David Skillicorn

MULTIMEDIA DATA MINING: A SYSTEMATIC
INTRODUCTION TO CONCEPTS AND THEORY
Zhongfei Zhang and Ruofei Zhang

NEXT GENERATION OF DATA MINING
Hillol Kargupta, Jiawei Han, Philip S. Yu,
Rajeev Motwani, and Vipin Kumar

DATA MINING FOR DESIGN AND MARKETING
Yukio Ohsawa and Katsutoshi Yada

THE TOP TEN ALGORITHMS IN DATA MINING
Xindong Wu and Vipin Kumar

GEOGRAPHIC DATA MINING AND
KNOWLEDGE DISCOVERY, SECOND EDITION
Harvey J. Miller and Jiawei Han

TEXT MINING: CLASSIFICATION, CLUSTERING,
AND APPLICATIONS
Ashok N. Srivastava and Mehran Sahami

BIOLOGICAL DATA MINING
Jake Y. Chen and Stefano Lonardi

INFORMATION DISCOVERY ON ELECTRONIC
HEALTH RECORDS
Vagelis Hristidis

TEMPORAL DATA MINING
Theophano Mitsa

RELATIONAL DATA CLUSTERING: MODELS,
ALGORITHMS, AND APPLICATIONS
Bo Long, Zhongfei Zhang, and Philip S. Yu

KNOWLEDGE DISCOVERY FROM DATA STREAMS
João Gama

STATISTICAL DATA MINING USING SAS
APPLICATIONS, SECOND EDITION
George Fernandez

INTRODUCTION TO PRIVACY-PRESERVING DATA
PUBLISHING: CONCEPTS AND TECHNIQUES
Benjamin C. M. Fung, Ke Wang, Ada Wai-Chee Fu,
and Philip S. Yu

HANDBOOK OF EDUCATIONAL DATA MINING
Cristóbal Romero, Sebastian Ventura,
Mykola Pechenizkiy, and Ryan S.J.d. Baker

DATA MINING WITH R: LEARNING WITH
CASE STUDIES
Luís Torgo

PUBLISHED TITLES

SERIES EDITOR
Vipin Kumar

University of Minnesota
Department of Computer Science and Engineering

Minneapolis, Minnesota, U.S.A

AIMS AND SCOPE
This series aims to capture new developments and applications in data mining and knowledge
discovery, while summarizing the computational tools and techniques useful in data analysis. This
series encourages the integration of mathematical, statistical, and computational methods and
techniques through the publication of a broad range of textbooks, reference works, and hand-
books. The inclusion of concrete examples and applications is highly encouraged. The scope of the
series includes, but is not limited to, titles in the areas of data mining and knowledge discovery
methods and applications, modeling, algorithms, theory and foundations, data and knowledge
visualization, data mining systems and tools, and privacy and security issues.

Chapman & Hall/CRC
Data Mining and Knowledge Discovery Series

Data Mining with R

Luís Torgo

Learning with Case Studies

Chapman & Hall/CRC
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2011 by Taylor and Francis Group, LLC
Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number: 978-1-4398-1018-7 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Torgo, Luís.
Data mining with R : learning with case studies / Luís Torgo.

p. cm. -- (Chapman & Hall/CRC data mining and knowledge discovery series)
Includes bibliographical references and index.
ISBN 978-1-4398-1018-7 (hardback)
1. Data mining--Case studies. 2. R (Computer program language) I. Title.

QA76.9.D343T67 2010
006.3’12--dc22 2010036935

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

www.copyright.com
www.copyright.com

Contents

Preface ix

Acknowledgments xi

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 How to Read This Book? . 2
1.2 A Short Introduction to R 3

1.2.1 Starting with R . 3
1.2.2 R Objects . 5
1.2.3 Vectors . 7
1.2.4 Vectorization . 10
1.2.5 Factors . 11
1.2.6 Generating Sequences 14
1.2.7 Sub-Setting . 16
1.2.8 Matrices and Arrays 19
1.2.9 Lists . 23
1.2.10 Data Frames . 26
1.2.11 Creating New Functions 30
1.2.12 Objects, Classes, and Methods 33
1.2.13 Managing Your Sessions 34

1.3 A Short Introduction to MySQL 35

2 Predicting Algae Blooms 39
2.1 Problem Description and Objectives 39
2.2 Data Description . 40
2.3 Loading the Data into R . 41
2.4 Data Visualization and Summarization 43
2.5 Unknown Values . 52

2.5.1 Removing the Observations with Unknown Values . . 53
2.5.2 Filling in the Unknowns with the Most Frequent Values 55
2.5.3 Filling in the Unknown Values by Exploring Correla-

tions . 56

v

vi

2.5.4 Filling in the Unknown Values by Exploring Similarities
between Cases . 60

2.6 Obtaining Prediction Models 63
2.6.1 Multiple Linear Regression 64
2.6.2 Regression Trees . 71

2.7 Model Evaluation and Selection 77
2.8 Predictions for the Seven Algae 91
2.9 Summary . 94

3 Predicting Stock Market Returns 95
3.1 Problem Description and Objectives 95
3.2 The Available Data . 96

3.2.1 Handling Time-Dependent Data in R 97
3.2.2 Reading the Data from the CSV File 101
3.2.3 Getting the Data from the Web 102
3.2.4 Reading the Data from a MySQL Database 104

3.2.4.1 Loading the Data into R Running on Windows 105
3.2.4.2 Loading the Data into R Running on Linux . 107

3.3 Defining the Prediction Tasks 108
3.3.1 What to Predict? . 108
3.3.2 Which Predictors? . 111
3.3.3 The Prediction Tasks 117
3.3.4 Evaluation Criteria . 118

3.4 The Prediction Models . 120
3.4.1 How Will the Training Data Be Used? 121
3.4.2 The Modeling Tools 123

3.4.2.1 Artificial Neural Networks 123
3.4.2.2 Support Vector Machines 126
3.4.2.3 Multivariate Adaptive Regression Splines . . 129

3.5 From Predictions into Actions 130
3.5.1 How Will the Predictions Be Used? 130
3.5.2 Trading-Related Evaluation Criteria 132
3.5.3 Putting Everything Together: A Simulated Trader . . 133

3.6 Model Evaluation and Selection 141
3.6.1 Monte Carlo Estimates 141
3.6.2 Experimental Comparisons 143
3.6.3 Results Analysis . 148

3.7 The Trading System . 156
3.7.1 Evaluation of the Final Test Data 156
3.7.2 An Online Trading System 162

3.8 Summary . 163

vii

4 Detecting Fraudulent Transactions 165
4.1 Problem Description and Objectives 165
4.2 The Available Data . 166

4.2.1 Loading the Data into R 166
4.2.2 Exploring the Dataset 167
4.2.3 Data Problems . 174

4.2.3.1 Unknown Values 175
4.2.3.2 Few Transactions of Some Products 179

4.3 Defining the Data Mining Tasks 183
4.3.1 Different Approaches to the Problem 183

4.3.1.1 Unsupervised Techniques 184
4.3.1.2 Supervised Techniques 185
4.3.1.3 Semi-Supervised Techniques 186

4.3.2 Evaluation Criteria . 187
4.3.2.1 Precision and Recall 188
4.3.2.2 Lift Charts and Precision/Recall Curves . . . 188
4.3.2.3 Normalized Distance to Typical Price 193

4.3.3 Experimental Methodology 194
4.4 Obtaining Outlier Rankings 195

4.4.1 Unsupervised Approaches 196
4.4.1.1 The Modified Box Plot Rule 196
4.4.1.2 Local Outlier Factors (LOF) 201
4.4.1.3 Clustering-Based Outlier Rankings (ORh) . 205

4.4.2 Supervised Approaches 208
4.4.2.1 The Class Imbalance Problem 209
4.4.2.2 Naive Bayes 211
4.4.2.3 AdaBoost . 217

4.4.3 Semi-Supervised Approaches 223
4.5 Summary . 230

5 Classifying Microarray Samples 233
5.1 Problem Description and Objectives 233

5.1.1 Brief Background on Microarray Experiments 233
5.1.2 The ALL Dataset . 234

5.2 The Available Data . 235
5.2.1 Exploring the Dataset 238

5.3 Gene (Feature) Selection . 241
5.3.1 Simple Filters Based on Distribution Properties 241
5.3.2 ANOVA Filters . 244
5.3.3 Filtering Using Random Forests 246
5.3.4 Filtering Using Feature Clustering Ensembles 248

5.4 Predicting Cytogenetic Abnormalities 251
5.4.1 Defining the Prediction Task 251
5.4.2 The Evaluation Metric 252
5.4.3 The Experimental Procedure 253

viii

5.4.4 The Modeling Techniques 254
5.4.4.1 Random Forests 254
5.4.4.2 k-Nearest Neighbors 255

5.4.5 Comparing the Models 258
5.5 Summary . 267

Bibliography 269

Subject Index 279

Index of Data Mining Topics 285

Index of R Functions 287

Preface

The main goal of this book is to introduce the reader to the use of R as a
tool for data mining. R is a freely downloadable1 language and environment
for statistical computing and graphics. Its capabilities and the large set of
available add-on packages make this tool an excellent alternative to many
existing (and expensive!) data mining tools.

One of the key issues in data mining is size. A typical data mining problem
involves a large database from which one seeks to extract useful knowledge.
In this book we will use MySQL as the core database management system.
MySQL is also freely available2 for several computer platforms. This means
that one is able to perform “serious” data mining without having to pay any
money at all. Moreover, we hope to show that this comes with no compromise
of the quality of the obtained solutions. Expensive tools do not necessarily
mean better tools! R together with MySQL form a pair very hard to beat as
long as one is willing to spend some time learning how to use them. We think
that it is worthwhile, and we hope that at the end of reading this book you
are convinced as well.

The goal of this book is not to describe all facets of data mining processes.
Many books exist that cover this scientific area. Instead we propose to intro-
duce the reader to the power of R and data mining by means of several case
studies. Obviously, these case studies do not represent all possible data min-
ing problems that one can face in the real world. Moreover, the solutions we
describe cannot be taken as complete solutions. Our goal is more to introduce
the reader to the world of data mining using R through practical examples.
As such, our analysis of the case studies has the goal of showing examples of
knowledge extraction using R, instead of presenting complete reports of data
mining case studies. They should be taken as examples of possible paths in any
data mining project and can be used as the basis for developing solutions for
the reader’s own projects. Still, we have tried to cover a diverse set of problems
posing different challenges in terms of size, type of data, goals of analysis, and
the tools necessary to carry out this analysis. This hands-on approach has its
costs, however. In effect, to allow for every reader to carry out our described
steps on his/her computer as a form of learning with concrete case studies, we
had to make some compromises. Namely, we cannot address extremely large
problems as this would require computer resources that are not available to

1Download it from http://www.R-project.org.
2Download it from http://www.mysql.com.

ix

http://www.R-project.org
http://www.mysql.com

x

everybody. Still, we think we have covered problems that can be considered
large and have shown how to handle the problems posed by different types of
data dimensionality.

We do not assume any prior knowledge about R. Readers who are new
to R and data mining should be able to follow the case studies. We have
tried to make the different case studies self-contained in such a way that the
reader can start anywhere in the document. Still, some basic R functionalities
are introduced in the first, simpler case studies, and are not repeated, which
means that if you are new to R, then you should at least start with the first
case studies to get acquainted with R. Moreover, the first chapter provides a
very short introduction to R and MySQL basics, which should facilitate the
understanding of the following chapters. We also do not assume any familiar-
ity with data mining or statistical techniques. Brief introductions to different
data mining techniques are provided as necessary in the case studies. It is not
an objective of this book to provide the reader with full information on the
technical and theoretical details of these techniques. Our descriptions of these
tools are given to provide a basic understanding of their merits, drawbacks,
and analysis objectives. Other existing books should be considered if further
theoretical insights are required. At the end of some sections we provide “fur-
ther readings” pointers that may help find more information if required. In
summary, our target readers are more users of data analysis tools than re-
searchers or developers. Still, we hope the latter also find reading this book
useful as a form of entering the “world” of R and data mining.

The book is accompanied by a set of freely available R source files that
can be obtained at the book’s Web site.3 These files include all the code used
in the case studies. They facilitate the “do-it-yourself” approach followed in
this book. We strongly recommend that readers install R and try the code as
they read the book. All data used in the case studies is available at the book’s
Web site as well. Moreover, we have created an R package called DMwR that
contains several functions used in the book as well as the datasets already in
R format. You should install and load this package to follow the code in the
book (details on how to do this are given in the first chapter).

3http://www.liaad.up.pt/~ltorgo/DataMiningWithR/.

http://www.liaad.up.pt/~ltorgo/DataMiningWithR/

Acknowledgments

I would like to thank my family for all the support they give me. Without them
I would have found it difficult to embrace this project. Their presence, love,
and caring provided the necessary comfort to overcome the ups and downs of
writing a book. The same kind of comfort was given by my dear friends who
were always ready for an extra beer when necessary. Thank you all, and now
I hope I will have more time to share with you.

I am also grateful for all the support of my research colleagues and to
LIAAD/INESC Porto LA as a whole. Thanks also to the University of Porto
for supporting my research. Part of the writing of this book was financially
supported by a sabbatical grant (SFRH/BSAB/739/2007) of FCT.

Finally, thanks to all students and colleagues who helped in proofreading
drafts of this book.

Luis Torgo
Porto, Portugal

xi

List of Figures

2.1 The histogram of variable mxPH. 45
2.2 An “enriched” version of the histogram of variable MxPH (left)

together with a normal Q-Q plot (right). 46
2.3 An “enriched” box plot for orthophosphate. 47
2.4 A conditioned box plot of Algal a1. 50
2.5 A conditioned box percentile plot of Algal a1. 51
2.6 A conditioned strip plot of Algal a3 using a continuous variable. 52
2.7 A histogram of variable mxPH conditioned by season. 59
2.8 The values of variable mxPH by river size and speed. 61
2.9 A regression tree for predicting algal a1. 73
2.10 Errors scatter plot. 79
2.11 Visualization of the cross-validation results. 85
2.12 Visualization of the cross-validation results on all algae. . . . 87

3.1 S&P500 on the last 3 months and our indicator. 110
3.2 Variable importance according to the random forest. 116
3.3 Three forms of obtaining predictions for a test period. 122
3.4 The margin maximization in SVMs. 127
3.5 An example of two hinge functions with the same threshold. . 129
3.6 The results of trading using Policy 1 based on the signals of an

SVM. 139
3.7 The Monte Carlo experimental process. 142
3.8 The scores of the best traders on the 20 repetitions. 155
3.9 The results of the final evaluation period of the“grow.nnetR.v12”

system. 158
3.10 The cumulative returns on the final evaluation period of the

“grow.nnetR.v12” system. 159
3.11 Yearly percentage returns of “grow.nnetR.v12” system. 160

4.1 The number of transactions per salesperson. 169
4.2 The number of transactions per product. 169
4.3 The distribution of the unit prices of the cheapest and most

expensive products. 172
4.4 Some properties of the distribution of unit prices. 181
4.5 Smoothed (right) and non-smoothed (left) precision/recall

curves. 190

xiii

xiv

4.6 Lift (left) and cumulative recall (right) charts. 192
4.7 The PR (left) and cumulative recall (right) curves of the

BPrule method. 200
4.8 The PR (left) and cumulative recall (right) curves of the LOF ,

and BPrule models. 205
4.9 The PR (left) and cumulative recall (right) curves of the ORh,

LOF , and BPrule models. 209
4.10 Using SMOTE to create more rare class examples. 211
4.11 The PR (left) and cumulative recall (right) curves of the Naive

Bayes and ORh methods. 214
4.12 The PR (left) and cumulative recall (right) curves for the two

versions of Naive Bayes and ORh methods. 217
4.13 The PR (left) and cumulative recall (right) curves of the Naive

Bayes, ORh, and AdaBoost.M1 methods. 222
4.14 The PR (left) and cumulative recall (right) curves of the self-

trained Naive Bayes, together with the standard Naive Bayes
and ORh methods. 227

4.15 The PR (left) and cumulative recall (right) curves of
AdaBoost.M1 with self-training together with ORh and stan-
dard AdaBoost.M1 methods. 230

5.1 The distribution of the gene expression levels. 240
5.2 The median and IQR of the gene expression levels. 242
5.3 The median and IQR of the final set of genes. 246
5.4 The expression level of the 30 genes across the 94 samples. . . 249

List of Tables

3.1 A Confusion Matrix for the Prediction of Trading Signals . . 120

4.1 A Confusion Matrix for the Illustrative Example. 191

xv

Chapter 1

Introduction

R is a programming language and an environment for statistical computing.
It is similar to the S language developed at AT&T Bell Laboratories by Rick
Becker, John Chambers and Allan Wilks. There are versions of R for the Unix,
Windows and Mac families of operating systems. Moreover, R runs on different
computer architectures like Intel, PowerPC, Alpha systems and Sparc systems.
R was initially developed by Ihaka and Gentleman (1996), both from the Uni-
versity of Auckland, New Zealand. The current development of R is carried
out by a core team of a dozen people from different institutions around the
world. R development takes advantage of a growing community that cooper-
ates in its development due to its open source philosophy. In effect, the source
code of every R component is freely available for inspection and/or adapta-
tion. This fact allows you to check and test the reliability of anything you use
in R. There are many critics to the open source model. Most of them mention
the lack of support as one of the main drawbacks of open source software. It
is certainly not the case with R! There are many excellent documents, books
and sites that provide free information on R. Moreover, the excellent R-help
mailing list is a source of invaluable advice and information, much better than
any amount of money could ever buy! There are also searchable mailing lists
archives that you can (and should!) use before posting a question. More infor-
mation on these mailing lists can be obtained at the R Web site in the section
“Mailing Lists”.

Data mining has to do with the discovery of useful, valid, unexpected,
and understandable knowledge from data. These general objectives are obvi-
ously shared by other disciplines like statistics, machine learning, or pattern
recognition. One of the most important distinguishing issues in data mining
is size. With the widespread use of computer technology and information sys-
tems, the amount of data available for exploration has increased exponentially.
This poses difficult challenges to the standard data analysis disciplines: One
has to consider issues like computational efficiency, limited memory resources,
interfaces to databases, etc. All these issues turn data mining into a highly
interdisciplinary subject involving tasks not only of typical data analysts but
also of people working with databases, data visualization on high dimensions,
etc.

R has limitations with handling enormous datasets because all computation
is carried out in the main memory of the computer. This does not mean that
we will not be able to handle these problems. Taking advantage of the highly

1

2 Data Mining with R: Learning with Case Studies

flexible database interfaces available in R, we will be able to perform data
mining on large problems. Being faithful to the open source philosophy, we
will use the excellent MySQL database management system.1 MySQL is also
available for quite a large set of computer platforms and operating systems.
Moreover, R has a package that enables an easy interface to MySQL (package
RMySQL (James and DebRoy, 2009)).

In summary, we hope that at the end of reading this book you are convinced
that you can do data mining on large problems without having to spend
any money at all! That is only possible due to the generous and invaluable
contribution of lots of people who build such wonderful tools as R and MySQL.

1.1 How to Read This Book?

The main spirit behind the book is

Learn by doing it!

The book is organized as a set of case studies. The “solutions” to these
case studies are obtained using R. All necessary steps to reach the solutions
are described. Using the book Web site2 and the book-associated R package
(DMwR), you can get all code included in the document, as well as all data of
the case studies. This should facilitate trying them out by yourself. Ideally,
you should read this document beside your computer and try every step as it
is presented to you in the document. R code is shown in the book using the
following font:

> R.version

_

platform i486-pc-linux-gnu

arch i486

os linux-gnu

system i486, linux-gnu

status

major 2

minor 10.1

year 2009

month 12

day 14

svn rev 50720

language R

version.string R version 2.10.1 (2009-12-14)

1Free download at http://www.mysql.com
2http://www.liaad.up.pt/~ltorgo/DataMiningWithR/.

http://www.mysql.com
http://www.liaad.up.pt/~ltorgo/DataMiningWithR/

Introduction 3

R commands are entered at R command prompt, “>”. Whenever you see
this prompt you can interpret it as R waiting for you to enter a command.
You type in the commands at the prompt and then press the enter key to
ask R to execute them. This may or may not produce some form of output
(the result of the command) and then a new prompt appears. At the prompt
you may use the arrow keys to browse and edit previously entered commands.
This is handy when you want to type commands similar to what you have
done before as you avoid typing them again.

Still, you can take advantage of the code provided at the book Web site to
cut and paste between your browser or editor and the R console, thus avoiding
having to type all commands described in the book. This will surely facilitate
your learning experience and improve your understanding of its potential.

1.2 A Short Introduction to R

The goal of this section is to provide a brief introduction to the key issues of the
R language. We do not assume any familiarity with computer programming.
Readers should be able to easily follow the examples presented in this section.
Still, if you feel some lack of motivation to continue reading this introductory
material, do not worry. You may proceed to the case studies and then return
to this introduction as you get more motivated by the concrete applications.

R is a functional language for statistical computation and graphics. It
can be seen as a dialect of the S language (developed at AT&T) for which
John Chambers was awarded the 1998 Association for Computing Machinery
(ACM) Software award that mentioned that this language “forever altered
how people analyze, visualize and manipulate data”.

R can be quite useful just by using it in an interactive fashion at its com-
mand line. Still, more advanced uses of the system will lead the user to develop
his own functions to systematize repetitive tasks, or even to add or change
some functionalities of the existing add-on packages, taking advantage of being
open source.

1.2.1 Starting with R

In order to install R in your system, the easiest way is to obtain a bi-
nary distribution from the R Web site3 where you can follow the link that
takes you to the CRAN (Comprehensive R Archive Network) site to obtain,
among other things, the binary distribution for your particular operating sys-
tem/architecture. If you prefer to build R directly from the sources, you can
get instructions on how to do it from CRAN.

3http://www.R-project.org.

http://www.R-project.org

4 Data Mining with R: Learning with Case Studies

After downloading the binary distribution for your operating system you
just need to follow the instructions that come with it. In the case of the Win-
dows version, you simply execute the downloaded file (R-2.10.1-win32.exe)4

and select the options you want in the following menus. In some operating
systems you may need to contact your system administrator to fulfill the in-
stallation task due to lack of permissions to install software.

To run R in Windows you simply double-click the appropriate icon on your
desktop, while in Unix versions you should type R at the operating system
prompt. Both will bring up the R console with its prompt “>”.

If you want to quit R you can issue the command q() at the prompt. You
will be asked if you want to save the current workspace. You should answer yes
only if you want to resume your current analysis at the point you are leaving
it, later on.

Although the set of tools that comes with R is by itself quite powerful,
it is natural that you will end up wanting to install some of the large (and
growing) set of add-on packages available for R at CRAN. In the Windows
version this is easily done through the “Packages” menu. After connecting
your computer to the Internet you should select the “Install package from
CRAN...”option from this menu. This option will present a list of the packages
available at CRAN. You select the one(s) you want, and R will download the
package(s) and self-install it(them) on your system. In Unix versions, things
may be slightly different depending on the graphical capabilities of your R
installation. Still, even without selection from menus, the operation is simple.5

Suppose you want to download the package that provides functions to connect
to MySQL databases. This package name is RMySQL.6 You just need to type
the following command at R prompt:

> install.packages('RMySQL')

The install.packages() function has many parameters, among which
there is the repos argument that allows you to indicate the nearest CRAN
mirror.7 Still, the first time you run the function in an R session, it will prompt
you for the repository you wish to use.

One thing that you surely should do is install the package associated with
this book, which will give you access to several functions used throughout the
book as well as datasets. To install it you proceed as with any other package:

> install.packages('DMwR')

4The actual name of the file changes with newer versions. This is the name for version
2.10.1.

5Please note that the following code also works in Windows versions, although you may
find the use of the menu more practical.

6You can get an idea of the functionalities of each of the R packages in the R FAQ
(frequently asked questions) at CRAN.

7The list of available mirrors can be found at http://cran.r-project.org/mirrors.

html.

http://cran.r-project.org/mirrors.html
http://cran.r-project.org/mirrors.html

Introduction 5

If you want to know the packages currently installed in your computer,
you can issue

> installed.packages()

This produces a long output with each line containing a package, its ver-
sion information, the packages it depends, and so on. A more user-friendly,
although less complete, list of the installed packages can be obtained by issuing

> library()

The following command can be very useful as it allows you to check whether
there are newer versions of your installed packages at CRAN:

> old.packages()

Moreover, you can use the following command to update all your installed
packages:

> update.packages()

R has an integrated help system that you can use to know more about the
system and its functionalities. Moreover, you can find extra documentation
at the R site. R comes with a set of HTML files that can be read using a
Web browser. On Windows versions of R, these pages are accessible through
the help menu. Alternatively, you can issue help.start() at the prompt
to launch a browser showing the HTML help pages. Another form of getting
help is to use the help() function. For instance, if you want some help on the
plot() function, you can enter the command “help(plot)” (or alternatively,
?plot). A quite powerful alternative, provided you are connected to the In-
ternet, is to use the RSiteSearch() function that searches for key words or
phrases in the mailing list archives, R manuals, and help pages; for example,

> RSiteSearch('neural networks')

Finally, there are several places on the Web that provide help on several
facets of R, such as the site http://www.rseek.org/.

1.2.2 R Objects

There are two main concepts behind the R language: objects and functions.
An object can be seen as a storage space with an associated name. Everything
in R is stored in an object. All variables, data, functions, etc. are stored in the
memory of the computer in the form of named objects.

Functions are a special type of R objects designed to carry out some op-
eration. They usually take some arguments and produce a result by means of
executing some set of operations (themselves usually other function calls). R

http://www.rseek.org/

6 Data Mining with R: Learning with Case Studies

already comes with an overwhelming set of functions available for us to use,
but as we will see later, the user can also create new functions.

Content may be stored in objects using the assignment operator. This
operator is denoted by an angle bracket followed by a minus sign (<-):8

> x <- 945

The effect of the previous instruction is thus to store the number 945 on
an object named x.

By simply entering the name of an object at the R prompt one can see its
contents:9

> x

[1] 945

The rather cryptic “[1]” in front of the number 945 can be read as “this
line is showing values starting from the first element of the object.” This is
particularly useful for objects containing several values, like vectors, as we will
see later.

Below you will find other examples of assignment statements. These ex-
amples should make it clear that this is a destructive operation as any object
can only have a single content at any time t. This means that by assigning
some new content to an existing object, you in effect lose its previous content:

> y <- 39

> y

[1] 39

> y <- 43

> y

[1] 43

You can also assign numerical expressions to an object. In this case the
object will store the result of the expression:

> z <- 5

> w <- z^2

> w

[1] 25

> i <- (z * 2 + 45)/2

> i

8You may actually also use the = sign but this is not recommended as it may be confused
with testing for equality.

9Or an error message if we type the name incorrectly, a rather frequent error!

Introduction 7

[1] 27.5

This means that we can think of the assignment operation as “calculate
whatever is given on the right side of the operator, and assign (store) the
result of this calculation to the object whose name is given on the left side”.

If you only want to know the result of some arithmetic operation, you do
not need to assign the result of an expression to an object. In effect, you can
use R prompt as a kind of calculator:

> (34 + 90)/12.5

[1] 9.92

Every object you create will stay in the computer memory until you delete
it. You may list the objects currently in the memory by issuing the ls() or
objects() command at the prompt. If you do not need an object, you may
free some memory space by removing it:

> ls()

[1] "i" "w" "x" "y" "z"

> rm(y)

> rm(z, w, i)

Object names may consist of any upper- and lower-case letters, the digits
0 to 9 (except in the beginning of the name), and also the period, “.”, which
behaves like a letter. Note that names in R are case sensitive, meaning that
Color and color are two distinct objects. This is in effect a frequent cause
of frustration for beginners who keep getting “object not found” errors. If you
face this type of error, start by checking the correctness of the name of the
object causing the error.

1.2.3 Vectors

The most basic data object in R is a vector. Even when you assign a single
number to an object (like in x <- 45.3), you are creating a vector containing
a single element. All objects have a mode and a length. The mode determines
the kind of data stored in the object. Vectors are used to store a set of elements
of the same atomic data type. The main atomic types are character,10 logical,
numeric, or complex. Thus you may have vectors of characters, logical values
(T or F or FALSE or TRUE),11 numbers, and complex numbers. The length of an
object is the number of elements in it, and can be obtained with the function
length().

10The character type is in effect a set of characters, which are usually known as strings
in some programming languages, and not a single character as you might expect.

11Recall that R is case sensitive; thus, for instance, True is not a valid logical value.

8 Data Mining with R: Learning with Case Studies

Most of the time you will be using vectors with length larger than 1. You
can create a vector in R, using the c() function, which combines its arguments
to form a vector:

> v <- c(4, 7, 23.5, 76.2, 80)

> v

[1] 4.0 7.0 23.5 76.2 80.0

> length(v)

[1] 5

> mode(v)

[1] "numeric"

All elements of a vector must belong to the same mode. If that is not true,
R will force it by type coercion. The following is an example of this:

> v <- c(4, 7, 23.5, 76.2, 80, "rrt")

> v

[1] "4" "7" "23.5" "76.2" "80" "rrt"

All elements of the vector have been converted to character mode. Char-
acter values are strings of characters surrounded by either single or double
quotes.

All vectors may contain a special value called NA. This represents a missing
value:

> u <- c(4, 6, NA, 2)

> u

[1] 4 6 NA 2

> k <- c(T, F, NA, TRUE)

> k

[1] TRUE FALSE NA TRUE

You can access a particular element of a vector through an index between
square brackets:

> v[2]

[1] "7"

The example above gives you the second element of the vector v. You
will learn in Section 1.2.7 that we may use vectors of indexes to obtain more
powerful indexing schemes.

You can also change the value of one particular vector element by using
the same indexing strategies:

Introduction 9

> v[1] <- "hello"

> v

[1] "hello" "7" "23.5" "76.2" "80" "rrt"

R allows you to create empty vectors like this:

> x <- vector()

The length of a vector can be changed by simply adding more elements to
it using a previously nonexistent index. For instance, after creating the empty
vector x, you could type

> x[3] <- 45

> x

[1] NA NA 45

Notice how the first two elements have an unknown value, NA. This sort of
flexibility comes with a cost. Contrary to other programming languages, in R
you will not get an error if you use a position of a vector that does not exists:

> length(x)

[1] 3

> x[10]

[1] NA

> x[5] <- 4

> x

[1] NA NA 45 NA 4

To shrink the size of a vector, you can take advantage of the fact that
the assignment operation is destructive, as we have mentioned before. For
instance,

> v <- c(45, 243, 78, 343, 445, 44, 56, 77)

> v

[1] 45 243 78 343 445 44 56 77

> v <- c(v[5], v[7])

> v

[1] 445 56

Through the use of more powerful indexing schemes to be explored in
Section 1.2.7, you will be able delete particular elements of a vector in an
easier way.

10 Data Mining with R: Learning with Case Studies

1.2.4 Vectorization

One of the most powerful aspects of the R language is the vectorization of
several of its available functions. These functions operate directly on each
element of a vector. For instance,

> v <- c(4, 7, 23.5, 76.2, 80)

> x <- sqrt(v)

> x

[1] 2.000000 2.645751 4.847680 8.729261 8.944272

The function sqrt() calculates the square root of its argument. In this
case we have used a vector of numbers as its argument. Vectorization leads the
function to produce a vector of the same length, with each element resulting
from applying the function to the respective element of the original vector.

You can also use this feature of R to carry out vector arithmetic:

> v1 <- c(4, 6, 87)

> v2 <- c(34, 32.4, 12)

> v1 + v2

[1] 38.0 38.4 99.0

What if the vectors do not have the same length? R will use a recycling
rule by repeating the shorter vector until it fills in the size of the larger vector.
For example,

> v1 <- c(4, 6, 8, 24)

> v2 <- c(10, 2)

> v1 + v2

[1] 14 8 18 26

It is just as if the vector c(10,2) was c(10,2,10,2). If the lengths are
not multiples, then a warning is issued:

> v1 <- c(4, 6, 8, 24)

> v2 <- c(10, 2, 4)

> v1 + v2

[1] 14 8 12 34

Warning message:

In v1 + v2 :

longer object length is not a multiple of shorter object length

Yet, the recycling rule has been used, and the operation was carried out
(it is a warning, not an error!).

As mentioned, single numbers are represented in R as vectors of length 1.
This is very handy for operations like the one shown below:

Introduction 11

> v1 <- c(4, 6, 8, 24)

> 2 * v1

[1] 8 12 16 48

Notice how the number 2 (actually the vector c(2)!) was recycled, resulting
in multiplying all elements of v1 by 2. As we will see, this recycling rule is
also applied with other objects, such as arrays and matrices.

1.2.5 Factors

Factors provide an easy and compact form of handling categorical (nominal)
data. Factors have levels that are the possible values they can take. Factors
are particularly useful in datasets where you have nominal variables with a
fixed number of possible values. Several graphical and summarization func-
tions that we will explore in the following chapters take advantage of this
type of information. Factors allow you to use and show the values of your
nominal variables as they are, which is clearly more interpretable for the user,
while internally R stores these values as numeric codes that are considerably
more memory efficient.

Let us see how to create factors in R. Suppose you have a vector with the
sex of ten individuals:

> g <- c("f", "m", "m", "m", "f", "m", "f", "m", "f", "f")

> g

[1] "f" "m" "m" "m" "f" "m" "f" "m" "f" "f"

You can transform this vector into a factor by entering

> g <- factor(g)

> g

[1] f m m m f m f m f f

Levels: f m

Notice that you do not have a character vector anymore. Actually, as
mentioned above, factors are represented internally as numeric vectors.12 In
this example, we have two levels, ‘f’ and ‘m’, which are represented internally
as 1 and 2, respectively. Still, you do not need to bother about this as you can
use the “original” character values, and R will also use them when showing
you the factors. So the coding translation, motivated by efficiency reasons, is
transparent to you.

Suppose you have five extra individuals whose sex information you want
to store in another factor object. Suppose that they are all males. If you still
want the factor object to have the same two levels as object g, you must use
the following:

12You can confirm it by typing mode(g).

12 Data Mining with R: Learning with Case Studies

> other.g <- factor(c("m", "m", "m", "m", "m"), levels = c("f",

+ "m"))

> other.g

[1] m m m m m

Levels: f m

Without the levels argument; the factor other.g would have a single
level (‘m’).

As a side note, this is one of the first examples of one of the most common
things in a functional programming language like R, which is function com-
position. In effect, we are applying one function (factor()) to the result of
another function (c()). Obviously, we could have first assigned the result of
the c() function to an object and then call the function factor() with this
object. However, this is much more verbose and actually wastes some memory
by creating an extra object, and thus one tends to use function composition
quite frequently, although we incur the danger of our code becoming more
difficult to read for people not so familiarized with this important notion of
function composition.

One of the many things you can do with factors is to count the occurrence
of each possible value. Try this:

> table(g)

g

f m

5 5

> table(other.g)

other.g

f m

0 5

The table() function can also be used to obtain cross-tabulation of several
factors. Suppose that we have in another vector the age category of the ten
individuals stored in vector g. You could cross-tabulate these two vectors as
follows:

> a <- factor(c('adult','adult','juvenile','juvenile','adult','adult',
+ 'adult','juvenile','adult','juvenile'))
> table(a,g)

g

a f m

adult 4 2

juvenile 1 3

Introduction 13

A short side note: You may have noticed that sometimes we have a line
starting with a “+” sign. This occurs when a line is getting too big and you
decide to change to a new line (by hitting the Enter key) before the command
you are entering finishes. As the command is incomplete, R starts the new line
with the continuation prompt, the “+” sign. You should remember that these
signs are not to be entered by you! They are automatically printed by R (as
is the normal prompt “>”).

Sometimes we wish to calculate the marginal and relative frequencies for
this type of contingency tables. The following gives you the totals for both
the sex and the age factors of this dataset:

> t <- table(a, g)

> margin.table(t, 1)

a

adult juvenile

6 4

> margin.table(t, 2)

g

f m

5 5

The “1” and “2” in the functions represent the first and second dimensions
of the table, that is, the rows and columns of t.

For relative frequencies with respect to each margin and overall, we do

> prop.table(t, 1)

g

a f m

adult 0.6666667 0.3333333

juvenile 0.2500000 0.7500000

> prop.table(t, 2)

g

a f m

adult 0.8 0.4

juvenile 0.2 0.6

> prop.table(t)

g

a f m

adult 0.4 0.2

juvenile 0.1 0.3

Notice that if we wanted percentages instead, we could simply multiply
these function calls by 100.

14 Data Mining with R: Learning with Case Studies

1.2.6 Generating Sequences

R has several facilities to generate different types of sequences. For instance,
if you want to create a vector containing the integers between 1 and 1,000,
you can simply type

> x <- 1:1000

which creates a vector called x containing 1,000 elements—the integers
from 1 to 1,000.

You should be careful with the precedence of the operator“:”. The following
examples illustrate this danger:

> 10:15 - 1

[1] 9 10 11 12 13 14

> 10:(15 - 1)

[1] 10 11 12 13 14

Please make sure you understand what happened in the first command
(remember the recycling rule!).

You may also generate decreasing sequences such as the following:

> 5:0

[1] 5 4 3 2 1 0

To generate sequences of real numbers, you can use the function seq().
The instruction

> seq(-4, 1, 0.5)

[1] -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

generates a sequence of real numbers between −4 and 1 in increments of
0.5. Here are a few other examples of the use of the function seq():13

> seq(from = 1, to = 5, length = 4)

[1] 1.000000 2.333333 3.666667 5.000000

> seq(from = 1, to = 5, length = 2)

[1] 1 5

> seq(length = 10, from = -2, by = 0.2)

13You may want to have a look at the help page of the function (typing, for instance,
‘?seq’), to better understand its arguments and variants.

Introduction 15

[1] -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2

You may have noticed that in the above examples the arguments used in
the function calls were specified in a different way—by first indicating the
name of the parameter and then the value we want to use for that specific
parameter. This is very handy when we have functions with lots of parameters,
most with default values. These defaults allow us to avoid having to specify
them in our calls if the values suit our needs. However, if some of these defaults
do not apply to our problem, we need to provide alternative values. Without
the type of specification by name shown in the above examples, we would need
to use the specification by position. If the parameter whose default we want
to change is one of the last parameters of the function, the call by position
would require the specification of all previous parameters values, even though
we want to use their default values.14 With the specification by name we
avoid this trouble as this allows us to change the order of the parameters in
our function calls, as they are being specified by their names.

Another very useful function to generate sequences with a certain pattern
is the function rep():

> rep(5, 10)

[1] 5 5 5 5 5 5 5 5 5 5

> rep("hi", 3)

[1] "hi" "hi" "hi"

> rep(1:2, 3)

[1] 1 2 1 2 1 2

> rep(1:2, each = 3)

[1] 1 1 1 2 2 2

The function gl() can be used to generate sequences involving factors.
The syntax of this function is gl(k,n), where k is the number of levels of the
factor, and n is the number of repetitions of each level. Here are two examples,

> gl(3, 5)

[1] 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

Levels: 1 2 3

> gl(2, 5, labels = c("female", "male"))

14Actually, we can simply use commas with empty values until we reach the wanted
position, as in seq(1,4,40).

16 Data Mining with R: Learning with Case Studies

[1] female female female female female male male male male male

Levels: female male

Finally, R has several functions that can be used to generate random se-
quences according to different probability density functions. The functions
have the generic structure rfunc(n, par1, par2, ...), where func is the
name of the probability distribution, n is the number of data to generate, and
par1, par2, ... are the values of some parameters of the density function
that may be required. For instance, if you want ten randomly generated num-
bers from a normal distribution with zero mean and unit standard deviation,
type

> rnorm(10)

[1] -0.74350857 1.14875838 0.26971256 1.06230562 -0.46296225

[6] -0.89086612 -0.12533888 -0.08887182 1.27165411 0.86652581

while if you prefer a mean of 10 and a standard deviation of 3, you should
use

> rnorm(4, mean = 10, sd = 3)

[1] 5.319385 15.133113 8.449766 10.817147

To get five numbers drawn randomly from a Student t distribution with
10 degrees of freedom, type

> rt(5, df = 10)

[1] -1.2697062 0.5467355 0.7979222 0.4949397 0.2497204

R has many more probability functions, as well as other functions for ob-
taining the probability densities, the cumulative probability densities, and the
quantiles of these distributions.

1.2.7 Sub-Setting

We have already seen examples of how to get one element of a vector by
indicating its position inside square brackets. R also allows you to use vectors
within the brackets. There are several types of index vectors. Logical index
vectors extract the elements corresponding to true values. Let us see a concrete
example:

> x <- c(0, -3, 4, -1, 45, 90, -5)

> x > 0

[1] FALSE FALSE TRUE FALSE TRUE TRUE FALSE

Introduction 17

The second instruction of the code shown above is a logical condition.
As x is a vector, the comparison is carried out for all elements of the vector
(remember the famous recycling rule!), thus producing a vector with as many
logical values as there are elements in x. If we use this vector of logical values
to index x, we get as a result the positions of x that correspond to the true
values:

> x[x > 0]

[1] 4 45 90

This reads as follows: Give me the positions of x for which the following
logical expression is true. Notice that this is another example of the notion of
function composition, which we will use rather frequently. Taking advantage
of the logical operators available in R, you can use more complex logical index
vectors, as for instance,

> x[x <= -2 | x > 5]

[1] -3 45 90 -5

> x[x > 40 & x < 100]

[1] 45 90

As you may have guessed, the “|” operator performs logical disjunction,
while the “&” operator is used for logical conjunction.15 This means that the
first instruction shows us the elements of x that are either less than or equal
to −2, or greater than 5. The second example presents the elements of x that
are both greater than 40 and less than 100.

R also allows you to use a vector of integers to extract several elements
from a vector. The numbers in the vector of indexes indicate the positions in
the original vector to be extracted:

> x[c(4, 6)]

[1] -1 90

> x[1:3]

[1] 0 -3 4

> y <- c(1, 4)

> x[y]

[1] 0 -1

15There are also other operators, && and ||, to perform these operations. These alterna-
tives evaluate expressions from left to right, examining only the first element of the vectors,
while the single character versions work element-wise.

18 Data Mining with R: Learning with Case Studies

Alternatively, you can use a vector with negative indexes to indicate which
elements are to be excluded from the selection:

> x[-1]

[1] -3 4 -1 45 90 -5

> x[-c(4, 6)]

[1] 0 -3 4 45 -5

> x[-(1:3)]

[1] -1 45 90 -5

Note the need for parentheses in the previous example due to the prece-
dence of the “:” operator.

Indexes can also be formed by a vector of strings, taking advantage of the
fact that R allows you to name the elements of a vector, through the function
names(). Named elements are sometimes preferable because their positions are
easier to memorize. For instance, imagine you have a vector of measurements
of a chemical parameter obtained at five different places. You could create a
named vector as follows:

> pH <- c(4.5, 7, 7.3, 8.2, 6.3)

> names(pH) <- c("area1", "area2", "mud", "dam", "middle")

> pH

area1 area2 mud dam middle

4.5 7.0 7.3 8.2 6.3

In effect, if you already know the names of the positions in the vector at
the time of its creation, it is easier to proceed this way:

> pH <- c(area1 = 4.5, area2 = 7, mud = 7.3, dam = 8.2, middle = 6.3)

The vector pH can now be indexed using the names shown above:

> pH["mud"]

mud

7.3

> pH[c("area1", "dam")]

area1 dam

4.5 8.2

Finally, indexes may be empty, meaning that all elements are selected. An
empty index represents the absence of a restriction on the selection process.
For instance, if you want to fill in a vector with zeros, you could simply do
“x[] <- 0”. Please notice that this is different from doing “x <- 0”. This
latter case would assign to x a vector with one single element (zero), while
the former (assuming that x exists before, of course!) will fill in all current
elements of x with zeros. Try both!

Introduction 19

1.2.8 Matrices and Arrays

Data elements can be stored in an object with more than one dimension.
This may be useful in several situations. Arrays store data elements in several
dimensions. Matrices are a special case of arrays with two single dimensions.
Arrays and matrices in R are nothing more than vectors with a particular
attribute that is the dimension. Let us see an example. Suppose you have
the vector of numbers c(45,23,66,77,33,44,56,12,78,23). The following
would “organize” these ten numbers as a matrix:

> m <- c(45, 23, 66, 77, 33, 44, 56, 12, 78, 23)

> m

[1] 45 23 66 77 33 44 56 12 78 23

> dim(m) <- c(2, 5)

> m

[,1] [,2] [,3] [,4] [,5]

[1,] 45 66 33 56 78

[2,] 23 77 44 12 23

Notice how the numbers were“spread”through a matrix with two rows and
five columns (the dimension we have assigned to m using the dim() function).
Actually, you could simply create the matrix using the simpler instruction:

> m <- matrix(c(45, 23, 66, 77, 33, 44, 56, 12, 78, 23), 2,

+ 5)

You may have noticed that the vector of numbers was spread in the matrix
by columns; that is, first fill in the first column, then the second, and so on.
You can fill the matrix by rows using the following parameter of the function
matrix():

> m <- matrix(c(45, 23, 66, 77, 33, 44, 56, 12, 78, 23), 2,

+ 5, byrow = T)

> m

[,1] [,2] [,3] [,4] [,5]

[1,] 45 23 66 77 33

[2,] 44 56 12 78 23

As the visual display of matrices suggests, you can access the elements of
a matrix through a similar indexing scheme as in vectors, but this time with
two indexes (the dimensions of a matrix):

> m[2, 3]

[1] 12

20 Data Mining with R: Learning with Case Studies

You can take advantage of the sub-setting schemes described in Section
1.2.7 to extract elements of a matrix, as the following examples show:

> m[-2, 1]

[1] 45

> m[1, -c(3, 5)]

[1] 45 23 77

Moreover, if you omit any dimension, you obtain full columns or rows of
the matrix:

> m[1,]

[1] 45 23 66 77 33

> m[, 4]

[1] 77 78

Notice that, as a result of sub-setting, you may end up with a vector, as
in the two above examples. If you still want the result to be a matrix, even
though it is a matrix formed by a single line or column, you can use the
following instead:

> m[1, , drop = F]

[,1] [,2] [,3] [,4] [,5]

[1,] 45 23 66 77 33

> m[, 4, drop = F]

[,1]

[1,] 77

[2,] 78

Functions cbind() and rbind() may be used to join together two or more
vectors or matrices, by columns or by rows, respectively. The following exam-
ples should illustrate this:

> m1 <- matrix(c(45, 23, 66, 77, 33, 44, 56, 12, 78, 23), 2,

+ 5)

> m1

[,1] [,2] [,3] [,4] [,5]

[1,] 45 66 33 56 78

[2,] 23 77 44 12 23

> cbind(c(4, 76), m1[, 4])

Introduction 21

[,1] [,2]

[1,] 4 56

[2,] 76 12

> m2 <- matrix(rep(10, 20), 4, 5)

> m2

[,1] [,2] [,3] [,4] [,5]

[1,] 10 10 10 10 10

[2,] 10 10 10 10 10

[3,] 10 10 10 10 10

[4,] 10 10 10 10 10

> m3 <- rbind(m1[1,], m2[3,])

> m3

[,1] [,2] [,3] [,4] [,5]

[1,] 45 66 33 56 78

[2,] 10 10 10 10 10

You can also give names to the columns and rows of matrices, using the
functions colnames() and rownames(), respectively. This facilitates memoriz-
ing the data positions.

> results <- matrix(c(10, 30, 40, 50, 43, 56, 21, 30), 2, 4,

+ byrow = T)

> colnames(results) <- c("1qrt", "2qrt", "3qrt", "4qrt")

> rownames(results) <- c("store1", "store2")

> results

1qrt 2qrt 3qrt 4qrt

store1 10 30 40 50

store2 43 56 21 30

> results["store1",]

1qrt 2qrt 3qrt 4qrt

10 30 40 50

> results["store2", c("1qrt", "4qrt")]

1qrt 4qrt

43 30

Arrays are extensions of matrices to more than two dimensions. This means
that they have more than two indexes. Apart from this they are similar to
matrices and can be used in the same way. Similar to the matrix() function,
there is an array() function to facilitate the creation of arrays. The following
is an example of its use:

22 Data Mining with R: Learning with Case Studies

> a <- array(1:24, dim = c(4, 3, 2))

> a

, , 1

[,1] [,2] [,3]

[1,] 1 5 9

[2,] 2 6 10

[3,] 3 7 11

[4,] 4 8 12

, , 2

[,1] [,2] [,3]

[1,] 13 17 21

[2,] 14 18 22

[3,] 15 19 23

[4,] 16 20 24

You can use the same indexing schemes to access elements of an array.
Make sure you understand the following examples.

> a[1, 3, 2]

[1] 21

> a[1, , 2]

[1] 13 17 21

> a[4, 3,]

[1] 12 24

> a[c(2, 3), , -2]

[,1] [,2] [,3]

[1,] 2 6 10

[2,] 3 7 11

The recycling and arithmetic rules also apply to matrices and arrays, al-
though they are tricky to understand at times. Below are a few examples:

> m <- matrix(c(45, 23, 66, 77, 33, 44, 56, 12, 78, 23), 2,

+ 5)

> m

[,1] [,2] [,3] [,4] [,5]

[1,] 45 66 33 56 78

[2,] 23 77 44 12 23

Introduction 23

> m * 3

[,1] [,2] [,3] [,4] [,5]

[1,] 135 198 99 168 234

[2,] 69 231 132 36 69

> m1 <- matrix(c(45, 23, 66, 77, 33, 44), 2, 3)

> m1

[,1] [,2] [,3]

[1,] 45 66 33

[2,] 23 77 44

> m2 <- matrix(c(12, 65, 32, 7, 4, 78), 2, 3)

> m2

[,1] [,2] [,3]

[1,] 12 32 4

[2,] 65 7 78

> m1 + m2

[,1] [,2] [,3]

[1,] 57 98 37

[2,] 88 84 122

R also includes operators and functions for standard matrix algebra that
have different rules. You may obtain more information on this by looking at
Section 5 of the document “An Introduction to R” that comes with R.

1.2.9 Lists

R lists consist of an ordered collection of other objects known as their compo-
nents. Unlike the elements of vectors, list components do not need to be of the
same type, mode, or length. The components of a list are always numbered
and may also have a name attached to them. Let us start by seeing a simple
example of how to create a list:

> my.lst <- list(stud.id=34453,

+ stud.name="John",

+ stud.marks=c(14.3,12,15,19))

The object my.lst is formed by three components. One is a number and
has the name stud.id, the second is a character string having the name
stud.name, and the third is a vector of numbers with name stud.marks.

To show the contents of a list you simply type its name as any other object:

> my.lst

24 Data Mining with R: Learning with Case Studies

$stud.id

[1] 34453

$stud.name

[1] "John"

$stud.marks

[1] 14.3 12.0 15.0 19.0

You can extract individual elements of lists using the following indexing
schema:

> my.lst[[1]]

[1] 34453

> my.lst[[3]]

[1] 14.3 12.0 15.0 19.0

You may have noticed that we have used double square brackets. If we had
used my.lst[1] instead, we would obtain a different result:

> my.lst[1]

$stud.id

[1] 34453

This latter notation extracts a sub-list formed by the first component of
my.lst. On the contrary, my.lst[[1]] extracts the value of the first compo-
nent (in this case, a number), which is not a list anymore, as you can confirm
by the following:

> mode(my.lst[1])

[1] "list"

> mode(my.lst[[1]])

[1] "numeric"

In the case of lists with named components (as the previous example), we
can use an alternative way of extracting the value of a component of a list:

> my.lst$stud.id

[1] 34453

The names of the components of a list are, in effect, an attribute of the
list, and can be manipulated as we did with the names of elements of vectors:

Introduction 25

> names(my.lst)

[1] "stud.id" "stud.name" "stud.marks"

> names(my.lst) <- c("id", "name", "marks")

> my.lst

$id

[1] 34453

$name

[1] "John"

$marks

[1] 14.3 12.0 15.0 19.0

Lists can be extended by adding further components to them:

> my.lst$parents.names <- c("Ana", "Mike")

> my.lst

$id

[1] 34453

$name

[1] "John"

$marks

[1] 14.3 12.0 15.0 19.0

$parents.names

[1] "Ana" "Mike"

You can check the number of components of a list using the function
length():

> length(my.lst)

[1] 4

You can remove components of a list as follows:

> my.lst <- my.lst[-5]

You can concatenate lists using the c() function:

> other <- list(age = 19, sex = "male")

> lst <- c(my.lst, other)

> lst

26 Data Mining with R: Learning with Case Studies

$id

[1] 34453

$name

[1] "John"

$marks

[1] 14.3 12.0 15.0 19.0

$parents.names

[1] "Ana" "Mike"

$age

[1] 19

$sex

[1] "male"

Finally, you can unflatten all data in a list using the function unlist().
This will create a vector with as many elements as there are data objects in
a list. This will coerce different data types to a common data type,16 which
means that most of the time you will end up with everything being character
strings. Moreover, each element of this vector will have a name generated from
the name of the list component that originated it:

> unlist(my.lst)

id name marks1 marks2 marks3

"34453" "John" "14.3" "12" "15"

marks4 parents.names1 parents.names2

"19" "Ana" "Mike"

1.2.10 Data Frames

Data frames are the data structure most indicated for storing data tables in
R. They are similar to matrices in structure as they are also bi-dimensional.
However, contrary to matrices, data frames may include data of a different
type in each column. In this sense they are more similar to lists, and in effect,
for R, data frames are a special class of lists.

We can think of each row of a data frame as an observation (or case), being
described by a set of variables (the named columns of the data frame).

You can create a data frame as follows:

> my.dataset <- data.frame(site=c('A','B','A','A','B'),
+ season=c('Winter','Summer','Summer','Spring','Fall'),
+ pH = c(7.4,6.3,8.6,7.2,8.9))

> my.dataset

16Because vector elements must have the same type (c.f. Section 1.2.3).

Introduction 27

site season pH

1 A Winter 7.4

2 B Summer 6.3

3 A Summer 8.6

4 A Spring 7.2

5 B Fall 8.9

Elements of data frames can be accessed like a matrix:

> my.dataset[3, 2]

[1] Summer

Levels: Fall Spring Summer Winter

Note that the “season” column has been coerced into a factor because all
its elements are character strings. Similarly, the “site” column is also a factor.
This is the default behavior of the data.frame() function.17

You can use the indexing schemes described in Section 1.2.7 with data
frames. Moreover, you can use the column names for accessing full columns of
a data frame:

> my.dataset$pH

[1] 7.4 6.3 8.6 7.2 8.9

You can perform some simple querying of the data in the data frame, taking
advantage of the sub-setting possibilities of R, as shown on these examples:

> my.dataset[my.dataset$pH > 7,]

site season pH

1 A Winter 7.4

3 A Summer 8.6

4 A Spring 7.2

5 B Fall 8.9

> my.dataset[my.dataset$site == "A", "pH"]

[1] 7.4 8.6 7.2

> my.dataset[my.dataset$season == "Summer", c("site", "pH")]

site pH

2 B 6.3

3 A 8.6

17Check the help information on the data.frame() function to see examples of how you
can use the I() function, or the stringsAsFactors parameter to avoid this coercion.

28 Data Mining with R: Learning with Case Studies

You can simplify the typing of these queries using the function attach(),
which allows you to access the columns of a data frame directly without having
to use the name of the respective data frame. Let us see some examples of
this:

> attach(my.dataset)

> my.dataset[site=='B',]

site season pH

2 B Summer 6.3

5 B Fall 8.9

> season

[1] Winter Summer Summer Spring Fall

Levels: Fall Spring Summer Winter

The inverse of the function attach() is the function detach() that dis-
ables these facilities:

> detach(my.dataset)

> season

Error: Object "season" not found

Whenever you are simply querying the data frame, you may find it simpler
to use the function subset():

> subset(my.dataset, pH > 8)

site season pH

3 A Summer 8.6

5 B Fall 8.9

> subset(my.dataset, season == "Summer", season:pH)

season pH

2 Summer 6.3

3 Summer 8.6

Notice however that, contrary to the other examples seen above, you may
not use this sub-setting strategy to change values in the data. So, for instance,
if you want to sum 1 to the pH values of all summer rows, you can only do it
this way:

> my.dataset[my.dataset$season == 'Summer','pH'] <-

+ my.dataset[my.dataset$season == 'Summer','pH'] + 1

You can add new columns to a data frame in the same way you did with
lists:

Introduction 29

> my.dataset$NO3 <- c(234.5, 256.6, 654.1, 356.7, 776.4)

> my.dataset

site season pH NO3

1 A Winter 7.4 234.5

2 B Summer 7.3 256.6

3 A Summer 9.6 654.1

4 A Spring 7.2 356.7

5 B Fall 8.9 776.4

The only restriction to this addition is that new columns must have the
same number of rows as the existing data frame; otherwise R will complain.
You can check the number of rows or columns of a data frame with these two
functions:

> nrow(my.dataset)

[1] 5

> ncol(my.dataset)

[1] 4

Usually you will be reading your datasets into a data frame, either from
some file or from a database. You will seldom type the data using the
data.frame() function as above, particularly in a typical data mining sce-
nario. In the next chapters describing our data mining case studies, you will
see how to import this type of data into data frames. In any case, you may
want to browse the “R Data Import/Export” manual that comes with R to
check all the different possibilities that R has.

R has a simple spreadsheet-like interface that can be used to enter small
data frames. You can edit an existent data frame by typing

> my.dataset <- edit(my.dataset)

or you may create a new data frame with,

> new.data <- edit(data.frame())

You can use the names vector to change the name of the columns of a data
frame:

> names(my.dataset)

[1] "site" "season" "pH" "NO3"

> names(my.dataset) <- c("area", "season", "pH", "NO3")

> my.dataset

30 Data Mining with R: Learning with Case Studies

area season pH NO3

1 A Winter 7.4 234.5

2 B Summer 7.3 256.6

3 A Summer 9.6 654.1

4 A Spring 7.2 356.7

5 B Fall 8.9 776.4

As the names attribute is a vector, if you just want to change the name of
one particular column, you can type

> names(my.dataset)[4] <- "PO4"

> my.dataset

area season pH PO4

1 A Winter 7.4 234.5

2 B Summer 7.3 256.6

3 A Summer 9.6 654.1

4 A Spring 7.2 356.7

5 B Fall 8.9 776.4

Finally, R comes with some “built-in” data sets that you can use to explore
some of its potentialities. Most of the add-on packages also come with datasets.
To obtain information on the available datasets, type

> data()

To use any of the available datasets, you can proceed as follows:

> data(USArrests)

This instruction “creates” a data frame called USArrests, containing the
data of this problem that comes with R.

1.2.11 Creating New Functions

R allows the user to create new functions. This is a useful feature, particularly
when you want to automate certain tasks that you have to repeat over and
over. Instead of writing the instructions that perform this task every time you
want to execute it, you encapsulate them in a new function and then simply
use it whenever necessary.

R functions are objects as the structures that you have seen in the previous
sections. As an object, a function can store a value. The “value” stored in
a function is the set of instructions that R will execute when you call this
function. Thus, to create a new function, one uses the assignment operator to
store the contents of the function in an object name (the name of the function).

Let us start with a simple example. Suppose you often want to calculate
the standard error of a mean associated to a set of values. By definition, the
standard error of a sample mean is given by

Introduction 31

standard error =

√
s2

n

where s2 is the sample variance and n the sample size.
Given a vector of values, we want a function to calculate the respective

standard error. Let us call this function se. Before proceeding to create the
function we should check whether there is already a function with this name
in R. If that is the case, then it would be better to use another name, not to
“hide” the other R function from the user.18 To check the existence of that
function, it is sufficient to type its name at the prompt:

> se

Error: Object "se" not found

The error printed by R indicates that we are safe to use that name. If
a function (or any other object) existed with the name “se”, R would have
printed its content instead of the error.

The following is a possible way to create our function:

> se <- function(x) {

+ v <- var(x)

+ n <- length(x)

+ return(sqrt(v/n))

+ }

Thus, to create a function object, you assign to its name something with
the general form

function(<set of parameters>) { <set of R instructions> }

After creating this function, you can use it as follows:

> se(c(45,2,3,5,76,2,4))

[1] 11.10310

If we need to execute several instructions to implement a function, like
we did for the function se(), we need to have a form of telling R when the
function body starts and when it ends. R uses the curly braces as the syntax
elements that start and finish a group of instructions.

The value returned by any function can be “decided” using the function
return() or, alternatively, R returns the result of the last expression that was
evaluated within the function. The following function illustrates this and also
the use of parameters with default values,

18You do not have to worry about overriding the definition of the R function. It will
continue to exist, although your new function with the same name will be on top of the
search path of R, thus “hiding” the other standard function.

32 Data Mining with R: Learning with Case Studies

> basic.stats <- function(x,more=F) {

+ stats <- list()

+

+ clean.x <- x[!is.na(x)]

+

+ stats$n <- length(x)

+ stats$nNAs <- stats$n-length(clean.x)

+

+ stats$mean <- mean(clean.x)

+ stats$std <- sd(clean.x)

+ stats$med <- median(clean.x)

+ if (more) {

+ stats$skew <- sum(((clean.x-stats$mean)/stats$std)^3) /

+ length(clean.x)

+ stats$kurt <- sum(((clean.x-stats$mean)/stats$std)^4) /

+ length(clean.x) - 3

+ }

+ unlist(stats)

+ }

This function has a parameter (more) that has a default value (F). This
means that you can call the function with or without setting this parameter.
If you call it without a value for the second parameter, the default value will
be used. Below are examples of these two alternatives:

> basic.stats(c(45, 2, 4, 46, 43, 65, NA, 6, -213, -3, -45))

n nNAs mean std med

11.00000 1.00000 -5.00000 79.87768 5.00000

> basic.stats(c(45, 2, 4, 46, 43, 65, NA, 6, -213, -3, -45),

+ more = T)

n nNAs mean std med skew kurt

11.000000 1.000000 -5.000000 79.877684 5.000000 -1.638217 1.708149

The function basic.stats() also introduces a new instruction of R: the
instruction if(). As the name indicates this instruction allows us to condition
the execution of certain instructions to the truth value of a logical test. In the
case of this function, the two instructions that calculate the kurtosis and
skewness of the vector of values are only executed if the variable more is true;
otherwise they are skipped.

Another important instruction is the for(). This instruction allows us to
repeat a set of commands several times. Below is an example of the use of this
instruction:

> f <- function(x) {

+ for(i in 1:10) {

+ res <- x*i

Introduction 33

+ cat(x,'*',i,'=',res,'\n')
+ }

+ }

Try to call f() with some number (e.g. f(5)). The instruction for in this
function says to R that the instructions “inside of it” (delimited by the curly
braces) are to be executed several times. Namely, they should be executed with
the variable “i” taking different values at each repetition. In this example, “i”
should take the values in the set 1:10, that is, 1, 2, 3, . . . , 10. This means that
the two instructions inside the for are executed ten times, each time with i
set to a different value. The set of values specified in front of the word in can
be any vector, and the values need not be a sequence or numeric.

The function cat() can be used to output the contents of several ob-
jects to the screen. Namely, character strings are written as themselves (try
cat('hello!')), while other objects are written as their content (try y <- 45
and then cat(y)). The string “\n” makes R change to the next line.

1.2.12 Objects, Classes, and Methods

One of the design goals of R is to facilitate the manipulation of data so that
we can easily perform the data analysis tasks we have. In R, data is stored
on objects. As mentioned, everything in R is an object, from simple numbers
to functions or more elaborate data structures. Every R object belongs to a
class. Classes define the abstract characteristics of the objects that belong to
them. Namely, they specify the attributes or properties of these objects and
also their behaviors (or methods). For instance, the matrix class has specific
properties like the dimension of the matrices and it also has specific behavior
for some types of operations. In effect, when we ask R the content of a matrix,
R will show it with a specific format on the screen. This happens because there
is a specific print method associated with all objects of the class matrix. In
summary, the class of an object determines (1) the methods that are used
by some general functions when applied to these objects, and also (2) the
representation of the objects of that class. This representation consists of the
information that is stored by the objects of this class.

R has many predefined classes of objects, together with associated meth-
ods. On top of this we can also extend this list by creating new classes of
objects or new methods. These new methods can be both for these new classes
or for existing classes. New classes are normally created after existing classes,
usually by adding some new pieces of information to their representation.

The representation of a class consists of a set of slots. Each slot has a
name and an associated class that determines the information that it stores.
The operator “@” can be used to access the information stored in a slot of an
object. This means that x@y is the value of the slot y of the object x. This
obviously assumes that the class of objects to which x belongs has a slot of
information named y.

Another important notion related to classes is the notion of inheritance

34 Data Mining with R: Learning with Case Studies

between classes. This notion establishes relationships between the classes that
allow us to indicate that a certain new class extends an existing one by adding
some extra information. This extension also implies that the new class inherits
all the methods of the previous class, which facilitates the creation of new
classes, as we do not start from scratch. In this context, we only need to worry
about implementing the methods for the operations where the new class of
objects differs from the existing one that it extends.

Finally, another very important notion is that of polymorphism. This no-
tion establishes that some functions can be applied to different classes of ob-
jects, producing the results that are adequate for the respective class. In R,
this is strongly related to the notion of generic functions. Generic functions
implement a certain, very general, high-level operation. For instance, as we
will see, the function plot() can be used to obtain a graphical representation
of an object. This is its general goal. However, this graphical representation
may actually be different depending on the type of object. It is different to
plot a set of numbers, than to plot a linear regression model, for instance.
Polymorphism is the key to implementing this without disturbing the user.
The user only needs to know that there is a function that provides a graphical
representation of objects. R and its inner mechanisms handle the job of dis-
patching these general tasks for the class-specific functions that provide the
graphical representation for each class of objects. All this method-dispatching
occurs in the background without the user needing to know the “dirty” details
of it. What happens, in effect, is that as R knows that plot() is a generic
function, it will search for a plot method that is specific for the class of ob-
jects that were included in the plot() function call. If such a method exists, it
will use it; otherwise it will resort to some default plotting method. When the
user decides to create a new class of objects he needs to decide if he wants to
have specific methods for his new class of objects. So if he wants to be able to
plot objects of the new class, then he needs to provide a specific plot method
for this new class of objects that “tells” R how to plot these new objects.

These are the basic details on classes and methods in R. The creation of
new classes and respective methods is outside the scope of this book. More
details can be obtained in many existing books on programming with R, such
as, the excellent book Software for Data Analysis by Chambers (2008).

1.2.13 Managing Your Sessions

When you are using R for more complex tasks, the command line typing style
of interaction becomes a bit limited. In these situations it is more practical to
write all your code in a text file and then ask R to execute it. To produce such
a file, you can use your favorite text editor (like Notepad, Emacs, etc.) or, in
case you are using the Windows version of R, you can use the script editor
available in the File menu. After creating and saving the file, you can issue
the following command at R prompt to execute all commands in the file:

> source('mycode.R')

Introduction 35

This assumes that you have a text file called “mycode.R”19 in the current
working directory of R. In Windows versions the easiest way to change this
directory is through the option “Change directory” of the “File” menu. In
Unix versions you may use the functions getwd() and setwd() respectively,
to, check and change the current working directory.

When you are using the R prompt in an interactive fashion you may wish
to save some of the objects you create for later use (such as some function
you have typed in). The following example saves the objects named f and
my.dataset in a file named “mysession.RData”:

> save(f,my.dataset,file='mysession.RData')

Later, for instance in a new R session, you can load these objects by issuing

> load('mysession.RData')

You can also save all objects currently in R workspace,20 by issuing

> save.image()

This command will save the workspace in a file named “.RData” in the
current working directory. This file is automatically loaded when you run R
again from this directory. This kind of effect can also be achieved by answering
Yes when quitting R (see Section 1.2.1).

Further readings on R

The online manual An Introduction to R that comes with every distribution of R is an excellent
source of information on the R language. The “Contributed” subsection of the “Documentation”
section at the R Web site, includes several free books on different facets of R.

1.3 A Short Introduction to MySQL

This section provides a very brief introduction to MySQL. MySQL is not neces-
sary to carry out all the case studies in this book. Still, for larger data mining
projects, the use of a database management system like MySQL can be crucial.

MySQL can be downloaded at no cost from the Web site http://www.
mysql.com. As R, MySQL is available for different operating systems, such
as Linux and Windows. If you wish to install MySQL on your computer, you
should download it from the MySQL Web site and follow its installation in-
structions. Alternatively, you can also access any MySQL server that is in-
stalled on another computer to which you have network access.

19The extension “.R” is not mandatory.
20These can be listed issuing ls(), as mentioned before.

http://www.mysql.com
http://www.mysql.com

36 Data Mining with R: Learning with Case Studies

You can use a client program to access MySQL on your local computer
or over the network. There are many different MySQL client programs at the
MySQL Web site. MySQL comes with a console-type client program, which
works in a command-by-command fashion, like the R console. Alternatively,
you have graphical client programs that you can install to use MySQL. In
particular, the MySQL Query Browser is a freely available and quite a nice
example of such programs that you may consider installing on your computer.

To access a MySQL server installed on your computer using the console-
type client, you can issue the following command at your operating system
prompt:

$> mysql -u myuser -p

Password: ********

mysql>

or, in case of a remote server, something like

$> mysql -h myserver.xpto.pt -u myuser -p

Password: ********

mysql>

We are assuming that the server has a user named “myuser” and that the
server is password protected. If all this sounds strange to you, you should
either talk with your system administrator about MySQL, or learn a bit more
about this software using the user manual that comes with every installation,
or by reading a book (e.g., DuBois, 2000).

After entering MySQL, you can either use existent database or create a
new one. The latter can be done as follows in the MySQL console-type client:

mysql> create database contacts;

Query OK, 1 row affected (0.09 sec)

To use this newly created database or any other existing database, you
issue

mysql> use contacts;

Database changed

A database is formed by a set of tables containing the data concerning
some entities. You can create a table as follows:

mysql> create table people(

-> id INT primary key,

-> name CHAR(30),

-> address CHAR(60));

Introduction 37

Query OK, 1 row affected (0.09 sec)

Note the continuation prompt of MySQL (“->”).
To populate a table with data, you can either insert each record by hand

or use one of the MySQL import statements to read in data contained, for
instance, in a text file.

A record can be inserted in a table as follows:

mysql> insert into people

-> values(1,'John Smith','Strange Street, 34, Unknown City');

Query OK, 1 row affected (0.35 sec)

You can list the records in a given table using the select statement, of
which we provide a few examples below.

mysql> select * from people;

+----+------------+----------------------------------+

| id | name | address |

+----+------------+----------------------------------+

| 1 | John Smith | Strange Street, 34, Unknown City |

+----+------------+----------------------------------+

1 row in set (0.04 sec)

mysql> select name, address from people;

+------------+----------------------------------+

| name | address |

+------------+----------------------------------+

| John Smith | Strange Street, 34, Unknown City |

+------------+----------------------------------+

1 row in set (0.00 sec)

mysql> select name from people where id >= 1 and id < 10;

+------------+

| name |

+------------+

| John Smith |

+------------+

1 row in set (0.00 sec)

After you finish working with MySQL, you can leave the console-type client
by issuing the “quit” statement.

38 Data Mining with R: Learning with Case Studies

Further readings on MySQL

Further information on MySQL can be obtained from the free user’s manual that comes with

MySQL. This manual illustrates all aspects of MySQL, from installation to the technical speci-

fications of the SQL language used in MySQL. The book MySQL by DuBois (2000), one of the

active developers of MySQL, is also a good general reference on this DBMS.

Chapter 2

Predicting Algae Blooms

This case study will introduce you to some basic tasks of data mining: data
pre-processing, exploratory data analysis, and predictive model construction.
For this initial case study we have selected a small problem by data mining
standards. Namely, we are addressing the problem of predicting the frequency
occurrence of several harmful algae in water samples. If you are not familiar
with the R language and you have not read the small introduction provided
in Section 1.2 of Chapter 1, you may feel the need to review that section as
you work through this case study.

2.1 Problem Description and Objectives

High concentrations of certain harmful algae in rivers constitute a serious
ecological problem with a strong impact not only on river lifeforms, but also
on water quality. Being able to monitor and perform an early forecast of algae
blooms is essential to improving the quality of rivers.

With the goal of addressing this prediction problem, several water samples
were collected in different European rivers at different times during a period
of approximately 1 year. For each water sample, different chemical properties
were measured as well as the frequency of occurrence of seven harmful algae.
Some other characteristics of the water collection process were also stored,
such as the season of the year, the river size, and the river speed.

One of the main motivations behind this application lies in the fact that
chemical monitoring is cheap and easily automated, while the biological anal-
ysis of the samples to identify the algae that are present in the water involves
microscopic examination, requires trained manpower, and is therefore both
expensive and slow. As such, obtaining models that are able to accurately
predict the algae frequencies based on chemical properties would facilitate
the creation of cheap and automated systems for monitoring harmful algae
blooms.

Another objective of this study is to provide a better understanding of the
factors influencing the algae frequencies. Namely, we want to understand how
these frequencies are related to certain chemical attributes of water samples

39

Carlos
Destacar

40 Data Mining with R: Learning with Case Studies

as well as other characteristics of the samples (like season of the year, type of
river, etc.).

2.2 Data Description

The data available for this problem was collected in the context of the ERU-
DIT1 research Network and used in the COIL 1999 international data analysis
competition. It is available from several sources, such as in the UCI Machine
Learning Repository of data sets.2

There are two main datasets for this problem. The first consists of data
for 200 water samples. To be more precise, each observation in the available
datasets is in effect an aggregation of several water samples collected from the
same river over a period of 3 months, during the same season of the year.

Each observation contains information on 11 variables. Three of these vari-
ables are nominal and describe the season of the year when the water samples
to be aggregated were collected, as well as the size and speed of the river
in question. The eight remaining variables are values of different chemical
parameters measured in the water samples forming the aggregation, namely:

• Maximum pH value

• Minimum value of O2 (oxygen)

• Mean value of Cl (chloride)

• Mean value of NO−3 (nitrates)

• Mean value of NH+
4 (ammonium)

• Mean of PO3−
4 (orthophosphate)

• Mean of total PO4 (phosphate)

• Mean of chlorophyll

Associated with each of these parameters are seven frequency numbers of
different harmful algae found in the respective water samples. No information
is given regarding the names of the algae that were identified.

The second dataset contains information on 140 extra observations. It uses
the same basic structure but it does not include information concerning the
seven harmful algae frequencies. These extra observations can be regarded as
a kind of test set. The main goal of our study is to predict the frequencies of

1http://www.erudit.de/erudit/.
2http://archive.ics.uci.edu/ml/.

http://www.erudit.de/erudit/
http://archive.ics.uci.edu/ml/

Predicting Algae Blooms 41

the seven algae for these 140 water samples. This means that we are facing
a predictive data mining task. This is one among the diverse set of problems
tackled in data mining. In this type of task, our main goal is to obtain a model
that allows us to predict the value of a certain target variable given the values
of a set of predictor variables. This model may also provide indications on
which predictor variables have a larger impact on the target variable; that
is, the model may provide a comprehensive description of the factors that
influence the target variable.

2.3 Loading the Data into R

We will consider two forms of getting the data into R: (1) one by simply taking
advantage of the package accompanying the book that includes data frames
with the datasets ready for use; and (2) the other by going to the book Web
site, downloading the text files with the data, and then loading them into R.
The former is obviously much more practical. We include information on the
second alternative for illustrative purposes on how to load data into R from
text files.

If you want to follow the easy path, you simply load the book package,3

and you immediately have a data frame named algae available for use. This
data frame contains the first set of 200 observations mentioned above.

> library(DMwR)

> head(algae)

season size speed mxPH mnO2 Cl NO3 NH4 oPO4 PO4 Chla

1 winter small medium 8.00 9.8 60.800 6.238 578.000 105.000 170.000 50.0

2 spring small medium 8.35 8.0 57.750 1.288 370.000 428.750 558.750 1.3

3 autumn small medium 8.10 11.4 40.020 5.330 346.667 125.667 187.057 15.6

4 spring small medium 8.07 4.8 77.364 2.302 98.182 61.182 138.700 1.4

5 autumn small medium 8.06 9.0 55.350 10.416 233.700 58.222 97.580 10.5

6 winter small high 8.25 13.1 65.750 9.248 430.000 18.250 56.667 28.4

a1 a2 a3 a4 a5 a6 a7

1 0.0 0.0 0.0 0.0 34.2 8.3 0.0

2 1.4 7.6 4.8 1.9 6.7 0.0 2.1

3 3.3 53.6 1.9 0.0 0.0 0.0 9.7

4 3.1 41.0 18.9 0.0 1.4 0.0 1.4

5 9.2 2.9 7.5 0.0 7.5 4.1 1.0

6 15.1 14.6 1.4 0.0 22.5 12.6 2.9

A data frame can be seen as a kind of matrix or table with named columns,

3Please note that you will have to install the package as it does not come with the
standard installation of R. Check Section 1.2.1 (page 3) to know how to do this.

42 Data Mining with R: Learning with Case Studies

which is the ideal data structure for holding data tables in R. The head()
function shows us the first six lines of any data frame.

Alternatively, you may use the text files available in the “Data” section of
the book Web site. The “Training data” link contains the 200 water samples in
a file named “Analysis.txt”, while the “Test data” link points to the “Eval.txt”
file that contains the 140 test samples. There is an additional link that points
to a file (“Sols.txt”) that contains the algae frequencies of the 140 test samples.
This last file will be used to check the performance of our predictive models
and will be taken as unknown information for now. The files have the values
for each observation in a different line. Each line of the training and test
files contains the values of the variables (according to the description given
on Section 2.2) separated by spaces. Unknown values are indicated with the
string “XXXXXXX”.

The first thing to do is to download the three files from the book Web site
and store them in some directory on your hard disk (preferably on the current
working directory of your running R session, which you may check issuing the
command getwd() at the prompt).

After downloading the data files into a local directory, we can start by
loading into R the data from the “Analysis.txt” file (the training data, i.e. the
data that will be used to obtain the predictive models). To read the data from
the file it is sufficient to issue the following command:4

> algae <- read.table('Analysis.txt',
+ header=F,

+ dec='.',
+ col.names=c('season','size','speed','mxPH','mnO2','Cl',
+ 'NO3','NH4','oPO4','PO4','Chla','a1','a2','a3','a4',
+ 'a5','a6','a7'),
+ na.strings=c('XXXXXXX'))

The parameter header=F indicates that the file to be read does not include
a first line with the variables names. dec=’.’ states that the numbers use the
’.’ character to separate decimal places. These two previous parameter settings
could have been omitted as we are using their default values. col.names allows
us to provide a vector with the names to give to the variables whose values are
being read. Finally, na.strings serves to indicate a vector of strings that are
to be interpreted as unknown values. These values are represented internally
in R by the value NA, as mentioned in Section 1.2.3.

R has several other functions that can be used to read data contained in
text files. You may wish to type “?read.table” to obtain further information
on this and other related functions. Moreover, R has a manual that you may
want to browse named “R Data Import/Export”; it describes the different
possibilities R includes for reading data from other applications.

4We assume that the data files are in the current working directory of R. If not, use the
command “setwd()” to change this, or use the “Change dir...” option in the “File” menu of
Windows versions.

Predicting Algae Blooms 43

The result of the instruction above is a data frame. Each line of this data
frame contains an observation of our dataset. For instance, we can see the first
5 observations using the instruction algae[1:5,].5 In Section 1.2.7 (page 16)
we have described alternative ways of extracting particular elements of R
objects like data frames.

2.4 Data Visualization and Summarization

Given the lack of further information on the problem domain, it is wise to
investigate some of the statistical properties of the data, so as to get a better
grasp of the problem. Even if that was not the case, it is always a good idea
to start our analysis with some kind of exploratory data analysis similar to
the one we will show below.

A first idea of the statistical properties of the data can be obtained through
a summary of its descriptive statistics:

> summary(algae)

season size speed mxPH mnO2

autumn:40 large :45 high :84 Min. :5.600 Min. : 1.500

spring:53 medium:84 low :33 1st Qu.:7.700 1st Qu.: 7.725

summer:45 small :71 medium:83 Median :8.060 Median : 9.800

winter:62 Mean :8.012 Mean : 9.118

3rd Qu.:8.400 3rd Qu.:10.800

Max. :9.700 Max. :13.400

NA's :1.000 NA's : 2.000

Cl NO3 NH4 oPO4

Min. : 0.222 Min. : 0.050 Min. : 5.00 Min. : 1.00

1st Qu.: 10.981 1st Qu.: 1.296 1st Qu.: 38.33 1st Qu.: 15.70

Median : 32.730 Median : 2.675 Median : 103.17 Median : 40.15

Mean : 43.636 Mean : 3.282 Mean : 501.30 Mean : 73.59

3rd Qu.: 57.824 3rd Qu.: 4.446 3rd Qu.: 226.95 3rd Qu.: 99.33

Max. :391.500 Max. :45.650 Max. :24064.00 Max. :564.60

NA's : 10.000 NA's : 2.000 NA's : 2.00 NA's : 2.00

PO4 Chla a1 a2

Min. : 1.00 Min. : 0.200 Min. : 0.00 Min. : 0.000

1st Qu.: 41.38 1st Qu.: 2.000 1st Qu.: 1.50 1st Qu.: 0.000

Median :103.29 Median : 5.475 Median : 6.95 Median : 3.000

Mean :137.88 Mean : 13.971 Mean :16.92 Mean : 7.458

3rd Qu.:213.75 3rd Qu.: 18.308 3rd Qu.:24.80 3rd Qu.:11.375

Max. :771.60 Max. :110.456 Max. :89.80 Max. :72.600

NA's : 2.00 NA's : 12.000

a3 a4 a5 a6

5You can get a similar result with head(algae), as we have seen before.

44 Data Mining with R: Learning with Case Studies

Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000

1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000

Median : 1.550 Median : 0.000 Median : 1.900 Median : 0.000

Mean : 4.309 Mean : 1.992 Mean : 5.064 Mean : 5.964

3rd Qu.: 4.925 3rd Qu.: 2.400 3rd Qu.: 7.500 3rd Qu.: 6.925

Max. :42.800 Max. :44.600 Max. :44.400 Max. :77.600

a7

Min. : 0.000

1st Qu.: 0.000

Median : 1.000

Mean : 2.495

3rd Qu.: 2.400

Max. :31.600

This simple instruction immediately gives us a first overview of the sta-
tistical properties of the data.6 In the case of nominal variables (which are
represented by factors in R data frames), it provides frequency counts for each
possible value.7 For instance, we can observe that there are more water sam-
ples collected in winter than in the other seasons. For numeric variables, R
gives us a series of statistics like their mean, median, quartiles information
and extreme values. These statistics provide a first idea of the distribution of
the variable values (we return to this issue later on). In the event of a variable
having some unknown values, their number is also shown following the string
NAs. By observing the difference between medians and means, as well as the
inter-quartile range (3rd quartile minus the 1st quartile),8 we can get an idea
of the skewness of the distribution and also its spread. Still, most of the time,
this information is better captured graphically. Let us see an example:

> hist(algae$mxPH, prob = T)

This instruction shows us the histogram of the variable mxPH. The result
appears in Figure 2.1. With the parameter prob=T we get probabilities for
each interval of values,9 while omitting this parameter setting would give us
frequency counts.

Figure 2.1 tells us that the values of variable mxPH apparently follow a
distribution very near the normal distribution, with the values nicely clus-
tered around the mean value. A more precise check of this hypothesis can be

6An interesting alternative with similar objectives is the function describe() in package
Hmisc (Harrell Jr, 2009).

7Actually, if there are too many, only the most frequent are shown.
8If we order the values of a variable, the 1st quartile is the value below which there are

25% of the data points, while the 3rd quartile is the value below which there are 75% of
the cases, thus implying that between these two values we have 50% of our data. The inter-
quartile range is defined as the 3rd quartile minus the 1st quartile, thus being a measure of
the spread of the variable around its central value (larger values indicate larger spread).

9The areas of the rectangles should sum to one (and not the height of the rectangles as
some people might expect).

Predicting Algae Blooms 45

Histogram of algae$mxPH

algae$mxPH

D
e
n
s
it
y

6 7 8 9 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

FIGURE 2.1: The histogram of variable mxPH.

obtained using normal Q-Q plots. The function qq.plot(), in the car (Fox,
2009) package, obtains this type of plot, the result of which is shown in Fig-
ure 2.2, together with a slightly more sophisticated version of the histogram.
The graphs were obtained with the following code:

> library(car)

> par(mfrow=c(1,2))

> hist(algae$mxPH, prob=T, xlab='',
+ main='Histogram of maximum pH value',ylim=0:1)
> lines(density(algae$mxPH,na.rm=T))

> rug(jitter(algae$mxPH))

> qq.plot(algae$mxPH,main='Normal QQ plot of maximum pH')
> par(mfrow=c(1,1))

After loading the package,10 the code starts with a call to the par() func-
tion that can be used to set several parameters of the R graphics system. In
this case we are dividing the graphics output window into a one line per two
columns area, with the goal of obtaining two graphs side by side on the same
figure. We then obtain the first graph, which is again a histogram of the vari-
able mxPH, except that this time we specify an empty X-axis label, we change

10A word of warning on the use of the function library() to load packages. This is only
possible if the package is installed on your computer. Otherwise an error will be issued by R.
If that is the case, you will need to install the package using any of the methods described
in Section 1.2.1.

46 Data Mining with R: Learning with Case Studies

Histogram of maximum pH value

6 7 8 9 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

l
l

l
l
llll

l

l
l
l
lll
lllll

l
llllllll

l
lllll
ll
lllllllll

lllllll
llll
llllllllllllll

lllllllllllll
llllllllllllll

llll
lllllllllllll

lll
llllllllll

ll
llllllllllllll

l
lllllllllll

lllllllllll
lll
llllll

lllllllll
lll

ll
ll
lllll

l

l

−3 −2 −1 0 1 2 3

6
7

8
9

Normal QQ plot of maximum pH

norm quantiles

FIGURE 2.2: An“enriched”version of the histogram of variable MxPH (left)
together with a normal Q-Q plot (right).

the title of the graph, and we provide other limits for the Y-axis. The next in-
struction plots a smooth version of the histogram (a kernel density estimate11

of the distribution of the variable), while the following plots the real values
of the variable near the X-axis, thus allowing easy spotting of outliers.12 For
instance, we can observe that there are two values significantly smaller than
all others. This kind of data inspection is very important as it may identify
possible errors in the data sample, or even help to locate values that are so
awkward that they may only be errors, or at least we would be better off by
disregarding them in posterior analysis. The second graph shows a Q-Q plot
obtained with the qq.plot() function, which plots the variable values against
the theoretical quantiles of a normal distribution (solid black line). The func-
tion also plots an envelope with the 95% confidence interval of the normal
distribution (dashed lines). As we can observe, there are several low values of
the variable that clearly break the assumptions of a normal distribution with
95% confidence.

You should also note the extensive use of function composition in the pre-
vious example, with several functions being called with the result of other

11The na.rm=T parameter setting is used in several functions as a way of indicating that
NA values should not be considered in the function calculation. This is necessary in several
functions because it is not their default behavior, and otherwise an error would be generated.

12Actually, this contains two function calls, the rug() function performs the plotting,
while the jitter() function is used to randomly perturb slightly the original values to plot,
so that we almost eliminate the possibility of two values being equal, thus avoiding ticks
over each other that would “hide” some values from the visual inspection.

Predicting Algae Blooms 47

functions. Every time you have difficulties in understanding this type of in-
struction, you can always call them separately, one at a time, to fully under-
stand what they produce.

Another example (Figure 2.3) showing this kind of data inspection can be
achieved with the following instructions, this time for variable oPO4 :

> boxplot(algae$oPO4, ylab = "Orthophosphate (oPO4)")

> rug(jitter(algae$oPO4), side = 2)

> abline(h = mean(algae$oPO4, na.rm = T), lty = 2)

l

l

l

l

l
l

l

l

l
l

lll

l

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

O
rt

h
o
p
h
o
s
p
h
a
te

 (
o
P

O
4
)

FIGURE 2.3: An “enriched” box plot for orthophosphate.

The first instruction draws a box plot of variable oPO4. Box plots provide
a quick summarization of some key properties of the variable distribution.
Namely, there is a box whose vertical limits are the 1st and 3rd quartiles of the
variable. This box has a horizontal line inside that represents the median value
of the variable. Let r be the inter-quartile range. The small horizontal dash
above the box is the largest observation that is less than or equal to the 3rd
quartile plus 1.5× r. The small horizontal dash below the box is the smallest
observation that is greater than or equal to the 1st quartile minus 1.5 × r.
The circles below or above these small dashes represent observations that
are extremely low (high) compared to all others, and are usually considered
outliers. This means that box plots give us plenty of information regarding not
only the central value and spread of the variable, but also eventual outliers.

The second instruction was described before (the only difference being the

48 Data Mining with R: Learning with Case Studies

place where the data is plotted), while the third uses the function abline() to
draw a horizontal line13 at the mean value of the variable, which is obtained
using the function mean(). By comparing this line with the line inside the box
indicating the median, we can conclude that the presence of several outliers
has distorted the value of the mean as a statistic of centrality (i.e., indicating
the more common value of the variable).

The analysis of Figure 2.3 shows us that the variable oPO4 has a distri-
bution of the observed values clearly concentrated on low values, thus with a
positive skew. In most of the water samples, the value of oPO4 is low, but
there are several observations with high values, and even with extremely high
values.

Sometimes when we encounter outliers, we are interested in inspecting the
observations that have these “strange” values. We will show two ways of doing
this. First, let us do it graphically. If we plot the values of variable NH4, we
notice a very large value. We can identify the respective water sample by:

> plot(algae$NH4, xlab = "")

> abline(h = mean(algae$NH4, na.rm = T), lty = 1)

> abline(h = mean(algae$NH4, na.rm = T) + sd(algae$NH4, na.rm = T),

+ lty = 2)

> abline(h = median(algae$NH4, na.rm = T), lty = 3)

> identify(algae$NH4)

The first instruction plots all values of the variable. The calls to the
abline() function draw three informative lines, one with the mean value,
another with the mean plus one standard deviation, and the other with the
median. They are not necessary for this identification task. The last instruc-
tion is interactive and allows the user to click on the plotted dots with the left
mouse button. For every clicked dot, R will write the respective row number
in the algae data frame.14 The user can finish the interaction by clicking the
right mouse button.

If we want to inspect the respective observations in the algae data frame,
then we better proceed in the following way:

> plot(algae$NH4, xlab = "")

> clicked.lines <- identify(algae$NH4)

> algae[clicked.lines,]

As you may have guessed before, the function identify(), gives as a result
the number of the lines corresponding to the clicked points in the graph and
thus we may take advantage of this fact to index the algae data frame, thus
obtaining the full information on these observations.

We can also perform this inspection without graphics, as shown below:

13The parameter lty=2 is used to obtain a dashed line.
14The position where you click relatively to the point determines the side where R writes

the row number. For instance, if you click on the right of the dot, the row number will be
written on the right.

Predicting Algae Blooms 49

> algae[algae$NH4 > 19000,]

This instruction illustrates another form of indexing a data frame, using
a logical expression as a row selector (see Section 1.2.7 for more examples
of this). The output of this instruction may seem a bit strange. This results
from the fact that there are some observations with NA values in variable
NH4. For these observations, R is unable to know the result of the comparison
and thus the NAs. We can avoid this behavior by issuing instead the in-
struction algae[!is.na(algae$NH4) & algae$NH4 > 19000,]. The call to
the function is.na() produces a vector of Boolean values (true or false).
An element of this vector is true when NH4 is NA. This vector has as
many elements as there are rows in the data frame algae. The construction
!is.na(algae$NH4) thus returns a vector of Boolean values that are true in
positions corresponding to rows where NH4 is known, because ’ !’ is the logical
negation operator. In summary, this alternative call would give us the rows of
the data frame that have known values in NH4 and are greater than 19,000.

Let us now explore a few examples of another type of data inspection.
These examples use the lattice (Sarkar, 2010) package of R, which provides
a large set of impressive graphics tools implementing the ideas behind Trellis
graphics (Cleveland, 1993).

Suppose we would like to study the distribution of the values of, say, algal
a1. We could use any of the possibilities discussed before. However, if we
wanted to study how this distribution depends on other variables, new tools
are required.

Conditioned plots are graphical representations that depend on a certain
factor. A factor is a nominal variable with a set of finite values. For instance, we
can obtain a set of box plots for the variable a1, for each value of the variable
size (see Figure 2.4). Each of the box plots was obtained using the subset
of water samples that have a certain value of the variable size. These graphs
allow us to study how this nominal variable may influence the distribution of
the values of a1. The code to obtain the box plots is

> library(lattice)

> bwplot(size ~ a1, data=algae, ylab='River Size',xlab='Algal A1')

The first instruction loads in the lattice package. The second obtains a
box plot using the lattice version of these plots. The first argument of this
instruction can be read as “plot a1 for each value of size”. The remaining
arguments have obvious meanings.

Figure 2.4 allows us to observe that higher frequencies of algal a1 are
expected in smaller rivers, which can be valuable knowledge.

An interesting variant of this type of plot that gives us more information on
the distribution of the variable being plotted, are box-percentile plots, which
are available in package Hmisc. Let us see an example of its use with the same
algal a1 against the size of rivers:

50 Data Mining with R: Learning with Case Studies

Algal A1

R
iv

e
r

S
iz

e

large

medium

small

0 20 40 60 80

l

l

l

ll l l

ll lll l llll

FIGURE 2.4: A conditioned box plot of Algal a1.

> library(Hmisc)

> bwplot(size ~ a1, data=algae,panel=panel.bpplot,

+ probs=seq(.01,.49,by=.01), datadensity=TRUE,

+ ylab='River Size',xlab='Algal A1')

The result of this call is shown in Figure 2.5. The dots are the mean value
of the frequency of the algal for the different river sizes. Vertical lines represent
the 1st quartile, median, and 3rd quartile, in that order. The graphs show us
the actual values of the data with small dashes, and the information of the
distribution of these values is provided by the quantile plots. These graphs
thus provide much more information than standard box plots like the one
shown in Figure 2.4. For instance, we can confirm our previous observation
that smaller rivers have higher frequencies of this alga, but we can also observe
that the value of the observed frequencies for these small rivers is much more
widespread across the domain of frequencies than for other types of rivers.

This type of conditioned plot is not restricted to nominal variables, nor to
a single factor. You can carry out the same kind of conditioning study with
continuous variables as long as you previously “discretized” them. Let us see
an example by observing the behavior of the frequency of algal a3 conditioned
by season and mnO2, this latter being a continuous variable. Figure 2.6 shows
such a graph and the code to obtain it is the following:

> minO2 <- equal.count(na.omit(algae$mnO2),

+ number=4,overlap=1/5)

Predicting Algae Blooms 51

Algal A1

R
iv

e
r

S
iz

e

large

medium

small

0 20 40 60 80

l

l

l

FIGURE 2.5: A conditioned box percentile plot of Algal a1.

> stripplot(season ~ a3|minO2,

+ data=algae[!is.na(algae$mnO2),])

The first instruction uses function equal.count() to create a factorized
version of the continuous variable mnO2. The parameter number sets the num-
ber of desired bins, while the parameter overlap sets the overlap between the
bins near their respective boundaries (this means that certain observations
will be assigned to adjacent bins). The bins are created such that they con-
tain an equal number of observations. You may have noticed that we did not
use algae$mnO2 directly. The reason is the presence of NA values in this vari-
able. This would cause problems in the subsequent graphics function. We have
used the function na.omit() that removes any NA value from a vector.15

The second line contains the call to the graphics function stripplot().
This is another graphical function of the lattice package. It creates a graph
containing the actual values of a variable, in different strips depending on
another variable (in this case the season). Different graphs are then drawn
for each bin of the variable mnO2. The bins are ordered from left to right
and from bottom up. This means that the bottom-left plot corresponds to
lower values of mnO2.16 The existence of NA values in mnO2 also has some
impact on the data to be used for drawing the graph. Instead of using the

15Later, in Section 2.5 we will see a better solution to this.
16You can check the actual values of the created intervals by printing the created dis-

cretized version of the variable.

52 Data Mining with R: Learning with Case Studies

a3

autumn

spring

summer

winter

0 10 20 30 40

l l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l ll

l

l

l

l

l

ll l

l l

l

l l l

ll

l

l

l

l

l

l

ll

l

ll ll

l

l

l

l

l

ll

l

l

l

l

minO2

l

l

l

l l l

ll

l

l

l l

l

l

l

l l

ll

l

ll l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l l

l

l l

l

l

l

l

l

l

ll

l

l

ll

ll

l

l

l

minO2

autumn

spring

summer

winter l

l

l

l

l l

l

l

l

l

ll

l

l

ll

l

l

l l

l

l

l

l

l

l

lll

l

ll

l

l

ll

l

ll

l

l

ll

lll l

l

l

l

l

l

l

l

l

ll

ll

l

minO2

0 10 20 30 40

l

l

l l

l

ll

l

l

l

l

l

ll

l

l

l

l

ll

l

l

l

ll

l

ll

l

l

l

lll l

l

l

l

l

l

l

l

l

l

l

ll

l

ll

l

l l l

l

lll

lll

minO2

FIGURE 2.6: A conditioned strip plot of Algal a3 using a continuous vari-
able.

parameter data=algae (as for creating Figure 2.4), we had to “eliminate” the
rows corresponding to samples with NA values in mnO2.

Further readings on data summarization and visualization

Most standard statistics books will include some sections on providing summaries of data. A
simple and well-written book is Statistics for Technology by Chatfield (1983). This book has
simple examples and is quite informal. Another good source of information is the book Introduc-
tory Statistics with R by Dalgaard (2002). For data visualization, the book Visualizing Data by
Cleveland (1993) is definitely a must. This is an outstanding book that is clearly worth its value.
A more formal follow-up of this work is the book The Elements of Graphing Data (Cleveland,
1995). A more recent and outstanding contribution is the Handbook of Data Visualization edited
by Chen et al. (2008). Finally, more oriented toward R we have the book R Graphics by Murrell
(2006).

2.5 Unknown Values

There are several water samples with unknown values in some of the variables.
This situation, rather common in real-world problems, may preclude the use
of certain techniques that are not able to handle missing values.

Predicting Algae Blooms 53

Whenever we are handling a dataset with missing values, we can follow
several strategies. The most common are

• Remove the cases with unknowns.

• Fill in the unknown values by exploring the correlations between vari-
ables.

• Fill in the unknown values by exploring the similarity between cases.

• Use tools that are able to handle these values.

The last alternative is the most restrictive, as it limits the set of tools one can
use. Still, it may be a good option whenever we are confident in the merit of
the strategies used by those data mining tools to handle missing values.

In the following subsections we will show examples of how to implement
these strategies in R. If you decide to try the code given in these sections, you
should be aware that they are not complementary. This means that as you
go into another method of dealing with missing values, you should read in
again the original data to have all the unknown cases again, as each section
handles them in a different way. The easiest form of doing this is to execute
the following code:

> library(DMwR)

> data(algae)

2.5.1 Removing the Observations with Unknown Values

The option of removing the cases with unknown values is very easy to imple-
ment, and can also be a reasonable choice when the proportion of cases with
unknowns is small with respect to the size of the available dataset.

Before eliminating all observations with at least one unknown value in
some variable, it is always wise to have a look, or at least count them:

> algae[!complete.cases(algae),]

...

...

> nrow(algae[!complete.cases(algae),])

[1] 16

The function complete.cases() produces a vector of Boolean values with
as many elements as there are rows in the algae data frame, where an element
is true if the respective row is “clean” of NA values (i.e., is a complete obser-
vation). Thus the above instruction shows the water samples with some NA
values because the ’ !’ operator performs logical negation, as was mentioned
before.

In order to remove these 16 water samples from our data frame, we can
simply do

54 Data Mining with R: Learning with Case Studies

> algae <- na.omit(algae)

Even if we decide not to use this drastic method of removing all cases with
some unknown value, we can remove some observations because the number
of unknown values is so high that they are almost useless, and even complex
methods of filling in these values will be too unreliable. Note that if you have
executed the previous command, you should read in the data again, as this
instruction has removed all unknowns, so the next statements would not make
sense! Looking at the cases with unknowns we can see that both the samples
62 and 199 have six of the eleven explanatory variables with unknown values.
In such cases, it is wise to simply ignore these observations by removing them:

> algae <- algae[-c(62, 199),]

In problems where the visual inspection of all the cases with unknowns is
unfeasible due to their number, we need to be able to find the rows with a
large number of NAs. The following code gives you the number of unknown
values in each row of the algae dataset:

> apply(algae, 1, function(x) sum(is.na(x)))

The function apply() belongs to a set of very powerful functions of R.
These functions are sometimes known as meta-functions and allow applying
other functions to objects under certain conditions. In the case of the func-
tion apply(), we can use it to apply any function to one of the dimensions
of a multidimensional object. Using the apply() function we are executing a
function on all rows of the data frame.17 This function, specified on the third
argument of apply(), will be called with each row of the data frame. The
function we have provided is in this case a temporary function. It is tempo-
rary because it only exists within the call of the apply(). Alternatively, we
could have supplied the name of a “normal” function. The temporary function
basically calculates the number of NAs on the object x, its argument. It takes
advantage of the fact that a true value in R is equivalent to the number 1,
and the false to the value 0, which means that when you sum a vector of
Boolean values, you obtain how many trues exist in the vector.

Based on this code we can create a function that gives us the rows in
algae that have a certain number of unknowns. Such function is available in
the book package and you can use it as follows:

> data(algae)

> manyNAs(algae, 0.2)

[1] 62 199

17The 1 on the second argument stands for the first dimension of the object in the first
argument, i.e., the rows.

Predicting Algae Blooms 55

The call to data() is only necessary if you have previously removed the
rows with lots of unknowns. The manyNAs() function gives you the row num-
bers that, in this case, have more than 20% of the columns with an NA. In the
second argument you can alternatively supply the exact number of columns
that you want to consider as the limit. So, an alternative to the code given
before that does not require you to know the number of the rows with lots of
unknowns is

> algae <- algae[-manyNAs(algae),]

In this case we have used the default value of the second argument of
manyNAs(), which is 0.2.

2.5.2 Filling in the Unknowns with the Most Frequent Val-
ues

An alternative to eliminating the cases with unknown values is to try to find
the most probable value for each of these unknowns. Again, several strategies
can be followed, with different trade-offs between the level of approximation
and the computational complexity of the method.

The simplest and fastest way of filling in the unknown values is to use
some statistic of centrality. These statistics reflect the most frequent value
of a variable distribution; thus they are a natural choice for this strategy.
Several statistics of centrality exist, like the mean, the median, the mode, etc.
The choice of the most adequate value depends on the distribution of the
variable. For approximately normal distributions, where all observations are
nicely clustered around the mean, this statistic is the best choice. However, for
skewed distributions, or for variables with outliers, the mean can be disastrous.
Skewed distributions have most values clustered near one of the sides of the
range of values of the variable; thus the mean is clearly not representative of
the most common value. On the other hand, the presence of outliers (extreme
values) may distort the calculation of the mean,18 thus leading to similar
representativeness problems. Therefore, it is not wise to use the mean without
a previous inspection of the distribution of the variable using, for instance,
some of the graphical tools of R (e.g., Figure 2.2). For skewed distributions or
for variables with outliers, the median is a better statistic of centrality.

For instance, the sample algae[48,] does not have a value in the variable
mxPH. As the distribution of this variable is nearly normal (compare with
Figure 2.2) we could use its mean value to fill in the “hole”. This could be
done by

> algae[48, "mxPH"] <- mean(algae$mxPH, na.rm = T)

18The mean of the vector c(1.2,1.3,0.4,0.6,3,15) is 3.583.

56 Data Mining with R: Learning with Case Studies

where the function mean() gives the mean value of any vector of numbers,
and na.rm=T disregards any NA values in this vector from the calculation.19

Most of the time we will be interested in filling in all unknowns of a column
instead of working on a case-by-case basis as above. Let us see an example of
this with the variable Chla. This variable is unknown on 12 water samples.
Moreover, this is a situation were the mean is a very poor representative of
the most frequent value of the variable. In effect, the distribution of Chla is
skewed to lower values, and there are a few extreme values that make the mean
value (13.971) highly unrepresentative of the most frequent value. Therefore,
we will use the median to fill in all the unknowns in this column,

> algae[is.na(algae$Chla), "Chla"] <- median(algae$Chla, na.rm = T)

The function centralImputation(), available in the book package, fills
in all unknowns in a dataset using a statistic of centrality. This function uses
the median for numeric columns and uses the most frequent value (the mode)
for nominal variables. You may use it as follows:

> data(algae)

> algae <- algae[-manyNAs(algae),]

> algae <- centralImputation(algae)

While the presence of unknown values may impair the use of some methods,
filling in their values using a strategy as above is usually considered a bad
idea. This simple strategy, although extremely fast, and thus appealing for
large datasets, may introduce a large bias in the data, which can influence our
posterior analysis. However, unbiased methods that find the optimal value to
fill in an unknown are extremely complex and may not be adequate for some
large data mining problems.

2.5.3 Filling in the Unknown Values by Exploring Correla-
tions

An alternative for getting less biased estimators of the unknown values is to
explore the relationships between variables. For instance, using the correlation
between the variable values, we could discover that a certain variable is highly
correlated with mxPH, which would enable us to obtain other, more probable
values for the sample number 48, which has an unknown on this variable. This
could be preferable to the use the mean as we did above.

To obtain the variables correlation we can issue the command

> cor(algae[, 4:18], use = "complete.obs")

The function cor() produces a matrix with the correlation values between

19Without this ‘detail’ the result of the call would be NA because of the presence of NA
values in this column.

Predicting Algae Blooms 57

the variables (we have avoided the first 3 variables/columns because they are
nominal). The use="complete.obs" setting tells R to disregard observations
with NA values in this calculation. Values near 1 (−1) indicate a strong pos-
itive (negative) linear correlation between the values of the two respective
variables. Other R functions could then be used to approximate the functional
form of this linear correlation, which in turn would allow us to estimate the
values of one variable from the values of the correlated variable.

The result of this cor() function is not very legible but we can put it
through the function symnum() to improve this:

> symnum(cor(algae[,4:18],use="complete.obs"))

mP mO Cl NO NH o P Ch a1 a2 a3 a4 a5 a6 a7

mxPH 1

mnO2 1

Cl 1

NO3 1

NH4 , 1

oPO4 . . 1

PO4 . . * 1

Chla . 1

a1 . . . 1

a2 . . 1

a3 1

a4 . . 1

a5 1

a6 . . . 1

a7 1

attr(,"legend")

[1] 0 ' ' 0.3 '.' 0.6 ',' 0.8 '+' 0.9 '*' 0.95 'B' 1

This symbolic representation of the correlation values is more legible, par-
ticularly for large correlation matrices.

In our data, the correlations are in most cases irrelevant. However, there
are two exceptions: between variables NH4 and NO3, and between PO4 and
oPO4. These two latter variables are strongly correlated (above 0.9). The
correlation between NH4 and NO3 is less evident (0.72) and thus it is risky
to take advantage of it to fill in the unknowns. Moreover, assuming that you
have removed the samples 62 and 199 because they have too many unknowns,
there will be no water sample with unknown values on NH4 and NO3. With
respect to PO4 and oPO4, the discovery of this correlation20 allows us to fill
in the unknowns on these variables. In order to achieve this we need to find
the form of the linear correlation between these variables. This can be done
as follows:

20According to domain experts, this was expected because the value of total phosphates
(PO4) includes the value of orthophosphate (oPO4).

58 Data Mining with R: Learning with Case Studies

> data(algae)

> algae <- algae[-manyNAs(algae),]

> lm(PO4 ~ oPO4, data = algae)

Call:

lm(formula = PO4 ~ oPO4, data = algae)

Coefficients:

(Intercept) oPO4

42.897 1.293

The function lm() can be used to obtain linear models of the form Y =
β0 +β1X1 + . . .+βnXn. We will describe this function in detail in Section 2.6.
The linear model we have obtained tells us that PO4 = 42.897+1.293×oPO4.
With this formula we can fill in the unknown values of these variables, provided
they are not both unknown.

After removing the sample 62 and 199, we are left with a single observation
with an unknown value on the variable PO4 (sample 28); thus we could simply
use the discovered relation to do the following:

> algae[28, "PO4"] <- 42.897 + 1.293 * algae[28, "oPO4"]

However, for illustration purposes, let us assume that there were several
samples with unknown values on the variable PO4. How could we use the
above linear relationship to fill all the unknowns? The best would be to create
a function that would return the value of PO4 given the value of oPO4, and
then apply this function to all unknown values:

> data(algae)

> algae <- algae[-manyNAs(algae),]

> fillPO4 <- function(oP) {

+ if (is.na(oP))

+ return(NA)

+ else return(42.897 + 1.293 * oP)

+ }

> algae[is.na(algae$PO4), "PO4"] <- sapply(algae[is.na(algae$PO4),

+ "oPO4"], fillPO4)

We first create a function called fillPO4() with one argument, which is
assumed to be the value of oPO4. Given a value of oPO4, this function re-
turns the value of PO4 according to the discovered linear relation (try issuing
“fillPO4(6.5)”). This function is then applied to all samples with unknown
value on the variable PO4. This is done using the function sapply(), another
example of a meta-function. This function has a vector as the first argument
and a function as the second. The result is another vector with the same
length, with the elements being the result of applying the function in the sec-
ond argument to each element of the given vector. This means that the result
of this call to sapply() will be a vector with the values to fill in the unknowns

Predicting Algae Blooms 59

of the variable PO4. The last assignment is yet another example of the use of
function composition. In effect, in a single instruction we are using the result
of function is.na() to index the rows in the data frame, and then to the
result of this data selection we are applying the function fillPO4() to each
of its elements through function sapply().

The study of the linear correlations enabled us to fill in some new unknown
values. Still, there are several observations left with unknown values. We can
try to explore the correlations between the variables with unknowns and the
nominal variables of this problem. We can use conditioned histograms that are
available through the lattice R package with this objective. For instance,
Figure 2.7 shows an example of such a graph. This graph was produced as
follows:

> histogram(~mxPH | season, data = algae)

mxPH

P
e
rc

e
n
t
o
f
To

ta
l

0

10

20

30

40

6 7 8 9 10

autumn spring

summer

6 7 8 9 10

0

10

20

30

40

winter

FIGURE 2.7: A histogram of variable mxPH conditioned by season.

This instruction obtains an histogram of the values of mxPH for the differ-
ent values of season. Each histogram is built using only the subset of observa-
tions with a certain season value. You may have noticed that the ordering of
the seasons in the graphs is a bit unnatural. If you wish the natural temporal
ordering of the seasons, you have to change the ordering of the labels that
form the factor season in the data frame. This could be done by

> algae$season <- factor(algae$season, levels = c("spring",

+ "summer", "autumn", "winter"))

60 Data Mining with R: Learning with Case Studies

By default, when we factor a set of nominal variable values, the levels
parameter assumes the alphabetical ordering of these values. In this case we
want a different ordering (the temporal order of the seasons), so we need to
specify it to the factor function. Try executing this instruction and afterward
obtain again the histogram to see the difference.

Notice that the histograms in Figure 2.7 are rather similar, thus leading
us to conclude that the values of mxPH are not seriously influenced by the
season of the year when the samples were collected. If we try the same using
the size of the river, with histogram(∼ mxPH | size,data=algae), we can
observe a tendency for smaller rivers to show lower values of mxPH. We can
extend our study of these dependencies using several nominal variables. For
instance,

> histogram(~mxPH | size * speed, data = algae)

shows the variation of mxPH for all combinations of size and speed of
the rivers. It is curious to note that there is no information regarding small
rivers with low speed.21 The single sample that has these properties is exactly
sample 48, the one for which we do not know the value of mxPH !

Another alternative to obtain similar information but now with the con-
crete values of the variable is

> stripplot(size ~ mxPH | speed, data = algae, jitter = T)

The result of this instruction is shown in Figure 2.8. The jitter=T pa-
rameter setting is used to perform a small random permutation of the values
in the Y-direction to avoid plotting observations with the same values over
each other, thus losing some information on the concentration of observations
with some particular value.

This type of analysis could be carried out for the other variables with
unknown values. Still, this is a tedious process because there are too many
combinations to analyze. Nevertheless, this is a method that can be applied
in small datasets with few nominal variables.

2.5.4 Filling in the Unknown Values by Exploring Similari-
ties between Cases

Instead of exploring the correlation between the columns (variables) of a
dataset, we can try to use the similarities between the rows (observations)
to fill in the unknown values. We will illustrate this method to fill in all un-
knowns with the exception of the two samples with too many NAs. Let us
read in again the data to override the code of the previous sections (assuming
you have tried it).

21Actually, if you have executed the instruction given before to fill in the value of mxPH
with the mean value of this variable, this is not true anymore!

Predicting Algae Blooms 61

mxPH

large

medium

small

6 7 8 9

l
l

l
lll l

l
l

l
l

lll

l

l
l

lll l
l l

ll l
l

lll
l

l
l
ll

l

l

l

ll ll
l

l
l

l
lll ll

lll ll
l ll l l

l
l

l
l

ll
l l

l

l

l
ll

l
l

l

l

l
ll l

ll

high

l l
ll

l
l

ll
ll
l

l
l

l l

ll

l
l

l

l lll
l

lll lll

l

low

large

medium

small l
l

ll
l lll ll l

ll
ll

ll l
ll

l
ll

l
l

l

l
l

l
l

l
l
lll

l
ll l lll
ll

l l
ll

l ll
l

l
lll

l

l ll

l

ll l
l
l ll

l ll
l

l
l

l

l

l
ll

l
l

medium

FIGURE 2.8: The values of variable mxPH by river size and speed.

> data(algae)

> algae <- algae[-manyNAs(algae),]

The approach described in this section assumes that if two water samples
are similar, and one of them has an unknown value in some variable, there is a
high probability that this value is similar to the value of the other sample. In
order to use this intuitively appealing method, we need to define the notion of
similarity. This notion is usually defined using a metric over the multivariate
space of the variables used to describe the observations. Many metrics exist
in the literature, but a common choice is the Euclidean distance. This dis-
tance can be informally defined as the square root of the sum of the squared
differences between the values of any two cases, that is,

d(x,y) =

√√√√ p∑
i=1

(xi − yi)2 (2.1)

The method we describe below will use this metric to find the ten most
similar cases of any water sample with some unknown value in a variable, and
then use their values to fill in the unknown. We will consider two ways of
using their values. The first simply calculates the median of the values of the
ten nearest neighbors to fill in the gaps. In case of unknown nominal variables
(which do not occur in our algae dataset), we would use the most frequent
value (the mode) among the neighbors. The second method uses a weighted

62 Data Mining with R: Learning with Case Studies

average of the values of the neighbors. The weights decrease as the distance
to the case of the neighbors increases. We use a Gaussian kernel function to
obtain the weights from the distances. If one of the neighbors is at distance d
from the case to fill in, its value will enter the weighted average with a weight
given by

w(d) = e−d (2.2)

This idea is implemented in function knnImputation() available in the
book package. The function uses a variant of the Euclidean distance to find
the k nearest neighbors of any case. This variant allows the application of the
function to datasets with both nominal and continuous variables. The used
distance function is the following:

d(x,y) =

√√√√ p∑
i=1

δi(xi,yi) (2.3)

where δi() determines the distance between two values on variable i and is
given by

δi(v1, v2) =

 1 if i is nominal and v1 6= v2
0 if i is nominal and v1 = v2
(v1 − v2)2 if i is numeric

(2.4)

These distances are calculated after normalizing the numeric values, that is,

yi =
xi − x̄
σx

(2.5)

Let us now see how to use the knnImputation() function:

> algae <- knnImputation(algae, k = 10)

In case you prefer to use the strategy of using the median values for filling
in the unknowns, you could use the call

> algae <- knnImputation(algae, k = 10, meth = "median")

In summary, after these simple instructions we have the data frame free
of NA values, and we are better prepared to take full advantage of several R
functions.

In terms of deciding which of the methods for filling in unknowns that
were described in the previous sections should be used, the answer is domain
dependent most of the time. The method of exploring the similarities between
cases seems more rational, although it suffers from some problems. These in-
clude the possible existence of irrelevant variables that may distort the notion
of similarity, or even excessive computational complexity for extremely large

Predicting Algae Blooms 63

datasets. Still, for these large problems we can always use random samples to
calculate the similarities.

Further readings on handling unknown values

The book Data Preparation for Data Mining by Pyle (1999) is an extensive source of information
on all issues of preparing data for data mining, and includes handling missing values. The book
Predictive Data Mining by Weiss and Indurkhya (1999) is another good source of information
on data preparation in general, and unknown values in particular.
Hong (1997) and Wilson and Martinez (1997) are good references on distance measures involving
variables with different types. Further references can also be found in Torgo (1999a).

2.6 Obtaining Prediction Models

The main goal of this case study is to obtain predictions for the frequency
values of the seven algae in a set of 140 water samples. Given that these
frequencies are numbers, we are facing a regression task.22 In simple words,
this task consists of trying to obtain a model relating a numerical variable to
a set of other explanatory variables. This model can be used either to predict
the value of the target variable for future observations of the explanatory
variables, or to provide a better understanding of the interactions among the
variables in our problem.

In this section we will initially explore two different predictive models that
could be applied to the algae domain: multiple linear regression and regression
trees. Our choice was mainly guided by illustrative purposes in the context
of this book, and not as a consequence of some formal model selection step.
Still, these models are two good alternatives for regression problems as they
are quite different in terms of their assumptions regarding the “shape” of the
regression function being approximated and they are easy to interpret and
fast to run on any computer. This does not mean that in a real data mining
scenario we should not try other alternatives and then use some form of model
selection (see Section 2.7) to select one or more of them for the final predictions
on our 140 test samples.

The models we are going to try handle missing values in a different way.
While the implementation of linear regression available in R is not able to use
datasets with unknown values, the implementation of regression trees handles
these values naturally. As such, we will follow a different path concerning the
preparation of the data before model construction. For linear regression we
will use one of the techniques described in Section 2.5 for pre-processing the

22Actually, as we want to predict seven values for each water sample, we can handle this
problem as seven different regression problems.

64 Data Mining with R: Learning with Case Studies

data so that we can use these models. Regarding regression trees we will use
the original 200 water samples.23

In the analysis we are going to carry out, we will assume that we do not
know the true values of the target variables for the 140 test samples. As we
have mentioned before, the book Web page also includes a file with these
solutions. Still, they are given just for you to get a final opinion on the value
of the models we are going to obtain.

2.6.1 Multiple Linear Regression

Multiple linear regression is among the most used statistical data analysis
techniques. These models obtain an additive function relating a target variable
to a set of predictor variables. This additive function is a sum of terms of the
form βi ×Xi, where Xi is a predictor variable and βi is a number.

As mentioned before, there is no predefined way of handling missing values
for this type of modeling technique. As such, we will use the data resulting
from applying the method of exploring the similarities among the training
cases to fill in the unknowns (see Section 2.5.4). Nevertheless, before we apply
this method, we will remove water samples number 62 and 199 because, as
mentioned before, they have six of the eleven predictor variables missing. The
following code obtains a data frame without missing values:

> data(algae)

> algae <- algae[-manyNAs(algae),]

> clean.algae <- knnImputation(algae, k = 10)

After executing this code we have a data frame, clean.algae, that has no
missing variable values.

Let us start by learning how to obtain a linear regression model for pre-
dicting the frequency of one of the algae.

> lm.a1 <- lm(a1 ~ ., data = clean.algae[, 1:12])

The function lm() obtains a linear regression model. The first argument
of this function24 indicates the functional form of the model. In this example,
it states that we want a model that predicts the variable a1 using all other
variables present in the data, which is the meaning of the dot character. For
instance, if we wanted a model to predict a1 as a function of the variables
mxPH and NH4, we should have indicated the model as “a1 ∼ mxPH + NH4”.
There are other variants of this model language, called formulas in R, that we
will introduce as necessary. The data parameter sets the data sample to be
used to obtain the model.25

The result of the function is an object that contains the linear model

23Actually, we will remove two of them because they have too many missing values.
24Actually, of most functions used to obtain models in R.
25We have indicated the 11 explanatory variables plus the column respecting algal a1.

Predicting Algae Blooms 65

information. We can obtain more details on the linear model with the following
instruction:

> summary(lm.a1)

Call:

lm(formula = a1 ~ ., data = clean.algae[, 1:12])

Residuals:

Min 1Q Median 3Q Max

-37.679 -11.893 -2.567 7.410 62.190

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 42.942055 24.010879 1.788 0.07537 .

seasonspring 3.726978 4.137741 0.901 0.36892

seasonsummer 0.747597 4.020711 0.186 0.85270

seasonwinter 3.692955 3.865391 0.955 0.34065

sizemedium 3.263728 3.802051 0.858 0.39179

sizesmall 9.682140 4.179971 2.316 0.02166 *

speedlow 3.922084 4.706315 0.833 0.40573

speedmedium 0.246764 3.241874 0.076 0.93941

mxPH -3.589118 2.703528 -1.328 0.18598

mnO2 1.052636 0.705018 1.493 0.13715

Cl -0.040172 0.033661 -1.193 0.23426

NO3 -1.511235 0.551339 -2.741 0.00674 **

NH4 0.001634 0.001003 1.628 0.10516

oPO4 -0.005435 0.039884 -0.136 0.89177

PO4 -0.052241 0.030755 -1.699 0.09109 .

Chla -0.088022 0.079998 -1.100 0.27265

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 17.65 on 182 degrees of freedom

Multiple R-squared: 0.3731, Adjusted R-squared: 0.3215

F-statistic: 7.223 on 15 and 182 DF, p-value: 2.444e-12

Before we analyze the information provided by the function summary()
when applied to linear models, let us say something about how R handled the
three nominal variables. When using them as shown above, R will create a set
of auxiliary variables.26 Namely, for each factor variable with k levels, R will
create k−1 auxiliary variables. These variables have the values 0 or 1. A value
of 1 means that the associated value of the factor is “present”, and that will
also mean that the other auxiliary variables will have the value 0. If all k − 1
variables are 0, then it means that the factor variable has the remaining kth
value. Looking at the summary presented above, we can see that R has created
three auxiliary variables for the factor season (seasonspring, seasonsummer,

26Often called dummy variables.

66 Data Mining with R: Learning with Case Studies

and seasonwinter). This means that if we have a water sample with the
value “autumn” in the variable season, all three auxiliary variables will be set
to zero.

The application of the function summary() to a linear model gives some
diagnostic information concerning the obtained model. First of all, we have
information concerning the residuals (i.e., the errors) of the fit of the linear
model to the used data. These residuals should have a mean zero and should
have a normal distribution (and obviously be as small as possible!).

For each coefficient (variable) of the multiple regression equation, R will
show its value and also its standard error (an estimate of the variability of
these coefficients). In order to check the importance of each coefficient, we can
test the hypothesis that each of them is null, that is, H0 : βi = 0. To test
this hypothesis, the t-test is normally used. R calculates a t value, which is
defined as the ratio between the coefficient value and its standard error, that
is, βi

sβi
. R will show us a column (Pr(>|t|)) associated with each coefficient

with the level at which the hypothesis that the coefficient is null is rejected.
Thus a value of 0.0001 has the meaning that we are 99.99% confident that
the coefficient is not null. R marks each test with a symbol corresponding
to a set of common confidence levels used for these tests. In summary, only
for the coefficients that have some symbol in front of them can we reject the
hypothesis that they may be null with at least 90% confidence.

Another piece of relevant diagnostics information outputted by R are the
R2 coefficients (multiple and adjusted). These indicate the degree of fit of
the model to the data, that is, the proportion of variance in the data that
is explained by the model. Values near 1 are better (almost 100% explained
variance) — while the smaller the values, the larger the lack of fit. The ad-
justed coefficient is more demanding as it takes into account the number of
parameters of the regression model.

Finally, we can also test the null hypothesis that there is no dependence
of the target variable on any of the explanatory variables, that is, H0 : β1 =
β2 = . . . = βm = 0. The F -statistic can be used for this purpose by comparing
it to a critical value. R provides the confidence level at which we are sure to
reject this null hypothesis. Thus a p-level of 0.0001 means that we are 99.99%
confident that the null hypothesis is not true. Usually, if the model fails this
test (e.g., with a p value that is considered too high, for example, higher than
0.1), it makes no sense to look at the t-tests on the individual coefficients.

Some diagnostics may also be checked by plotting a linear model. In effect,
we can issue a command like plot(lm.a1) to obtain a series of successive
plots that help in understanding the performance of the model. One of the
graphs simply plots each fitted target variable value against the respective
residual (error) of the model. Larger errors are usually marked by adding the
corresponding row number to the dot in the graph, so that you can inspect
the observations if you wish. Another graph shown by R is a normal Q-Q plot

Predicting Algae Blooms 67

of the errors that helps you check if they follow a normal distribution27 as
they should.

The proportion of variance explained by this model is not very impressive
(around 32.0%). Still, we can reject the hypothesis that the target variable
does not depend on the predictors (the p value of the F test is very small).
Looking at the significance of some of the coefficients, we may question the
inclusion of some of them in the model. There are several methods for sim-
plifying regression models. In this section we will explore a method usually
known as backward elimination.

We will start our study of simplifying the linear model using the anova()
function. When applied to a single linear model, this function will give us a
sequential analysis of variance of the model fit. That is, the reductions in the
residual sum of squares (the total error of the model) as each term of the
formula is added in turn. The result of this analysis for the model obtained
above is shown below.

> anova(lm.a1)

Analysis of Variance Table

Response: a1

Df Sum Sq Mean Sq F value Pr(>F)

season 3 85 28.2 0.0905 0.9651944

size 2 11401 5700.7 18.3088 5.69e-08 ***

speed 2 3934 1967.2 6.3179 0.0022244 **

mxPH 1 1329 1328.8 4.2677 0.0402613 *

mnO2 1 2287 2286.8 7.3444 0.0073705 **

Cl 1 4304 4304.3 13.8239 0.0002671 ***

NO3 1 3418 3418.5 10.9789 0.0011118 **

NH4 1 404 403.6 1.2963 0.2563847

oPO4 1 4788 4788.0 15.3774 0.0001246 ***

PO4 1 1406 1405.6 4.5142 0.0349635 *

Chla 1 377 377.0 1.2107 0.2726544

Residuals 182 56668 311.4

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

These results indicate that the variable season is the variable that least
contributes to the reduction of the fitting error of the model. Let us remove
it from the model:

> lm2.a1 <- update(lm.a1, . ~ . - season)

The update() function can be used to perform small changes to an existing
linear model. In this case we use it to obtain a new model by removing the
variable season from the lm.a1 model. The summary information for this new
model is given below:

27Ideally, all errors would be in a straight line in this graph.

68 Data Mining with R: Learning with Case Studies

> summary(lm2.a1)

Call:

lm(formula = a1 ~ size + speed + mxPH + mnO2 + Cl + NO3 + NH4 +

oPO4 + PO4 + Chla, data = clean.algae[, 1:12])

Residuals:

Min 1Q Median 3Q Max

-36.460 -11.953 -3.044 7.444 63.730

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 44.9532874 23.2378377 1.934 0.05458 .

sizemedium 3.3092102 3.7825221 0.875 0.38278

sizesmall 10.2730961 4.1223163 2.492 0.01358 *

speedlow 3.0546270 4.6108069 0.662 0.50848

speedmedium -0.2976867 3.1818585 -0.094 0.92556

mxPH -3.2684281 2.6576592 -1.230 0.22033

mnO2 0.8011759 0.6589644 1.216 0.22561

Cl -0.0381881 0.0333791 -1.144 0.25407

NO3 -1.5334300 0.5476550 -2.800 0.00565 **

NH4 0.0015777 0.0009951 1.586 0.11456

oPO4 -0.0062392 0.0395086 -0.158 0.87469

PO4 -0.0509543 0.0305189 -1.670 0.09669 .

Chla -0.0841371 0.0794459 -1.059 0.29096

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 17.57 on 185 degrees of freedom

Multiple R-squared: 0.3682, Adjusted R-squared: 0.3272

F-statistic: 8.984 on 12 and 185 DF, p-value: 1.762e-13

The fit has improved a bit (32.8%) but it is still not too impressive. We
can carry out a more formal comparison between the two models by using
again the anova() function, but this time with both models as arguments:

> anova(lm.a1,lm2.a1)

Analysis of Variance Table

Model 1: a1 ~ season + size + speed + mxPH + mnO2 + Cl + NO3 + NH4 +

oPO4 + PO4 + Chla

Model 2: a1 ~ size + speed + mxPH + mnO2 + Cl + NO3 + NH4 + oPO4 +

PO4 + Chla

Res.Df RSS Df Sum of Sq F Pr(>F)

1 182 56668

2 185 57116 -3 -448 0.4792 0.6971

This function performs an analysis of variance of the two models using
an F -test to assess the significance of the differences. In this case, although

Predicting Algae Blooms 69

the sum of the squared errors has decreased (−448), the comparison shows
that the differences are not significant (a value of 0.6971 tells us that with
only around 30% confidence we can say they are different). Still, we should
recall that this new model is simpler. In order to check if we can remove more
coefficients, we would again use the anova() function, applied to the lm2.a1
model. This process would continue until we have no candidate coefficients
for removal. However, to simplify our backward elimination process, R has a
function that performs all process for us.

The following code creates a linear model that results from applying the
backward elimination method to the initial model we have obtained (lm.a1):28

> final.lm <- step(lm.a1)

Start: AIC= 1151.85

a1 ~ season + size + speed + mxPH + mnO2 + Cl + NO3 + NH4 + oPO4 +

PO4 + Chla

Df Sum of Sq RSS AIC

- season 3 425 57043 1147

- speed 2 270 56887 1149

- oPO4 1 5 56623 1150

- Chla 1 401 57018 1151

- Cl 1 498 57115 1152

- mxPH 1 542 57159 1152

<none> 56617 1152

- mnO2 1 650 57267 1152

- NH4 1 799 57417 1153

- PO4 1 899 57516 1153

- size 2 1871 58488 1154

- NO3 1 2286 58903 1158

Step: AIC= 1147.33

a1 ~ size + speed + mxPH + mnO2 + Cl + NO3 + NH4 + oPO4 + PO4 +

Chla

Df Sum of Sq RSS AIC

- speed 2 213 57256 1144

- oPO4 1 8 57050 1145

- Chla 1 378 57421 1147

- mnO2 1 427 57470 1147

- mxPH 1 457 57500 1147

- Cl 1 464 57506 1147

<none> 57043 1147

- NH4 1 751 57794 1148

- PO4 1 859 57902 1148

- size 2 2184 59227 1151

- NO3 1 2353 59396 1153

28We have omitted some of the output of the step() function for space reasons.

70 Data Mining with R: Learning with Case Studies

...

...

Step: AIC= 1140.09

a1 ~ size + mxPH + Cl + NO3 + PO4

Df Sum of Sq RSS AIC

<none> 58432 1140

- mxPH 1 801 59233 1141

- Cl 1 906 59338 1141

- NO3 1 1974 60405 1145

- size 2 2652 61084 1145

- PO4 1 8514 66946 1165

The function step() uses the Akaike Information Criterion to perform
model search. The search uses backward elimination by default, but with the
parameter direction you may use other algorithms (check the help of this
function for further details).

We can obtain the information on the final model by

> summary(final.lm)

Call:

lm(formula = a1 ~ size + mxPH + Cl + NO3 + PO4, data = clean.algae[,

1:12])

Residuals:

Min 1Q Median 3Q Max

-28.874 -12.732 -3.741 8.424 62.926

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 57.28555 20.96132 2.733 0.00687 **

sizemedium 2.80050 3.40190 0.823 0.41141

sizesmall 10.40636 3.82243 2.722 0.00708 **

mxPH -3.97076 2.48204 -1.600 0.11130

Cl -0.05227 0.03165 -1.651 0.10028

NO3 -0.89529 0.35148 -2.547 0.01165 *

PO4 -0.05911 0.01117 -5.291 3.32e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 17.5 on 191 degrees of freedom

Multiple R-squared: 0.3527, Adjusted R-squared: 0.3324

F-statistic: 17.35 on 6 and 191 DF, p-value: 5.554e-16

The proportion of variance explained by this model is still not very inter-
esting. This kind of proportion is usually considered a sign that the linearity
assumptions of this model are inadequate for the domain.

Predicting Algae Blooms 71

Further readings on multiple linear regression models

Linear regression is one of the most used statistics techniques. As such, most statistics books
will include a chapter on this subject. Still, specialized books should be used for deeper analysis.
Two extensive books are the ones by Drapper and Smith (1981) and Myers (1990). These books
should cover most of the topics you will ever want to know about linear regression.

2.6.2 Regression Trees

Let us now look at a different kind of regression model available in R. Namely,
we will learn how to obtain a regression tree (e.g., Breiman et al., 1984) to
predict the value of the frequencies of algal a1. As these models handle datasets
with missing values, we only need to remove samples 62 and 199 for the reasons
mentioned before.

The necessary instructions to obtain a regression tree are presented below:

> library(rpart)

> data(algae)

> algae <- algae[-manyNAs(algae),]

> rt.a1 <- rpart(a1 ~ ., data = algae[, 1:12])

The first instruction loads the rpart (Therneau and Atkinson, 2010) pack-
age that implements regression trees in R.29 The last instruction obtains the
tree. Note that this function uses the same schema as the lm() function to
describe the functional form of the model. The second argument of rpart()
indicates which data to use to obtain the tree.

The content of the object rt.a1 object is the following:

> rt.a1

n= 198

node), split, n, deviance, yval

* denotes terminal node

1) root 198 90401.290 16.996460

2) PO4>=43.818 147 31279.120 8.979592

4) Cl>=7.8065 140 21622.830 7.492857

8) oPO4>=51.118 84 3441.149 3.846429 *

9) oPO4< 51.118 56 15389.430 12.962500

18) mnO2>=10.05 24 1248.673 6.716667 *

19) mnO2< 10.05 32 12502.320 17.646870

38) NO3>=3.1875 9 257.080 7.866667 *

39) NO3< 3.1875 23 11047.500 21.473910

78) mnO2< 8 13 2919.549 13.807690 *

79) mnO2>=8 10 6370.704 31.440000 *

29Actually, there are other packages implementing this type of model, but we will use
only the package rpart in our illustration.

72 Data Mining with R: Learning with Case Studies

5) Cl< 7.8065 7 3157.769 38.714290 *

3) PO4< 43.818 51 22442.760 40.103920

6) mxPH< 7.87 28 11452.770 33.450000

12) mxPH>=7.045 18 5146.169 26.394440 *

13) mxPH< 7.045 10 3797.645 46.150000 *

7) mxPH>=7.87 23 8241.110 48.204350

14) PO4>=15.177 12 3047.517 38.183330 *

15) PO4< 15.177 11 2673.945 59.136360 *

A regression tree is a hierarchy of logical tests on some of the explanatory
variables. Tree-based models automatically select the more relevant variables;
thus, not all variables need to appear in the tree. A tree is read from the root
node that is marked by R with the number 1. R provides some information
of the data in this node. Namely, we can observe that we have 198 samples
(the overall training data used to obtain the tree) at this node, that these
198 samples have an average value for the frequency of algal a1 of 16.99, and
that the deviance30 from this average is 90401.29. Each node of a tree has two
branches. These are related to the outcome of a test on one of the predictor
variables. For instance, from the root node we have a branch (tagged by R
with “2)”) for the cases where the test “PO4≥43.818” is true (147 samples);
and also a branch for the 51 remaining cases not satisfying this test (marked
by R with “3)”). From node 2 we have two other branches leading to nodes 4
and 5, depending on the outcome of a test on Cl. This testing goes on until
a leaf node is reached. These nodes are marked with asterisks by R. At these
leaves we have the predictions of the tree. This means that if we want to use
a tree to obtain a prediction for a particular water sample, we only need to
follow a branch from the root node until a leaf, according to the outcome of
the tests for this sample. The average target variable value found at the leaf
we have reached is the prediction of the tree.

We can also obtain a graphical representation of the tree. This can be
done by successively applying the functions plot() and text() to the tree.
These functions have several parameters to control the visualization of the
tree. To facilitate obtaining such graphs with nice setups, we have included
in the book package the function prettyTree(). Applying it to the obtained
tree, we obtain the result shown in Figure 2.9.

> prettyTree(rt.a1)

The summary() function can also be applied to tree objects. This will
produce a lot of information concerning the tests on the tree, the alternative
tests that could be considered, and also the surrogate splits. These last splits
are part of the strategy used in R regression trees to handle unknown values.

Trees are usually obtained in two steps. Initially, a large tree is grown, and
then this tree is pruned by deleting bottom nodes through a process of sta-
tistical estimation. This process has the goal of avoiding overfitting. This has

30The sum of squared differences from the average.

Predicting Algae Blooms 73

|

PO4>=43.82

Cl>=7.806

oPO4>=51.12

mnO2>=10.05

NO3>=3.188

mnO2< 8

mxPH< 7.87

mxPH>=7.045 PO4>=15.18

PO4< 43.82

Cl< 7.806

oPO4< 51.12

mnO2< 10.05

NO3< 3.188

mnO2>=8

mxPH>=7.87

mxPH< 7.045 PO4< 15.18

17
n=198

8.98
n=147

7.49
n=140

3.85
n=84

13
n=56

6.72
n=24

17.6
n=32

7.87
n=9

21.5
n=23

13.8
n=13

31.4
n=10

38.7
n=7

40.1
n=51

33.4
n=28

26.4
n=18

46.2
n=10

48.2
n=23

38.2
n=12

59.1
n=11

FIGURE 2.9: A regression tree for predicting algal a1.

74 Data Mining with R: Learning with Case Studies

to do with the fact that an overly large tree will fit the training data almost
perfectly, but will be capturing spurious relationships of the given dataset
(overfitting it), and thus will perform badly when faced with a new data
sample for which predictions are required. The overfitting problem occurs in
many modeling techniques, particularly when the assumptions regarding the
function to approximate are more relaxed. These models, although having a
wider application range (due to these relaxed criteria), suffer from this over-
fitting problem, thus requiring a posterior, statistically based estimation step
to preclude this effect.

The function rpart() that we have used to obtain our tree only grows the
tree, stopping when certain criteria are met. Namely, the tree stops growing
whenever (1) the decrease in the deviance goes below a certain threshold;
when (2) the number of samples in the node is less than another threshold; or
when (3) the tree depth exceeds another value. These thresholds are controlled
by the parameters cp, minsplit, and maxdepth, respectively. Their default
values are 0.01, 20, and 30, respectively. If we want to avoid the overfitting
problem we should always check the validity of these default criteria. This can
be carried out through a process of post-pruning the obtained tree.

The rpart package implements a pruning method called cost complexity
pruning (Breiman et al., 1984). This method uses the values of the parameter
cp that R calculates for each node of the tree. The pruning method tries to
estimate the value of cp that ensures the best compromise between predictive
accuracy and tree size. Given a tree obtained with the rpart() function, R
can produce a set of sub-trees of this tree and estimate their predictive per-
formance. This information can be obtained using the function printcp():31

> printcp(rt.a1)

Regression tree:

rpart(formula = a1 ~ ., data = algae[, 1:12])

Variables actually used in tree construction:

[1] Cl mnO2 mxPH NO3 oPO4 PO4

Root node error: 90401/198 = 456.57

n= 198

CP nsplit rel error xerror xstd

1 0.405740 0 1.00000 1.00932 0.12986

2 0.071885 1 0.59426 0.73358 0.11884

3 0.030887 2 0.52237 0.71855 0.11518

4 0.030408 3 0.49149 0.70161 0.11585

5 0.027872 4 0.46108 0.70635 0.11403

6 0.027754 5 0.43321 0.69618 0.11438

31You can obtain similar information in graphical form using plotcp(rt.a1).

Predicting Algae Blooms 75

7 0.018124 6 0.40545 0.69270 0.11389

8 0.016344 7 0.38733 0.67733 0.10892

9 0.010000 9 0.35464 0.70241 0.11523

The tree produced by the rpart() function is the last tree of this list
(tree 9). This tree has a cp value of 0.01 (the default value of this parame-
ter), includes nine tests and has a relative error (compared to the root node)
of 0.354. However, R estimates, using an internal process of ten-fold cross-
validation, that this tree will have an average relative error32 of 0.70241 ±
0.11523. Using the information provided by these more reliable estimates of
performance, which avoid the overfitting problem, we can observe that we
would theoretically be better off with the tree number 8, which has a lower
estimated relative error (0.67733). An alternative selection rule is to choose
the best tree according to the 1-SE rule. This consists of looking at the cross-
validation error estimates (“xerror” columns) and their standard deviations
(“xstd” column). In this case the 1-SE tree is the smallest tree with error less
than 0.67733+0.10892 = 0.78625, which in this case is the tree number 2 with
1 test and an estimated error of 0.73358. If we prefer this tree to the one
suggested by R, we can obtain it using the respective cp value:33

> rt2.a1 <- prune(rt.a1, cp = 0.08)

> rt2.a1

n= 198

node), split, n, deviance, yval

* denotes terminal node

1) root 198 90401.29 16.996460

2) PO4>=43.818 147 31279.12 8.979592 *

3) PO4< 43.818 51 22442.76 40.103920 *

In the book package we provide the function rpartXse() that automates
this process and takes as argument the se value, defaulting to 1:

> (rt.a1 <- rpartXse(a1 ~ ., data = algae[, 1:12]))

n= 198

node), split, n, deviance, yval

* denotes terminal node

1) root 198 90401.29 16.996460

2) PO4>=43.818 147 31279.12 8.979592 *

3) PO4< 43.818 51 22442.76 40.103920 *

32It is important to note that you may have obtained different numbers on the columns
‘xerror’ and ‘xstd’. The cross-validation estimates are obtained using a random sampling
process, meaning that your samples will probably be different and thus the results will also
differ.

33Actually, any value that is between its cp value and the one of the tree above it.

76 Data Mining with R: Learning with Case Studies

R also allows a kind of interactive pruning of a tree through the function
snip.rpart(). This function can be used to generate a pruned tree in two
ways. The first consists of indicating the number of the nodes (you can obtain
these numbers by printing a tree object) at which you want to prune the tree:

> first.tree <- rpart(a1 ~ ., data = algae[, 1:12])

> snip.rpart(first.tree, c(4, 7))

n= 198

node), split, n, deviance, yval

* denotes terminal node

1) root 198 90401.290 16.996460

2) PO4>=43.818 147 31279.120 8.979592

4) Cl>=7.8065 140 21622.830 7.492857 *

5) Cl< 7.8065 7 3157.769 38.714290 *

3) PO4< 43.818 51 22442.760 40.103920

6) mxPH< 7.87 28 11452.770 33.450000

12) mxPH>=7.045 18 5146.169 26.394440 *

13) mxPH< 7.045 10 3797.645 46.150000 *

7) mxPH>=7.87 23 8241.110 48.204350 *

Note that the function returns a tree object like the one returned by the
rpart() function, which means that you can store your pruned tree using
something like my.tree <- snip.rpart(first.tree,c(4,7)).

Alternatively, you can use snip.rpart() in a graphical way. First, you
plot the tree, and then you call the function without the second argument. If
you click the mouse at some node, R prints on its console some information
about the node. If you click again on that node, R prunes the tree at that
node.34 You can go on pruning nodes in this graphical way. You finish the
interaction by clicking the right mouse button. The result of the call is again
a tree object:

> prettyTree(first.tree)

> snip.rpart(first.tree)

node number: 2 n= 147

response= 8.979592

Error (dev) = 31279.12

node number: 6 n= 28

response= 33.45

Error (dev) = 11452.77

n= 198

node), split, n, deviance, yval

34Note that the plot of the tree is not updated, so you will not see the pruning being
carried out in the graphics window.

Predicting Algae Blooms 77

* denotes terminal node

1) root 198 90401.290 16.996460

2) PO4>=43.818 147 31279.120 8.979592 *

3) PO4< 43.818 51 22442.760 40.103920

6) mxPH< 7.87 28 11452.770 33.450000 *

7) mxPH>=7.87 23 8241.110 48.204350

14) PO4>=15.177 12 3047.517 38.183330 *

15) PO4< 15.177 11 2673.945 59.136360 *

In this example, I have clicked and pruned nodes 2 and 6.

Further readings on regression trees

A more complete study of regression trees is probably the book by Breiman et al. (1984). This is
the standard reference on both classification and regression trees. It provides an in-depth study of
these two types of models. The approach can be seen as a bit formal (at least in some chapters)
for some readers. Nevertheless, it is definitely a good reference, although slightly biased toward
statistical literature. The book on the system C4.5 by Quinlan (1993) is a good reference on
classification trees from the machine learning community perspective. My Ph.D. thesis (Torgo,
1999a), which you can freely download from my home page, should provide a good introduction,
references, and advanced topics on regression trees. It will also introduce you to other types of
tree-based models that have the goal of improving the accuracy of regression trees using more
sophisticated models at the leaves (see also Torgo, 2000).

2.7 Model Evaluation and Selection

In Section 2.6 we saw two examples of prediction models that could be used in
this case study. The obvious question is which one we should use for obtaining
the predictions for the seven algae of the 140 test samples. To answer this
question, one needs to specify some preference criteria over the space of pos-
sible models; that is, we need to specify how we will evaluate the performance
of the models.

Several criteria exist for evaluating (and thus comparing) models. Among
the most popular are criteria that calculate the predictive performance of the
models. Still, other criteria exist such as the model interpretability, or even
the model computational efficiency, that can be important for very large data
mining problems.

The predictive performance of regression models is obtained by comparing
the predictions of the models with the real values of the target variables,
and calculating some average error measure from this comparison. One such
measure is the mean absolute error (MAE). Let us see how to obtain this
measure for our two models (linear regression and regression trees). The first
step is to obtain the model predictions for the set of cases where we want to
evaluate it. To obtain the predictions of any model in R, one uses the function

78 Data Mining with R: Learning with Case Studies

predict(). This general function receives a model and a test dataset and
retrieves the correspondent model predictions:

> lm.predictions.a1 <- predict(final.lm, clean.algae)

> rt.predictions.a1 <- predict(rt.a1, algae)

These two statements collect the predictions of the models obtained in
Section 2.6 for alga a1. Note that we have used the clean.algae data frame
with linear models, because of the missing values.

Having the predictions of the models, we can calculate their mean absolute
error as follows:

> (mae.a1.lm <- mean(abs(lm.predictions.a1 - algae[, "a1"])))

[1] 13.10681

> (mae.a1.rt <- mean(abs(rt.predictions.a1 - algae[, "a1"])))

[1] 11.61717

Another popular error measure is the mean squared error (MSE). This
measure can be obtained as follows:

> (mse.a1.lm <- mean((lm.predictions.a1 - algae[, "a1"])^2))

[1] 295.5407

> (mse.a1.rt <- mean((rt.predictions.a1 - algae[, "a1"])^2))

[1] 271.3226

This latter statistic has the disadvantage of not being measured in the
same units as the target variable, and thus being less interpretable from the
user perspective. Even if we use the MAE statistic, we can ask ourselves
the question whether the scores obtained by the models are good or bad.
An alternative statistic that provides a reasonable answer to this question
is the normalized mean squared error (NMSE). This statistic calculates a
ratio between the performance of our models and that of a baseline predictor,
usually taken as the mean value of the target variable:

> (nmse.a1.lm <- mean((lm.predictions.a1-algae[,'a1'])^2)/
+ mean((mean(algae[,'a1'])-algae[,'a1'])^2))

[1] 0.6473034

> (nmse.a1.rt <- mean((rt.predictions.a1-algae[,'a1'])^2)/
+ mean((mean(algae[,'a1'])-algae[,'a1'])^2))

[1] 0.5942601

Predicting Algae Blooms 79

l
l

l l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

ll
l ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

lll

l

l

l

l

l

l

l

l
l

l

l

l
lll

l

ll

l

l

l

l
l

l

l
l

ll ll l
l

ll

l
l
l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l l l l
l

l

l
l

l l
l

ll

l
l

l

l
l

l

l

l

ll

l

l

l
l

l

l

l

l

l
ll

l
ll

l

l

l ll
l

l

l

l

lll
l

l

l
ll l

lll

l
l

l

l
l

l

ll
l

l ll
l
l

l

ll
l

l

l

l

l
l

−10 0 10 20 30 40

0
2
0

4
0

6
0

8
0

Linear Model

Predictions

Tr
u
e
 V

a
lu

e
s

l
l
ll

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

ll
lll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

lll

l

l

l

l

l

l

l

l
l

l

l

l
lll

l

ll

l

l

l

l
l

l

l
l
lllll
l
ll

l
l
l
l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

llll
l

l

l
l

ll
l
ll

l
l
l

l
l

l

l

l

ll

l

l

l
l
l

l

l

l

l
ll

l
ll

l

l

lll
l

l

l

l

lll
l

l

l
lll
lll

l
l

l

l
l

l

ll
l

lll
l
l

l

ll
l

l

l

l

l
l

10 15 20 25 30 35 40

0
2
0

4
0

6
0

8
0

Regression Tree

Predictions

Tr
u
e
 V

a
lu

e
s

FIGURE 2.10: Errors scatter plot.

The NMSE is a unit-less error measure with values usually ranging from
0 to 1. If your model is performing better than this very simple baseline
predictor, then the NMSE should be clearly less than 1. The smaller the
NMSE, the better. Values grater than 1 mean that your model is performing
worse than simply predicting always the average for all cases!

In the book package you can find the function regr.eval() that calcu-
lates the value of a set of regression evaluation metrics. Below you can find
an example use of this function. Check its help to see different uses of this
function.

> regr.eval(algae[, "a1"], rt.predictions.a1, train.y = algae[,

+ "a1"])

mae mse rmse nmse nmae

11.6171709 271.3226161 16.4718735 0.5942601 0.6953711

It is also interesting to have some kind of visual inspection of the pre-
dictions of the models. A possibility is to use a scatter plot of the errors.
Figure 2.10 shows an example of this type of analysis for the predictions of
our two models, and it was produced with the following code:

> old.par <- par(mfrow = c(1, 2))

> plot(lm.predictions.a1, algae[, "a1"], main = "Linear Model",

+ xlab = "Predictions", ylab = "True Values")

> abline(0, 1, lty = 2)

> plot(rt.predictions.a1, algae[, "a1"], main = "Regression Tree",

+ xlab = "Predictions", ylab = "True Values")

> abline(0, 1, lty = 2)

> par(old.par)

Looking at Figure 2.10 we can observe that the models have rather poor

80 Data Mining with R: Learning with Case Studies

performance in several cases. In the ideal scenario that they make correct
predictions for all cases, all the circles in the plots should lie on the dashed
lines, which were obtained with the abline(0,1,lty=2) calls. These lines
cross the origin of the plots and represent the points where the X-coordinate
is equal to the Y-coordinate. Given that each circle in the plots obtains its
coordinates from the predicted and truth values of the target variable, if these
values were equal, the circles would all be placed on this ideal line. As we
observe, that is not the case at all! We can check which is the sample number
where a particularly bad prediction is made with the function identify(),
which we have seen can be used to let the user interactively click on the dots
in a graph:

> plot(lm.predictions.a1,algae[,'a1'],main="Linear Model",

+ xlab="Predictions",ylab="True Values")

> abline(0,1,lty=2)

> algae[identify(lm.predictions.a1,algae[,'a1']),]

Using this code and after finishing the interaction with the graphics window
by right-clicking on the graph, you should see the rows of the algae data frame
corresponding to the clicked circles — because we are using the vector returned
by the identify() function to index the algae data frame.

Looking at Figure 2.10 (left) with the predictions of the linear model, we
can see that this model predicts negative algae frequencies for some cases. In
this application domain, it makes no sense to say that the occurrence of an
alga in a water sample is negative (at most, it can be zero). As such, we can
take advantage of this domain knowledge and use this minimum value as a
form of improving the linear model performance:

> sensible.lm.predictions.a1 <- ifelse(lm.predictions.a1 <

+ 0, 0, lm.predictions.a1)

> regr.eval(algae[, "a1"], lm.predictions.a1, stats = c("mae",

+ "mse"))

mae mse

13.10681 295.54069

> regr.eval(algae[, "a1"], sensible.lm.predictions.a1, stats = c("mae",

+ "mse"))

mae mse

12.48276 286.28541

We have used the function ifelse() to achieve this effect. This function
has three arguments. The first is a logical condition, the second is the result
of the function call when the condition is true, while the third argument is the
result when the condition is false. Notice how this small detail has increased
the performance of our model.

According to the performance measures calculated previously, one should

Predicting Algae Blooms 81

prefer the regression tree to obtain the predictions for the 140 test samples
as it obtained a lower NMSE. However, there is a trap on this reasoning. Our
goal is to choose the best model for obtaining the predictions on the 140 test
samples. As we do not know the target variables values for those samples, we
have to estimate which of our models will perform better on these test samples.
The key issue here is to obtain a reliable estimate of a model performance
on data for which we do not know the true target value. Calculating the
performance metrics using the training data (as we did before) is unreliable
because the obtained estimates are biased. In effect, there are models that
can easily obtain zero prediction error on the training data. However, this
performance will hardly generalize over new samples for which the target
variable value is unknown. This phenomenon is usually known as overfitting
the training data, as mentioned previously. Thus, to select a model, one needs
to obtain more reliable estimates of the models performance on unseen data.
k -fold cross-validation (k-fold CV) is among the most frequently used methods
for obtaining these reliable estimates for small datasets like our case study.
This method can be briefly described as follows. Obtain k equally sized and
random subsets of the training data. For each of these k subsets, build a model
using the remaining k−1 sets and evaluate this model on the kth subset. Store
the performance of the model and repeat this process for all remaining subsets.
In the end, we have k performance measures, all obtained by testing a model
on data not used for its construction, and that is the key issue. The k -fold
cross-validation estimate is the average of these k measures. A common choice
for k is 10. Sometimes we even repeat the overall k-fold CV process several
times to get even more reliable estimates.

In general, we can say that when facing a predictive task, we have to make
the following decisions:

• Select the alternative models to consider (the models can actually be
alternative settings of the same algorithm) for the predictive task(s) we
want to address.

• Select the evaluation metrics that will be used to compare the models.

• Choose the experimental methodology for obtaining reliable estimates
of these metrics.

In the book package we provide the function experimentalComparison(),
which is designed to help in this model selection/comparison tasks. It can
be used with different estimation methods, including cross-validation. The
function has three parameters: (1) the data sets to use for the comparison,
(2) the alternative models, and (3) the experimental process parameters. We
will illustrate its use by comparing a linear model with several variants of
regression trees, on the algae dataset.

The experimentalComparison() function is generic in the sense that it
can be used for any model(s) and any dataset(s). The user supplies a set of

82 Data Mining with R: Learning with Case Studies

functions implementing the models to be compared. Each of these functions
should implement a full train+test+evaluate cycle for the given training and
test datasets. The functions will be called from the experimental routines on
each iteration of the estimation process. These functions should return a vector
with the values of whatever evaluation metrics the user wants to estimate by
cross-validation. Let us construct such functions for our two target models:

> cv.rpart <- function(form,train,test,...) {

+ m <- rpartXse(form,train,...)

+ p <- predict(m,test)

+ mse <- mean((p-resp(form,test))^2)

+ c(nmse=mse/mean((mean(resp(form,train))-resp(form,test))^2))

+ }

> cv.lm <- function(form,train,test,...) {

+ m <- lm(form,train,...)

+ p <- predict(m,test)

+ p <- ifelse(p < 0,0,p)

+ mse <- mean((p-resp(form,test))^2)

+ c(nmse=mse/mean((mean(resp(form,train))-resp(form,test))^2))

+ }

In this illustrative example, we have assumed that we want to use the
NMSE as evaluation metric of our regression trees and linear models. All
of these user-defined functions should have as the first three parameters a
formula, the training data, and the test data. The remaining parameters
that may be included in the call by the experimental routines are param-
eters of the learner being evaluated. Both functions carry out the same
train+test+evaluate cycle although using obviously a different learning al-
gorithm. Both return as result a named vector with the score in terms of
NMSE. The functions definitions also include a special parameter, “...”. This
parameter can be used when creating any R function. It allows the specifica-
tion of functions with a variable number of parameters. The “...” construct
is in effect a list that captures all arguments eventually passed in the func-
tion call after the first three that are specified by name. This facility is used to
pass eventual extra learning parameters to the actual learning function (in one
case the rpartXse() function and in the other the lm() function). Another
particularity of these functions is the use of the resp() function, available in
our book package, to obtain the target variable values of a data set given a
formula.

Having defined the functions that will carry out the learning and testing
phase of our models, we can carry out the cross-validation comparison as
follows:

> res <- experimentalComparison(

+ c(dataset(a1 ~ .,clean.algae[,1:12],'a1')),
+ c(variants('cv.lm'),
+ variants('cv.rpart',se=c(0,0.5,1))),
+ cvSettings(3,10,1234))

Predicting Algae Blooms 83

CROSS VALIDATION EXPERIMENTAL COMPARISON

** DATASET :: a1

++ LEARNER :: cv.lm variant -> cv.lm.defaults

Repetition 1

Fold: 1 2 3 4 5 6 7 8 9 10

Repetition 2

Fold: 1 2 3 4 5 6 7 8 9 10

Repetition 3

Fold: 1 2 3 4 5 6 7 8 9 10

++ LEARNER :: cv.rpart variant -> cv.rpart.v1

Repetition 1

Fold: 1 2 3 4 5 6 7 8 9 10

Repetition 2

Fold: 1 2 3 4 5 6 7 8 9 10

Repetition 3

Fold: 1 2 3 4 5 6 7 8 9 10

++ LEARNER :: cv.rpart variant -> cv.rpart.v2

Repetition 1

Fold: 1 2 3 4 5 6 7 8 9 10

Repetition 2

Fold: 1 2 3 4 5 6 7 8 9 10

Repetition 3

Fold: 1 2 3 4 5 6 7 8 9 10

++ LEARNER :: cv.rpart variant -> cv.rpart.v3

Repetition 1

Fold: 1 2 3 4 5 6 7 8 9 10

Repetition 2

Fold: 1 2 3 4 5 6 7 8 9 10

Repetition 3

Fold: 1 2 3 4 5 6 7 8 9 10

As mentioned previously, the first argument should be a vector with the
datasets to be used in the experimental comparison. Each dataset is speci-
fied as dataset(<formula>,<data frame>,<label>). The second argument
of experimentalComparison() contains a vector of learning systems variants.
Each variant is specified using the function variant(). Its first argument is the
name of the user-defined function that will carry out the learn+test+evaluate
cycle. Any remaining and optional arguments will specify sets of alternative
values of the parameters of the learning function. The variants() function
generates a set of alternative models resulting from all possible combinations of
the parameters values. In this example call, we are using the “cv.lm” only with

84 Data Mining with R: Learning with Case Studies

its default parameters, and for the “cv.rpart” we are specifying different alter-
native values for the parameter se. This means that the experiment includes
three variants of regression trees, as you can confirm on the output generated
by the previous call. The third parameter of the experimentalComparison()
function specifies the settings of the cross-validation experiment, namely how
many repetitions of the k-folds cross-validation process are to be carried out
(in this case, 3), what is the value of k (10), and what is the seed for the
random number generator. This last parameter is to ensure the possibility
of replicating the experiments if required (for instance, with other learning
systems).

The result of this call is a complex object containing all information con-
cerning the experimental comparison. In our package we provide several utility
functions to explore this information. For instance, the following provides a
summary of the results of the comparison:

> summary(res)

== Summary of a Cross Validation Experiment ==

3 x 10 - Fold Cross Validation run with seed = 1234

* Datasets :: a1

* Learners :: cv.lm.defaults, cv.rpart.v1, cv.rpart.v2, cv.rpart.v3

* Summary of Experiment Results:

-> Datataset: a1

*Learner: cv.lm.defaults

nmse

avg 0.7196105

std 0.1833064

min 0.4678248

max 1.2218455

invalid 0.0000000

*Learner: cv.rpart.v1

nmse

avg 0.6440843

std 0.2521952

min 0.2146359

max 1.1712674

invalid 0.0000000

*Learner: cv.rpart.v2

nmse

avg 0.6873747

std 0.2669942

Predicting Algae Blooms 85

nmse

cv.lm.defaults

cv.rpart.v1

cv.rpart.v2

cv.rpart.v3

0.2 0.4 0.6 0.8 1.0 1.2

l

l

l

l

ll l

a1

FIGURE 2.11: Visualization of the cross-validation results.

min 0.2146359

max 1.3356744

invalid 0.0000000

*Learner: cv.rpart.v3

nmse

avg 0.7167122

std 0.2579089

min 0.3476446

max 1.3356744

invalid 0.0000000

As it can be seen, one of the variants of the regression tree achieves the
best average NMSE score. Whether the difference is statistically significant
with respect to the other alternatives is a question we will address later in
this section. We can also obtain a visualization (Figure 2.11) of these results
as follows:

> plot(res)

The experimentalComparison() function assigns a label to each model
variant. In case you want to know the specific parameter settings correspond-
ing to any label, you can proceed as follows:

> getVariant("cv.rpart.v1", res)

86 Data Mining with R: Learning with Case Studies

Learner:: "cv.rpart"

Parameter values

se = 0

We can carry out a similar comparative experiment for all seven prediction
tasks we are facing at the same time. The following code implements that idea:

> DSs <- sapply(names(clean.algae)[12:18],

+ function(x,names.attrs) {

+ f <- as.formula(paste(x,"~ ."))

+ dataset(f,clean.algae[,c(names.attrs,x)],x)

+ },

+ names(clean.algae)[1:11])

> res.all <- experimentalComparison(

+ DSs,

+ c(variants('cv.lm'),
+ variants('cv.rpart',se=c(0,0.5,1))
+),

+ cvSettings(5,10,1234))

For space reasons we have omitted the output of the above commands.
This code starts by creating the vector of datasets to use in the compar-
isons, that is, the seven prediction tasks. For this we need to create a formula
for each problem. We have obtained this formula creating a string by con-
catenating the name of the column of each target variable with the string
“∼ .”. This string is then transformed into an R formula using the function
as.formula(). Having created the vector of datasets we have used the func-
tion experimentalComparison() as before, with the single difference that
this time we have carried out five repetitions of the tenfold cross-validation
process for increased statistical significance of the results. Depending on the
power of your computer, this code may take a while to run.

In Figure 2.12 we show the results of the models for the different algae on
the CV process. The figure was obtained with

> plot(res.all)

As we can observe, there are several very bad results; that is, NMSE scores
clearly above 1, which is the baseline of being as competitive as predict-
ing always the average target variable value for all test cases! If we want
to check which is the best model for each problem, we can use the function
bestScores() from our package:

> bestScores(res.all)

$a1

system score

nmse cv.rpart.v1 0.64231

Predicting Algae Blooms 87

nmse

cv.lm.defaults

cv.rpart.v1

cv.rpart.v2

cv.rpart.v3

0 5 10 15 20

l

l

l

l

llll

a1

l

l

l

l

lllll

lllllllllllll

lllllll

ll

a2

0 5 10 15 20

l

l

l

l

lllll

lllllllllll

llllll

llllll

a3

cv.lm.defaults

cv.rpart.v1

cv.rpart.v2

cv.rpart.v3

l

l

l

l

ll ll l

lllllll

llllllllll

llllllllll

a4

l

l

l

l

ll

llllllll lllll

llllll

llll

a5

l

l

l

l

ll l ll l

ll lllllll

llll

llll

a6

cv.lm.defaults

cv.rpart.v1

cv.rpart.v2

cv.rpart.v3

l

l

l

l

l ll ll

lll lll

llll

ll

a7

FIGURE 2.12: Visualization of the cross-validation results on all algae.

$a2

system score

nmse cv.rpart.v3 1

$a3

system score

nmse cv.rpart.v2 1

$a4

system score

nmse cv.rpart.v2 1

$a5

system score

nmse cv.lm.defaults 0.9316803

$a6

system score

nmse cv.lm.defaults 0.9359697

$a7

88 Data Mining with R: Learning with Case Studies

system score

nmse cv.rpart.v3 1.029505

The output of this function confirms that, with the exception of alga 1, the
results are rather disappointing. The variability of the results (see Figure 2.12)
provides good indications that this might be a good candidate for an ensem-
ble approach. Ensembles are model construction methods that basically try
to overcome some limitations of individual models by generating a large set
of alternative models and then combining their predictions. There are many
approaches to obtain ensembles that differ not only in the way the diversity
of models is obtained (e.g., different training samples, different variables, dif-
ferent modeling techniques, etc.), but also in how the ensemble prediction is
reached (e.g., voting, averaging, etc.). Random forests (Breiman, 2001) are
regarded as one of the more competitive examples of ensembles. They are
formed by a large set of tree-based models (regression or classification trees).
Each tree is fully grown (no post-pruning); and at each step of the tree grow-
ing process, the best split for each node is chosen from a random subset of
attributes. Predictions for regression tasks are obtained by averaging the pre-
dictions of the trees in the ensemble. The R package randomForest (Liaw
and Wiener, 2002) implements these ideas on function randomForest(). The
following code repeats the previous cross-validation experiment, this time in-
cluding three variants of random forests, each with a different number of trees
in the ensemble. We have again omitted the output for space reasons.

> library(randomForest)

> cv.rf <- function(form,train,test,...) {

+ m <- randomForest(form,train,...)

+ p <- predict(m,test)

+ mse <- mean((p-resp(form,test))^2)

+ c(nmse=mse/mean((mean(resp(form,train))-resp(form,test))^2))

+ }

> res.all <- experimentalComparison(

+ DSs,

+ c(variants('cv.lm'),
+ variants('cv.rpart',se=c(0,0.5,1)),
+ variants('cv.rf',ntree=c(200,500,700))
+),

+ cvSettings(5,10,1234))

Using the function bestScores() we can confirm the advantages of the
ensemble approach:

> bestScores(res.all)

$a1

system score

nmse cv.rf.v3 0.5447361

Predicting Algae Blooms 89

$a2

system score

nmse cv.rf.v3 0.7777851

$a3

system score

nmse cv.rf.v2 0.9946093

$a4

system score

nmse cv.rf.v3 0.9591182

$a5

system score

nmse cv.rf.v1 0.7907947

$a6

system score

nmse cv.rf.v3 0.9126477

$a7

system score

nmse cv.rpart.v3 1.029505

In effect, for all problems except alga 7, the best score is obtained by
some variant of a random forest. Still, the results are not always very good,
in particular for alga 7. The output of the function bestScores() does not
tell us whether the difference between the scores of these best models and the
remaining alternatives is statistically significant; that is, what is the confidence
that with another random sample of data we get a similar outcome? The
function compAnalysis() in our package provides this information. It carries
out a set of paired Wilcoxon tests, between a model and the other alternatives.
Let us see some examples of its use.

The model “cv.rf.v3” is the best for algae 1, 2, 4, and 6. The following
checks the statistical significance of this statement:

> compAnalysis(res.all,against='cv.rf.v3',
datasets=c('a1','a2','a4','a6'))

== Statistical Significance Analysis of Comparison Results ==

Baseline Learner:: cv.rf.v3 (Learn.1)

** Evaluation Metric:: nmse

- Dataset: a1

Learn.1 Learn.2 sig.2 Learn.3 sig.3 Learn.4 sig.4

AVG 0.5447361 0.7077282 ++ 0.6423100 + 0.6569726 ++

90 Data Mining with R: Learning with Case Studies

STD 0.1736676 0.1639373 0.2399321 0.2397636

Learn.5 sig.5 Learn.6 sig.6 Learn.7 sig.7

AVG 0.6875212 ++ 0.5490511 0.5454724

STD 0.2348946 0.1746944 0.1766636

- Dataset: a2

Learn.1 Learn.2 sig.2 Learn.3 sig.3 Learn.4 sig.4

AVG 0.7777851 1.0449317 ++ 1.0426327 ++ 1.01626123 ++

STD 0.1443868 0.6276144 0.2005522 0.07435826

Learn.5 sig.5 Learn.6 sig.6 Learn.7 sig.7

AVG 1.000000e+00 ++ 0.7829394 0.7797307

STD 2.389599e-16 0.1433550 0.1476815

- Dataset: a4

Learn.1 Learn.2 sig.2 Learn.3 sig.3 Learn.4 sig.4

AVG 0.9591182 2.111976 1.0073953 + 1.000000e+00 +

STD 0.3566023 3.118196 0.1065607 2.774424e-16

Learn.5 sig.5 Learn.6 sig.6 Learn.7 sig.7

AVG 1.000000e+00 + 0.9833399 0.9765730

STD 2.774424e-16 0.3824403 0.3804456

- Dataset: a6

Learn.1 Learn.2 sig.2 Learn.3 sig.3 Learn.4 sig.4

AVG 0.9126477 0.9359697 ++ 1.0191041 1.000000e+00

STD 0.3466902 0.6045963 0.1991436 2.451947e-16

Learn.5 sig.5 Learn.6 sig.6 Learn.7 sig.7

AVG 1.000000e+00 0.9253011 0.9200022

STD 2.451947e-16 0.3615926 0.3509093

Legends:

Learners -> Learn.1 = cv.rf.v3 ; Learn.2 = cv.lm.defaults ;

Learn.3 = cv.rpart.v1 ; Learn.4 = cv.rpart.v2 ; Learn.5 = cv.rpart.v3 ;

Learn.6 = cv.rf.v1 ; Learn.7 = cv.rf.v2 ;

Signif. Codes -> 0 '++' or '--' 0.001 '+' or '-' 0.05 ' ' 1

The columns “sig.X” provide the information we are seeking. Absence of
a symbol means that our confidence in the observed difference between the
respective model and the “cv.rf.v3” being statistically significant is lower than
95% (check the legend to understand the meaning of the symbols). Plus signals
mean that the average evaluation metric of the model is significantly higher
than the one of “cv.rf.v3”, which is bad as best NMSE scores are the lower
ones. Minus signals represent the opposite.

As you can confirm, the difference between this variant of random forests
and the other variants is usually not statistically significant. With respect to
the other models, there is in most cases a significant advantage to this variant
of random forests.

We could carry out a similar analysis for the other models that have best

Predicting Algae Blooms 91

scores for the other algae by simply using different values in the against and
datasets parameters of the function compAnalysis().

Further readings on model selection and model ensembles

Comparing/selecting among different models has been the subject of much research. Among
these we can suggest the works by Dietterich (1998), Provost et al. (1998), Nemenyi (1969)
and Demsar (2006).

With respect to ensemble learning, there is again a huge amount of work among which we
can highlight the works on bagging (Breiman, 1996) and boosting (Freund and Shapire, 1996;
Shapire, 1990). A good overview of research on these topics can be found in Dietterich (2000).

2.8 Predictions for the Seven Algae

In this section we will see how to obtain the predictions for the seven algae on
the 140 test samples. Section 2.7 described how to proceed to choose the best
models to obtain these predictions. The used procedure consisted of obtaining
unbiased estimates of the NMSE for a set of models on all seven predictive
tasks, by means of a cross-validation experimental process.

The main goal in this data mining problem is to obtain seven predictions for
each of the 140 test samples. Each of these seven predictions will be obtained
using the model that our cross-validation process has indicated as being the
“best” for that task. This will be one of either the models shown by our call
to the bestScores() function in the previous section. Namely, it will be one
of either “cv.rf.v3”, “cv.rf.v2”, “cv.rf.v1”, or “cv.rpart.v3”.

Let us start by obtaining these models using all the available training
data so that we can apply them to the test set. Notice that, for simplicity,
we will grow the regression tree using the clean.algae data frame that had
the NA values substituted by a k nearest neighbor imputation process. This
can be avoided for regression trees as they incorporate their own method for
handling unknown values. Random forests, on the contrary, do not include
such a method so they will need to be learned using the clean.algae data
frame.

The following code obtains all seven models:

> bestModelsNames <- sapply(bestScores(res.all),

+ function(x) x['nmse','system'])
> learners <- c(rf='randomForest',rpart='rpartXse')
> funcs <- learners[sapply(strsplit(bestModelsNames,'\\.'),
+ function(x) x[2])]

> parSetts <- lapply(bestModelsNames,

+ function(x) getVariant(x,res.all)@pars)

> bestModels <- list()

> for(a in 1:7) {

92 Data Mining with R: Learning with Case Studies

+ form <- as.formula(paste(names(clean.algae)[11+a],'~ .'))
+ bestModels[[a]] <- do.call(funcs[a],

+ c(list(form,clean.algae[,c(1:11,11+a)]),parSetts[[a]]))

+ }

We start by obtaining a vector with the names of the winning variants for
each task. We then obtain the respective names of the R functions that learn
these variants on the vector funcs. This is achieved by extracting a part of the
name of the variant with the strsplit() function. As this step is a slightly
more sophisticated example of function composition, you may find it useful to
execute this code in separate parts to fully understand the role of the different
function calls involved in the statement that obtains these function names.
The list parSetts is assigned with the parameter settings for each of the
winning variants. The getVariant() function gives the model corresponding
to a variant name. The object returned by this function is of the class learner.
These objects have different“slots”, one of which is named pars and contains a
list with the parameters of the variant. The slots of an object can be obtained
in R by the operator “@”. Finally, we obtain the models and collect them on
the list bestModels. For each alga, we construct the formula as before and
then call the respective R function using the proper parameter settings. This
is achieved with the function do.call() that allows us to call any function by
providing its name as a string on the first argument, and then including the
arguments of the call as a list in the second argument. After the execution of
this code, we have a list with seven models obtained for each algae and ready
for making predictions for the test set.35

The data frame test.algae, available in our package, contains the 140 test
samples. This dataset also includes unknown values; thus our first step will
be to fill in these unknowns using the same methodology as before. The first
temptation to carry out this task would be to apply the knnImputation()
function to the test.algae data frame. This would carry out the task but it
would be slightly against one of the golden rules of predictive modeling: do
not use any information from your test sets to obtain the models. In effect,
by applying the function directly to the test set, we would be using the other
test cases to find the ten nearest neighbors that would be used to fill in each
unknown. Although we would not use the information on the target variables,
which would be really wrong, we still can avoid this process by using the
training data for finding the neighbors instead. This will be more correct but
also more realistic in the sense that if we were to apply the models on real
problems, we would probably get the water samples sequentially, one at a time.
The function knnImputation() has an extra argument that can be used for
these situations of filling in unknowns on a test set. We can use it as follows:

> clean.test.algae <- knnImputation(test.algae, k = 10, distData = algae[,

+ 1:11])

35A word of warning: trying to print the bestModels object may fill your screen!

Predicting Algae Blooms 93

The distData argument allows you to supply an extra set of data where
the ten nearest neighbors are to be found for each case with unknowns in
the test.algae data frame. Notice that we have omitted the target variables
from the algae dataset, as the test set does not include information on these
variables.

We are now ready to obtain the matrix with the predictions for the entire
test set:

> preds <- matrix(ncol=7,nrow=140)

> for(i in 1:nrow(clean.test.algae))

+ preds[i,] <- sapply(1:7,

+ function(x)

+ predict(bestModels[[x]],clean.test.algae[i,])

+)

With this simple code we obtain a matrix (preds) with the required 7×140
predictions. At this stage we can compare these predictions with the real values
to obtain some feedback on the quality of our approach to this prediction
problem. The true values of the test set are contained in the algae.sols
data frame, available in our package. The following code calculates the NMSE
scores of our models:

> avg.preds <- apply(algae[,12:18],2,mean)

> apply(((algae.sols-preds)^2), 2,mean) /

+ apply((scale(algae.sols,avg.preds,F)^2),2,mean)

a1 a2 a3 a4 a5 a6 a7

0.4650380 0.8743948 0.7798143 0.7329075 0.7308526 0.8281238 1.0000000

We first obtain the predictions of the baseline model used to calculate the
NMSE, which in our case consists of predicting the average value of the target
variable. Then we proceed to calculate the NMSEs for the seven models/algae.
This is done on a single statement that may seem a bit complex at first but
as soon as you understand it, we are sure you will be amazed by its simplicity
and compactness. The scale() function can be used to normalize a dataset.
It works by subtracting the second argument from the first and then dividing
the result by the third, unless this argument is FALSE, as is the case above.
In this example we are thus using it to subtract a vector (the average target
value of all seven algae) from each line of a matrix.

The results that we obtained are in accordance with the cross-validation
estimates obtained previously. They confirm the difficulty in obtaining good
scores for alga 7, while for the other problems the results are more competitive,
in particular for alga 1.

In summary, with a proper model selection phase, we were able to obtain
interesting scores for these prediction problems.

94 Data Mining with R: Learning with Case Studies

2.9 Summary

The main goal of this first case study was to familiarize the reader with R. For
this purpose we used a small problem — at least by data mining standards.
We described how to perform some of the most basic data analysis tasks in R.

If you are interested in knowing more about the international data analysis
competition that was behind the data used in this chapter, you can browse
through the competition Web page,36 or read some of the papers of the winning
solutions (Bontempi et al., 1999; Chan, 1999; Devogelaere et al., 1999; Torgo,
1999b) to compare the data analysis strategies followed by these authors.

In terms of data mining, this case study has provided information on

• Data visualization

• Descriptive statistics

• Strategies to handle unknown variable values

• Regression tasks

• Evaluation metrics for regression tasks

• Multiple linear regression

• Regression trees

• Model selection/comparison through k-fold cross-validation

• Model ensembles and random forests

We hope that by now you are more acquainted with the interaction with
R, and also familiarized with some of its features. Namely, you should have
learned some techniques for

• Loading data from text files

• How to obtain descriptive statistics of datasets

• Basic visualization of data

• Handling datasets with unknown values

• How to obtain some regression models

• How to use the obtained models to obtain predictions for a test set

Further cases studies will give you more details on these and other data
mining techniques.

36http://www.erudit.de/erudit/competitions/ic-99/.

http://www.erudit.de/erudit/

Chapter 3

Predicting Stock Market Returns

This second case study tries to move a bit further in terms of the use of data
mining techniques. We will address some of the difficulties of incorporating
data mining tools and techniques into a concrete business problem. The spe-
cific domain used to illustrate these problems is that of automatic stock trading
systems. We will address the task of building a stock trading system based
on prediction models obtained with daily stock quotes data. Several models
will be tried with the goal of predicting the future returns of the S&P 500
market index. These predictions will be used together with a trading strategy
to reach a decision regarding the market orders to generate. This chapter ad-
dresses several new data mining issues, among which are (1) how to use R to
analyze data stored in a database, (2) how to handle prediction problems with
a time ordering among data observations (also known as time series), and (3)
an example of the difficulties of translating model predictions into decisions
and actions in real-world applications.

3.1 Problem Description and Objectives

Stock market trading is an application domain with a large potential for data
mining. In effect, the existence of an enormous amount of historical data
suggests that data mining can provide a competitive advantage over human
inspection of these data. On the other hand, there are researchers claiming
that the markets adapt so rapidly in terms of price adjustments that there
is no space to obtain profits in a consistent way. This is usually known as
the efficient markets hypothesis. This theory has been successively replaced
by more relaxed versions that leave some space for trading opportunities due
to temporary market inefficiencies.

The general goal of stock trading is to maintain a portfolio of assets based
on buy and sell orders. The long-term objective is to achieve as much profit
as possible from these trading actions. In the context of this chapter we will
constrain a bit more this general scenario. Namely, we will only“trade”a single
security, actually a market index. Given this security and an initial capital, we
will try to maximize our profit over a future testing period by means of trading
actions (Buy, Sell, Hold). Our trading strategy will use as a basis for decision

95

96 Data Mining with R: Learning with Case Studies

making the indications provided by the result of a data mining process. This
process will consist of trying to predict the future evolution of the index based
on a model obtained with historical quotes data. Thus our prediction model
will be incorporated in a trading system that generates its decisions based
on the predictions of the model. Our overall evaluation criteria will be the
performance of this trading system, that is, the profit/loss resulting from the
actions of the system as well as some other statistics that are of interest to
investors. This means that our main evaluation criteria will be the operational
results of applying the knowledge discovered by our data mining process and
not the predictive accuracy of the models developed during this process.

3.2 The Available Data

In our case study we will concentrate on trading the S&P 500 market index.
Daily data concerning the quotes of this security are freely available in many
places, for example, the Yahoo finance site.1

The data we will use is available in the book package. Once again we will
explore other means of getting the data as a form of illustrating some of the
capabilities of R. Moreover, some of these other alternatives will allow you to
apply the concepts learned in this chapter to more recent data than the one
packaged at the time of writing this book.

In order to get the data through the book R package, it is enough to issue

> library(DMwR)

> data(GSPC)

The first statement is only required if you have not issued it before in
your R session. The second instruction will load an object, GSPC,2 of class
xts. We will describe this class of objects in Section 3.2.1, but for now you
can manipulate it as if it were a matrix or a data frame (try, for example,
head(GSPC)).

At the book Web site,3 you can find these data in two alternative formats.
The first is a comma separated values (CSV) file that can be read into R in
the same way as the data used in Chapter 2. The other format is a MySQL
database dump file that we can use to create a database with the S&P 500
quotes in MySQL. We will illustrate how to load these data into R for these
two alternative formats. It is up to you to decide which alternative you will
download, or if you prefer the easy path of loading it from the book package.
The remainder of the chapter (i.e., the analysis after reading the data) is
independent of the storage schema you decide to use.

1http://finance.yahoo.com.
2^GSPC is the ticker ID of S&P 500 at Yahoo finance from where the quotes were obtained.
3http://www.liaad.up.pt/~ltorgo/DataMiningWithR.

http://www.liaad.up.pt/~ltorgo/DataMiningWithR
http://finance.yahoo.com

Predicting Stock Market Returns 97

For the sake of completeness we will also mention yet another way of
getting this data into R, which consists of downloading it directly from the
Web. If you choose to follow this path, you should remember that you will
probably be using a larger dataset than the one used in the analysis carried
out in this book.

Whichever source you choose to use, the daily stock quotes data includes
information regarding the following properties:

• Date of the stock exchange session

• Open price at the beginning of the session

• Highest price during the session

• Lowest price

• Closing price of the session

• Volume of transactions

• Adjusted close price4

3.2.1 Handling Time-Dependent Data in R

The data available for this case study depends on time. This means that each
observation of our dataset has a time tag attached to it. This type of data is
frequently known as time series data. The main distinguishing feature of this
kind of data is that order between cases matters, due to their attached time
tags. Generally speaking, a time series is a set of ordered observations of a
variable Y :

y1, y2, . . . , yt−1, yt, yt+1, . . . , yn (3.1)

where yt is the value of the series variable Y at time t.
The main goal of time series analysis is to obtain a model based on past

observations of the variable, y1, y2, . . . , yt−1, yt, which allows us to make pre-
dictions regarding future observations of the variable, yt+1, . . . , yn.

In the case of our stocks data, we have what is usually known as a mul-
tivariate time series, because we measure several variables at the same time
tags, namely the Open, High, Low, Close, V olume, and AdjClose.5

R has several packages devoted to the analysis of this type of data, and in
effect it has special classes of objects that are used to store type-dependent

4This is basically the closing price adjusted for stock splits, dividends/distributions, and
rights offerings.

5Actually, if we wanted to be more precise, we would have to say that we have only two
time series (Price and V olume) because all quotes are actually the same variable (Price)
sampled at different times of the day.

98 Data Mining with R: Learning with Case Studies

data. Moreover, R has many functions tuned for this type of objects, like
special plotting functions, etc.

Among the most flexible R packages for handling time-dependent data are
zoo (Zeileis and Grothendieck, 2005) and xts (Ryan and Ulrich, 2010). Both
offer similar power, although xts provides a set of extra facilities (e.g., in
terms of sub-setting using ISO 8601 time strings) to handle this type of data.
In technical terms the class xts extends the class zoo, which means that any
xts object is also a zoo object, and thus we can apply any method designed for
zoo objects to xts objects. We will base our analysis in this chapter primarily
on xts objects. We start with a few illustrative examples of the creation and
use of this type of object. Please note that both zoo and xts are extra packages
(i.e., that do not come with a base installation of R), and that you need to
download and install in R (see Section 1.2.1, page 3).

The following examples illustrate how to create objects of class xts.

> library(xts)

> x1 <- xts(rnorm(100), seq(as.POSIXct("2000-01-01"), len = 100,

+ by = "day"))

> x1[1:5]

[,1]

2000-01-01 0.82029230

2000-01-02 0.99165376

2000-01-03 0.05829894

2000-01-04 -0.01566194

2000-01-05 2.02990349

> x2 <- xts(rnorm(100), seq(as.POSIXct("2000-01-01 13:00"),

+ len = 100, by = "min"))

> x2[1:4]

[,1]

2000-01-01 13:00:00 1.5638390

2000-01-01 13:01:00 0.7876171

2000-01-01 13:02:00 1.0860185

2000-01-01 13:03:00 1.2332406

> x3 <- xts(rnorm(3), as.Date(c("2005-01-01", "2005-01-10",

+ "2005-01-12")))

> x3

[,1]

2005-01-01 -0.6733936

2005-01-10 -0.7392344

2005-01-12 -1.2165554

The function xts() receives the time series data in the first argument.
This can either be a vector, or a matrix if we have a multivariate time series.6

6Note that this means that we cannot have xts with mix-mode data, such as in a data
frame.

Predicting Stock Market Returns 99

In the latter case each column of the matrix is interpreted as a variable being
sampled at each time tag (i.e., each row). The time tags are provided in the
second argument. This needs to be a set of time tags in any of the existing
time classes in R. In the examples above we have used two of the most common
classes to represent time information in R: the POSIXct/POSIXlt classes and
the Date class. There are many functions associated with these objects for
manipulating dates information, which you may want to check using the help
facilities of R. One such example is the seq() function. We have used this
function before to generate sequences of numbers. Here we are using it7 to
generate time-based sequences as you see in the example.

As you might observe in the above small examples, the objects may be
indexed as if they were “normal” objects without time tags (in this case we see
a standard vector sub-setting). Still, we will frequently want to subset these
time series objects based on time-related conditions. This can be achieved in
several ways with xts objects, as the following small examples try to illustrate:

> x1[as.POSIXct("2000-01-04")]

[,1]

2000-01-04 -0.01566194

> x1["2000-01-05"]

[,1]

2000-01-05 2.029903

> x1["20000105"]

[,1]

2000-01-05 2.029903

> x1["2000-04"]

[,1]

2000-04-01 01:00:00 0.2379293

2000-04-02 01:00:00 -0.1005608

2000-04-03 01:00:00 1.2982820

2000-04-04 01:00:00 -0.1454789

2000-04-05 01:00:00 1.0436033

2000-04-06 01:00:00 -0.3782062

2000-04-07 01:00:00 -1.4501869

2000-04-08 01:00:00 -1.4123785

2000-04-09 01:00:00 0.7864352

> x1["2000-03-27/"]

7Actually, it is a specific method of the generic function seq() applicable to objects of
class POSIXt. You may know more about this typing “? seq.POSIXt”.

100 Data Mining with R: Learning with Case Studies

[,1]

2000-03-27 01:00:00 0.10430346

2000-03-28 01:00:00 -0.53476341

2000-03-29 01:00:00 0.96020129

2000-03-30 01:00:00 0.01450541

2000-03-31 01:00:00 -0.29507179

2000-04-01 01:00:00 0.23792935

2000-04-02 01:00:00 -0.10056077

2000-04-03 01:00:00 1.29828201

2000-04-04 01:00:00 -0.14547894

2000-04-05 01:00:00 1.04360327

2000-04-06 01:00:00 -0.37820617

2000-04-07 01:00:00 -1.45018695

2000-04-08 01:00:00 -1.41237847

2000-04-09 01:00:00 0.78643516

> x1["2000-02-26/2000-03-03"]

[,1]

2000-02-26 1.77472194

2000-02-27 -0.49498043

2000-02-28 0.78994304

2000-02-29 0.21743473

2000-03-01 0.54130752

2000-03-02 -0.02972957

2000-03-03 0.49330270

> x1["/20000103"]

[,1]

2000-01-01 0.82029230

2000-01-02 0.99165376

2000-01-03 0.05829894

The first statement uses a concrete value of the same class as the ob-
ject given in the second argument at the time of creation of the x1 ob-
ject. The other examples illustrate a powerful indexing schema introduced
by the xts package, which is one of its advantages over other time series pack-
ages in R. This schema implements time tags as strings with the CCYY-MM-DD
HH:MM:SS[.s] general format. As you can confirm in the examples, separators
can be omitted and parts of the time specification left out to include sets of
time tags. Moreover, the “/” symbol can be used to specify time intervals that
can unspecified on both ends, with the meaning of start or final time tag.

Multiple time series can be created in a similar fashion as illustrated below:

> mts.vals <- matrix(round(rnorm(25),2),5,5)

> colnames(mts.vals) <- paste('ts',1:5,sep='')
> mts <- xts(mts.vals,as.POSIXct(c('2003-01-01','2003-01-04',
+ '2003-01-05','2003-01-06','2003-02-16')))
> mts

Predicting Stock Market Returns 101

ts1 ts2 ts3 ts4 ts5

2003-01-01 0.96 -0.16 -1.03 0.17 0.62

2003-01-04 0.10 1.64 -0.83 -0.55 0.49

2003-01-05 0.38 0.03 -0.09 -0.64 1.37

2003-01-06 0.73 0.98 -0.66 0.09 -0.89

2003-02-16 2.68 0.10 1.44 1.37 -1.37

> mts["2003-01",c("ts2","ts5")]

ts2 ts5

2003-01-01 -0.16 0.62

2003-01-04 1.64 0.49

2003-01-05 0.03 1.37

2003-01-06 0.98 -0.89

The functions index() and time() can be used to “extract” the time tags
information of any xts object, while the coredata() function obtains the
data values of the time series:

> index(mts)

[1] "2003-01-01 WET" "2003-01-04 WET" "2003-01-05 WET" "2003-01-06 WET"

[5] "2003-02-16 WET"

> coredata(mts)

ts1 ts2 ts3 ts4 ts5

[1,] 0.96 -0.16 -1.03 0.17 0.62

[2,] 0.10 1.64 -0.83 -0.55 0.49

[3,] 0.38 0.03 -0.09 -0.64 1.37

[4,] 0.73 0.98 -0.66 0.09 -0.89

[5,] 2.68 0.10 1.44 1.37 -1.37

In summary, xts objects are adequate to store stock quotes data, as they
allow to store multiple time series with irregular time tags, and provide pow-
erful indexing schemes.

3.2.2 Reading the Data from the CSV File

As we have mentioned before, at the book Web site you can find different
sources containing the data to use in this case study. If you decide to use the
CSV file, you will download a file whose first lines look like this:

"Index" "Open" "High" "Low" "Close" "Volume" "AdjClose"

1970-01-02 92.06 93.54 91.79 93 8050000 93

1970-01-05 93 94.25 92.53 93.46 11490000 93.46

1970-01-06 93.46 93.81 92.13 92.82 11460000 92.82

1970-01-07 92.82 93.38 91.93 92.63 10010000 92.63

1970-01-08 92.63 93.47 91.99 92.68 10670000 92.68

1970-01-09 92.68 93.25 91.82 92.4 9380000 92.4

1970-01-12 92.4 92.67 91.2 91.7 8900000 91.7

102 Data Mining with R: Learning with Case Studies

Assuming you have downloaded the file and have saved it with the name
“sp500.csv” on the current working directory of your R session, you can load
it into R and create an xts object with the data, as follows:

> GSPC <- as.xts(read.zoo("sp500.csv", header = T))

The function read.zoo() of package zoo8 reads a CSV file and transforms
the data into a zoo object assuming that the first column contains the time
tags. The function as.xts() coerces the resulting object into an object of
class xts.

3.2.3 Getting the Data from the Web

Another alternative way of getting the S&P 500 quotes is to use the free service
provided by Yahoo finance, which allows you to download a CSV file with
the quotes you want. The tseries (Trapletti and Hornik, 2009) R package9

includes the function get.hist.quote() that can be used to download the
quotes into a zoo object. The following is an example of the use of this function
to get the quotes of S&P 500:

> library(tseries)

> GSPC <- as.xts(get.hist.quote("^GSPC",start="1970-01-02",

quote=c("Open", "High", "Low", "Close","Volume","AdjClose")))

...

...

> head(GSPC)

Open High Low Close Volume AdjClose

1970-01-02 92.06 93.54 91.79 93.00 8050000 93.00

1970-01-05 93.00 94.25 92.53 93.46 11490000 93.46

1970-01-06 93.46 93.81 92.13 92.82 11460000 92.82

1970-01-07 92.82 93.38 91.93 92.63 10010000 92.63

1970-01-08 92.63 93.47 91.99 92.68 10670000 92.68

1970-01-09 92.68 93.25 91.82 92.40 9380000 92.40

As the function get.hist.quote() returns an object of class zoo, we have
again used the function as.xts() to coerce it to xts. We should remark that
if you issue these commands, you will get more data than what is provided
with the object in the book package. If you want to ensure that you get the
same results in future commands in this chapter, you should instead use the
command

8You may wonder why we did not load the package zoo with a call to the library()

function. The reason is that this was already done when we loaded the package xts because
it depends on package zoo.

9Another extra package that needs to be installed.

Predicting Stock Market Returns 103

> GSPC <- as.xts(get.hist.quote("^GSPC",

start="1970-01-02",end='2009-09-15',
quote=c("Open", "High", "Low", "Close","Volume","AdjClose")))

where “2009-09-15” is the last day with quotes in our package GSPC object.
Another way of obtaining quotes data from the Web (but not the only,

as we will see later), is to use the function getSymbols() from package
quantmod (Ryan, 2009). Again this is an extra package that you should install
before using it. It provides several facilities related to financial data analysis
that we will use throughout this chapter. Function getSymbols() in conjunc-
tion with other functions of this package provide a rather simple but powerful
way of getting quotes data from different data sources. Let us see some exam-
ples of its use:

> library(quantmod)

> getSymbols("^GSPC")

The function getSymbols() receives on the first argument a set of symbol
names and will fetch the quotes of these symbols from different Web sources or
even local databases, returning by default an xts object with the same name
as the symbol,10 which will silently be created in the working environment.
The function has many parameters that allow more control over some of these
issues. As you can verify, the returned object does not cover the same period
as the data coming with our book package, and it has slightly different column
names. This can be easily worked around as follows:

> getSymbols("^GSPC", from = "1970-01-01", to = "2009-09-15")

> colnames(GSPC) <- c("Open", "High", "Low", "Close", "Volume",

+ "AdjClose")

With the framework provided by package quantmod you may actually have
several symbols with different associated sources of data, each with its own
parameters. All these settings can be specified at the start of your R session
with the setSymbolLookup() function, as you may see in the following simple
example:

> setSymbolLookup(IBM=list(name='IBM',src='yahoo'),
+ USDEUR=list(name='USD/EUR',src='oanda))
> getSymbols(c('IBM','USDEUR'))

> head(IBM)

IBM.Open IBM.High IBM.Low IBM.Close IBM.Volume IBM.Adjusted

2007-01-03 97.18 98.40 96.26 97.27 9196800 92.01

2007-01-04 97.25 98.79 96.88 98.31 10524500 93.00

2007-01-05 97.60 97.95 96.91 97.42 7221300 92.16

2007-01-08 98.50 99.50 98.35 98.90 10340000 93.56

2007-01-09 99.08 100.33 99.07 100.07 11108200 94.66

2007-01-10 98.50 99.05 97.93 98.89 8744800 93.55

10Eventually pruned from invalid characters for R object names.

104 Data Mining with R: Learning with Case Studies

> head(USDEUR)

USDEUR

2009-01-01 0.7123

2009-01-02 0.7159

2009-01-03 0.7183

2009-01-04 0.7187

2009-01-05 0.7188

2009-01-06 0.7271

In this code we have specified several settings for getting the quotes
from the Web of two different symbols: IBM from Yahoo! finance; and US
Dollar—Euro exchange rate from Oanda.11 This is done through function
setSymbolLookup(), which ensures any subsequent use of the getSymbols()
function in the current R session with the identifiers specified in the call, will
use the settings we want. In this context, the second statement will fetch the
quotes of the two symbols using the information we have specified. Functions
saveSymbolLookup() and loadSymbolLookup() can be used to save and load
these settings across different R sessions. Check the help of these functions
for further examples and more thorough explanations of the workings behind
these handy functions.

3.2.4 Reading the Data from a MySQL Database

Another alternative form of storing the data used in this case study is in a
MySQL database. At the book Web site there is a file containing SQL state-
ments that can be downloaded and executed within MySQL to upload S&P 500
quotes into a database table. Information on the use and creation of MySQL
databases can be found in Section 1.3 (page 35).

After creating a database to store the stock quotes, we are ready to execute
the SQL statements of the file downloaded from the book site. Assuming that
this file is in the same directory from where you have entered MySQL, and that
the database you have created is named Quotes, you can log in to MySQL and
then type

mysql> use Quotes;

mysql> source sp500.sql;

The SQL statements contained in the file“sp500.sql”(the file downloaded
from the book Web site) will create a table named “gspc” and insert several
records in this table containing the data available for this case study. You can
confirm that everything is OK by executing the following statements at the
MySQL prompt:

mysql> show tables;

11http://www.oanda.com.

http://www.oanda.com

Predicting Stock Market Returns 105

+------------------+

| Tables_in_Quotes |

+------------------+

| gspc |

+------------------+

1 row in set (0.00 sec)

mysql> select * from gspc;

The last SQL statement should print a large set of records, namely the
quotes of S&P 500. If you want to limit this output, simply add limit 10 at
the end of the statement.

There are essentially two paths to communicate with databases in R. One
based on the ODBC protocol and the other is based on the general interface
provided by package DBI (R Special Interest Group on Databases, 2009) to-
gether with specific packages for each database management system (DBMS).

If you decide to use the ODBC protocol, you need to ensure that you are
able to communicate with your DBMS using this protocol. This may involve
installing some drivers on the DBMS side. From the side of R, you only need
to install package RODBC.

Package DBI implements a series of database interface functions. These
functions are independent of the database server that is actually used to store
the data. The user only needs to indicate which communication interface he
will use at the first step when he establishes a connection to the database.
This means that if you change your DBMS, you will only need to change a
single instruction (the one that specifies the DBMS you wish to communicate
with). In order to achieve this independence the user also needs to install
other packages that take care of the communication details for each different
DBMS. R has many DBMS-specific packages for major DBMSs. Specifically,
for communication with a MySQL database stored in some server, you have
the package RMySQL (James and DebRoy, 2009).

3.2.4.1 Loading the Data into R Running on Windows

If you are running R on Windows, independently of whether the MySQL
database server resides on that same PC or in another computer (eventually
running other operating system), the simplest way to connect to the database
from R is through the ODBC protocol. In order to use this protocol in R, you
need to install the RODBC package.

Before you are able to connect to any MySQL database for the first time
using the ODBC protocol, a few extra steps are necessary. Namely, you need
also to install the MySQL ODBC driver on your Windows system, which is
called “myodbc” and can be downloaded from the MySQL site. This only needs
to be done the first time you use ODBC to connect to MySQL. After installing
this driver, you can create ODBC connections to MySQL databases residing
on your computer or any other system to which you have access through your

106 Data Mining with R: Learning with Case Studies

local network. According to the ODBC protocol, every database connection
you create has a name (the Data Source Name, or DSN according to ODBC
jargon). This name will be used to access the MySQL database from R. To
create an ODBC connection on a Windows PC, you must use a program
called “ODBC data sources”, available at the Windows control panel. After
running this program you have to create a new User Data Source using the
MySQL ODBC driver (myodbc) that you are supposed to have previously in-
stalled. During this creation process, you will be asked several things, such
as the MySQL server address (localhost if it is your own computer, or e.g.,
myserver.xpto.pt if it is a remote server), the name of the database to which
you want to establish a connection (Quotes in our previous example), and the
name you wish to give to this connection (the DSN). Once you have completed
this process, which you only have to do for the first time, you are ready to
connect to this MySQL database from R.

The following R code establishes a connection to the Quotes database from
R, and loads the S&P 500 quotes data into a data frame,

> library(RODBC)

> ch <- odbcConnect("QuotesDSN",uid="myusername",pwd="mypassword")

> allQuotes <- sqlFetch(ch,"gspc")

> GSPC <- xts(allQuotes[,-1],order.by=as.Date(allQuotes[,1]))

> head(GSPC)

Open High Low Close Volume AdjClose

1970-01-02 92.06 93.54 91.79 93.00 8050000 93.00

1970-01-05 93.00 94.25 92.53 93.46 11490000 93.46

1970-01-06 93.46 93.81 92.13 92.82 11460000 92.82

1970-01-07 92.82 93.38 91.93 92.63 10010000 92.63

1970-01-08 92.63 93.47 91.99 92.68 10670000 92.68

1970-01-09 92.68 93.25 91.82 92.40 9380000 92.40

> odbcClose(ch)

After loading the RODBC package, we establish a connection with
our database using the previously created DSN,12 using the function
odbcConnect(). We then use one of the functions available to query a ta-
ble, in this case the sqlFetch() function, which obtains all rows of a table
and returns them as a data frame object. The next step is to create an xts ob-
ject from this data frame using the date information and the quotes. Finally,
we close the connection to the database with the odbcClose() function.

A brief note on working with extremely large databases: If your query gen-
erates a result too large to fit in your computer main memory, then you have to
use some other strategy. If that is feasible for your analysis, you can try to han-
dle the data in chunks, and this can be achieved with the parameter max of the
functions sqlFecth() and sqlFecthMore(). Other alternatives/approaches

12Here you should substitute whichever DSN name you have used when creating the data
source in the Windows control panel, and also your MySQL username and password.

Predicting Stock Market Returns 107

can be found in the High-Performance and Parallel Computing task view,13

for instance, through the package ff (Adler et al., 2010).

3.2.4.2 Loading the Data into R Running on Linux

In case you are running R from a Unix-type box the easiest way to com-
municate to your MySQL database is probably through the package DBI in
conjunction with the package RMySQL. Still, the ODBC protocol is also avail-
able for these operating systems. With the RMySQL package you do not need
any preparatory stages as with RODBC. After installing the package you can
start using it as shown by the following example.

> library(DBI)

> library(RMySQL)

> drv <- dbDriver("MySQL")

> ch <- dbConnect(drv,dbname="Quotes","myusername","mypassword")

> allQuotes <- dbGetQuery(ch,"select * from gspc")

> GSPC <- xts(allQuotes[,-1],order.by=as.Date(allQuotes[,1]))

> head(GSPC)

Open High Low Close Volume AdjClose

1970-01-02 92.06 93.54 91.79 93.00 8050000 93.00

1970-01-05 93.00 94.25 92.53 93.46 11490000 93.46

1970-01-06 93.46 93.81 92.13 92.82 11460000 92.82

1970-01-07 92.82 93.38 91.93 92.63 10010000 92.63

1970-01-08 92.63 93.47 91.99 92.68 10670000 92.68

1970-01-09 92.68 93.25 91.82 92.40 9380000 92.40

> dbDisconnect(ch)

[1] TRUE

> dbUnloadDriver(drv)

After loading the packages, we open the connection with the database
using the functions dbDriver() and dbConnect(), with obvious semantics.
The function dbGetQuery() allows us to send an SQL query to the database
and receive the result as a data frame. After the usual conversion to an
xts object, we close the database connection using the dbDisconnect() and
dbUnloadDriver(). Further functions, including functions to obtain partial
chunks of queries, also exist in the package DBI and may be consulted in the
package documentation.

Another possibility regarding the use of data in a MySQL database is to
use the infrastructure provided by the quantmod package that we described in
Section 3.2.3. In effect, the function getSymbols() can use as source a MySQL
database. The following is a simple illustration of its use assuming a database
as the one described above:

13http://cran.at.r-project.org/web/views/HighPerformanceComputing.html.

http://cran.at.r-project.org/web/views/HighPerformanceComputing.html

108 Data Mining with R: Learning with Case Studies

> setSymbolLookup(GSPC=list(name='gspc',src='mysql',
+ db.fields=c('Index','Open','High','Low','Close','Volume','AdjClose'),
+ user='xpto',password='ypto',dbname='Quotes'))
> getSymbols('GSPC')

[1] "GSPC"

3.3 Defining the Prediction Tasks

Generally speaking, our goal is to have good forecasts of the future price of the
S&P 500 index so that profitable orders can be placed on time. This general
goal should allow us to easily define what to predict with our models—it
should resort to forecast the future values of the price time series. However,
it is easy to see that even with this simple task we immediately face several
questions, namely, (1) which of the daily quotes? or (2) for which time in the
future? Answering these questions may not be easy and usually depends on
how the predictions will be used for generating trading orders.

3.3.1 What to Predict?

The trading strategies we will describe in Section 3.5 assume that we obtain
a prediction of the tendency of the market in the next few days. Based on
this prediction, we will place orders that will be profitable if the tendency is
confirmed in the future.

Let us assume that if the prices vary more than p%, we consider this worth-
while in terms of trading (e.g., covering transaction costs). In this context, we
want our prediction models to forecast whether this margin is attainable in the
next k days.14 Please note that within these k days we can actually observe
prices both above and below this percentage. This means that predicting a
particular quote for a specific future time t+ k might not be the best idea. In
effect, what we want is to have a prediction of the overall dynamics of the price
in the next k days, and this is not captured by a particular price at a specific
time. For instance, the closing price at time t + k may represent a variation
much lower than p%, but it could have been preceded by a period of prices
representing variations much higher than p% within the window t · · · t+k. So,
what we want in effect is to have a good prediction of the overall tendency of
the prices in the next k days.

We will describe a variable, calculated with the quotes data, that can be
seen as an indicator (a value) of the tendency in the next k days. The value
of this indicator should be related to the confidence we have that the target
margin p will be attainable in the next k days. At this stage it is important

14We obviously do not want to be waiting years to obtain the profit margin.

Predicting Stock Market Returns 109

to note that when we mention a variation in p%, we mean above or below the
current price. The idea is that positive variations will lead us to buy, while
negative variations will trigger sell actions. The indicator we are proposing
resumes the tendency as a single value, positive for upward tendencies, and
negative for downward price tendencies.

Let the daily average price be approximated by

P̄i =
Ci +Hi + Li

3
(3.2)

where Ci, Hi and Li are the close, high, and low quotes for day i, respectively.
Let Vi be the set of k percentage variations of today’s close to the following

k days average prices (often called arithmetic returns):

Vi =
{
P̄i+j − Ci

Ci

}k
j=1

(3.3)

Our indicator variable is the total sum of the variations whose absolute
value is above our target margin p%:

Ti =
∑
v

{v ∈ Vi : v > p% ∨ v < −p%} (3.4)

The general idea of the variable T is to signal k-days periods that have
several days with average daily prices clearly above the target variation. High
positive values of T mean that there are several average daily prices that are
p% higher than today’s close. Such situations are good indications of potential
opportunities to issue a buy order, as we have good expectations that the prices
will rise. On the other hand, highly negative values of T suggest sell actions,
given the prices will probably decline. Values around zero can be caused by
periods with “flat” prices or by conflicting positive and negative variations
that cancel each other.

The following function implements this simple indicator:

> T.ind <- function(quotes, tgt.margin = 0.025, n.days = 10) {

+ v <- apply(HLC(quotes), 1, mean)

+ r <- matrix(NA, ncol = n.days, nrow = NROW(quotes))

+ for (x in 1:n.days) r[, x] <- Next(Delt(v, k = x), x)

+ x <- apply(r, 1, function(x) sum(x[x > tgt.margin | x <

+ -tgt.margin]))

+ if (is.xts(quotes))

+ xts(x, time(quotes))

+ else x

+ }

The function starts by obtaining the average price calculated according to
Equation 3.2. The function HLC() extracts the High, Low, and Close quotes
from a quotes object. We then obtain the returns of the next n.days days
with respect to the current close price. The Next() function allows one to

110 Data Mining with R: Learning with Case Studies

shift the values of a time series in time (both forward or backward). The
Delt() function can be used to calculate percentage or log returns of a series
of prices. Finally, the T.ind() function sums up the large absolute returns,
that is, returns above the target variation margin, which we have set by default
to 2.5%.

We can get a better idea of the behavior of this indicator in Figure 3.1,
which was produced with the following code:

> candleChart(last(GSPC, "3 months"), theme = "white", TA = NULL)

> avgPrice <- function(p) apply(HLC(p), 1, mean)

> addAvgPrice <- newTA(FUN = avgPrice, col = 1, legend = "AvgPrice")

> addT.ind <- newTA(FUN = T.ind, col = "red", legend = "tgtRet")

> addAvgPrice(on = 1)

> addT.ind()

900

950

1000

1050

last(GSPC, "3 months") [2009−07−01 01:00:00/2009−09−15 01:00:00]

900

950

1000

1050
Last 1052.63
 AvgPrice (on = 1) :1050.697

 tgtRet () :
0.030

−0.2

0.0

0.2

0.4

0.6

Jul 01
2009

Jul 13
2009

Jul 20
2009

Jul 27
2009

Aug 03
2009

Aug 10
2009

Aug 17
2009

Aug 24
2009

Aug 31
2009

Sep 08
2009

Sep 15
2009

FIGURE 3.1: S&P500 on the last 3 months and our indicator.

The function candleChart() draws candlestick graphs of stock quotes.
These graphs represent the daily quotes by a colored box and a vertical bar.
The bar represents the High and Low prices of the day, while the box represents
the Open-Close amplitude. The color of the box indicates if the top of the
box is the Open or the Close price, that is, if the prices declined (black in
Figure 3.1, orange in an interactive R session) or rose (white in our graphs,
green in R sessions) across the daily session. We have added to the candlestick
graph two indicators: the average price (on the same graph as the candlesticks)

Predicting Stock Market Returns 111

and our T indicator (below). The function newTA() can be used to create new
plotting functions for indicators that we wish to include in candlestick graphs.
The return value of this function is a plotting function!15 This means that the
objects addT.ind and addAvgPrice can be called like any other R function.
This is done on the last two instructions. Each of them adds an indicator
to the initial graph produced by the candleChart() function. The function
addAvgPrice() was called with the parameter set to 1, which means that
the indicator will be plotted on the first graph window; that is, the graph
where the candlesticks are. The function addT.ind() was not called with this
argument, leading to a new graph below the candlesticks. This is what makes
sense in the case of our indicator, given the completely different scale of values.

As you can observe in Figure 3.1, the T indicator achieves the highest
values when there is a subsequent period of positive variations. Obviously, to
obtain the value of the indicator for time i, we need to have the quotes for the
following 10 days, so we are not saying that T anticipates these movements.
This is not the goal of the indicator. Its goal is to summarize the observed fu-
ture behavior of the prices into a single value and not to predict this behavior!

In our approach to this problem we will assume that the correct trading ac-
tion at time t is related to what our expectations are concerning the evolution
of prices in the next k days. Moreover, we will describe this future evolution
of the prices by our indicator T . The correct trading signal at time t will be
“buy” if the T score is higher than a certain threshold, and will be “sell” if
the score is below another threshold. In all other cases, the correct signal will
be do nothing (i.e., “hold”). In summary, we want to be able to predict the
correct signal for time t. On historical data we will fill in the correct signal
for each day by calculating the respective T scores and using the thresholding
method just outlined above.

3.3.2 Which Predictors?

We have defined an indicator (T) that summarizes the behavior of the price
time series in the next k days. Our data mining goal will be to predict this
behavior. The main assumption behind trying to forecast the future behav-
ior of financial markets is that it is possible to do so by observing the past
behavior of the market. More precisely, we are assuming that if in the past
a certain behavior p was followed by another behavior f , and if that causal
chain happened frequently, then it is plausible to assume that this will occur
again in the future; and thus if we observe p now, we predict that we will ob-
serve f next. We are approximating the future behavior (f), by our indicator
T . We now have to decide on how we will describe the recent prices pattern
(p in the description above). Instead of using again a single indicator to de-

15You can confirm that by issuing class(addT.ind) or by typing the name of the object
to obtain its contents.

112 Data Mining with R: Learning with Case Studies

scribe these recent dynamics, we will use several indicators, trying to capture
different properties of the price time series to facilitate the forecasting task.

The simplest type of information we can use to describe the past are the
recent observed prices. Informally, that is the type of approach followed in
several standard time series modeling approaches. These approaches develop
models that describe the relationship between future values of a time series
and a window of past q observations of this time series. We will try to enrich
our description of the current dynamics of the time series by adding further
features to this window of recent prices.

Technical indicators are numeric summaries that reflect some properties
of the price time series. Despite their debatable use as tools for deciding when
to trade, they can nevertheless provide interesting summaries of the dynamics
of a price time series. The amount of technical indicators available can be
overwhelming. In R we can find a very good sample of them, thanks to package
TTR (Ulrich, 2009).

The indicators usually try to capture some properties of the prices series,
such as if they are varying too much, or following some specific trend, etc.
In our approach to this problem, we will not carry out an exhaustive search
for the indicators that are most adequate to our task. Still, this is a relevant
research question, and not only for this particular application. It is usually
known as the feature selection problem, and can informally be defined as the
task of finding the most adequate subset of available input variables for a
modeling task. The existing approaches to this problem can usually be cast
in two groups: (1) feature filters and (2) feature wrappers. The former are
independent of the modeling tool that will be used after the feature selection
phase. They basically try to use some statistical properties of the features
(e.g., correlation) to select the final set of features. The wrapper approaches
include the modeling tool in the selection process. They carry out an iterative
search process where at each step a candidate set of features is tried with the
modeling tool and the respective results are recorded. Based on these results,
new tentative sets are generated using some search operators, and the process
is repeated until some convergence criteria are met that will define the final
set.

We will use a simple approach to select the features to include in our model.
The idea is to illustrate this process with a concrete example and not to find
the best possible solution to this problem, which would require other time and
computational resources. We will define an initial set of features and then use
a technique to estimate the importance of each of these features. Based on
these estimates we will select the most relevant features.

We will center our analysis on the Close quote, as our buy/sell decisions
will be made at the end of each daily session. The initial set of features will
be formed by several past returns on the Close price. The h-days (arithmetic)
returns,16 or percentage variations, can be calculated as

16Log returns are defined as log(Ci/Ci−h).

Predicting Stock Market Returns 113

Ri−h =
Ci − Ci−h
Ci−h

(3.5)

where Ci is the Close price at session i.
We have included in the set of candidate features ten of these returns

by varying h from 1 to 10. Next, we have selected a representative set of
technical indicators, from those available in package TTR—namely, the Aver-
age True Range (ATR), which is an indicator of the volatility of the series;
the Stochastic Momentum Index (SMI), which is a momentum indicator; the
Welles Wilder’s Directional Movement Index (ADX); the Aroon indicator that
tries to identify starting trends; the Bollinger Bands that compare the volatil-
ity over a period of time; the Chaikin Volatility; the Close Location Value
(CLV) that relates the session Close to its trading range; the Arms’ Ease of
Movement Value (EMV); the MACD oscillator; the Money Flow Index (MFI);
the Parabolic Stop-and-Reverse; and the Volatility indicator. More details and
references on these and other indicators can be found in the respective help
pages of the functions implementing them in package TTR. Most of these in-
dicators produce several values that together are used for making trading
decisions. As mentioned before, we do not plan to use these indicators for
trading. As such, we have carried out some post-processing of the output of
the TTR functions to obtain a single value for each one. The following functions
implement this process:

> myATR <- function(x) ATR(HLC(x))[, "atr"]

> mySMI <- function(x) SMI(HLC(x))[, "SMI"]

> myADX <- function(x) ADX(HLC(x))[, "ADX"]

> myAroon <- function(x) aroon(x[, c("High", "Low")])$oscillator

> myBB <- function(x) BBands(HLC(x))[, "pctB"]

> myChaikinVol <- function(x) Delt(chaikinVolatility(x[, c("High",

+ "Low")]))[, 1]

> myCLV <- function(x) EMA(CLV(HLC(x)))[, 1]

> myEMV <- function(x) EMV(x[, c("High", "Low")], x[, "Volume"])[,

+ 2]

> myMACD <- function(x) MACD(Cl(x))[, 2]

> myMFI <- function(x) MFI(x[, c("High", "Low", "Close")],

+ x[, "Volume"])

> mySAR <- function(x) SAR(x[, c("High", "Close")])[, 1]

> myVolat <- function(x) volatility(OHLC(x), calc = "garman")[,

+ 1]

The variables we have just described form our initial set of predictors
for the task of forecasting the future value of the T indicator. We will try
to reduce this set of 22 variables using a feature selection method. Random
forests (Breiman, 2001) were used in Section 2.7 to obtain predictions of algae
occurrences. Random forests can also be used to estimate the importance of
the variables involved in a prediction task. Informally, this importance can be
estimated by calculating the percentage increase in the error of the random

114 Data Mining with R: Learning with Case Studies

forest if we remove each variable in turn. In a certain way this resembles the
idea of wrapper filters as it includes a modeling tool in the process of selecting
the features. However, this is not an iterative search process and moreover,
we will use other predictive models to forecast T , which means that the set of
variables selected by this process is not optimized for these other models, and
in this sense this method is used more like a filter approach.

In our approach to this application, we will split the available data into
two separate sets: (1) one used for constructing the trading system; and (2)
other to test it. The first set will be formed by the first 30 years of quotes of
S&P 500. We will leave the remaining data (around 9 years) for the final test
of our trading system. In this context, we must leave this final test set out of
this feature selection process to ensure unbiased results.

We first build a random forest using the data available for training:

> data(GSPC)

> library(randomForest)

> data.model <- specifyModel(T.ind(GSPC) ~ Delt(Cl(GSPC),k=1:10) +

+ myATR(GSPC) + mySMI(GSPC) + myADX(GSPC) + myAroon(GSPC) +

+ myBB(GSPC) + myChaikinVol(GSPC) + myCLV(GSPC) +

+ CMO(Cl(GSPC)) + EMA(Delt(Cl(GSPC))) + myEMV(GSPC) +

+ myVolat(GSPC) + myMACD(GSPC) + myMFI(GSPC) + RSI(Cl(GSPC)) +

+ mySAR(GSPC) + runMean(Cl(GSPC)) + runSD(Cl(GSPC)))

> set.seed(1234)

> rf <- buildModel(data.model,method='randomForest',
+ training.per=c(start(GSPC),index(GSPC["1999-12-31"])),

+ ntree=50, importance=T)

The code given above starts by specifying and obtaining the data to be
used for modeling using the function specifyModel(). This function creates
a quantmod object that contains the specification of a certain abstract model
(described by a formula). This specification may refer to data coming from
different types of sources, some of which may even not be currently in the
memory of the computer. The function will take care of these cases using
getSymbols() to obtain the necessary data. This results in a very handy form
of specifying and getting the data necessary for your subsequent modeling
stages. Moreover, for symbols whose source is the Web, you can later use the
obtained object (data.model in our case) as an argument to the function
getModelData(), to obtain a refresh of the object including any new quotes
that may be available at that time. Again, this is quite convenient if you
want to maintain a trading system that should be updated with new quotes
information.

The function buildModel() uses the resulting model specification
and obtains a model with the corresponding data. Through, parameter
training.per, you can specify the data that should be used to obtain the
model (we are using the first 30 years). This function currently contains wrap-

Predicting Stock Market Returns 115

pers for several modeling tools,17 among which are random forests. In case you
wish to use a model not contemplated by buildModel(), you may obtain the
data using the function modelData(), and use it with your favorite modeling
function, as shown in the following illustrative example:

> ex.model <- specifyModel(T.ind(IBM) ~ Delt(Cl(IBM), k = 1:3))

> data <- modelData(ex.model, data.window = c("2009-01-01",

+ "2009-08-10"))

The obtained data object is a standard zoo object, which can be easily
cast into a matrix or data frame, for use as a parameter of any modeling
function, as the following artificial18 example illustrates:

> m <- myFavouriteModellingTool(ex.model@model.formula,

+ as.data.frame(data))

Notice how we have indicated the model formula. The “real” formula
is not exactly the same as the one provided in the argument of func-
tion specifyModel(). This latter formula is used to fetch the data, but
the “real” formula should use whichever columns and respective names the
specifyModel() call has generated. This information is contained in the slot
model.formula of the quantmod object generated by the function.

Notice that on this small artificial example we have mentioned a ticker
(IBM) for which we currently had no data in memory. The specifyModel()
function takes care of that by silently fetching the quotes data from the Web
using the getSymbols() function. All this is done in a transparent way to the
user and you may even include symbols in your model specification that are
obtained from different sources (see, for instance, the examples in Section 3.2.3
with the function setSymbolLookup()).

Returning to our feature selection problem, notice that we have included
the parameter importance=TRUE so that the random forest estimates the vari-
able importance. For regression problems, the R implementation of random
forests estimates variable importance with two alternative scores. The first is
the percentage increase in the error of the forest if we remove each variable
in turn. This is measured by calculating the increase in the mean squared
error of each tree on an out-of-bag sample when each variable is removed.
This increase is averaged over all trees in the forest and normalized with the
standard error. The second score has to do with the decrease in node impu-
rity that is accountable with each variable, again averaged over all trees. We
will use the first score as it is the one mentioned in the original paper on
random forests (Breiman, 2001). After obtaining the model, we can check the
importance of the variables as follows:

> varImpPlot(rf@fitted.model, type = 1)

17Check its help page to know which ones.
18Do not run it as this is a “fake” modeling tool.

116 Data Mining with R: Learning with Case Studies

The result of this function call is given in Figure 3.2. The arguments to the
varImpPlot() function are the random forest and the score we wish to plot (if
ommited both are plotted). The generic function buildModel() returns the
obtained model as a slot (fitted.model) of the quantmod object it produces
as a result.

myChaikinVol.GSPC

myAroon.GSPC

Delt.Cl.GSPC.k.1.10.Delt.9.arithmetic

EMA.Delt.Cl.GSPC

Delt.Cl.GSPC.k.1.10.Delt.10.arithmetic

Delt.Cl.GSPC.k.1.10.Delt.6.arithmetic

Delt.Cl.GSPC.k.1.10.Delt.8.arithmetic

myBB.GSPC

mySMI.GSPC

Delt.Cl.GSPC.k.1.10.Delt.5.arithmetic

Delt.Cl.GSPC.k.1.10.Delt.7.arithmetic

Delt.Cl.GSPC.k.1.10.Delt.4.arithmetic

Delt.Cl.GSPC.k.1.10.Delt.3.arithmetic

RSI.Cl.GSPC

myMFI.GSPC

Delt.Cl.GSPC.k.1.10.Delt.2.arithmetic

CMO.Cl.GSPC

myCLV.GSPC

runSD.Cl.GSPC

myEMV.GSPC

myADX.GSPC

mySAR.GSPC

myVolat.GSPC

Delt.Cl.GSPC.k.1.10.Delt.1.arithmetic

myMACD.GSPC

myATR.GSPC

runMean.Cl.GSPC

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

5 10 15

rf@fitted.model

%IncMSE

FIGURE 3.2: Variable importance according to the random forest.

At this stage we need to decide on a threshold on the importance score to
select only a subset of the features. Looking at the results on the figure and
given that this is a simple illustration of the concept of using random forests
for selecting features, we will use the value of 10 as the threshold:

> imp <- importance(rf@fitted.model, type = 1)

> rownames(imp)[which(imp > 10)]

[1] "Delt.Cl.GSPC.k.1.10.Delt.1.arithmetic"

[2] "myATR.GSPC"

[3] "myADX.GSPC"

[4] "myEMV.GSPC"

[5] "myVolat.GSPC"

[6] "myMACD.GSPC"

[7] "mySAR.GSPC"

[8] "runMean.Cl.GSPC"

The function importance() obtains the concrete scores (in this case the
first score) for each variable, which we then filter with our threshold to obtain

Predicting Stock Market Returns 117

the names of the variables that we will use in our modeling attempts. Using
this information we can obtain our final data set as follows:

> data.model <- specifyModel(T.ind(GSPC) ~ Delt(Cl(GSPC), k = 1) +

+ myATR(GSPC) + myADX(GSPC) + myEMV(GSPC) + myVolat(GSPC) +

+ myMACD(GSPC) + mySAR(GSPC) + runMean(Cl(GSPC)))

3.3.3 The Prediction Tasks

In the previous section we have obtained a quantmod object (data.model)
containing the data we plan to use with our predictive models. This data
has as a target the value of the T indicator and as predictors a series of
other variables that resulted from a feature selection process. We have seen in
Section 3.3.1 that our real goal is to predict the correct trading signal at any
time t. How can we do that, given the data we have generated in the previous
section? We will explore two paths to obtain predictions for the correct trading
signal.

The first alternative is to use the T value as the target variable and try to
obtain models that forecast this value using the predictors information. This
is a multiple regression task similar to the ones we considered in the previous
chapter. If we follow this path, we will then have to “translate” our model
predictions into trading signals. This means to decide upon the thresholds on
the predicted T values that will lead to either of the three possible trading
actions. We will carry out this transformation using the following values:

signal =

 sell if T < −0.1
hold if − 0.1 ≤ T ≤ 0.1
buy if T > 0.1

(3.6)

The selection of the values 0.1 and −0.1 is purely heuristic and we can also
use other thresholds. Still, these values mean that during the 10 day-period
used to generate the T values, there were at least four average daily prices that
are 2.5% above the current close (4× 0.025 = 0.1). If you decide to use other
values, you should consider that too high absolute values will originate fewer
signals, while too small values may lead us to trade on too small variations
of the market, thus incurring a larger risk. Function trading.signals(),
available in the book package, can carry out this transformation of the numeric
T values into a factor with three possible values: “s”, “h”, and “b”, for sell, hold
and buy actions, respectively.

The second alternative prediction task we consider consists of predicting
the signals directly. This means to use as a target variable the “correct” signal
for day d. How do we obtain these correct signals? Again using the T indicator
and the same thresholds used in Equation 3.6. For the available historical data,
we obtain the signal of each day by calculating the T value using the following
10 days and using the thresholds in Equation 3.6 to decide on the signal. The
target variable in this second task is nominal. This type of prediction problem

118 Data Mining with R: Learning with Case Studies

is known as a classification task.19 The main distinction between classification
and regression tasks is thus the type of the target variable. Regression tasks
have a numeric target variable (e.g., our T indicator), while classification tasks
use a nominal target variable, that is, with a finite set of possible values.
Different approaches and techniques are used for these two types of problems.

The xts package infrastructure is geared toward numeric data. The data
slots of xts objects must be either vectors or matrices, thus single mode data.
This means it is not possible to have one of the columns of our training data as
a nominal variable (a factor in R), together with all the numeric predictors. We
will overcome this difficulty by carrying out all modeling steps outside the xts
framework. This is easy and not limiting, as we will see. The infrastructure
provided by xts is mostly used for data sub-setting and plotting, but the
modeling stages do not need these facilities.

The following code creates all the data structures that we will use in the
subsequent sections for obtaining predictive models for the two tasks.

> Tdata.train <- as.data.frame(modelData(data.model,

+ data.window=c('1970-01-02','1999-12-31')))
> Tdata.eval <- na.omit(as.data.frame(modelData(data.model,

+ data.window=c('2000-01-01','2009-09-15'))))
> Tform <- as.formula('T.ind.GSPC ~ .')

The Tdata.train and Tdata.eval are data frames with the data to be
used for the training and evaluation periods, respectively. We have used data
frames as the basic data structures to allow for mixed mode data that will be
required in the classification tasks. For these tasks we will replace the target
value column with the corresponding signals that will be generated using the
trading.signals() function. The Tdata.eval data frame will be left out of
all model selection and comparison processes we carry out. It will be used in
the final evaluation of the “best” models we select. The call to na.omit() is
necessary to avoid NAs at the end of the data frame caused by lack of future
data to calculate the T indicator.

3.3.4 Evaluation Criteria

The prediction tasks described in the previous section can be used to obtain
models that will output some form of indication regarding the future market
direction. This indication will be a number in the case of the regression tasks
(the predicted value of T), or a direct signal in the case of classification tasks.
Even in the case of regression tasks, we have seen that we will cast this number
into a signal by a thresholding mechanism. In Section 3.5 we will describe
several trading strategies that use these predicted signals to act on the market.

In this section we will address the question of how to evaluate the signal
predictions of our models. We will not consider the evaluation of the numeric

19Some statistics schools prefer the term “discrimination tasks”.

Predicting Stock Market Returns 119

predictions of the T indicator. Due to the way we are using these numeric pre-
dictions, this evaluation is a bit irrelevant. One might even question whether it
makes sense to have these regression tasks, given that we are only interested in
the trading signals. We have decided to maintain these numeric tasks because
different trading strategies could take advantage of the numeric predictions, for
instance, to decide which amount of money to invest when opening a position.
For example, T values much higher than our thresholds for acting (T > 0.1
for buying and T < −0.1 for selling) could lead to stronger investments.

The evaluation of the signal predictions could be carried out by measuring
the error rate, defined as

error.rate =
1
N

N∑
i=1

L0/1(yi, ŷi) (3.7)

where ŷi is the prediction of the model for test case i, which has true class
label yi, and L0/1 is known as the 0/1 loss function:

L0/1(yi, ŷi) =
{

1 if ŷi 6= yi
0 if ŷi = yi

(3.8)

One often uses the complement of this measure, known as accuracy, given by
1− error.rate.

These two statistics basically compare the model predictions to what really
happened to the markets in the k future days.

The problem with accuracy (or error rate) is that it turns out not to be a
good measure for this type of problem. In effect, there will be a very strong
imbalance between the three possible outcomes, with a strong prevalence of
hold signals over the other two, as big movements in prices are rare phenomena
in financial markets.20 This means that the accuracy scores will be dominated
by the performance of the models on the most frequent outcome that is hold.
This is not very interesting for trading. We want to have models that are
accurate at the rare signals (buy and sell). These are the ones that lead to
market actions and thus potential profit—the final goal of this application.

Financial markets forecasting is an example of an application driven by rare
events. Event-based prediction tasks are usually evaluated by the precision
and recall metrics that focus the evaluation on the events, disregarding the
performance of the common situations (in our case, the hold signals). Precision
can be informally defined as the proportion of event signals produced by the
models that are correct. Recall is defined as the proportion of events occurring
in the domain that is signaled as such by the models. These metrics can be
easily calculated with the help of confusion matrices that sum up the results
of a model in terms of the comparison between its predictions and the true
values for a particular test set. Table 3.1 shows an example of a confusion
matrix for our domain.

20This obviously depends on the target profit margin you establish; but to cover the
trading costs, this margin should be large enough, and this rarity will be a fact.

120 Data Mining with R: Learning with Case Studies

TABLE 3.1: A Confusion Matrix for the Prediction of Trading Signals
Predictions

sell hold buy

True
Values

sell ns,s ns,h ns,b Ns,.
hold nh,s nh,h nh,b Nh,.
buy nb,s nb,h nb,b Nb,.

N.,s N.,h N.,b N

With the help of Table 3.1 we can formalize the notions of precision and
recall for this problem, as follows:

Prec =
ns,s + nb,b
N.,s +N.,b

(3.9)

Rec =
ns,s + nb,b
Ns,. +Nb,.

(3.10)

We can also calculate these statistics for particular signals by obtaining
the precision and recall for sell and buy signals, independently; for example,

Precb =
nb,b
N.,b

(3.11)

Recb =
nb,b
Nb,.

(3.12)

Precision and recall are often “merged” into a single statistic, called the
F −measure (Rijsbergen, 1979), given by

F =

(
β2 + 1

)
· Prec ·Rec

β2 · Prec+Rec
(3.13)

where 0 ≤ β ≤ 1, controls the relative importance of recall to precision.

3.4 The Prediction Models

In this section we will explore some models that can be used to address the
prediction tasks defined in the previous section. The selection of models was
mainly guided by the fact that these techniques are well known by their ability
to handle highly nonlinear regression problems. That is the case in our prob-
lem. Still, many other methods could have been applied to this problem. Any
thorough approach to this domain would necessarily require a larger compari-
son of more alternatives. In the context of this book, such exploration does not
make sense due to its costs in terms of space and computation power required.

Predicting Stock Market Returns 121

3.4.1 How Will the Training Data Be Used?

Complex time series problems frequently exhibit different regimes, such as
periods with strong variability followed by more “stable” periods, or periods
with some form of systematic tendency. These types of phenomena are often
called non-stationarities and can cause serious problems to several modeling
techniques due to their underlying assumptions. It is reasonably easy to see,
for instance by plotting the price time series, that this is the case for our data.
There are several strategies we can follow to try to overcome the negative
impact of these effects. For instance, several transformation techniques can be
applied to the original time series to eliminate some of the effects. The use of
percentage variations (returns) instead of the original absolute price values is
such an example. Other approaches include using the available data in a more
selective way. Let us suppose we are given the task of obtaining a model using
a certain period of training data and then testing it in a subsequent period.
The standard approach would use the training data to develop the model that
would then be applied to obtain predictions for the testing period. If we have
strong reason to believe that there are regime shifts, using the same model on
all testing periods may not be the best idea, particularly if during this period
there is some regime change that can seriously damage the performance of the
model. In these cases it is often better to change or adapt the model using
more recent data that better captures the current regime of the data.

In time series problems there is an implicit (time) ordering among the test
cases. In this context, it makes sense to assume that when we are obtaining
a prediction for time i, all test cases with time tag k < i already belong to
the past. This means that it is safe to assume that we already know the true
value of the target variable of these past test cases and, moreover, that we
can safely use this information. So, if at some time m of the testing period
we are confident that there is a regime shift in the time series, then we can
incorporate the information of all test cases occurring before m into the initial
training data, and with this refreshed training set that contains observations
of the “new” regime, somehow update our predictive model to improve the
performance on future test cases. One form of updating the model could be
to change it in order to take into account the new training cases. These ap-
proaches are usually known as incremental learners as they adapt the current
model to new evidence instead of starting from scratch. There are not so many
modeling techniques that can be used in this way, particularly in R. In this
context, we will follow the other approach to the updating problem, which
consists of re-learning a new model with the new updated training set. This
is obviously more expensive in computational terms and may even be inad-
equate for applications where the data arrives at a very fast pace and for
which models and decisions are required almost in real-time. This is rather
frequent in applications addressed in a research area usually known as data
streams. In our application, we are making decisions on a daily basis after

122 Data Mining with R: Learning with Case Studies

the market closes, so speed is not a key issue.21 Assuming that we will use
a re-learn approach, we have essentially two forms of incorporating the new
cases into our training set. The growing window approach simply adds them
to the current training set, thus constantly increasing the size of this set. The
eventual problem of this approach lies in the fact that as we are assuming
that more recent data is going to be helpful in producing better models, we
may also consider whether the oldest part of our training data may already
be too outdated and in effect, contributing to decreasing the accuracy of the
models. Based on these considerations, the sliding window approach deletes
the oldest data of the training set at the same time it incorporates the fresher
observations, thus maintaining a training set of constant size.

Both the growing and the sliding window approaches involve a key decision:
when to change or adapt the model by incorporating fresher data. There are
essentially two ways of answering this question. The first involves estimating
this time by checking if the performance of our current model is starting to
degrade. If we observe a sudden decrease in this performance, then we can take
this as a good indication of some form of regime shift. The main challenge
of these approaches lies in developing proper estimates of these changes in
performance. We want to detect the change as soon as possible but we do not
want to overreact to some spurious test case that our model missed. Another
simpler approach consists of updating the model on a regular time basis, that
is, every w test case, we obtain a new model with fresher data. In this case
study we follow this simpler method.

Summarizing, for each model that we will consider, we will apply it using
three different approaches: (1) single model for all test period, (2) growing
window with a fixed updating step of w days, and (3) sliding window with the
same updating step w. Figure 3.3 illustrates the three approaches.

w

The Problem

One shot testing

Sliding window

training data test data

w

Growing window

1 single model applied over all test period

FIGURE 3.3: Three forms of obtaining predictions for a test period.

21It could be if we were trading in real-time, that is, intra-day trading.

Predicting Stock Market Returns 123

Further readings on regime changes

The problem of detecting changes of regime in time series data is a subject studied for a long
time in an area known as statistic process control (e.g., Oakland, 2007), which use techniques
like control charts to detect break points in the data. This subject has been witnessing an
increased interest with the impact of data streams (e.g., Gama and Gaber, 2007) in the data
mining field. Several works (e.g., Gama et al., 2004; Kifer et al., 2004; Klinkenberg, 2004) have
addressed the issues of how to detect the changes of regime and also how to learn models in
the presence of these changes.

3.4.2 The Modeling Tools

In this section we briefly describe the modeling techniques we will use to
address our prediction tasks and illustrate how to use them in R.

3.4.2.1 Artificial Neural Networks

Artificial neural networks (ANNs) are frequently used in financial forecast-
ing (e.g., Deboeck, 1994) because of their ability to deal with highly nonlinear
problems. The package nnet implements feed-forward neural nets in R. This
type of neural networks is among the most used and also what we will be
applying.

ANNs are formed by a set of computing units (the neurons) linked to each
other. Each neuron executes two consecutive calculations: a linear combination
of its inputs, followed by a nonlinear computation of the result to obtain its
output value that is then fed to other neurons in the network. Each of the
neuron connections has an associated weight. Constructing an artificial neural
network consists of establishing an architecture for the network and then using
an algorithm to find the weights of the connections between the neurons.

Feed-forward artificial neural networks have their neurons organized in
layers. The first layer contains the input neurons of the network. The training
observations of the problem are presented to the network through these input
neurons. The final layer contains the predictions of the neural network for
any case presented at its input neurons. In between, we usually have one or
more “hidden” layers of neurons. The weight updating algorithms, such as the
back-propagation method, try to obtain the connection weights that optimize
a certain error criterion, that is, trying to ensure that the network outputs
are in accordance with the cases presented to the model. This is accomplished
by an iterative process of presenting several times the training cases at the
input nodes of the network, and after obtaining the prediction of the network
at the output nodes and calculating the respective prediction error, updating
the weights in the network to try to improve its prediction error. This iterative
process is repeated until some convergence criterion is met.

Feed-forward ANNs with one hidden layer can be easily obtained in R
using a function of the package nnet (Venables and Ripley, 2002). The net-
works obtained by this function can be used for both classification and re-
gression problems and thus are applicable to both our prediction tasks (see
Section 3.3.3).

124 Data Mining with R: Learning with Case Studies

ANNs are known to be sensitive to different scales of the variables used in
a prediction problem. In this context, it makes sense to transform the data
before giving them to the network, in order to avoid eventual negative impacts
on the performance. In our case we will normalize the data with the goal of
making all variables have a mean value of zero and a standard deviation of
one. This can be easily accomplished by the following transformation applied
to each column of our data set:

yi =
xi − x̄
σx

(3.14)

where x̄ is the mean value of the original variable X, and σx its standard
deviation.

The function scale() can be used to carry out this transformation for
our data. In the book package you can also find the function unscale() that
inverts the normalization process putting the values back on the original scale.
Below you can find a very simple illustration of how to obtain and use this
type of ANN in R:

> set.seed(1234)

> library(nnet)

> norm.data <- scale(Tdata.train)

> nn <- nnet(Tform, norm.data[1:1000,], size = 10, decay = 0.01,

+ maxit = 1000, linout = T, trace = F)

> norm.preds <- predict(nn, norm.data[1001:2000,])

> preds <- unscale(norm.preds, norm.data)

By default, the function nnet() sets the initial weights of the links between
nodes with random values in the interval [−0.5 · · · 0.5]. This means that two
successive runs of the function with exactly the same arguments can actually
lead to different solutions. To ensure you get the same results as we present
below, we have added a call to the function set.seed() that initializes the
random number generator to some seed number. This ensures that you will
get exactly the same ANN as the one we report here. In this illustrative
example we have used the first 1,000 cases to obtain the network and tested
the model on the following 1,000. After normalizing our training data, we call
the function nnet() to obtain the model. The first two parameters are the
usual of any modeling function in R: the functional form of the model specified
by a formula, and the training sample used to obtain the model. We have also
used some of the parameters of the nnet() function. Namely, the parameter
size allows us to specify how many nodes the hidden layer will have. There
is no magic recipe on which value to use here. One usually tries several values
to observe the network behavior. Still, it is reasonable to assume it should be
smaller than the number of predictors of the problem. The parameter decay
controls the weight updating rate of the back-propagation algorithm. Again,
trial and error is your best friend here. Finally, the parameter maxit controls
the maximum number of iterations the weight convergence process is allowed

Predicting Stock Market Returns 125

to use, while the linout=T setting tells the function that we are handling a
regression problem. The trace=F is used to avoid some of the output of the
function regarding the optimization process.

The function predict() can be used to obtain the predictions of the neural
network for a set of test data. After obtaining these predictions, we convert
them back to the original scale using the function unscale() provided by
our package. This function receives in the first argument the values, and on
the second argument the object with the normalized data. This latter object
is necessary because it is within that object that the averages and standard
deviations that were used to normalize the data are stored,22 and these are
required to invert the normalization.

Let us evaluate the results of the ANN for predicting the correct signals for
the test set. We do this by transforming the numeric predictions into signals
and then evaluate them using the statistics presented in Section 3.3.4.

> sigs.nn <- trading.signals(preds, 0.1, -0.1)

> true.sigs <- trading.signals(Tdata.train[1001:2000, "T.ind.GSPC"],

+ 0.1, -0.1)

> sigs.PR(sigs.nn, true.sigs)

precision recall

s 0.2101911 0.1885714

b 0.2919255 0.5911950

s+b 0.2651357 0.3802395

Function trading.signals() transforms numeric predictions into signals,
given the buy and sell thresholds, respectively. The function sigs.PR() ob-
tains a matrix with the precision and recall scores of the two types of events,
and overall. These scores show that the performance of the ANN is not bril-
liant. In effect, you get rather low precision scores, and also not so interesting
recall values. The latter are not so serious as they basically mean lost op-
portunities and not costs. On the contrary, low precision scores mean that
the model gave wrong signals rather frequently. If these signals are used for
trading, this may lead to serious losses of money.

ANNs can also be used for classification tasks. For these problems the
main difference in terms of network topology is that instead of a single output
unit, we will have as many output units as there are values of the target
variable (sometimes known as the class variable). Each of these output units
will produce a probability estimate of the respective class value. This means
that for each test case, an ANN can produce a set of probability values, one
for each possible class value.

The use of the nnet() function for these tasks is very similar to its use
for regression problems. The following code illustrates this, using our training
data:

22As object attributes.

126 Data Mining with R: Learning with Case Studies

> set.seed(1234)

> library(nnet)

> signals <- trading.signals(Tdata.train[, "T.ind.GSPC"], 0.1,

+ -0.1)

> norm.data <- data.frame(signals = signals, scale(Tdata.train[,

+ -1]))

> nn <- nnet(signals ~ ., norm.data[1:1000,], size = 10, decay = 0.01,

+ maxit = 1000, trace = F)

> preds <- predict(nn, norm.data[1001:2000,], type = "class")

The type="class" argument is used to obtain a single class label for each
test case instead of a set of probability estimates. With the network predictions
we can calculate the model precision and recall as follows:

> sigs.PR(preds, norm.data[1001:2000, 1])

precision recall

s 0.2838710 0.2514286

b 0.3333333 0.2264151

s+b 0.2775665 0.2185629

Both the precision and recall scores are higher than the ones obtained in
the regression task, although still low values.

Further readings on neural networks

The book by Rojas (1996) is a reasonable general reference on neural networks. For more
financially oriented readings, the book by Zirilli (1997) is a good and easy reading book. The
collection of papers entitled “Artificial Neural Networks Forecasting Time Series” (Rogers and
Vemuri, 1994) is another example of a good source of references. Part I of the book by Deboeck
(1994) provides several chapters devoted to the application of neural networks to trading. The
work of McCulloch and Pitts (1943) presents the first model of an artificial neuron. This work
was generalized by Ronsenblatt (1958) and Minsky and Papert (1969). The back-propagation
algorithm, the most frequently used weight updating method, although frequently attributed to
Rumelhart et al. (1986), was, according to Rojas (1996), invented by Werbos (1974, 1996).

3.4.2.2 Support Vector Machines

Support vector machines (SMVs)23 are modeling tools that, as ANNs, can be
applied to both regression and classification tasks. SVMs have been witnessing
increased attention from different research communities based on their suc-
cessful application to several domains and also their strong theoretical back-
ground. Vapnik (1995, 1998) and Shawe-Taylor and Cristianini (2000) are
two of the essential references for SVMs. Smola and Schölkopf (2004, 1998)
published an excellent tutorial giving an overview of the basic ideas under-
lying SVMs for regression. In R we have several implementations of SMVs
available, among which we can refer to the package kernlab by Karatzoglou

23Extensive information on this class of models can be obtained at http://www.

kernel-machines.org.

http://www.kernel-machines.org
http://www.kernel-machines.org

Predicting Stock Market Returns 127

et al. (2004) with several functionalities available, and also the function svm()
on package e1071 by Dimitriadou et al. (2009).

The basic idea behind SVMs is that of mapping the original data into a
new, high-dimensional space, where it is possible to apply linear models to
obtain a separating hyper plane, for example, separating the classes of the
problem, in the case of classification tasks. The mapping of the original data
into this new space is carried out with the help of the so-called kernel functions.
SMVs are linear machines operating on this dual representation induced by
kernel functions.

The hyper plane separation in the new dual representation is frequently
done by maximizing a separation margin between cases belonging to differ-
ent classes; see Figure 3.4. This is an optimization problem often solved with
quadratic programming methods. Soft margin methods allow for a small pro-
portion of cases to be on the “wrong” side of the margin, each of these leading
to a certain “cost”.

x

o

o

x

xx

x

x

o

o

o

o

γ

FIGURE 3.4: The margin maximization in SVMs.

In support of vector regression, the process is similar, with the main dif-
ference being on the form the errors and associated costs are calculated. This
resorts usually to the use of the so-called ε-insensitive loss function | ξ |ε given
by

| ξ |ε=
{

0 if | ξ |≤ ε
| ξ | −ε otherwise (3.15)

We will now provide very simple examples of the use of this type of models
in R. We start with the regression task for which we will use the function
provided in the package e1071:

> library(e1071)

128 Data Mining with R: Learning with Case Studies

> sv <- svm(Tform, Tdata.train[1:1000,], gamma = 0.001, cost = 100)

> s.preds <- predict(sv, Tdata.train[1001:2000,])

> sigs.svm <- trading.signals(s.preds, 0.1, -0.1)

> true.sigs <- trading.signals(Tdata.train[1001:2000, "T.ind.GSPC"],

+ 0.1, -0.1)

> sigs.PR(sigs.svm, true.sigs)

precision recall

s 0.4285714 0.03428571

b 0.3333333 0.01257862

s+b 0.4000000 0.02395210

In this example we have used the svm() function with most of its default
parameters with the exception of the parameters gamma and cost. In this
context, the function uses a radial basis kernel function

K(x,y) = exp
(
−γ × ‖x− y‖2

)
(3.16)

where γ is a user parameter that in our call we have set to 0.001 (function
svm() uses as default 1/ncol(data)).

The parameter cost indicates the cost of the violations of the margin. You
may wish to explore the help page of the function to learn more details on
these and other parameters.

As we can observe, the SVM model achieves a considerably better score
than the ANN in terms of precision, although with a much lower recall.

Next, we consider the classification task, this time using the kernlab pack-
age:

> library(kernlab)

> data <- cbind(signals = signals, Tdata.train[, -1])

> ksv <- ksvm(signals ~ ., data[1:1000,], C = 10)

Using automatic sigma estimation (sigest) for RBF or laplace kernel

> ks.preds <- predict(ksv, data[1001:2000,])

> sigs.PR(ks.preds, data[1001:2000, 1])

precision recall

s 0.1935484 0.2742857

b 0.2688172 0.1572327

s+b 0.2140762 0.2185629

We have used the C parameter of the ksvm() function of package kernlab,
to specify a different cost of constraints violations, which by default is 1. Apart
from this we have used the default parameter values, which for classification
involves, for instance, using the radial basis kernel. Once again, more details
can be obtained in the help pages of the ksvm() function.

The results of this SVM are not as interesting as the SVM obtained with
the regression data. We should remark that by no means do we want to claim

Predicting Stock Market Returns 129

that these are the best scores we can obtain with these techniques. These are
just simple illustrative examples of how to use these modeling techniques in
R.

3.4.2.3 Multivariate Adaptive Regression Splines

Multivariate adaptive regression splines (Friedman, 1991) are an example of
an additive regression model (Hastie and Tibshirani, 1990). A MARS model
has the following general form:

mars (x) = c0 +
k∑
i=1

ciBi(x) (3.17)

where the cis are constants and the Bis are basis functions.
The basis functions can take several forms, from simple constants to func-

tions modeling the interaction between two or more variables. Still, the most
common basis functions are the so-called hinge functions that have the form

H[−(xi − t)] = max(0, t− xi) H[+(xi − t)] = max(0, xi − t)

where xi is a predictor and t a threshold value on this predictor. Figure 3.5
shows an example of two of these functions.

2.0 2.5 3.0 3.5 4.0 4.5 5.0

0
.0

0
.5

1
.0

1
.5

xs

h
p

max(0,x−3.5)
max(0,3.5−x)

FIGURE 3.5: An example of two hinge functions with the same threshold.

MARS models have been implemented in at least two packages within
R. Package mda (Leisch et al., 2009) contains the function mars() that im-
plements this method. Package earth (Milborrow, 2009) has the function
earth() that also implements this methodology. This latter function has the

130 Data Mining with R: Learning with Case Studies

advantage of following a more standard R schema in terms of modeling func-
tions, by providing a formula-based interface. It also implements several other
facilities not present in the other package and thus it will be our selection.

The following code applies the function earth() to the regression task

> library(earth)

> e <- earth(Tform, Tdata.train[1:1000,])

> e.preds <- predict(e, Tdata.train[1001:2000,])

> sigs.e <- trading.signals(e.preds, 0.1, -0.1)

> true.sigs <- trading.signals(Tdata.train[1001:2000, "T.ind.GSPC"],

+ 0.1, -0.1)

> sigs.PR(sigs.e, true.sigs)

precision recall

s 0.2785714 0.2228571

b 0.4029851 0.1698113

s+b 0.3188406 0.1976048

The results are comparable to the ones obtained with SVMs for classification,
with precision scores around 30%, although with lower recall.

MARS is only applicable to regression problems so we do not show any
example for the classification task.

Further readings on multivariate adaptive regression splines

The definitive reference on MARS is the original journal article by Friedman (1991). This is a
very well-written article providing all details concerning the motivation for the development of
MARS as well as the techniques used in the system. The article also includes quite an interesting
discussion section by other scientists that provides other views of this work.

3.5 From Predictions into Actions

This section will address the issue of how will we use the signal predictions
obtained with the modeling techniques described previously. Given a set of
signals output by some model there are many ways we can use them to act
on the market.

3.5.1 How Will the Predictions Be Used?

In our case study we will assume we will be trading in future markets. These
markets are based on contracts to buy or sell a commodity on a certain date
in the future at the price determined by the market at that future time. The
technical details of these contracts are beyond the scope of this manuscript.
Still, in objective terms, this means that our trading system will be able to

Predicting Stock Market Returns 131

open two types of trading positions: long and short. Long positions are opened
by buying a commodity at time t and price p, and selling it at a later time
t + x. It makes sense for the trader to open such positions when he has the
expectation that the price will rise in the future, thus allowing him to make
some profit with that transaction. On short positions, the trader sells the
security at time t with price p with the obligation of buying it in the future.
This is possible thanks to a borrowing schema whose details you can find in
appropriate documents (e.g., Wikipedia). These types of positions allows the
trader to make profit when the prices decline as he/she will buy the security
at a time later than t. Informally, we can say that we will open short positions
when we believe the prices are going down, and open long positions when we
believe the prices are going up.

Given a set of signals, there are many ways we can use them to trade
in future markets. We will describe a few plausible trading strategies that we
will be using and comparing in our experiments with the models. Due to space
and time constraints, it is not possible to explore this important issue further.
Still, the reader is left with some plausible strategies and with the means to
develop and try other possibilities.

The mechanics of the first trading strategy we are going to use are the
following. First, all decisions will be taken at the end of the day, that is, after
knowing all daily quotes of the current session. Suppose that at the end of
day t, our models provide evidence that the prices are going down, that is,
predicting a low value of T or a sell signal. If we already have a position
opened, the indication of the model will be ignored. If we currently do not
hold any opened position, we will open a short position by issuing a sell order.
When this order is carried out by the market at a price pr sometime in the
future, we will immediately post two other orders. The first is a buy limit
order with a limit price of pr − p%, where p% is a target profit margin. This
type of order is carried out only if the market price reaches the target limit
price or below. This order expresses what our target profit is for the short
position just opened. We will wait 10 days for this target to be reached. If the
order is not carried out by this deadline, we will buy at the closing price of
the 10th day. The second order is a buy stop order with a price limit pr+ l%.
This order is placed with the goal of limiting our eventual losses with this
position. The order will be executed if the market reaches the price pr + l%,
thus limiting our possible losses to l%.

If our models provide indications that the prices will rise in the near future,
with high predicted T values or buy signals, we will consider opening a long
position. This position will only be opened if we are currently out of the
market. With this purpose we will post a buy order that will be accomplished
at a time t and price pr. As before, we will immediately post two new orders.
The first will be a sell limit order with a target price of pr + p%, which will
only be executed if the market reaches a price of pr + p% or above. This sell
limit order will have a deadline of 10 days, as before.The second order is a sell
stop order with price pr− l%, which will again limit our eventual losses to l%.

132 Data Mining with R: Learning with Case Studies

This first strategy can be seen as a bit conservative as it will only have
a single position opened at any time. Moreover, after 10 days of waiting for
the target profit, the positions are immediately closed. We will also consider
a more “risky” trading strategy. This other strategy is similar to the previous
one, with the exception that we will always open new positions if there are
signals with that indication, and if we have sufficient money for that. Moreover,
we will wait forever for the positions to reach either the target profit or the
maximum allowed loss.

We will only consider these two main trading strategies with slight varia-
tions on the used parameters (e.g., holding time, expected profit margin, or
amount of money invested on each position). As mentioned, these are simply
chosen for illustrative purposes.

3.5.2 Trading-Related Evaluation Criteria

The metrics described in Section 3.3.4 do not translate directly to the overall
goal of this application, which has to do with economic performance. Factors
like the economic results and the risk exposure of some financial instrument
or tool are of key importance in this context. This is an area that alone
could easily fill this chapter. The R package PerformanceAnalytics (Carl
and Peterson, 2009) implements many of the existing financial metrics for
analyzing the returns of some trading algorithm as the one we are proposing
in this chapter. We will use some of the functions provided by this package
to collect information on the economic performance of our proposals. Our
evaluation will be focused on the overall results of the methods, on their risk
exposure, and on the average results of each position hold by the models. In
the final evaluation of our proposed system to be described in Section 3.7, we
will carry out a more in-depth analysis of its performance using tools provided
by this package.

With respect to the overall results, we will use (1) the simple net balance
between the initial capital and the capital at the end of the testing period
(sometimes called the profit/loss), (2) the percentage return that this net
balance represents, and (3) the excess return over the buy and hold strategy.
This strategy consists of opening a long position at the beginning of the testing
period and waiting until the end to close it. The return over the buy and hold
measures the difference between the return of our trading strategy and this
simple strategy.

Regarding risk-related measures, we will use the Sharpe ratio coefficient,
which measures the return per unit of risk, the latter being measured as the
standard deviation of the returns. We will also calculate the maximum draw-
down, which measures the maximum cumulative successive loss of a model.
This is an important risk measure for traders, as any system that goes over
a serious draw-down is probably doomed to be without money to run, as
investors will most surely be scared by these successive losses and redraw
their money.

Predicting Stock Market Returns 133

Finally, the performance of the positions hold during the test period will be
evaluated by their number, the average return per position, and the percentage
of profitable positions, as well as other less relevant metrics.

3.5.3 Putting Everything Together: A Simulated Trader

This section describes how to implement the ideas we have sketched regarding
trading with the signals of our models. Our book package provides the function
trading.simulator(), which can be used to put all these ideas together by
carrying out a trading simulation with the signals of any model. The main
parameters of this function are the market quotes for the simulation period
and the model signals for this period. Two other parameters are the name of
the user-defined trading policy function and its list of parameters. Finally, we
can also specify the cost of each transaction and the initial capital available for
the trader. The simulator will call the user-provided trading policy function at
the end of each daily section, and the function should return the orders that
it wants the simulator to carry out. The simulator carries out these orders on
the market and records all activity on several data structures. The result of
the simulator is an object of class tradeRecord containing the information
of this simulation. This object can then be used in other functions to obtain
economic evaluation metrics or graphs of the trading activity, as we will see.

Before proceeding with an example of this type of simulation, we need to
provide further details on the trading policy functions that the user needs to
supply to the simulator. These functions should be written using a certain
protocol, that is, they should be aware of how the simulator will call them,
and should return the information this simulator is expecting.

At the end of each daily session d, the simulator calls the trading policy
function with four main arguments plus any other parameters the user has
provided in the call to the simulator. These four arguments are (1) a vector
with the predicted signals until day d, (2) the market quotes (up to d), (3)
the currently opened positions, and (4) the money currently available to the
trader. The current position is a matrix with as many rows as there are open
positions at the end of day d. This matrix has four columns: “pos.type” that
can be 1 for a long position or −1 for a short position; “N.stocks”, which
is the number of stocks of the position; “Odate”, which is the day on which
the position was opened (a number between 1 and d); and “Oprice”, which
is the price at which the position was opened. The row names of this matrix
contain the IDs of the positions that are relevant when we want to indicate
the simulator that a certain position is to be closed.

All this information is provided by the simulator to ensure the user can de-
fine a broad set of trading policy functions. The user-defined functions should
return a data frame with a set of orders that the simulator should carry out.
This data frame should include the following information (columns): “order”,
which should be 1 for buy orders and −1 for sell orders; “order.type”, which
should be 1 for market orders that are to be carried out immediately (ac-

134 Data Mining with R: Learning with Case Studies

tually at next day open price), 2 for limit orders or 3 for stop orders; “val”,
which should be the quantity of stocks to trade for opening market orders, NA
for closing market orders, or a target price for limit and stop orders; “action”,
which should be“open”for orders that are opening a new position or“close” for
orders closing an existing position; and finally, “posID”, which should contain
the ID of the position that is being closed, if applicable.

The following is an illustration of a user-defined trading policy function:

> policy.1 <- function(signals,market,opened.pos,money,

+ bet=0.2,hold.time=10,

+ exp.prof=0.025, max.loss= 0.05

+)

+ {

+ d <- NROW(market) # this is the ID of today

+ orders <- NULL

+ nOs <- NROW(opened.pos)

+ # nothing to do!

+ if (!nOs && signals[d] == 'h') return(orders)

+

+ # First lets check if we can open new positions

+ # i) long positions

+ if (signals[d] == 'b' && !nOs) {

+ quant <- round(bet*money/market[d,'Close'],0)
+ if (quant > 0)

+ orders <- rbind(orders,

+ data.frame(order=c(1,-1,-1),order.type=c(1,2,3),

+ val = c(quant,

+ market[d,'Close']*(1+exp.prof),
+ market[d,'Close']*(1-max.loss)
+),

+ action = c('open','close','close'),
+ posID = c(NA,NA,NA)

+)

+)

+

+ # ii) short positions

+ } else if (signals[d] == 's' && !nOs) {

+ # this is the nr of stocks we already need to buy

+ # because of currently opened short positions

+ need2buy <- sum(opened.pos[opened.pos[,'pos.type']==-1,
+ "N.stocks"])*market[d,'Close']
+ quant <- round(bet*(money-need2buy)/market[d,'Close'],0)
+ if (quant > 0)

+ orders <- rbind(orders,

+ data.frame(order=c(-1,1,1),order.type=c(1,2,3),

+ val = c(quant,

+ market[d,'Close']*(1-exp.prof),
+ market[d,'Close']*(1+max.loss)
+),

Predicting Stock Market Returns 135

+ action = c('open','close','close'),
+ posID = c(NA,NA,NA)

+)

+)

+ }

+

+ # Now lets check if we need to close positions

+ # because their holding time is over

+ if (nOs)

+ for(i in 1:nOs) {

+ if (d - opened.pos[i,'Odate'] >= hold.time)

+ orders <- rbind(orders,

+ data.frame(order=-opened.pos[i,'pos.type'],
+ order.type=1,

+ val = NA,

+ action = 'close',
+ posID = rownames(opened.pos)[i]

+)

+)

+ }

+

+ orders

+ }

This policy.1() function implements the first trading strategy we de-
scribed in Section 3.5.1. The function has four parameters that we can use
to tune this strategy. These are the bet parameter, which specifies the per-
centage of our current money, that we will invest each time we open a new
position; the exp.prof parameter, which indicates the profit margin we wish
for our positions and is used when posting the limit orders; the max.loss,
which indicates the maximum loss we are willing to admit before we close
the position, and is used in stop orders; and the hold.time parameter, which
indicates the number of days we are willing to wait to reach the profit mar-
gin. If the holding time is reached without achieving the wanted margin, the
positions are closed.

Notice that whenever we open a new position, we send three orders back
to the simulator: a market order to open the position, a limit order to specify
our target profit margin, and a stop order to limit our losses.

Equivalently, the following function implements our second trading strat-
egy:

> policy.2 <- function(signals,market,opened.pos,money,

+ bet=0.2,exp.prof=0.025, max.loss= 0.05

+)

+ {

+ d <- NROW(market) # this is the ID of today

+ orders <- NULL

+ nOs <- NROW(opened.pos)

136 Data Mining with R: Learning with Case Studies

+ # nothing to do!

+ if (!nOs && signals[d] == 'h') return(orders)

+

+ # First lets check if we can open new positions

+ # i) long positions

+ if (signals[d] == 'b') {

+ quant <- round(bet*money/market[d,'Close'],0)
+ if (quant > 0)

+ orders <- rbind(orders,

+ data.frame(order=c(1,-1,-1),order.type=c(1,2,3),

+ val = c(quant,

+ market[d,'Close']*(1+exp.prof),
+ market[d,'Close']*(1-max.loss)
+),

+ action = c('open','close','close'),
+ posID = c(NA,NA,NA)

+)

+)

+

+ # ii) short positions

+ } else if (signals[d] == 's') {

+ # this is the money already committed to buy stocks

+ # because of currently opened short positions

+ need2buy <- sum(opened.pos[opened.pos[,'pos.type']==-1,
+ "N.stocks"])*market[d,'Close']
+ quant <- round(bet*(money-need2buy)/market[d,'Close'],0)
+ if (quant > 0)

+ orders <- rbind(orders,

+ data.frame(order=c(-1,1,1),order.type=c(1,2,3),

+ val = c(quant,

+ market[d,'Close']*(1-exp.prof),
+ market[d,'Close']*(1+max.loss)
+),

+ action = c('open','close','close'),
+ posID = c(NA,NA,NA)

+)

+)

+ }

+

+ orders

+ }

This function is very similar to the previous one. The main difference lies
in the fact that in this trading policy we allow for more than one position to
be opened at the same time, and also there is no aging limit for closing the
positions.

Having defined the trading policy functions, we are ready to try our trading
simulator. For illustration purposes we will select a small sample of our data
to obtain an SVM, which is then used to obtain predictions for a subsequent

Predicting Stock Market Returns 137

period. We call our trading simulator with these predictions to obtain the
results of trading using the signals of the SVM in the context of a certain
trading policy.

> # Train and test periods

> start <- 1

> len.tr <- 1000

> len.ts <- 500

> tr <- start:(start+len.tr-1)

> ts <- (start+len.tr):(start+len.tr+len.ts-1)

> # getting the quotes for the testing period

> data(GSPC)

> date <- rownames(Tdata.train[start+len.tr,])

> market <- GSPC[paste(date,'/',sep='')][1:len.ts]
> # learning the model and obtaining its signal predictions

> library(e1071)

> s <- svm(Tform,Tdata.train[tr,],cost=10,gamma=0.01)

> p <- predict(s,Tdata.train[ts,])

> sig <- trading.signals(p,0.1,-0.1)

> # now using the simulated trader

> t1 <- trading.simulator(market,sig,

+ 'policy.1',list(exp.prof=0.05,bet=0.2,hold.time=30))

Please note that for this code to work, you have to previously create the ob-
jects with the data for modeling, using the instructions given in Section 3.3.3.

In our call to the trading simulator we have selected the first trading policy
and have provided some different values for some of its parameters. We have
used the default values for transaction costs (five monetary units) and for the
initial capital (1 million monetary units). The result of the call is an object of
class tradeRecord. We can check its contents as follows:

> t1

Object of class tradeRecord with slots:

trading: <xts object with a numeric 500 x 5 matrix>

positions: <numeric 16 x 7 matrix>

init.cap : 1e+06

trans.cost : 5

policy.func : policy.1

policy.pars : <list with 3 elements>

> summary(t1)

== Summary of a Trading Simulation with 500 days ==

Trading policy function : policy.1

Policy function parameters:

exp.prof = 0.05

138 Data Mining with R: Learning with Case Studies

bet = 0.2

hold.time = 30

Transaction costs : 5

Initial Equity : 1e+06

Final Equity : 997211.9 Return : -0.28 %

Number of trading positions: 16

Use function "tradingEvaluation()" for further stats on this simulation.

The function tradingEvaluation() can be used to obtain a series of eco-
nomic indicators of the performance during this simulation period:

> tradingEvaluation(t1)

NTrades NProf PercProf PL Ret RetOverBH

16.00 8.00 50.00 -2788.09 -0.28 -7.13

MaxDD SharpeRatio AvgProf AvgLoss AvgPL MaxProf

59693.15 0.00 4.97 -4.91 0.03 5.26

MaxLoss

-5.00

We can also obtain a graphical overview of the performance of the trader
using the function plot() as follows:

> plot(t1, market, theme = "white", name = "SP500")

The result of this command is shown on Figure 3.6.
The results of this trader are bad, with a negative return. Would the sce-

nario be different if we used the second trading policy? Let us see:

> t2 <- trading.simulator(market, sig, "policy.2", list(exp.prof = 0.05,

+ bet = 0.3))

> summary(t2)

== Summary of a Trading Simulation with 500 days ==

Trading policy function : policy.2

Policy function parameters:

exp.prof = 0.05

bet = 0.3

Transaction costs : 5

Initial Equity : 1e+06

Final Equity : 961552.5 Return : -3.84 %

Number of trading positions: 29

Use function "tradingEvaluation()" for further stats on this simulation.

> tradingEvaluation(t2)

Predicting Stock Market Returns 139

60

70

80

90

100

SP500 [1974−02−04 01:00:00/1976−01−26 01:00:00]

Last 99.68

 Equity () :
997211.913

920000

940000

960000

980000

1000000

1020000

1040000

1060000

 N.Stocks () :
0.000

−2000

−1000

0

1000

2000

3000

Feb 04
1974

Apr 01
1974

Jun 03
1974

Aug 01
1974

Oct 01
1974

Dec 02
1974

Feb 03
1975

Apr 01
1975

Jun 02
1975

Aug 01
1975

Oct 01
1975

Dec 01
1975

Jan 26
1976

FIGURE 3.6: The results of trading using Policy 1 based on the signals of
an SVM.

140 Data Mining with R: Learning with Case Studies

NTrades NProf PercProf PL Ret RetOverBH

29.00 14.00 48.28 -38447.49 -3.84 -10.69

MaxDD SharpeRatio AvgProf AvgLoss AvgPL MaxProf

156535.05 -0.02 4.99 -4.84 -0.10 5.26

MaxLoss

-5.00

Using the same signals but with a different trading policy the return de-
creased from −0.27% to −2.86%. Let us repeat the experiment with a different
training and testing period:

> start <- 2000

> len.tr <- 1000

> len.ts <- 500

> tr <- start:(start + len.tr - 1)

> ts <- (start + len.tr):(start + len.tr + len.ts - 1)

> s <- svm(Tform, Tdata.train[tr,], cost = 10, gamma = 0.01)

> p <- predict(s, Tdata.train[ts,])

> sig <- trading.signals(p, 0.1, -0.1)

> t2 <- trading.simulator(market, sig, "policy.2", list(exp.prof = 0.05,

+ bet = 0.3))

> summary(t2)

== Summary of a Trading Simulation with 500 days ==

Trading policy function : policy.2

Policy function parameters:

exp.prof = 0.05

bet = 0.3

Transaction costs : 5

Initial Equity : 1e+06

Final Equity : 107376.3 Return : -89.26 %

Number of trading positions: 229

Use function "tradingEvaluation()" for further stats on this simulation.

> tradingEvaluation(t2)

NTrades NProf PercProf PL Ret RetOverBH

229.00 67.00 29.26 -892623.73 -89.26 -96.11

MaxDD SharpeRatio AvgProf AvgLoss AvgPL MaxProf

959624.80 -0.08 5.26 -4.50 -1.65 5.26

MaxLoss

-5.90

This trader, obtained by the same modeling technique and using the same
trading strategy, obtained a considerable worse result. The major lesson to
be learned here is: reliable statistical estimates. Do not be fooled by a few
repetitions of some experiments, even if it includes a 2-year testing period.

Predicting Stock Market Returns 141

We need more repetitions under different conditions to ensure some statistical
reliability of our results. This is particularly true for time series models that
have to handle different regimes (e.g., periods with rather different volatility
or trend). This is the topic of the next section.

3.6 Model Evaluation and Selection

In this section we will consider how to obtain reliable estimates of the selected
evaluation criteria. These estimates will allow us to properly compare and
select among different alternative trading systems.

3.6.1 Monte Carlo Estimates

Time series problems like the one we are addressing bring new challenges in
terms of obtaining reliable estimates of our evaluation metrics. This is caused
by the fact that all data observations have an attached time tag that imposes
an ordering among them. This ordering should be respected with the risk of
obtaining estimates that are not reliable. In Chapter 2 we used the cross-
validation method to obtain reliable estimates of evaluation statistics. This
methodology includes a random re-sampling step that changes the original
ordering of the observations. This means that cross-validation should not be
applied to time series problems. Applying this method could mean to test
models on observations that are older than the ones used to obtain them.
This is not feasible in reality, and thus the estimates obtained by this process
are unreliable and possibly overly optimistic, as it is easier to predict the past
given the future than the opposite.

Any estimation process using time series data should ensure that the mod-
els are always tested on data that is more recent than the data used to obtain
the models. This means no random re-sampling of the observations or any
other process that changes the time ordering of the given data. However, any
proper estimation process should include some random choices to ensure the
statistical reliability of the obtained estimates. This involves repeating the es-
timation process several times under different conditions, preferably randomly
selected. Given a time series dataset spanning from time t to time t+N , how
can we ensure this? First, we have to choose the train+test setup for which
we want to obtain estimates. This means deciding what is the size of both
the train and test sets to be used in the estimation process. The sum of these
two sizes should be smaller than N to ensure that we are able to randomly
generate different experimental scenarios with the data that was provided to
us. However, if we select a too small training size, we may seriously impair the
performance of our models. Similarly, small test sets will also be less reliable,

142 Data Mining with R: Learning with Case Studies

particularly if we suspect there are regime shifts in our problem and we wish
to test the models under these circumstances.

Our dataset includes roughly 30 years of daily quotes. We will evaluate all
alternatives by estimating their performance on a test set of 5 years of quotes,
when given 10 years of training data. This ensures train and test sizes that
are sufficiently large; and, moreover, it leaves space for different repetitions of
this testing process as we have 30 years of data.

In terms of experimental methodology, we will use a Monte Carlo exper-
iment to obtain reliable estimates of our evaluation metrics. Monte Carlo
methods rely on random sampling to obtain their results. We are going to
use this sampling process to choose a set of R points in our 30-year period
of quotes. For each randomly selected time point r, we will use the previous
10 years of quotes to obtain the models and the subsequent 5 years to test
them. At the end of these R iterations we will have R estimates for each of our
evaluation metrics. Each of these estimates is obtained on a randomly selected
window of 15 years of data, the first 10 years used for training and the re-
maining 5 years for testing. This ensures that our experiments always respect
the time ordering of the time series data. Repeating the process R times will
ensure sufficient variability on the train+test conditions, which increases the
reliability of our estimates. Moreover, if we use the same set of R randomly
selected points for evaluating different alternatives, we can carry out paired
comparisons to obtain statistical confidence levels on the observed differences
of mean performance. Figure 3.7 summarizes the Monte Carlo experimental
method. Notice that as we have to ensure that for every random point r there
are 10 years of data before and 5 years after, this eliminates some of the data
from the random selection of the R points.

......
5y10y

5y10y

5y10y

~ 30y

M
o

n
te

 C
ar

lo
 R

ep
et

it
io

n
s

i = 1

i = 2

i = R

period available for sampling

FIGURE 3.7: The Monte Carlo experimental process.

The function experimentalComparison(), which was used in Chapter 2
for carrying out k-fold cross-validation experiments, can also be used for Monte
Carlo experiments. In the next section we will use it to obtain reliable esti-
mates of the selected evaluation metrics for several alternative trading systems.

Predicting Stock Market Returns 143

3.6.2 Experimental Comparisons

This section describes a set of Monte Carlo experiments designed to obtain
reliable estimates of the evaluation criteria mentioned in Sections 3.3.4 and
3.5.2. The base data used in these experiments are the datasets created at the
end of Section 3.3.3.

Each of the alternative predictive models considered on these experiments
will be used in three different model updating setups. These were already
described in Section 3.4.1 and consist of using a single model for all 5-year
testing periods, using a sliding window or a growing window. The book package
contains two functions that help in the use of any model with these windowing
schemes. Functions slidingWindow() and growingWindow() have five main
arguments. The first is an object of class learner that we have used before to
hold all details on a learning system (function name and parameter values).
The second argument is the formula describing the prediction task, while the
third and fourth include the train and test datasets, respectively. The final
argument is the re-learning step to use in the windowing schema. After the
number of test cases is specified in this argument, the model is re-relearned,
either by sliding or growing the training data used to obtain the previous
model. Both functions return the predictions of the model for the provided
test set using the respective windowing schema.

The following code creates a set of functions that will be used to carry out
a full train+test+evaluate cycle of the different trading systems we will com-
pare. These functions will be called from within the Monte Carlo routines for
different train+test periods according to the schema described in Figure 3.7.

> MC.svmR <- function(form, train, test, b.t = 0.1, s.t = -0.1,

+ ...) {

+ require(e1071)

+ t <- svm(form, train, ...)

+ p <- predict(t, test)

+ trading.signals(p, b.t, s.t)

+ }

> MC.svmC <- function(form, train, test, b.t = 0.1, s.t = -0.1,

+ ...) {

+ require(e1071)

+ tgtName <- all.vars(form)[1]

+ train[, tgtName] <- trading.signals(train[, tgtName],

+ b.t, s.t)

+ t <- svm(form, train, ...)

+ p <- predict(t, test)

+ factor(p, levels = c("s", "h", "b"))

+ }

> MC.nnetR <- function(form, train, test, b.t = 0.1, s.t = -0.1,

+ ...) {

+ require(nnet)

+ t <- nnet(form, train, ...)

+ p <- predict(t, test)

144 Data Mining with R: Learning with Case Studies

+ trading.signals(p, b.t, s.t)

+ }

> MC.nnetC <- function(form, train, test, b.t = 0.1, s.t = -0.1,

+ ...) {

+ require(nnet)

+ tgtName <- all.vars(form)[1]

+ train[, tgtName] <- trading.signals(train[, tgtName],

+ b.t, s.t)

+ t <- nnet(form, train, ...)

+ p <- predict(t, test, type = "class")

+ factor(p, levels = c("s", "h", "b"))

+ }

> MC.earth <- function(form, train, test, b.t = 0.1, s.t = -0.1,

+ ...) {

+ require(earth)

+ t <- earth(form, train, ...)

+ p <- predict(t, test)

+ trading.signals(p, b.t, s.t)

+ }

> single <- function(form, train, test, learner, policy.func,

+ ...) {

+ p <- do.call(paste("MC", learner, sep = "."), list(form,

+ train, test, ...))

+ eval.stats(form, train, test, p, policy.func = policy.func)

+ }

> slide <- function(form, train, test, learner, relearn.step,

+ policy.func, ...) {

+ real.learner <- learner(paste("MC", learner, sep = "."),

+ pars = list(...))

+ p <- slidingWindowTest(real.learner, form, train, test,

+ relearn.step)

+ p <- factor(p, levels = 1:3, labels = c("s", "h", "b"))

+ eval.stats(form, train, test, p, policy.func = policy.func)

+ }

> grow <- function(form, train, test, learner, relearn.step,

+ policy.func, ...) {

+ real.learner <- learner(paste("MC", learner, sep = "."),

+ pars = list(...))

+ p <- growingWindowTest(real.learner, form, train, test,

+ relearn.step)

+ p <- factor(p, levels = 1:3, labels = c("s", "h", "b"))

+ eval.stats(form, train, test, p, policy.func = policy.func)

+ }

The functions MC.x() obtain different models using the provided formula
and training set, and then test them on the given test set, returning the
predictions. When appropriate, we have a version for the regression task (name
ending in “R”) and another for the classification tasks (name ending in “C”).
Note that both these alternatives follow different pre- and post-processing

Predicting Stock Market Returns 145

steps to get to the final result that is a set of predicted signals. These functions
are called from the single(), slide(), and grow() functions. These three
functions obtain the predictions for the test set using the model specified
in the parameter learner, using the respective model updating mechanism.
After obtaining the predictions, these functions collect the evaluation statistics
we want to estimate with a call to the function eval.stats() that is given
below.

> eval.stats <- function(form,train,test,preds,b.t=0.1,s.t=-0.1,...) {

+ # Signals evaluation

+ tgtName <- all.vars(form)[1]

+ test[,tgtName] <- trading.signals(test[,tgtName],b.t,s.t)

+ st <- sigs.PR(preds,test[,tgtName])

+ dim(st) <- NULL

+ names(st) <- paste(rep(c('prec','rec'),each=3),
+ c('s','b','sb'),sep='.')
+

+ # Trading evaluation

+ date <- rownames(test)[1]

+ market <- GSPC[paste(date,"/",sep='')][1:length(preds),]
+ trade.res <- trading.simulator(market,preds,...)

+

+ c(st,tradingEvaluation(trade.res))

+ }

The function eval.stats() uses two other functions to collect the preci-
sion and recall of the signals, and several economic evaluation metrics. Func-
tion sigs.PR() receives as arguments the predicted and true signals, and
calculates precision and recall for the sell, buy, and sell+buy signals. The
other function is tradingEvaluation(), which obtains the economic metrics
of a given trading record. This trading record is obtained with the function
trading.simulator(), which can be used to simulate acting on the market
with the model signals. All these function were fully described and exemplified
in Section 3.5.3.

The functions single(), slide(), and grow() are called from the Monte
Carlo routines with the proper parameters filled in so that we obtain the
models we want to compare. Below we describe how to set up a loop that
goes over a set of alternative trading systems and calls these functions to ob-
tain estimates of their performance. Each trading system is formed by some
learning model with some specific learning parameters, plus a trading strategy
that specifies how the model predictions are used for trading. With respect
to trading policies, we will consider three variants that derive from the poli-
cies specified in Section 3.5.3 (functions policy.1() and policy.2()). The
following functions implement these three variants:

> pol1 <- function(signals,market,op,money)

+ policy.1(signals,market,op,money,

+ bet=0.2,exp.prof=0.025,max.loss=0.05,hold.time=10)

146 Data Mining with R: Learning with Case Studies

> pol2 <- function(signals,market,op,money)

+ policy.1(signals,market,op,money,

+ bet=0.2,exp.prof=0.05,max.loss=0.05,hold.time=20)

> pol3 <- function(signals,market,op,money)

+ policy.2(signals,market,op,money,

+ bet=0.5,exp.prof=0.05,max.loss=0.05)

The following code runs the Monte Carlo experiments. We recommend
that you think twice before running this code. Even on rather fast computers,
it will take several days to complete. On the book Web page we provide the
objects resulting from running the experiments so that you can replicate the
result analysis that will follow, without having to run these experiments on
your computer.

> # The list of learners we will use

> TODO <- c('svmR','svmC','earth','nnetR','nnetC')
> # The datasets used in the comparison

> DSs <- list(dataset(Tform,Tdata.train,'SP500'))
> # Monte Carlo (MC) settings used

> MCsetts <- mcSettings(20, # 20 repetitions of the MC exps

+ 2540, # ~ 10 years for training

+ 1270, # ~ 5 years for testing

+ 1234) # random number generator seed

> # Variants to try for all learners

> VARS <- list()

> VARS$svmR <- list(cost=c(10,150),gamma=c(0.01,0.001),

+ policy.func=c('pol1','pol2','pol3'))
> VARS$svmC <- list(cost=c(10,150),gamma=c(0.01,0.001),

+ policy.func=c('pol1','pol2','pol3'))
> VARS$earth <- list(nk=c(10,17),degree=c(1,2),thresh=c(0.01,0.001),

+ policy.func=c('pol1','pol2','pol3'))
> VARS$nnetR <- list(linout=T,maxit=750,size=c(5,10),

+ decay=c(0.001,0.01),

+ policy.func=c('pol1','pol2','pol3'))
> VARS$nnetC <- list(maxit=750,size=c(5,10),decay=c(0.001,0.01),

+ policy.func=c('pol1','pol2','pol3'))
> # main loop

> for(td in TODO) {

+ assign(td,

+ experimentalComparison(

+ DSs,

+ c(

+ do.call('variants',
+ c(list('single',learner=td),VARS[[td]],
+ varsRootName=paste('single',td,sep='.'))),
+ do.call('variants',
+ c(list('slide',learner=td,
+ relearn.step=c(60,120)),

+ VARS[[td]],

Predicting Stock Market Returns 147

+ varsRootName=paste('slide',td,sep='.'))),
+ do.call('variants',
+ c(list('grow',learner=td,
+ relearn.step=c(60,120)),

+ VARS[[td]],

+ varsRootName=paste('single',td,sep='.')))
+),

+ MCsetts)

+)

+

+ # save the results

+ save(list=td,file=paste(td,'Rdata',sep='.'))
+ }

The MCsetts object controls the general parameters of the experiment that
specify the number of repetitions (20), the size of the training sets (2,540 ∼
10 years), the size of the test sets (1,270 ∼ 5 years), and the random number
generator seed to use.

The VARS list contains all parameter variants we want to try for each
learner. The variants consist of all possible combinations of the values we
indicate for the parameters in the list. Each of these variants will then be run
in three different model updating“modes”: single, sliding window, and growing
window. Moreover, we will try for the two latter modes two re-learn steps: 60
and 120 days.

For the svm models we tried four learning parameter variants together
with three different trading policies, that is, 12 variants. For earth we tried
24 variants and for nnet another 12. Each of these variants were tried in single
mode and on the four windowing schemes (two strategies with two different
re-learn steps). This obviously results in a lot of experiments being carried out.
Namely, there will be 60 (= 12 + 24 + 24) svm variants, 120 (= 24 + 48 + 48)
earth variants, and 60 nnet variants. Each of them will be executed 20 times
with a training set of 10 years and a test set of 5 years. This is why we
mentioned that it would take a long time to run the experiments. However,
we should remark that this is a tiny sample of all possibilities of tuning that
we have mentioned during the description of our approach to this problem.
There were far too many “small” decisions where we could have followed other
paths (e.g., the buy/sell thresholds, other learning systems, etc.). This means
that any serious attempt at this domain of application will require massive
computation resources to carry out a proper model selection. This is clearly
outside the scope of this book. Our aim here is to provide the reader with
proper methodological guidance and not to help find the best trading system
for this particular data.

148 Data Mining with R: Learning with Case Studies

3.6.3 Results Analysis

The code provided in the previous section generates five data files with the
objects containing the results of all variants involving the five learning sys-
tems we have tried. These data files are named “svmR.Rdata”, “svmC.Rdata”,
“earth.Rdata”, “nnetR.Rdata”, and “nnetC.Rdata”. Each of them contains an
object with the same name as the file, except the extension. These objects are
of class compExp, and our package contains several methods that can be used
to explore the results they store.

Because you probably did not run the experiments yourself, you can find
the files on the book Web page. Download them to your computer and then
use the following commands to load the objects into R:

> load("svmR.Rdata")

> load("svmC.Rdata")

> load("earth.Rdata")

> load("nnetR.Rdata")

> load("nnetC.Rdata")

For each trading system variant, we have measured several statistics of
performance. Some are related to the performance in terms of predicting the
correct signals, while others are related to the economic performance when
using these signals to trade. Deciding which are the best models according
to our experiments involves a balance between all these scores. The selected
model(s) may vary depending on which criteria we value the most.

Despite the diversity of evaluation scores we can still identify some of
them as being more relevant. Among the signal prediction statistics, precision
is clearly more important than recall for this application. In effect, precision
has to do with the predicted signals, and these drive the trading activity as
they are the causes for opening positions. Low precision scores are caused
by wrong signals, which means opening positions at the wrong timings. This
will most surely lead to high losses. Recall does not have this cost potential.
Recall measures the ability of the models to capture trading opportunities.
If this score is low, it means lost opportunities, but not high costs. In this
context, we will be particularly interested in the scores of the models at the
statistic “prec.sb”, which measures the precision of the buy and sell signals.

In terms of trading performance, the return of the systems is important
(statistic“Ret” in our experiments), as well as the return over the buy and hold
strategy (“RetOverBH” in our experiments). Also important is the percentage
of profitable trades, which should be clearly above 50% (statistic “PercProf”).
In terms of risk analysis, it is relevant to look at both the value of the Sharpe
ratio and the Maximum Draw-Down (“MaxDD”).

The function summary() can be applied to our loaded compExp objects.
However, given the number of variants and performance statistics, the output
can be overwhelming in this case.

An alternative is to use the function rankSystems() provided by our pack-

Predicting Stock Market Returns 149

age. With this function we can obtain a top chart for the evaluation statistics
in which we are interested, indicating the best models and their scores:

> tgtStats <- c('prec.sb','Ret','PercProf',
+ 'MaxDD','SharpeRatio')
> allSysRes <- join(subset(svmR,stats=tgtStats),

+ subset(svmC,stats=tgtStats),

+ subset(nnetR,stats=tgtStats),

+ subset(nnetC,stats=tgtStats),

+ subset(earth,stats=tgtStats),

+ by = 'variants')
> rankSystems(allSysRes,5,maxs=c(T,T,T,F,T))

$SP500

$SP500$prec.sb

system score

1 slide.svmC.v5 1

2 slide.svmC.v6 1

3 slide.svmC.v13 1

4 slide.svmC.v14 1

5 slide.svmC.v21 1

$SP500$Ret

system score

1 single.nnetR.v12 97.4240

2 single.svmR.v11 3.4960

3 slide.nnetR.v15 2.6230

4 single.svmC.v12 0.7875

5 single.svmR.v8 0.6115

$SP500$PercProf

system score

1 grow.nnetR.v5 60.4160

2 grow.nnetR.v6 60.3640

3 slide.svmR.v3 60.3615

4 grow.svmR.v3 59.8710

5 grow.nnetC.v1 59.8615

$SP500$MaxDD

system score

1 slide.svmC.v5 197.3945

2 slide.svmC.v6 197.3945

3 grow.svmC.v5 197.3945

4 grow.svmC.v6 197.3945

5 slide.svmC.v13 399.2800

$SP500$SharpeRatio

system score

1 slide.svmC.v5 0.02

2 slide.svmC.v6 0.02

150 Data Mining with R: Learning with Case Studies

3 slide.svmC.v13 0.02

4 slide.svmC.v14 0.02

5 slide.svmC.v21 0.02

The function subset() can be applied to compExps objects to select a
part of the information stored in these objects. In this case we are selecting
only a subset of the estimated statistics. Then we put all trading variants
together in a single compExp object, using the function join(). This function
can join compExp objects along different dimensions. In this case it makes
sense to join then by system variants, as all other experimental conditions
are the same. Finally, we use the function rankSystems() to obtain the top
five scores among all trading systems for the statistics we have selected. The
notion of best score varies with each metric. Sometimes we want the largest
values, while for others we want the lowest values. This can be set up by
the parameter maxs of function rankSystems(), which lets you specify the
statistics that are to be maximized.

The first thing we notice when looking at these top five results is that all of
them involve either the svm or nnet algorithm. Another noticeable pattern is
that almost all these variants use some windowing mechanism. This provides
some evidence of the advantages of these alternatives over the single model
approaches, which can be regarded as a confirmation of regime change effects
on these data. We can also observe several remarkable (and suspicious) scores,
namely in terms of the precision of the buy/sell signals. Obtaining 100% pre-
cision seems strange. A closer inspection of the results of these systems will
reveal that this score is achieved thanks to a very small number of signals
during the 5-year testing period,

> summary(subset(svmC,

+ stats=c('Ret','RetOverBH','PercProf','NTrades'),
+ vars=c('slide.svmC.v5','slide.svmC.v6')))

== Summary of a Monte Carlo Experiment ==

20 repetitions Monte Carlo Simulation using:

seed = 1234

train size = 2540 cases

test size = 1270 cases

* Datasets :: SP500

* Learners :: slide.svmC.v5, slide.svmC.v6

* Summary of Experiment Results:

-> Datataset: SP500

*Learner: slide.svmC.v5

Ret RetOverBH PercProf NTrades

Predicting Stock Market Returns 151

avg 0.0250000 -77.10350 5.00000 0.0500000

std 0.1118034 33.12111 22.36068 0.2236068

min 0.0000000 -128.01000 0.00000 0.0000000

max 0.5000000 -33.77000 100.00000 1.0000000

invalid 0.0000000 0.00000 0.00000 0.0000000

*Learner: slide.svmC.v6

Ret RetOverBH PercProf NTrades

avg 0.0250000 -77.10350 5.00000 0.0500000

std 0.1118034 33.12111 22.36068 0.2236068

min 0.0000000 -128.01000 0.00000 0.0000000

max 0.5000000 -33.77000 100.00000 1.0000000

invalid 0.0000000 0.00000 0.00000 0.0000000

In effect, at most these methods made a single trade over the testing period
with an average return of 0.25%, which is −77.1% below the naive buy and
hold strategy. These are clearly useless models.

A final remark on the global rankings is that the results in terms of max-
imum draw-down cannot be considered as too bad, while the Sharpe ratio
scores are definitely disappointing.

In order to reach some conclusions on the value of all these variants, we
need to add some constraints on some of the statistics. Let us assume the
following minimal values: we want (1) a reasonable number of average trades,
say more than 20; (2) an average return that should at least be greater than
0.5% (given the generally low scores of these systems); (3) and also a percent-
age of profitable trades higher than 40%. We will now see if there are some
trading systems that satisfy these constraints.

> fullResults <- join(svmR, svmC, earth, nnetC, nnetR, by = "variants")

> nt <- statScores(fullResults, "NTrades")[[1]]

> rt <- statScores(fullResults, "Ret")[[1]]

> pp <- statScores(fullResults, "PercProf")[[1]]

> s1 <- names(nt)[which(nt > 20)]

> s2 <- names(rt)[which(rt > 0.5)]

> s3 <- names(pp)[which(pp > 40)]

> namesBest <- intersect(intersect(s1, s2), s3)

> summary(subset(fullResults,

stats=tgtStats,

vars=namesBest))

== Summary of a Monte Carlo Experiment ==

20 repetitions Monte Carlo Simulation using:

seed = 1234

train size = 2540 cases

test size = 1270 cases

152 Data Mining with R: Learning with Case Studies

* Datasets :: SP500

* Learners :: single.nnetR.v12, slide.nnetR.v15, grow.nnetR.v12

* Summary of Experiment Results:

-> Datataset: SP500

*Learner: single.nnetR.v12

prec.sb Ret PercProf MaxDD SharpeRatio

avg 0.12893147 97.4240 45.88600 1595761.4 -0.01300000

std 0.06766129 650.8639 14.04880 2205913.7 0.03798892

min 0.02580645 -160.4200 21.50000 257067.4 -0.08000000

max 0.28695652 2849.8500 73.08000 10142084.7 0.04000000

invalid 0.00000000 0.0000 0.00000 0.0 0.00000000

*Learner: slide.nnetR.v15

prec.sb Ret PercProf MaxDD SharpeRatio

avg 0.14028491 2.62300 54.360500 46786.28 0.01500000

std 0.05111339 4.93178 8.339434 23526.07 0.03052178

min 0.03030303 -7.03000 38.890000 18453.94 -0.04000000

max 0.22047244 9.85000 68.970000 99458.44 0.05000000

invalid 0.00000000 0.00000 0.000000 0.00 0.00000000

*Learner: grow.nnetR.v12

prec.sb Ret PercProf MaxDD SharpeRatio

avg 0.18774920 0.544500 52.66200 41998.26 0.00600000

std 0.07964205 4.334151 11.60824 28252.05 0.03408967

min 0.04411765 -10.760000 22.22000 18144.11 -0.09000000

max 0.33076923 5.330000 72.73000 121886.17 0.05000000

invalid 0.00000000 0.000000 0.00000 0.00 0.00000000

In order to obtain the names of the trading variants satisfying the con-
straints, we have used the statScores() function available in our package.
This function receives a compExp object and the name of a statistic and, by
default, provides the average scores of all systems on this statistic. The result
is a list with as many components as there are datasets in the experiments
(in our case, this is a single dataset). The user can specify a function on the
third optional argument to obtain another numeric summary instead of the
average. Using the results of this function, we have obtained the names of the
variants satisfying each of the constraints. We finally obtained the names of
the variants that satisfy all constraints using the intersect() function, which
obtains the intersection between sets of values.

As we can see, only three of the 240 trading variants that were compared
satisfy these minimal constraints. All of them use a regression task and all
are based on neural networks. The three use the training data differently. The
“single.nnetR.v12” method does not use any windowing schema and achieves

Predicting Stock Market Returns 153

an impressive 97.4% average return. However, if we look more closely at the
results of this system, we see that at the same time on one of the iterations it
achieved a return of −160.4%. This is clearly a system with a rather marked
instability of the results obtained, as we can confirm by the standard deviation
of the return (650.86%). The other two systems achieve rather similar scores.
The following code carries out a statistical significance analysis of the results
using the function compAnalysis():

> compAnalysis(subset(fullResults,

+ stats=tgtStats,

+ vars=namesBest))

== Statistical Significance Analysis of Comparison Results ==

Baseline Learner:: single.nnetR.v12 (Learn.1)

** Evaluation Metric:: prec.sb

- Dataset: SP500

Learn.1 Learn.2 sig.2 Learn.3 sig.3

AVG 0.12893147 0.14028491 0.18774920 +

STD 0.06766129 0.05111339 0.07964205

** Evaluation Metric:: Ret

- Dataset: SP500

Learn.1 Learn.2 sig.2 Learn.3 sig.3

AVG 97.4240 2.62300 - 0.544500 -

STD 650.8639 4.93178 4.334151

** Evaluation Metric:: PercProf

- Dataset: SP500

Learn.1 Learn.2 sig.2 Learn.3 sig.3

AVG 45.88600 54.360500 + 52.66200

STD 14.04880 8.339434 11.60824

** Evaluation Metric:: MaxDD

- Dataset: SP500

Learn.1 Learn.2 sig.2 Learn.3 sig.3

AVG 1595761 46786.28 -- 41998.26 --

STD 2205914 23526.07 28252.05

** Evaluation Metric:: SharpeRatio

- Dataset: SP500

154 Data Mining with R: Learning with Case Studies

Learn.1 Learn.2 sig.2 Learn.3 sig.3

AVG -0.01300000 0.01500000 + 0.00600000

STD 0.03798892 0.03052178 0.03408967

Legends:

Learners -> Learn.1 = single.nnetR.v12 ; Learn.2 = slide.nnetR.v15 ;

Learn.3 = grow.nnetR.v12 ;

Signif. Codes -> 0 '++' or '--' 0.001 '+' or '-' 0.05 ' ' 1

Note that the above code can generate some warnings caused by the fact
that some systems do not obtain a valid score on some of the statistics (e.g.,
no buy or sell signals lead to invalid precision scores).

Despite the variability of the results, the above Wilcoxon significance test
tells us that the average return of“single.nnetR.v12”is higher than those of the
other systems with 95% confidence. Yet, with respect to the other statistics,
this variant is clearly worse.

We may have a better idea of the distribution of the scores on some of
these statistics across all 20 repetitions by plotting the compExp object:

> plot(subset(fullResults,

+ stats=c('Ret','PercProf','MaxDD'),
+ vars=namesBest))

The result of this code is shown in Figure 3.8.
The scores of the two systems using windowing schemas are very similar,

making it difficult to distinguish among them. On the contrary, the results of
“single.nnetR.v12” are clearly distinct. We can observe that the high average
return is achieved thanks to a clearly abnormal (around 2800%) return in one
of the iterations of the Monte Carlo experiment. The remainder of the scores
for this system seem clearly inferior to the scores of the other two. Just out
of curiosity, we can check the configuration of this particular trading system
using the function getVariant():

> getVariant("single.nnetR.v12", nnetR)

Learner:: "single"

Parameter values

learner = "nnetR"

linout = TRUE

trace = FALSE

maxit = 750

size = 10

decay = 0.01

policy.func = "pol3"

As you can observe, it uses the trading policy “pol3” and learns a neural
network with ten hidden units with a learning decay rate of 0.01.

Predicting Stock Market Returns 155

Ret

grow.nnetR.v12

single.nnetR.v12

slide.nnetR.v15

0 500 1000 1500 2000 2500

l

l

l

l

l

SP500

PercProf

grow.nnetR.v12

single.nnetR.v12

slide.nnetR.v15

20 30 40 50 60 70

l

l

l

SP500

MaxDD

grow.nnetR.v12

single.nnetR.v12

slide.nnetR.v15

0 2000000 4000000 6000000 8000000 10000000

l

l

l

ll

l l

SP500

FIGURE 3.8: The scores of the best traders on the 20 repetitions.

156 Data Mining with R: Learning with Case Studies

In summary, given these results, if we were to select any of the considered
alternatives, we would probably skip the “single.nnetR.v12”, given its insta-
bility. Nevertheless, in the next section we will apply our three best trading
systems on the final 9 years of data that were left out for the final evaluation
of the best systems.

3.7 The Trading System

This section presents the results obtained by the “best” models in the final
evaluation period, which was left out of the model comparison and selection
stages. This period is formed by 9 years of quotes, and we will apply the five
selected systems to trade during this period using our simulator.

3.7.1 Evaluation of the Final Test Data

In order to apply any of the selected systems to the evaluation period, we need
the last 10 years before this evaluation period. The models will be obtained
with these 10 years of data and then will be asked to make their signal predic-
tions for the 9 years of the evaluation period. These predictions may actually
involve obtaining more models in the case of the systems using windowing
schemes.

The following code obtains the evaluation statistics of these systems on
the 9-year test period,

> data <- tail(Tdata.train, 2540)

> results <- list()

> for (name in namesBest) {

+ sys <- getVariant(name, fullResults)

+ results[[name]] <- runLearner(sys, Tform, data, Tdata.eval)

+ }

> results <- t(as.data.frame(results))

We cycle over the three best models, obtaining their predictions by calling
them with the initial training data (10 years) and with the evaluation period
as test data. These calls involve the use of the functions single(), slide(),
and grow() that we have defined before. The result of these functions is a set
of evaluation metrics produced by the eval.stats() function that we have
seen before. At the end of the loop, we transform the obtained list of results
into a more appropriate table-like format.

Let us inspect the values of some of the main statistics:

> results[, c("Ret", "RetOverBH", "MaxDD", "SharpeRatio", "NTrades",

+ "PercProf")]

Predicting Stock Market Returns 157

Ret RetOverBH MaxDD SharpeRatio NTrades PercProf

single.nnetR.v12 -91.13 -61.26 1256121.55 -0.03 759 44.66

slide.nnetR.v15 -6.16 23.71 107188.96 -0.01 132 48.48

grow.nnetR.v12 1.47 31.34 84881.25 0.00 89 53.93

As you can confirm, only one of the three trading systems achieves positive
results in this 9-year period. All others lose money, with the“single.nnetR.v12”
system confirming its instability with a very low score of −91.13% return.
Among the other two, the “grow.nnetR.v12” method seems clearly better with
not only a positive return but also a smaller draw-down and a percentage of
profitable trades above 50%. Still, these two systems are clearly above the
market in this testing period with returns over the buy and hold of 23.7% and
31.4%.

The best model has the following characteristics:

> getVariant("grow.nnetR.v12", fullResults)

Learner:: "grow"

Parameter values

learner = "nnetR"

relearn.step = 120

linout = TRUE

trace = FALSE

maxit = 750

size = 10

decay = 0.001

policy.func = "pol2"

We now proceed with a deeper analysis of the performance of this best
trading system across the evaluation period. For this to be possible, we need
to obtain the trading record of the system during this period. The function
grow() does not return this object, so we need to obtain it by other means:

> model <- learner("MC.nnetR", list(maxit = 750, linout = T,

+ trace = F, size = 10, decay = 0.001))

> preds <- growingWindowTest(model, Tform, data, Tdata.eval,

+ relearn.step = 120)

> signals <- factor(preds, levels = 1:3, labels = c("s", "h",

+ "b"))

> date <- rownames(Tdata.eval)[1]

> market <- GSPC[paste(date, "/", sep = "")][1:length(signals),

+]

> trade.res <- trading.simulator(market, signals, policy.func = "pol2")

Figure 3.9 plots the trading record of the system, and was obtained as
follows:

> plot(trade.res, market, theme = "white", name = "SP500 - final test")

158 Data Mining with R: Learning with Case Studies

The analysis of Figure 3.9 reveals that the system went through a long
period with almost no trading activity, namely since mid-2003 until mid-2007.
This is rather surprising because it was a period of significant gain in the
market. This somehow shows that the system is not behaving as well as it
could, despite the global results observed. It is also noteworthy that the sys-
tem survived remarkably well during the generally downward tendency in the
period from 2000 until 2003, and also during the 2007–2009 financial crisis.

800

1000

1200

1400

1600

SP500 [2000−01−03/2009−08−31 01:00:00]

Last 1020.62

 Equity () :
1040827.868

1000000

1050000

1100000

1150000

 N.Stocks () :
0.000

−200

−100

0

100

200

300

Jan 03
2000

Jan 02
2001

Jan 02
2002

Jan 02
2003

Jan 02
2004

Jan 03
2005

Jan 03
2006

Jan 03
2007

Jan 02
2008

Jan 02
2009

Aug 31
2009

FIGURE 3.9: The results of the final evaluation period of the
“grow.nnetR.v12” system.

Package PerformanceAnalytics provides an overwhelming set of tools for
analyzing the performance of any trading system. Here we provide a glance
at some of these tools to obtain better insight into the performance of our
trading system. The tools of this package work on the returns of the strategy
under evaluation. The returns of our strategy can be obtained as follows:

Predicting Stock Market Returns 159

> library(PerformanceAnalytics)

> rets <- Return.calculate(trade.res@trading$Equity)

Please note that the function Return.calculate() does not calculate the
percentage returns we have been using up to now, yet these returns are equiv-
alent to ours by a factor of 100.

Figure 3.10 shows the cumulative returns of the strategy across all testing
periods. To obtain such a figure, it is sufficient to run the following code:

> chart.CumReturns(rets, main = "Cumulative returns of the strategy",

+ ylab = "returns")

2000−01−04 2002−01−02 2004−01−02 2006−01−03 2008−01−02 2009−08−31

Date

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

re
tu

rn
s

Cumulative returns of the strategy

FIGURE 3.10: The cumulative returns on the final evaluation period of the
“grow.nnetR.v12” system.

For most of the period, the system is on the positive side, having reached
a peak of 10% return around mid-2008.

It is frequently useful to obtain information regarding the returns on
an annual or even monthly basis. The package PerformanceAnalytics pro-
vides some tools to help with this type of analysis, namely, the function
yearlyReturn():

> yearlyReturn(trade.res@trading$Equity)

yearly.returns

2000-12-29 0.028890251

160 Data Mining with R: Learning with Case Studies

2001-12-31 -0.005992597

2002-12-31 0.001692791

2003-12-31 0.013515207

2004-12-31 0.002289826

2005-12-30 0.001798355

2006-12-29 0.000000000

2007-12-31 0.007843569

2008-12-31 0.005444369

2009-08-31 -0.014785914

Figure 3.11 presents this information graphically and we can observe that
there were only 2 years with negative returns.

> plot(100*yearlyReturn(trade.res@trading$Equity),

+ main='Yearly percentage returns of the trading system')
> abline(h=0,lty=2)

Dec
2000

Dec
2001

Dec
2002

Dec
2003

Dec
2004

Dec
2005

Dec
2006

Dec
2007

Dec
2008

−1
0

1
2

3

Yearly percentage returns of the trading system

FIGURE 3.11: Yearly percentage returns of “grow.nnetR.v12” system.

The function table.CalendarReturns() provides even more detailed in-
formation with a table of the percentage monthly returns of a strategy (the
last column is the sum over the year):

> table.CalendarReturns(rets)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Equity

2000 -0.5 0.3 0.1 0.2 0 0.2 0.2 0.0 0.0 0.4 0.4 -0.2 1.0

Predicting Stock Market Returns 161

2001 0.0 -0.3 0.2 -0.1 0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.3

2002 0.0 -0.1 0.0 -0.2 0 0.0 0.2 0.0 -0.3 -0.1 0.0 0.0 -0.5

2003 0.0 -0.1 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1

2004 0.1 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2005 0.0 0.0 0.0 -0.2 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.2

2006 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NA

2007 0.0 0.0 0.0 0.2 0 0.0 0.0 -0.2 0.0 -0.2 0.2 0.1 0.0

2008 -0.3 0.5 0.1 0.1 0 0.0 0.3 0.0 0.9 0.3 0.2 0.3 2.3

2009 -0.5 0.0 -0.2 0.0 0 0.0 0.0 0.0 NA NA NA NA -0.6

This table clearly shows the long period of inactivity of the system, with
too many zero returns.

Finally, we present an illustration of some of the tools provided by the
package PerformanceAnalytics to obtain information concerning the risk
analysis of the strategy using the function table.DownsideRisk():

> table.DownsideRisk(rets)

Equity

Semi Deviation 0.0017

Gain Deviation 0.0022

Loss Deviation 0.0024

Downside Deviation (MAR=210%) 0.0086

Downside Deviation (Rf=0%) 0.0034

Downside Deviation (0%) 0.0034

Maximum Drawdown -0.0822

Historical VaR (95%) -0.0036

Historical ES (95%) -0.0056

Modified VaR (95%) -0.0032

Modified ES (95%) -0.0051

This function gives information on several risk measures, among which we
find the percentage maximum draw-down, and also the semi-deviation that
is currently accepted as a better risk measure than the more frequent Sharpe
ratio. More information on these statistics can be found on the help pages of
the package PerformanceAnalytics.

Overall, the analysis we have carried out shows that the “grow.nnetR.v12”
trading system obtained a small return with a large risk in the 9-year test-
ing period. Despite being clearly above the naive buy and hold strategy, this
system is not ready for managing your money! Still, we must say that this
was expected. This is a rather difficult problem with far too many vari-
ants/possibilities, some of which we have illustrated across this chapter. It
would be rather surprising if the small set of possibilities we have tried lead to
a highly successful trading system.24 This was not the goal of this case study.
Our goal was to provide the reader with procedures that are methodologically
sound, and not to carry out an in-depth search for the best trading system
using these methodologies.

24And it would also be surprising if we were to publish such a system!

162 Data Mining with R: Learning with Case Studies

3.7.2 An Online Trading System

Let us suppose we are happy with the trading system we have developed. How
could we use it in real-time to trade on the market? In this section we present
a brief sketch of a system with this functionality.

The mechanics of the system we are proposing here are the following. At
the end of each day, the system will be automatically called. The system should
(1) obtain whichever new data is available to it, (2) carry out any modeling
steps that it may require, and (3) generate a set of orders as output of its call.

Let us assume that the code of the system we want to develop is to be
stored on a file named “trader.R”. The solution to call this program at the end
of each day depends on the operating system you are using. On Unix-based
systems there is usually a table named “crontab” to which we can add entries
with programs that should be run on a regular basis by the operating system.
Editing this table can be done at the command line by issuing the command:

shell> crontab -e

The syntax of the entries in this table is reasonably simple and is formed
by a set of fields that describe the periodicity and finally the command to run.
Below you can find an example that should run our “trader.R” program every
weekday by 19:00:

0 19 * * 1-5 /usr/bin/R --vanilla --quiet < /home/xpto/trader.R

The first two entries represent the minute and the hour. The third and
fourth are the day of the month and month, respectively, and an asterisk
means that the program should be run for all instances of these fields. The
fifth entry is the weekday, with a 1 representing Mondays, and the ‘-’ allowing
for the specification of intervals. Finally, we have the program to be run that
in this case is a call to R with the source code of our trader.

The general algorithm to be implemented in the “trader.R” program is the
following:

- Read in the current state of the trader
- Get all new data available
- Check if it is necessary to re-learn the model
- Obtain the predicted signal for today
- With this signal, call the policy function to obtain the orders
- Output the orders of today

The current state of the trader should be a set of data structures that
stores information that is required to be memorized across the daily runs
of the trader. In our case this should include the current NNET model, the
learning parameters used to obtain it, the training data used to obtain the
model and the associated data model specification, the “age” of the model
(important to know when to re-learn it), and the information on the trading

Predicting Stock Market Returns 163

record of the system until today and its current open positions. Ideally, this
information should be in a database and the trader would look for it using
the interface of R with these systems (see Section 3.2.4). Please note that the
information on the open positions needs to be updated from outside the system
as it is the market that drives the timings for opening and closing positions,
contrary to our simulator where we assumed that all orders are accomplished
at the beginning of the next day.

Getting the new available data is easy if we have the data model specifi-
cation. Function getModelData() can be used to refresh our dataset with the
most recent quotes, as mentioned in Section 3.3.2.

The model will need to be re-learned if the age goes above the
relearn.step parameter that should be memorized in conjunction with all
model parameters. If that is the case, then we should call the MC.nnetR()
function to obtain the new model with the current window of data. As our
best trader uses a growing window strategy, the training dataset will con-
stantly grow, which might start to become a problem if it gets too big to fit in
the computer memory. If that occurs, we can consider forgetting the too old
data, thereby pruning back the training set to an acceptable size.

Finally, we have to get a prediction for the signal of today. This means
calling the predict() function with the current model to obtain a prediction
for the last row of the training set, that is, today. Having this prediction,
we can call the trading policy function with the proper parameters to obtain
the set of orders to output for today. This should be the final result of the
program.

This brief sketch should provide you with sufficient information for imple-
menting such an online trading system.

3.8 Summary

The main goal of this chapter was to introduce the reader to a more real appli-
cation of data mining. The concrete application that was described involved
several new challenges, namely, (1) handling time series data, (2) dealing with
a very dynamic system with possible changes of regime, and (3) moving from
model predictions into concrete actions in the application domain.

In methodological terms we have introduced you to a few new topics:

• Time series modeling

• Handling regime shifts with windowing mechanisms

• Artificial neural networks

• Support vector machines

164 Data Mining with R: Learning with Case Studies

• Multivariate adaptive regression splines

• Evaluating time series models with the Monte Carlo method

• Several new evaluation statistics related either to the prediction of rare
events or with financial trading performance

From the perspective of learning R we have illustrated

• How to handle time series data

• How to read data from different sources, such as data bases

• How to obtain several new types of models (SVMs, ANNs, and MARS)

• How to use several packages specifically dedicated to financial modeling

Chapter 4

Detecting Fraudulent Transactions

The third case study addresses an instantiation of the general problem of de-
tecting unusual observations of a phenomena, that is, finding rare and quite
different observations. The driving application has to do with transactions of a
set of products that are reported by the salespeople of some company. The goal
is to find “strange” transaction reports that may indicate fraud attempts by
some of the salespeople. The outcome of the data mining process will support
posterior inspection activities by the company. Given the limited amount of
resources that can be allocated to this inspection activity, we want to provide
a kind of fraud probability ranking as outcome of the process. These rankings
should allow the company to apply its inspection resources in an optimal way.
This general resource-bounded inspection activity is frequent in many fields,
such as credit card transactions, tax declarations inspection, etc. This chap-
ter addresses several new data mining tasks, namely, (1) outlier or anomaly
detection, (2) clustering, and also (3) semi-supervised prediction models.

4.1 Problem Description and Objectives

Fraud detection is an important area for potential application of data mining
techniques given the economic and social consequences that are usually associ-
ated with these illegal activities. From the perspective of data analysis, frauds
are usually associated with unusual observations as these are activities that
are supposed to be deviations from the norm. These deviations from normal
behavior are frequently known as outliers in several data analysis disciplines.
In effect, a standard definition of an outlier is that it is “an observation which
deviates so much from other observations as to arouse suspicions that it was
generated by a different mechanism” (Hawkins, 1980).

The data we will be using in this case study refers to the transactions
reported by the salespeople of some company. These salespeople sell a set of
products of the company and report these sales with a certain periodicity. The
data we have available concerns these reports over a short period of time. The
salespeople are free to set the selling price according to their own policy and
market. At the end of each month, they report back to the company their
transactions. The goal of this data mining application is to help in the task of

165

166 Data Mining with R: Learning with Case Studies

verifying the veracity of these reports given past experience of the company
that has detected both errors and fraud attempts in these transaction reports.
The help we provide will take the form of a ranking of the reports according
to their probability of being fraudulent. This ranking will allow to allocate the
limited inspection resources of the company to the reports that our system
signals as being more “suspicious”.

4.2 The Available Data

The data we have available is of an undisclosed source and has been
anonymized. Each of the 401,146 rows of the data table includes informa-
tion on one report by some salesman. This information includes his ID, the
product ID, and the quantity and total value reported by the salesman. This
data has already gone through some analysis at the company. The result of
this analysis is shown in the last column, which has the outcome of the in-
spection of some transactions by the company. Summarizing, the dataset we
will be using has the following columns:

• ID – a factor with the ID of the salesman.

• Prod – a factor indicating the ID of the sold product.

• Quant – the number of reported sold units of the product.

• Val – the reported total monetary value of the sale.

• Insp – a factor with three possible values: ok if the transaction was
inspected and considered valid by the company, fraud if the transaction
was found to be fraudulent, and unkn if the transaction was not inspected
at all by the company.

4.2.1 Loading the Data into R

The dataset is available in our book package or on the book Web site. At the
book Web site it is available as an Rdata file, and contains a data frame with
the dataset. To use this file you should download it to a local directory in your
computer and then issue the command

> load("sales.Rdata")

Provided you are in the directory where you have downloaded the file, this
should load from the file a data frame named sales.

If you decide to use the book package data, then you should proceed as
follows:

Detecting Fraudulent Transactions 167

> library(DMwR)

> data(sales)

Once again, the result is a data frame named sales, whose first few rows
are shown below:

> head(sales)

ID Prod Quant Val Insp

1 v1 p1 182 1665 unkn

2 v2 p1 3072 8780 unkn

3 v3 p1 20393 76990 unkn

4 v4 p1 112 1100 unkn

5 v3 p1 6164 20260 unkn

6 v5 p2 104 1155 unkn

4.2.2 Exploring the Dataset

To get an initial overview of the statistical properties of the data, we can use
the function summary():1

> summary(sales)

ID Prod Quant Val

v431 : 10159 p1125 : 3923 Min. : 100 Min. : 1005

v54 : 6017 p3774 : 1824 1st Qu.: 107 1st Qu.: 1345

v426 : 3902 p1437 : 1720 Median : 168 Median : 2675

v1679 : 3016 p1917 : 1702 Mean : 8442 Mean : 14617

v1085 : 3001 p4089 : 1598 3rd Qu.: 738 3rd Qu.: 8680

v1183 : 2642 p2742 : 1519 Max. :473883883 Max. :4642955

(Other):372409 (Other):388860 NA's : 13842 NA's : 1182

Insp

ok : 14462

unkn :385414

fraud: 1270

We have a significant number of products and salespeople, as we can con-
firm using the function nlevels():

> nlevels(sales$ID)

[1] 6016

> nlevels(sales$Prod)

[1] 4548

1An interesting alternative can be obtained using the function describe() from the extra
package Hmisc. Try it!

168 Data Mining with R: Learning with Case Studies

The result of the summary() function reveals several relevant facts on this
data. First there are a considerable number of unknown values in the columns
Quant and Val. This can be particularly problematic if both happen at the
same time, as this would represent a transaction report without the crucial
information on the quantities involved in the sale. We can easily check if there
are such situations:

> length(which(is.na(sales$Quant) & is.na(sales$Val)))

[1] 888

As you can see, this is a reasonable number of transactions. Given the large
total amount of transactions, one can question whether it would not be better
to simply delete these reports. We will consider this and other alternatives in
Section 4.2.3.

As a side note, particularly relevant for very large datasets, there are more
efficient forms of obtaining this type of information. Although the previous
code using length() and which() may be considered more understandable,
we can take advantage of the way logical values are coded in R (T=1 and F=0)
to obtain the same number more efficiently:

> sum(is.na(sales$Quant) & is.na(sales$Val))

[1] 888

Another interesting observation from the results of the summary() function
is the distribution of the values in the inspection column. In effect, and as
expected, the proportion of frauds is relatively low, even if we only take into
account the reports that were inspected, which are also a small proportion
overall:

> table(sales$Insp)/nrow(sales) * 100

ok unkn fraud

3.6051712 96.0782359 0.3165930

Figure 4.1 shows the number of reports per salesperson. As you can con-
firm, the numbers are rather diverse across the salespeople. Figure 4.2 shows
the same number but per product. Again we observe a strong variability. Both
figures were obtained with the following code:

> totS <- table(sales$ID)

> totP <- table(sales$Prod)

> barplot(totS, main = "Transactions per salespeople", names.arg = "",

+ xlab = "Salespeople", ylab = "Amount")

> barplot(totP, main = "Transactions per product", names.arg = "",

+ xlab = "Products", ylab = "Amount")

Detecting Fraudulent Transactions 169

Transactions per salespeople

Salespeople

A
m

o
u

n
t

0
2

0
0

0
4

0
0

0
6

0
0

0
8

0
0

0
1

0
0

0
0

FIGURE 4.1: The number of transactions per salesperson.

Transactions per product

Products

A
m

o
u

n
t

0
1

0
0

0
2

0
0

0
3

0
0

0

FIGURE 4.2: The number of transactions per product.

170 Data Mining with R: Learning with Case Studies

The descriptive statistics of Quant and Val show a rather marked variabil-
ity. This suggests that the products may be rather different and thus it may
make sense to handle them separately. In effect, if the typical prices of the
products are too different, then a transaction report can only be considered
abnormal in the context of the reports of the same product. Still, these two
quantities may not be the ideal ones to draw this conclusion. In effect, given
the different quantity of products that are sold on each transaction, it is more
correct to carry out this analysis over the unit price instead. This price can
be added as a new column of our data frame:

> sales$Uprice <- sales$Val/sales$Quant

The unit price should be relatively constant over the transactions of the
same product. When analyzing transactions over a short period of time, one
does not expect strong variations of the unit price of the products.

If we check the distribution of the unit price, for example,

> summary(sales$Uprice)

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.4480e-06 8.4600e+00 1.1890e+01 2.0300e+01 1.9110e+01 2.6460e+04

NA's
1.4136e+04

we again observe a rather marked variability.
Given these facts, it seems inevitable that we should analyze the set of

transactions of each product individually, looking for suspicious transactions
on each of these sets. One problem with this approach is that some products
have very few transactions. In effect, of the 4,548 products, 982 have less than
20 transactions. Declaring a report as unusual based on a sample of less then
20 reports may be too risky.

It may be interesting to check what the top most expensive and cheap
products are. We will use the median unit price to represent the typical price
at which a product is sold. The following code obtains the information we are
looking for:

> attach(sales)

> upp <- aggregate(Uprice,list(Prod),median,na.rm=T)

> topP <- sapply(c(T,F),function(o)

+ upp[order(upp[,2],decreasing=o)[1:5],1])

> colnames(topP) <- c('Expensive','Cheap')
> topP

Expensive Cheap

[1,] "p3689" "p560"

[2,] "p2453" "p559"

[3,] "p2452" "p4195"

[4,] "p2456" "p601"

[5,] "p2459" "p563"

Detecting Fraudulent Transactions 171

We have attached the data frame to facilitate access to the columns of
the data. We then obtained the median unit price of each product using the
aggregate() function. This applies a function that produces some scalar value
(in this case the median) to subgroups of a dataset formed according to some
factor (or list of factors). The result is a data frame with the values of the
aggregation function for each group. From this obtained data frame we have
generated the five most expensive (cheapest) products by varying the param-
eter decreasing of the function order(), using the sapply() function.

We can confirm the completely different price distribution of the top prod-
ucts using a box plot of their unit prices:

> tops <- sales[Prod %in% topP[1,], c("Prod", "Uprice")]

> tops$Prod <- factor(tops$Prod)

> boxplot(Uprice ~ Prod, data = tops, ylab = "Uprice", log = "y")

The %in% operator tests if a value belongs to a set. The call to the function
factor() is required because otherwise the column Prod of the data frame
tops would have the same number of levels as the column in the original
sales data frame, which would lead the boxplot() function to draw a box
plot for each level. The scales of the prices of the most expensive and cheapest
products are rather different. Because of this, we have used a log scale in the
graph to avoid the values of the cheapest product becoming indistinguishable.
This effect is obtained by the parameter setting log=y, which indicates that
the Y -axis is on log scale (notice how the same distance in the axis corresponds
to a different range of values of unit price). The result of this code is shown
in Figure 4.3.

We can carry out a similar analysis to discover which salespeople are the
ones who bring more (less) money to the company,

> vs <- aggregate(Val,list(ID),sum,na.rm=T)

> scoresSs <- sapply(c(T,F),function(o)

+ vs[order(vs$x,decreasing=o)[1:5],1])

> colnames(scoresSs) <- c('Most','Least')
> scoresSs

Most Least

[1,] "v431" "v3355"

[2,] "v54" "v6069"

[3,] "v19" "v5876"

[4,] "v4520" "v6058"

[5,] "v955" "v4515"

It may be interesting to note that the top 100 salespeople on this list
account for almost 40% of the income of the company, while the bottom 2,000
out of the 6,016 salespeople generate less than 2% of the income. This may
provide some insight into eventual changes that need to be carried out within
the company:

172 Data Mining with R: Learning with Case Studies

l

l

l

l

p560 p3689

1
e
−

0
2

1
e
+

0
0

1
e
+

0
2

1
e
+

0
4

U
p
ri

c
e

FIGURE 4.3: The distribution of the unit prices of the cheapest and most
expensive products.

> sum(vs[order(vs$x, decreasing = T)[1:100], 2])/sum(Val, na.rm = T) *

+ 100

[1] 38.33277

> sum(vs[order(vs$x, decreasing = F)[1:2000], 2])/sum(Val,

+ na.rm = T) * 100

[1] 1.988716

If we carry out a similar analysis in terms of the quantity that is sold for
each product, the results are even more unbalanced:

> qs <- aggregate(Quant,list(Prod),sum,na.rm=T)

> scoresPs <- sapply(c(T,F),function(o)

+ qs[order(qs$x,decreasing=o)[1:5],1])

> colnames(scoresPs) <- c('Most','Least')
> scoresPs

Most Least

[1,] "p2516" "p2442"

[2,] "p3599" "p2443"

[3,] "p314" "p1653"

[4,] "p569" "p4101"

[5,] "p319" "p3678"

Detecting Fraudulent Transactions 173

> sum(as.double(qs[order(qs$x,decreasing=T)[1:100],2]))/

+ sum(as.double(Quant),na.rm=T)*100

[1] 74.63478

> sum(as.double(qs[order(qs$x,decreasing=F)[1:4000],2]))/

+ sum(as.double(Quant),na.rm=T)*100

[1] 8.94468

You may have noticed in the code above the use of the function
as.double(). This is required in this case because the sum of the quantities
generates too large a number that must be stored as a double. This function
ensures this transformation.

From the 4,548 products, 4,000 represent less than 10% of the sales volume,
with the top 100 representing nearly 75%. Notice that this information is
only useful in terms of the production of the products. In particular, it does
not mean that the company should consider stopping the production of the
products that sell too few units. In effect, these may be more profitable if they
have a larger profit margin. Because we do not have any information on the
production costs of the products, we cannot draw any conclusion in terms of
the usefulness in continuing to produce these products that sell so few units.

One of the main assumptions we will be making in our analysis to find ab-
normal transaction reports is that the unit price of any product should follow
a near-normal distribution. This means that we expect that the transactions of
the same product will have roughly the same unit price with some small vari-
ability, possibly caused by some strategies of the salespeople to achieve their
commercial goals. In this context, there are some basic statistical tests that
can help us in finding deviations from this normality assumption. An example
is the box plot rule. This rule serves as the basis of outlier identification in the
context of box plots that we have already seen several times in this book. The
rule states that an observation should be tagged as an anomaly high (low)
value if it is above (below) the high (low) whisker, defined as Q3 + 1.5× IQR
(Q1 − 1.5 × IQR), where Q1 is the first quartile, Q3 the third quartile, and
IQR = (Q3−Q1) the inter-quartile range. This simple rule works rather well
for normally distributed variables, and it is robust to the presence of a few
outliers being based in robust statistics like the quartiles. The following code
determines the number of outliers (according to the above definition) of each
product:

> out <- tapply(Uprice,list(Prod=Prod),

+ function(x) length(boxplot.stats(x)$out))

The boxplot.stats() function obtains several statistics that are used in
the construction of box plots. It returns a list with this information. The out
component of this list contains the observations that, according to the box
plot rule, are considered outliers. The above code calculates their number for
the transactions of each product. The products with more outliers are the
following:

174 Data Mining with R: Learning with Case Studies

> out[order(out, decreasing = T)[1:10]]

Prod

p1125 p1437 p2273 p1917 p1918 p4089 p538 p3774 p2742 p3338

376 181 165 156 156 137 129 125 120 117

Using this very simple method, 29,446 transactions are considered outliers,
which corresponds to approximately 7% of the total number of transactions,

> sum(out)

[1] 29446

> sum(out)/nrow(sales) * 100

[1] 7.34047

One might question whether this simple rule for identifying outliers would
be sufficient to provide the kind of help we want in this application. In Sec-
tion 4.4.1.1 we will evaluate the performance of a small variant of this rule
adapted to our application.

There is a caveat to some of the conclusions we have drawn in this section.
We have been using the data independently of the fact that some of the reports
were found to be fraudulent and some other may also be fraudulent although
not yet detected. This means that some of these“conclusions”may be biased by
data that is wrong. The problem is that for the transactions that are tagged as
frauds, we do not know the correct values. Theoretically, the only transactions
that we are sure to be correct are the ones for which the column Insp has
the value OK, but these are just 3.6% of the data. So, although the analysis
is correct, the conclusions may be impaired by low-quality data. This should
be taken into account in a real-world situation not to provide advice to the
company based on data that includes errors. Because a complete inspection of
the data is impossible, this risk will always exist. At most we can avoid using
the small number of transactions already found to be errors in all exploratory
analysis of the data. Another thing one can do is present the results to the
company and if some result is unexpected to them, carry out a closer analysis
of the data that leads to that surprising result. This means that this sort of
analysis usually requires some form of interaction with the domain experts,
particularly when there are doubts regarding data quality, as is the case in
this problem. Moreover, this type of exploratory analysis is of key importance
with low-quality data as many of the problems can be easily spotted at these
stages.

4.2.3 Data Problems

This section tries to address some data quality problems that can be an ob-
stacle to the application of the techniques we will use later in this chapter.

Detecting Fraudulent Transactions 175

4.2.3.1 Unknown Values

We start by addressing the problem of unknown variable values. As mentioned
in Section 2.5 (page 52), there are essentially three alternatives: (1) remove
the cases, (2) fill in the unknowns using some strategy, or (3) use tools that
handle these types of values. Considering the tools we will be using in this
chapter, only the first two are acceptable to us.

As mentioned before, the main concern are transactions that have both the
value of Quant and Val missing. Removing all 888 cases may be problematic
if this leads to removing most transactions of some product or salesperson.
Let us check this.

The total number of transactions per salesperson and product is given by

> totS <- table(ID)

> totP <- table(Prod)

The salespeople and products involved in the problematic transactions are
the following:

> nas <- sales[which(is.na(Quant) & is.na(Val)), c("ID", "Prod")]

We now obtain the salespeople with a larger proportion of transactions
with unknowns on both Val and Quant:

> propS <- 100 * table(nas$ID)/totS

> propS[order(propS, decreasing = T)[1:10]]

v1237 v4254 v4038 v5248 v3666 v4433 v4170

13.793103 9.523810 8.333333 8.333333 6.666667 6.250000 5.555556

v4926 v4664 v4642

5.555556 5.494505 4.761905

It seems reasonable to delete these transactions, at least from the perspec-
tive of the salespeople, as they represent a small proportion of their transac-
tions. Moreover, the alternative of trying to fill in both columns seems much
more risky.

Wit respect to the products, these are the numbers:

> propP <- 100 * table(nas$Prod)/totP

> propP[order(propP, decreasing = T)[1:10]]

p2689 p2675 p4061 p2780 p4351 p2686 p2707 p2690

39.28571 35.41667 25.00000 22.72727 18.18182 16.66667 14.28571 14.08451

p2691 p2670

12.90323 12.76596

There are several products that would have more than 20% of their trans-
actions removed; and in particular, product p2689 would have almost 40% of
them removed. This seems clearly too much. On the other hand, if we decide

176 Data Mining with R: Learning with Case Studies

to fill in these unknown values, the only reasonable strategy is to use the infor-
mation on the “complete” transactions of the same product. This would mean
to fill in 40% of the transactions of a product using the information of the
remaining 60%. This also seems unreasonable. Luckly, if we look at the simi-
larity between the unit price distribution of the products (see Section 4.2.3.2),
we will observe that these products are, in effect, rather similar to other prod-
ucts. In this context, if we conclude that they have too few transactions after
the removal, we can always join their transactions with the ones from similar
products to increase the statistical reliability of any outlier detection tests.
In summary, the option of removing all transactions with unknown values on
both the quantity and the value is the best option we have:

> detach(sales)

> sales <- sales[-which(is.na(sales$Quant) & is.na(sales$Val)),]

We have used the detach() function to disable direct access to the columns
of the data frame. The reason is the way the function attach() works. When
we issue a call like attach(sales), R creates a new object for each column
of the sales data frame with copies of the data in those columns. If we start
to delete data from the sales data frame, these changes will not be reflected
in these new objects. In summary, one should not play with the facilities
provided by the attach() function when the data we will be querying is
prone to changes because we will probably end up with inconsistent views of
the data: the view of the original data frame, and the views provided by the
objects created by the attach() function. The latter are snapshots of the data
frame at a certain time that become outdated if we modify the data frame
after the call to attach().

Let us now analyze the remaining reports with unknown values in either the
quantity or the value of the transaction. We start by calculating the proportion
of transactions of each product that have the quantity unknown:

> nnasQp <- tapply(sales$Quant,list(sales$Prod),

+ function(x) sum(is.na(x)))

> propNAsQp <- nnasQp/table(sales$Prod)

> propNAsQp[order(propNAsQp,decreasing=T)[1:10]]

p2442 p2443 p1653 p4101 p4243 p903 p3678

1.0000000 1.0000000 0.9090909 0.8571429 0.6842105 0.6666667 0.6666667

p3955 p4464 p1261

0.6428571 0.6363636 0.6333333

There are two products (p2442 and p2443) that have all their transactions
with unknown values of the quantity. Without further information it is virtu-
ally impossible to do anything with the transactions of these products because
we are unable to calculate their typical unit price. These are 54 reports, and
two of them are tagged as frauds while another was found to be OK. This

Detecting Fraudulent Transactions 177

must mean that either the inspectors had more information than given in
this dataset, or we are probably facing typing errors as it seems unfeasible to
conclude anything on these transactions. In this context, we will delete them:

> sales <- sales[!sales$Prod %in% c("p2442", "p2443"),]

Given that we have just removed two products from our dataset, we should
update the levels of the column Prod:

> nlevels(sales$Prod)

[1] 4548

> sales$Prod <- factor(sales$Prod)

> nlevels(sales$Prod)

[1] 4546

Are there salespeople with all transactions with unknown quantity?

> nnasQs <- tapply(sales$Quant, list(sales$ID), function(x) sum(is.na(x)))

> propNAsQs <- nnasQs/table(sales$ID)

> propNAsQs[order(propNAsQs, decreasing = T)[1:10]]

v2925 v5537 v5836 v6058 v6065 v4368 v2923

1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.8888889 0.8750000

v2970 v4910 v4542

0.8571429 0.8333333 0.8095238

As you can see, there are several salespeople who have not filled in the
information on the quantity in their reports. However, in this case the problem
is not so serious. In effect, as long as we have other transactions of the same
products reported by other salespeople, we can try to use this information
to fill in these unknowns using the assumption that the unit price should be
similar. Because of this, we will not delete these transactions.

We will now carry out a similar analysis for the transactions with an un-
known value in the Val column. First, the proportion of transactions of each
product with unknown value in this column:

> nnasVp <- tapply(sales$Val,list(sales$Prod),

+ function(x) sum(is.na(x)))

> propNAsVp <- nnasVp/table(sales$Prod)

> propNAsVp[order(propNAsVp,decreasing=T)[1:10]]

p1110 p1022 p4491 p1462 p80 p4307

0.25000000 0.17647059 0.10000000 0.07500000 0.06250000 0.05882353

p4471 p2821 p1017 p4287

0.05882353 0.05389222 0.05263158 0.05263158

178 Data Mining with R: Learning with Case Studies

The numbers are reasonable so it does not make sense to delete these
transactions as we may try to fill in these holes using the other transactions.
With respect to salesperson, the numbers are as follows:

> nnasVs <- tapply(sales$Val, list(sales$ID), function(x) sum(is.na(x)))

> propNAsVs <- nnasVs/table(sales$ID)

> propNAsVs[order(propNAsVs, decreasing = T)[1:10]]

v5647 v74 v5946 v5290 v4472 v4022

0.37500000 0.22222222 0.20000000 0.15384615 0.12500000 0.09756098

v975 v2814 v2892 v3739

0.09574468 0.09090909 0.09090909 0.08333333

Once again, the proportions are not too high.
At this stage we have removed all reports that had insufficient information

to be subject to a fill-in strategy. For the remaining unknown values, we will
apply a method based on the assumption that transactions of the same prod-
ucts should have a similar unit price. We will start by obtaining this typical
unit price for each product. We will skip the prices of transactions that were
found to be frauds in the calculation of the typical price. For the remaining
transactions we will use the median unit price of the transactions as the typical
price of the respective products:

> tPrice <- tapply(sales[sales$Insp != "fraud", "Uprice"],

+ list(sales[sales$Insp != "fraud", "Prod"]), median, na.rm = T)

Having a typical unit price for each product, we can use it to calculate any
of the two possibly missing values (Quant and Val). This is possible because
we currently have no transactions with both values missing. The following
code fills in all remaining unknown values:

> noQuant <- which(is.na(sales$Quant))

> sales[noQuant,'Quant'] <- ceiling(sales[noQuant,'Val'] /

+ tPrice[sales[noQuant,'Prod']])
> noVal <- which(is.na(sales$Val))

> sales[noVal,'Val'] <- sales[noVal,'Quant'] *

+ tPrice[sales[noVal,'Prod']]

In case you missed it, we have just filled in 12,900 unknown quantity values
plus 294 total values of transaction. If you are like me, I am sure you appreciate
the compactness of the above code that carries out all these operations. It is
all about indexing! We have used the function ceiling() to avoid non-integer
values of Quant. This function returns the smallest integer not less than the
number given as argument.

Given that we now have all Quant and Val values, we can recalculate the
Uprice column to fill in the previously unknown unit prices:

> sales$Uprice <- sales$Val/sales$Quant

Detecting Fraudulent Transactions 179

After all these pre-processing steps, we have a dataset free of unknown
values. For future analysis, it makes sense that you save this current state of
the sales data frame so that you can restart your analysis from this point,
without having to repeat all the steps. You can save the data frame as follows:

> save(sales, file = "salesClean.Rdata")

The save() function can be used to save any set of objects on a file specified
in the file parameter. Objects saved in these files can be loaded back into R
using the load() function, as shown in Section 4.2.1.

4.2.3.2 Few Transactions of Some Products

There are products with very few transactions. This is a problem because we
need to use the information on these transactions to decide if any of them
are unusual. If we have too few, it is difficult to make this decision with the
required statistical significance. In this context, it makes sense to question
whether we can analyze the transactions of some products together to avoid
this problem.

Despite the complete lack of information on the eventual relationships
between products, we can try to infer some of these relationships by observing
the similarity between their distributions of unit price. If we find products
with similar prices, then we can consider merging their respective transactions
and analyze them together to search for unusual values. One way of comparing
two distributions is to visually inspect them. Given the number of products we
have, this is unfeasible. An alternative is to compare some statistical properties
that summarize the distributions. Two important properties of continuous
variables distributions are their central tendency and spread. As mentioned
before, it is reasonable to assume that the distribution of the unit price of
any product is approximately normal. This means that although variations
in the price occur, they should be nicely packed around the most common
price. However, we have to assume that there will be outlying values, most
probably caused by fraud attempts or errors. In this context, it makes more
sense to use the median as the statistic of centrality and the inter-quartile
range (IQR) as the statistic of spread. These statistics are more robust to the
presence of outliers when compared to the more frequently used mean and
standard deviation. We can obtain both statistics for all transactions of each
product as follows:

> attach(sales)

> notF <- which(Insp != 'fraud')
> ms <- tapply(Uprice[notF],list(Prod=Prod[notF]),function(x) {

+ bp <- boxplot.stats(x)$stats

+ c(median=bp[3],iqr=bp[4]-bp[2])

+ })

> ms <- matrix(unlist(ms),

+ length(ms),2,

180 Data Mining with R: Learning with Case Studies

+ byrow=T,dimnames=list(names(ms),c('median','iqr')))
> head(ms)

median iqr

p1 11.346154 8.575599

p2 10.877863 5.609731

p3 10.000000 4.809092

p4 9.911243 5.998530

p5 10.957447 7.136601

p6 13.223684 6.685185

This code uses the boxplot.stats() function to obtain the values of the
median, first and third quartiles. We calculate these values for all sets of
transactions of each product, eliminating the fraudulent transactions from
our analysis. With these values we obtain a matrix with the median and IQR
for each product.

Figure 4.4(a) plots each product according to its respective median and
IQR. The graph is difficult to read because a few products have very large
values for these statistics. In particular, product p3689 (the dot at the top
right) is clearly different from all other products of the company. We can
overcome this visualization problem using log scales (Figure 4.4(b)). In this
second graph we have used black “+” signs to indicate the products that have
less than 20 transactions. The figures were obtained as follows, where the
parameter log=xy sets log scales on both axes of the graph:

> par(mfrow = c(1, 2))

> plot(ms[, 1], ms[, 2], xlab = "Median", ylab = "IQR", main = "")

> plot(ms[, 1], ms[, 2], xlab = "Median", ylab = "IQR", main = "",

+ col = "grey", log = "xy")

> smalls <- which(table(Prod) < 20)

> points(log(ms[smalls, 1]), log(ms[smalls, 2]), pch = "+")

The first thing to note in Figure 4.4(b) is that there are many products that
have approximately the same median and IQR, even taking into account that
we are looking at a log scale. This provides good indications of the similarity of
their distributions of unit price. Moreover, we can see that among the products
with few transactions, there are many that are very similar to other products.
However, there are also several products that not only have few transactions
but also have a rather distinct distribution of unit prices. These are clearly
the products for which we will have more difficulty declaring a transaction as
fraudulent.

Despite the virtues of the visual inspection of the distribution properties
of the unit prices, formal tests are required to obtain more precision when
comparing the distributions of two products. We will use a nonparametric test
to compare the distributions of unit prices, as these tests are more robust to the
presence of outliers. The Kolmogorov-Smirnov test can be used to compare any
two samples to check the validity of the null hypothesis that both come from

Detecting Fraudulent Transactions 181

ll
ll

l
l

ll
l

ll
l

ll
l

ll
l
lll
l

lll
l
ll
l
lll
llllllllllllllllllllllllllllll

ll
l
ll

l

llllll

l

l
l

lllll
ll
l

lllllllllll
l

l
l

llllllllllllllllll
l

lllllllllllllllllllllllllllllllll
l
lll
ll

lllllllllllllllllllllllllllllllllllllll
l

lllllllllllllllllllllllllllll

0 2000 4000 6000 8000

0
2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

1
2
0
0
0

Median
(a) linear scale

IQ
R l

l
l
l
ll

l
l

l

l

l
l

l
l

l
ll

l

l

l
l
l

l
l

l

l

l

l

l

l
l l

l

l
l

l

l

l

ll
ll

l
l

l

l

l

l
l

l

l

l
l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l l
l l

l

l
ll

l

l

l

l

l
ll

l

l

l

l

l

l

l
l

l

l

lll

l

l

l

l

l

l

ll

l

l

l
l

l

l

ll

l

lll
l

l

l

l

l

l ll

ll
l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
ll

l

l

l

l
l

l
l

l

l
l

l

l l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l
l

l

l

l

ll
l

l

l

l

l

l l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

ll l

l

l

l

l
l

l

ll
l

l
l

l

l

l
l

l

l

l

l

l
l

l

l

ll

l

l
l

l

l

l

l

l
ll

l

l

l

lll

l

l
l

l

l

l

l l

lll

l

l

l

l l

l

l

l

l

l

l

l

l
ll

l

lll
l

l
l

l

l l

l

l

l

l

ll

l

l
ll

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l
l

l

l
l

l

ll

l
l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l
l
l

l

ll

l

l

l

l

l
ll

l l
l

l
l

l

l

ll

l

l

l
l
l

l
ll

l

l

ll

l
l

ll

l
ll

l

l
l
l

l

l

l

l

l
l

ll

l l
lll

l

l

l l
l

l

l l
l

l

ll
ll

l

l

ll
l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l
l

l
l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l

l

l

lll

l

l
l

l
l

l
l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l
ll

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l

l

l

l

l
l

ll

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

ll

l

l

l

l
l

l

ll

l
l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l l
l

l

l

l

l

l

l

l

l
l

l

l

l l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

ll l
l

l

l

l

l

l

l l

l

l

l

l

l l

l

l
l

l

l

l l
l

l

l
l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l
ll

l

l
l
l

l
l
l

l

l

l
ll

ll
l

l l

l

l

l

l

l

l

l

l
l
lll
lll

ll
l

l
ll

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

ll
l

l

l

l l

l

l

l

l

l

l

l

l

l
l
l

l
ll

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l ll

l
l
ll
l

l
l

l

l

l

l
l

l l

l l
ll

l

l

l

l

l

l

l
l

l

l

l

l

ll
l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l
ll

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l
l l

l

l
l

l

lll

l

l

l

l

l
l

l

l
l

l

ll

l

l

l

l

l

l
l

l

l

l
l

l

l
l

l
l

l

l
l

l

ll

lll
l

l ll
l

l
l

l

l

l

l
l

l

l
l

ll

l

l

l

l
l

l

l

l
l

l

l

l
l

l

ll

l

l

ll

ll

l

l

l

l

l l

l

l

l
lll

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

lll

l

l

l
l

l
l

l

l l
l

l

l

ll

l

l

l

l

l

l

l

l

l

l

ll

l

l

ll

l

l

l

l
l

l

ll

lll
l

l

l

ll

l

l

l

l

ll

ll
l

ll
l

l

l

ll

l
l

l

ll
l

l

l
l

l

l

l
l

l

ll

l

l
l

l

l

ll

l

l

l
l

l

l

l

l

l

l

ll

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

lll

l

l

ll

l

l

l

l
ll

l

l

l

l

l
l

l

l

l

l

l l

l

l

l

l

l

l

l
ll

l

l

l

l

l

ll

l

ll

l

l

l

l
l

ll
l

l

l

ll

l

l
l

l

ll

l
l

l

l

l

l

ll
l
l

l

l

l

l

l
l

l

l

l l
l

l
l

ll

l

l

l

ll
l

l

l

l

l

l

l

l

l
l

l

l

l
l

l l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

ll
l

l

l
l

l

l
l

l

l

l

l

l
l

ll

l

l
l

l

l

l

l

l

l

l

l

l

l

l

ll

l
l

ll
l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l
l

l

l

l
l

l
l

l

l

l
l

l

l
l

lllll

l

l

l

l

l

l

l
l

l

l l

l
lll

l
ll

l

l

lll
l

l

ll
lll

l

l
l

l

ll

l
ll

l

l

l

l
l

l

l

l

l
l

ll
l

l

ll

l

l

l
l

l

l

l
l

l

l
ll

ll

l

ll
l

l

l

l

l

l

l

l
l

ll

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l l

l

l
ll

ll
l

l

l

l

ll
lll

l

ll
l

l
l
l

l

l

l

ll

l

l

l

l

l

ll

l
l

l

l

l

l

l
l

l

l

l
l

l

ll

l

l

l
l

l
l

l

l

l

l
l

l

l

ll

l

l
l

l

l

l

l

l

l

l

ll

l

ll
l

l

l
l
lll
l

ll
ll

ll
l

l

ll
l

l
lll

l

l
l
ll
l
l

l

l

l

l

l

l

l

l

l
l
ll

l

l

l
ll

l
l

l

l

l

ll

l

ll

l
l

ll
l

l

ll

l

l

l

l

l

l

l

l

l

ll

l
l

l

l l

l
l

l

l
l
ll
l

ll

l

l

ll

l

l

l

l

l

l

l

l

l

lll
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

llll

l

l
l

ll
l

l

ll

l

l

l

l

l

ll

l
l

l
ll

l
l

l
l

l

l

l

l

l
l
l

l

l

l

l

l

l

l

l

l

l

ll
l
l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l
l

l

l

l
l

l

l

lll
l

l

l

l

l

l

l

l
ll

l

ll
l
l

l

ll
l

ll

l

l

lll

l
l

ll

l

l

l

l

l
l

ll
l
ll
lll

l

l

lllll

l

l

l
l

l

l

l

l

l
l

l

l
l

ll

l
l
l

l

ll

l

l

ll

l

l

l

l

l
llll

l
ll
l

l
l

l

l
l

ll
l

l
ll

l

l

l
l

ll

l

l

ll

l

l

l

l

l

l

l
ll

l

l
l

l

l
l

l

l

l

l

l

ll
l

l
l

l
l
l

lll
l

l
l

ll

l

ll

l
l

ll

l

l

l

l

l
l

ll

l

l
l

l
l

l

l

l

l

l

l

l
l

l

l

l l

l
l
l

l

l

l
ll

l

l

l

l

l

l

l

l

l
l

l
ll

l

l

l

l
l

l l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

ll

l

l

l

l

ll

l

l
l

l
l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l
l

ll

l

ll

l

l
l

l

l
l

l
l

l

l

l

l
l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

ll

l

llll

l
l

l

lll

l
l

ll

l

l

ll
l
l

l

l
ll

l

l

l
l

l

l

l

l

l
l

l

l

l

ll
ll

l

ll

l
l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

lll
l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l
l

ll

l

l
ll

l

l l

l

l

l
l

l

l

l
ll

l

l

l

ll

l

l

l

ll
l

l

l

l

ll

l

l

ll
l

l

l

l

ll

l

l

l

l

l

l
ll
l

ll

l
l
l
ll

l
l

l

ll

l

l
l
l

l

l
l

l

l
l
ll

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

ll

ll
l

l

l

l

l

l
l

l l

l

l

ll
l

l

l

l

ll
l
ll

l

l
ll

l
l

l

l

l

l

l

l

l

l

l

l
l
l
l
l

l
l

l

l

l

l

l

l

l

l

l

l

ll

l

l
l

ll
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

lll

ll
l

l

l

l

l

l

l l

l

l
l

ll

l

l

l

l

l

l

l

l

ll l
l l

l l

l

l

l

l

l

l

l

l

l
l

ll

l

l

ll
l

l

l
l l

l

l

l

l

l
l

l

l
ll

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l
l

l

l

ll
l

l

l

l

l

ll

l
l

l
l
l

l

l

l
l l

l

l

l

l

lll

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

ll

l

l

l

l

ll
l

l

ll

l

l

l

ll

l

l

l

l

l
l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

ll
l

l l
l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

ll

l

l

lll l

l

l

l

l

l

l

l
l

l
l

ll

l

l

l

l

l

l
ll l
l
l
l

l

lll

l

l
l

l l

l l

l
l

l

l

lll

l

l

l

l

l l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l
l

l

l

l

l

l
l

l

l
l

l

l

l

ll

l

l

l

ll

l

ll

l

l

l

ll

l

ll

l

l

l

l

l

l

l

ll

l
l

l

l

l

ll

l
l

l

l

l
l

l
l

l

l

l l

ll

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l
l

l

l l
l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

ll
l

l

l

l

l
lll

l

l

l
l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l
l

l

l

l

l
l

l

l

lll

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l

l

l

ll

l

l
l

l

l
l

l l
l

l

l
l

ll

l
l
l
l

l
lll

l

l

ll

l
l

l

l

l

l

l
ll

l
l

l

l

ll

l

l

l

ll
l

l
l

ll

l

l

l

l

l
l
l

l

l
l

l

l

l
l

l

l

l

l

l

ll

l
l

l

ll

l

ll

l

l
l

l

l
l

l
l
l

l

l

l
l

l
l

l

l

ll l

ll
l
l

l

l

l

l

l

l

l
ll

l

l

l

l

l
l
l

l
l

l

l

l
l

ll

l

l

l
l

l

l

ll

ll

ll

ll

l

l

l
l
l

l

l

ll
l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l
l

ll

l

l

l

l

l
l
l

l

l

l
l
l

lll

ll
l

l
l

l
l

l

l

l

l
l

ll

l

l

l

l

l

ll

l

l

l

l
l

l

l

l

l

l

l
l

l

l
l

l
l l

l
l

l

l

l

l

l
ll
l

l

l

l

l

l

l

l l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l
l

l

ll

l

ll

l

l

l

l
l

l

l

ll

l

l
l

l

l
l

l

l

l

lll
l

l

l

l
l

l

l
ll

l

l
l

l

l

l

l

l

l

l

l

l
ll

l

l

l
l
ll

l

l l

lll l

l
l

ll

ll

l

ll
l

ll

l
l

ll

l

l

l

l

l
l

ll
l

ll

l

l

l

lll

l

l
l

l
l

ll

l
l

l

l

l
l

l l
l

ll

l

ll

l
l

l l

l
l

l
l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l

l
ll
l

l

ll

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

ll
l

l

l
ll

l
l

l

l
l

l

l

l
l

l
l

l
l

l

l
l
l

l

l

l

l

l

l
l

l

l

l
l
l

l

l

l

ll

l
l

l

l

l

l
l

l

l

l

l

ll
ll

l

ll

l

ll

l

l
l
l

l
l
ll

l

l
l

l

l
l
ll

l

l

l

l
ll

l

l

l
l
l

l
l

l

l
l

l

l

l

l

l

l
l

l

l
l

ll

l

l

l

l

l

l
l

l

ll

l

ll

l

l

l

l

l

l

l

l
l

ll

ll
l

l

l

l
l

l
l

ll

l
l

l

l

l

ll

l

ll

l
l

l
ll

l

l
l

l

l
ll

l

l
l

l
l

l

l

l

l

ll

l
l

l

l

l

l
l

lll

l

l
l

l
l

l

l

ll

l

l
l

l

l

l

l

l
l

ll

l

l

l

l

l

l

l

l

ll

l

l

ll

l

l

ll

ll

l

l

l

l

l

l

ll

l

l
l

lll

l

l
l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l
l

l

l
l

l

l

ll

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

ll

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

ll
l
l

l

l

l

l

l

l

l

l

l
ll

l

l
l

l

ll
ll

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l

l

l

ll

l

l

l
lll

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l l
ll

ll l
l

l

l

l

l

l

l

l

l

l

l

l

ll

llll
l

l

l

l
l

l

l

l
l

ll

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l
l l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l
ll

l

l

l

l

l

l
l

l
ll

l

l

l

l

l
l

ll

l

l

l

l

l

l

l

l

l
ll

l

l

l
l l

l
l

l

l

l

ll

l

l

l

ll

l

l

l

l

l

l ll

l

l

l

l

ll
l

ll

l

l

l

lll
l

l

l

l

l l

l

l

l

l

l

ll
l

l

ll

ll
l

l

ll

l

l

l
l

l

l
l l

l

l
l

l

l

ll

l
l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l
l

l

l

l

l

l
l

l

l

lll
l
l

l

l
lll

l

ll

l
lll

l
l
ll

l
ll
l

l
ll
l

l

l

l

l
l

l

l
l

l

l
l

l
l

l

l

l
l

l
l

l

l

ll

l

l

l

l

l

l

l

l

l

l
l

l

ll

ll

l

l

l
l

l

ll

l

l
l

l

l
l

l

l

l

l

l
l

ll

l

l

l

l

l

l

l

l

l

l

lll

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll l

l
l

ll

l

l
l

l

l

l
l

l l

l
l

l

l

l

l
l

l

ll

l

l

ll

l

l

l

l

l

l

l

l

l

l

l
l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l
l

l

l

l

l

l
l

l

l

l
l

l

l

l

ll
l

ll

l
l

l

l

l

l

l

l

l

l

l

ll
l

l
l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l l

l
l

l

l
l

l

l

l

l

l

l

l
l

l

l
l

ll

l

l

l
l

l
l

l

ll

l

l

l

l
l

l

ll

l
l

l

l

l

l

ll

l

l

l

l

l

l

l

l

ll

l

ll

l
l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l
l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l
l

l l

ll

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l

ll

l
l

l

l
l

ll
ll

l

l
l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l l

l

l

l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l
l

1e−01 1e+01 1e+03

1
e
−

0
2

1
e
+

0
0

1
e
+

0
2

1
e
+

0
4

Median
(b) log scale

IQ
R

++

++
+ ++

+
+

+
++
++

+

+

+

+
+

+
+

+++

+

+
+

+

+
+

+

+

+++

+

+++
+

++
+

++

+

+

+++++++

+ +

+
+
+

+
+

+

+
+

++
+

+
++

+
+ ++

+
+

+

+

+

+
++

+ ++
+
+++
+
+

+ +++ +
+

+
+

+

+
++

+
++ ++

+
+
+

+

+

+

+

+
++

+

+

+
++

+

+

+

+

+
+

++
+

+

++
+ ++++

+
+ ++

+
+
+

+

+

++

+

+

+ ++
+++

+++

+++
+

+
+

+

+
+

+

+

++

+
+

+
++++++

+

+
+

+

+++

++
+ +

+
+

++
+
+

++
+

+
+++

+
++
+

+
+

+

+++
+
+
+

+
++
+
+
+
++++
++
++
++

++++++
+
+

+

+

+++++

+

+
+

+
+

+
+

+++

+
+

+
+
+++++
+++
++

+

+

+

+
+

++
++

+
+ +

+++
+

+ +

+

+
+

+

++

++
+
+

+

++

++

+
++ +

+

+

++
++

++

+
+

+
+

+

+
+
+

+

+
++

++
+

+

+
+

+

+++
++
++

+

+++
+
+
+
++
+

+

+
+
+

+
++
+

+++

+

+

++
+++
+

+++
+

+
+

+

+

+
++
+

++

+

++++
+++
+
++++

++

+++
+
+

+
+
++

++
+

++
+
+
+++

+
+

+

+
++

+
+
+
+++

+

+
+
+++
++

++
+

+
+++
++
++++

+

++++
+
++

+
+

+

+++

+

++
+
+
+

+
+

+
+

+++++
+

++++
+

+

+
++
+
+
+++++

+
++
+

++

+++
+++

+

++++

+

+
+
++
+
+

+

++
+
+

++
++

+

+
++

+

+ +

+++
+

+

++

+

++
+

+

+

+
+

+

++
+
+

+

+
+

+

+
++

+
++

+

+

+
+++

+

++

+

+

+

+

++

+

+
+

++
+ +

++
+

++

+

++
+
+

+++

+

+
+

+

+
+

+
+
+

+
+++

+
+

+

++
+
+++

+
+
+

+
+ +++

+++
++

+++

+
+

+
++
++
++++
+

++
++

++

+
+

+
+

+
++
+++

+

++
+

+

+
+

+

+ +
+

++
+ +

+

+
+

++

+

+++

+

++

+

++
+

+

++

+
+

+

+

+

+

++++++

+
++

++

+
+

+
+ ++

+

++ +

+
+

++
+

+

+

+

+

+
+ ++

+
+

+

+ ++
+

+

+
+

FIGURE 4.4: Some properties of the distribution of unit prices.

the same distribution. This test works by calculating a statistic that measures
the maximum difference between the two empirical cumulative distribution
functions. If the two distributions are similar, this distance should be rather
small.

For each of the products that has less than 20 transactions, we will search
for the product with the most similar unit price distribution and then use a
Kolmogorov-Smirnov test to check if the similarity is statistically significant.
Carrying out this task for all combinations of products would be computa-
tionally too demanding. Instead, we have decided to take advantage of the
information given by the distribution properties we calculated before (median
and IQR). Namely, for each of the products with few transactions, we have
searched for the product with the most similar median and IQR. Given this
similar product, we have carried out a Kolmogorov-Smirnov test between their
respective unit price distributions, storing the results of this test. The follow-
ing code obtains a matrix (similar) with the information on this type of test
for each of the products with less than 20 transactions. It uses the ms object
we obtained before with the information on the medians and IQRs of the unit
prices of each product.

> dms <- scale(ms)

> smalls <- which(table(Prod) < 20)

> prods <- tapply(sales$Uprice, sales$Prod, list)

> similar <- matrix(NA, length(smalls), 7, dimnames = list(names(smalls),

+ c("Simil", "ks.stat", "ks.p", "medP", "iqrP", "medS",

+ "iqrS")))

> for (i in seq(along = smalls)) {

182 Data Mining with R: Learning with Case Studies

+ d <- scale(dms, dms[smalls[i],], FALSE)

+ d <- sqrt(drop(d^2 %*% rep(1, ncol(d))))

+ stat <- ks.test(prods[[smalls[i]]], prods[[order(d)[2]]])

+ similar[i,] <- c(order(d)[2], stat$statistic, stat$p.value,

+ ms[smalls[i],], ms[order(d)[2],])

+ }

The code starts by normalizing the data in the object ms to avoid neg-
ative scale effects when calculating the distances. After a few initializations,
we have the main loop that goes over all products with few transactions. The
first two statements in this loop calculate the distances between the distribu-
tion properties of the product under analysis (the current value of i) and all
other products. The resulting object (d) has the values of all these distances.
The second smallest distance is the product that is most similar to the prod-
uct being considered. It is the second because the first is the product itself.
We note again that the similarity between the products is being calculated
using the information on the median and IQR of the respective unit prices.
The next step is to carry out the Kolmogorov-Smirnov test to compare the
two distributions of unit prices. This is done with a call to the ks.test()
function. This function returns significant information, among which we have
“extracted” the value of the statistic of the test and the respective significance
level. The value of the statistic is the maximum difference between the two cu-
mulative distribution functions. Values of the confidence level near 1 indicate
strong statistical significance of the null hypothesis that both distributions are
equal. Below we show the first few lines of the resulting similar object:

> head(similar)

Simil ks.stat ks.p medP iqrP medS iqrS

p8 2827 0.4339623 0.06470603 3.850211 0.7282168 3.868306 0.7938557

p18 213 0.2568922 0.25815859 5.187266 8.0359968 5.274884 7.8894149

p38 1044 0.3650794 0.11308315 5.490758 6.4162095 5.651818 6.3248073

p39 1540 0.2258065 0.70914769 7.986486 1.6425959 8.080694 1.7668724

p40 3971 0.3333333 0.13892028 9.674797 1.6104511 9.668854 1.6520147

p47 1387 0.3125000 0.48540576 2.504092 2.5625835 2.413498 2.6402087

The row names indicate the product for which we are obtaining the most
similar product. The first column has information on this latter product. The
respective product ID can be obtained as shown in the following example for
the first row of similar:

> levels(Prod)[similar[1, 1]]

[1] "p2829"

After the columns with the Kolmogorov-Smirnov statistic and confidence
level, we have the medians and IQRs of the product and the most similar
product, respectively.

We can check how many products have a product whose unit price distri-
bution is significantly similar with 90% confidence:

Detecting Fraudulent Transactions 183

> nrow(similar[similar[, "ks.p"] >= 0.9,])

[1] 117

Or more efficiently,

> sum(similar[, "ks.p"] >= 0.9)

[1] 117

As you see from the 985 products with less than 20 transactions, we have
only managed to find similar products for 117 of them. Nevertheless, this is
useful information when it comes to analyzing which transactions are abnor-
mal. For these 117 products we can include more transactions into the decision
process to increase the statistical significance of our tests. We will save the
similar object in case we decide to use this similarity between products later:

> save(similar, file = "similarProducts.Rdata")

4.3 Defining the Data Mining Tasks

The main goal of this application is to use data mining to provide guidance
in the task of deciding which transaction reports should be considered for
inspection as a result of strong suspicion of being fraudulent. Given the limited
and varying resources available for this inspection task, such guidance should
take the form of a ranking of fraud probability.

4.3.1 Different Approaches to the Problem

The available dataset has a column (Insp) that has information on previous
inspection activities. The main problem we have is that the majority of the
available reports have not been inspected. From the perspective of the task
of deciding whether or not a report is fraudulent, the value unkn in the Insp
variable has the meaning of an unknown variable value. This value represents
the absence of information on whether the transaction is OK or a fraud. This
means that we have two types of observations in our dataset. We have a
(small) set of labeled observations for which we have the description of their
characteristics plus the result of their inspection. We have another (large)
set of unlabeled observations that have not been inspected, that is, have the
value unkn in the Insp column. In this context, there are different types of
modeling approaches that can be applied to these data, depending on which
observations we use for obtaining the models.

184 Data Mining with R: Learning with Case Studies

4.3.1.1 Unsupervised Techniques

In the reports that were not inspected, the column Insp is in effect irrelevant as
it carries no information. For these observations we only have descriptors of the
transactions. This means that these sales reports are only described by a set of
independent variables. This is the type of data used by unsupervised learning
techniques. These methods are named this way because their goal is not to
learn some“concept”with the help of a“teacher”as in supervised methods. The
data used by these latter methods are examples of the concepts being learned
(e.g., the concept of fraud or normal transaction). This requires that the data
is preclassified (labeled) by a domain expert into one of the target concepts.
This is not the case for the set of reports with unknown inspection results. We
are thus facing a descriptive data mining task as opposed to predictive tasks,
which are the goal of supervised methods.

Clustering is an example of a descriptive data mining technique. Clustering
methods try to find the “natural” groupings of a set of observations by forming
clusters of cases that are similar to each other. The notion of similarity usually
requires the definition of a metric over the space defined by the variables that
describe the observations. This metric is a distance function that measures
how far an observation is from another. Cases that are near each other are
usually considered part of the same natural group of data.

Outlier detection can also be viewed as a descriptive data mining task.
Some outlier detection methods assume a certain expected distribution of the
data, and tag as outliers any observations that deviate from this distribution.
Another common outlier detection strategy is to assume a metric over the
space of variables and use the notion of distance to tag as outliers observations
that are “too far” from others.

From the above descriptions we can see that there are strong relationships
between clustering and outlier detection. This is particularly true in method-
ologies based on the notion of distance between observations. Outliers are, by
definition, rather different cases and thus they should not fit well in groups
with other observations because they are too distant from them. This means
that a good clustering of a dataset should not include outliers in large groups
of data. At most, one can expect outliers to be similar to other outliers but
by definition these are rare observations and thus should not form big groups
of cases.

The use of unsupervised techniques in our problem involves some restric-
tions. In effect, our goal is to obtain an outlier ranking for a set of observa-
tions. This ranking is to serve as a basis for the inspection decisions within the
company. This means that the unsupervised tools we select must be able to
identify outliers and also rank them. Section 4.4.1 describes the unsupervised
techniques we have selected to address this data mining task.

Further readings on unsupervised learning

Clustering analysis is a thoroughly explored methodology. Examples of good references are the
works by Kaufman and Rousseeuw (1990) and Murtagh (1985). A more data mining-oriented

Detecting Fraudulent Transactions 185

perspective can be found in several reference books on data mining, for example, Han and
Kamber (2006). Outlier detection has also been explored in many disciplines. Standard references
include the works by Barnett and Lewis (1994) and Hawkins (1980). Good surveys of different
perspectives of outlier detection are given in Austin (2004) and Chandola et al. (2007). Regarding
the relationships between clustering an outlier detection, examples of works exploring it include
Ng and Han (1994) and Torgo (2007).

4.3.1.2 Supervised Techniques

The set of transactions that were labeled normal or fraudulent (i.e., have been
inspected) can be used with other types of modeling approaches. Supervised
learning methods use this type of labeled data. The goal of these approaches
is to obtain a model that relates a target variable (the concept being learned)
with a set of independent variables (predictors, attributes). This model can be
regarded as an approximation of an unknown function Y = f(X1, X2, · · · , Xp)
that describes the relationship between the target variable Y and the predic-
tors X1, X2, · · · , Xp. The task of the modeling technique is to obtain the model
parameters that optimize a certain selected criterion, for example, minimize
the prediction error of the model. This search task is carried out with the help
of a sample of observations of the phenomena under study, that is, it is based
on a dataset containing examples of the concept being learned. These exam-
ples are particular instances of the variables X1, X2, · · · , Xp, Y . If the target
variable Y is continuous, we have a (multiple) regression problem. If Y is a
nominal variable, we have a classification problem.

In the case of our dataset, the target variable is the result of the inspection
task and can take two possible values: ok and fraud. This means that our goal
is to learn the concepts of fraudulent and normal reports. We are thus facing
a classification problem. Notice that the transactions that were not inspected
cannot be used in these tasks because we are unsure whether or not they are
frauds. This means that if we want to use a classification technique to obtain
a model to predict whether a given report is or is not a fraud, we can only use
15,732 of the 401,146 available reports as the training sample.

The classification problem we are facing has a particularity that can im-
pact both the way we will evaluate the performance of the models and also
the models themselves. This particularity is the fact that among the two pos-
sible class values, one is much more frequent than the other. In effect, from
the 15,732 inspected reports, 14,462 are normal transactions and only the re-
maining 1,270 are examples of frauds. Moreover, this less frequent concept is,
in effect, the most important in this problem as it is related to the aim of
the application: detect frauds. This means that we have to select evaluation
criteria that are able to correctly measure the performance of the models on
this less frequent class, and we should select modeling techniques that are able
to cope with datasets with a strong class imbalance.

The use of classification tools in our problem involves a few adaptations. In
effect, we are interested in obtaining a ranking of the transactions according
to their probability of being frauds. This means that given a test set with new

186 Data Mining with R: Learning with Case Studies

reports, we will use the model to decide which are the reports to be inspected.
Some classification algorithms are only able to output the class label when
given a test case. This is not enough for our problem because it does not
establish a ranking among the cases classified as frauds. If these are too many
for the available inspection resources, we are unable to decide which ones to
handle. What we need is a probabilistic classification, that is, the model should
not only predict a class label, but also an associated probability of this label.
These probabilities allow us to obtain a ranking of the test cases according to
the estimated probability that they are frauds.

Further readings on supervised methods

Supervised learning (also known as predictive modeling) is a well-studied subject with many
different approaches to the general goal of obtaining an approximation of the unknown predictive
function. Any data mining reference book will include broad coverage of many of these techniques
(e.g., Han and Kamber (2006), Hand et al. (2001), or Hastie et al. (2001)). The problem of
class imbalance is also the subject of many research works, for example, Chawla (2005) or Kubat
and Matwin (1997).

4.3.1.3 Semi-Supervised Techniques

Semi-supervised methods are motivated by the observation that for many ap-
plications it is costly to find labeled data—that is, cases for which we have the
value of the target variable. This information usually requires the work of do-
main experts, which increases the costs of data collection. On the other hand,
unlabeled data is frequently easy to obtain, particularly with the widespread
use of sensors and other types of automatic data collection devices. In this
context, one frequently faces problems with a large proportion of data that is
unlabeled, together with a small amount of labeled data. This is the case of
our application, as we have seen before.

Semi-supervised methods are named this way exactly because they can
handle this type of datasets with both labeled and unlabeled cases. There
are usually two different types of semi-supervised methods. On the one hand,
there are semi-supervised classification methods that try to improve the per-
formance of standard supervised classification algorithms with the help of the
extra information provided by the unlabeled cases. The alternative approach
is given by semi-supervised clustering methods that try to bias the clustering
process by incorporating some form of constraints based on the labeled data
in the criteria used to form the groups.

In semi-supervised clustering, the idea is to use the available labels to bias
the clustering process to include the cases with the same label in the same
groups (must-link constraints), or to keep cases with different labels in dif-
ferent groups (cannot-link constraints). In search-based semi-supervised clus-
tering, the criteria used to form the clusters is changed to bias the methods
to find the appropriate groups of cases. In similarity-based semi-supervised
approaches, the metric used by the algorithms is optimized to satisfy the con-

Detecting Fraudulent Transactions 187

straints imposed by the labeled data. This means that the notion of distance
is “distorted” to reflect the must-link and cannot-link constraints.

With respect to semi-supervised classification there are many alternative
methodologies. A well-known method is self-training. This is an iterative ap-
proach that starts by obtaining a classification model with the given labeled
data. The next step is to use this model to classify the unlabeled data. The
cases for which the model has higher confidence on the classification are
added together with the predicted label to the initial training set, thus ex-
tending it. Using this new set, a new model is obtained and the overall pro-
cess is repeated until some convergence criterion is reached. Another example
of semi-supervised classification models are transductive support vector ma-
chines (TSVMs). The goal of TSVMs is to obtain labels for a set of unlabeled
data, such that a linear boundary achieves the maximum margin on both the
original labeled data and on the unlabeled data (see Section 3.4.2.2 on page
127 for more details on SVMs).

Once again we should consider the particular restrictions of our applica-
tion, namely in terms of obtaining outlier rankings. This can be accomplished
using the same strategies outlined in the previous sections for unsupervised
and supervised methods, depending on whether we use semi-supervised clus-
tering or semi-supervised classification, respectively.

Further readings on semi-supervised methods

Semi-supervised learning has been receiving an increasing interest by the research community.
Good surveys of the existing work are given in Zhu (2006), Seeger (2002), or Zhu (2005).

4.3.2 Evaluation Criteria

In this section we discuss how we will evaluate the models. When given a test
set of transaction reports, each model will produce a ranking of these reports.
This section discusses how to evaluate this ranking.

We also describe the experimental methodology that will be used to obtain
reliable estimates of the selected evaluation metrics.

Our dataset has the particularity of including both labeled and unlabeled
data. In this application the two situations translate into inspected and non-
inspected transaction reports. This increases the difficulty of comparing the
models because supervised and unsupervised methods are usually evaluated
differently. The rankings obtained by the models will most probably include
both labeled and unlabeled observations. Regarding the former, it is easy
to evaluate whether or not their inclusion in the set of reports to inspect is
correct. In the case of unlabeled cases, this evaluation is more difficult because
we cannot be sure whether or not these cases are frauds.

188 Data Mining with R: Learning with Case Studies

4.3.2.1 Precision and Recall

In this application a successful model should obtain a ranking that includes
all known frauds at the top positions of the ranking. Fraudulent reports are a
minority in our data. Given a number k of reports that our resources allow to
inspect, we would like that among the k top-most positions of the obtained
ranking, we only have either frauds or non-inspected reports. Moreover, we
would like to include in these k positions all of the known fraud cases that
exist in the test set.

As we have seen in Section 3.3.4 (page 119), when our aim is to predict
a small set of rare events (in this case frauds), precision and recall are the
adequate evaluation metrics. Given the inspection effort limit k, we can cal-
culate the precision and recall of the k top-most positions of the ranking. This
k limit determines which reports are to be inspected according to the model.
From a supervised classification perspective, this is equivalent to considering
the top k positions as predictions of the class fraud, while the remaining are
normal reports. The value of precision will tell us what proportion of these k
top-most reports that are, in effect, labeled as frauds. The value of recall will
measure the proportion of frauds in the test set that are included in these k
top-most positions. We should note that the obtained values are pessimistic.
In effect, if the k top-most positions include unlabeled reports, they will not
enter the calculation of precision and recall. However, if they are inspected, we
may find that they are, in effect, frauds and thus the real values of precision
and recall could be higher.

Usually there is a trade-off between precision and recall. For instance, it
is quite easy to achieve 100% recall if all test cases are predicted as events.
However, such a strategy will inevitably also lead to a very low precision. Still,
our current application has some particularities. Given the fact that there
will be constraints on the resources invested in inspection activities, what we
really want is to maximize the use of these resources. This means that if we
can spend x hours inspecting reports and in these x hours we are able to
capture all frauds, we are happy—even if in these x hours we actually inspect
several normal reports, that is, even with a low precision in our ranking. Recall
is actually the key issue in this application. What we want is to be able to
achieve 100% recall with the resources we have available.

4.3.2.2 Lift Charts and Precision/Recall Curves

In the previous section we mentioned calculating the values of precision and
recall for a given inspection effort. It is interesting to check the performance of
the models at different effort levels. Different models may prevail at different
levels and this may be useful information when comparing them.

Precision/recall (PR) curves are visual representations of the performance
of a model in terms of the precision and recall statistics. The curves are ob-
tained by proper interpolation of the values of the statistics at different work-
ing points. These working points can be given by different cut-off limits on a

Detecting Fraudulent Transactions 189

ranking of the class of interest provided by the model. In our case this would
correspond to different effort limits applied to the outlier ranking produced by
the models. Iterating over different limits (i.e., inspect less or more reports),
we get different values of precision and recall. PR curves allow this type of
analysis.

The package ROCR (Sing et al., 2009) contains several functions that are
very useful for evaluating binary classifiers (i.e., classifiers for two classes prob-
lems like ours). This is an extra package that you should install before trying
the code below. The package implements many evaluation metrics and it in-
cludes methods to obtain a wide range of curves. PR curves can be easily
obtained with the functions in this package. The use of this package is rather
simple. We start by obtaining an object of the class prediction using the pre-
dictions of the model and the true values of the test set. This is done with the
prediction() function. The resulting object can be passed as an argument
to the function performance() to obtain several evaluation metrics. Finally,
the result of this latter function can be used with the function plot() to ob-
tain different performance curves. The following code is an illustration of this
process using some example data included in the package:

> library(ROCR)

> data(ROCR.simple)

> pred <- prediction(ROCR.simple$predictions, ROCR.simple$labels)

> perf <- performance(pred, "prec", "rec")

> plot(perf)

This code plots a PR curve that is shown on the left-most graph of Fig-
ure 4.5. The PR curves produced by the ROCR package have a sawtooth shape.
This is usually considered not too clear and there are methods to overcome
this effect. Namely, we can calculate the interpolated precision Precint for a
certain recall level r as the highest precision value found for any recall level
greater than or equal to r:

Precint(r) = max
r′≥r

Prec(r′) (4.1)

where Prec(x) is the precision at a certain recall level x.
If we take a close look at the object returned by the performance() func-

tion, we will see that it has a slot named y.values with the values of the y
axis of the graph, that is, the precision values that are plotted. We can ob-
tain a PR curve without the sawtooth effect by simply substituting this slot
with the values of the interpolated precision according to Equation 4.1. The
following function implements this idea for the general case:

> PRcurve <- function(preds, trues, ...) {

+ require(ROCR, quietly = T)

+ pd <- prediction(preds, trues)

+ pf <- performance(pd, "prec", "rec")

+ pf@y.values <- lapply(pf@y.values, function(x) rev(cummax(rev(x))))

190 Data Mining with R: Learning with Case Studies

+ plot(pf, ...)

+ }

The code uses the function lapply() because the slot y.values is, in
effect, a list as it can include the results of several iterations of an experimental
process. We will take advantage of this fact later on this chapter. For each
vector of precision values, we calculate the interpolated precision using the
functions cummax() and rev(). The latter simply reverses a vector, while the
cummax() function obtains the cumulative maximum of a set of numbers. Try
it with a vector of numbers if you have difficulty understanding the concept.
The PRcurve() function is actually included in our book package, so you do
not need to type the above code to use it.

We can apply the PRcurve() function to the example data given above,
producing the right-most graph of Figure 4.5.

> PRcurve(ROCR.simple$predictions, ROCR.simple$labels)

Recall

P
re

c
is

io
n

0.0 0.2 0.4 0.6 0.8 1.0

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Recall

P
re

c
is

io
n

0.0 0.2 0.4 0.6 0.8 1.0

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

FIGURE 4.5: Smoothed (right) and non-smoothed (left) precision/recall
curves.

How can we evaluate our outlier ranking models with these types of curves?
We will have a test set with a variable Insp with possible values unkn, ok, and
fraud, and a ranking of the observations in this set, produced by some model.
We will require our models to obtain an outlier score for each observation in
the test set. This score will be a value between 0 and 1. The higher the score,
the higher the confidence of the model that the observation is a fraud. This
score is the source of information for obtaining the ranking of the observations.

Detecting Fraudulent Transactions 191

TABLE 4.1: A Confusion Matrix for the Illustrative Example.
Predictions
ok fraud

True
Values

ok 3 1 4
fraud 2 1 3

5 2 7

If we order the test set observations by decreasing outlier score, we can cal-
culate different values of precision and recall, depending on where we put our
inspection effort limit. Setting this limit is equivalent to choosing a threshold
on the outlier score above which we will consider the observations as fraudu-
lent. Let us see a small example. Suppose we have seven test cases with the
values {ok, ok, fraud, unknown, fraud, fraud, unknown} in the Insp column.
Imagine a certain model produces as outlier scores for these observations the
values {0.2, 0.1, 0.7, 0.5, 0.4, 0.3, 0.25}, respectively. If we rank the observations
by these scores, we obtain {fraud, unknown, fraud, fraud, unknown, ok, ok}.
If our inspection limit only allows us to inspect two observations, it would be
equivalent to a model “predicting” {fraud, fraud, ok, ok, ok, ok, ok} for the
true values {fraud, unknown, fraud, fraud, unknown, ok, ok}. This, in turn,
corresponds to the confusion matrix in Table 4.1 and to the following values
of precision and recall calculated according to that matrix:

Prec =
1

1 + 1
= 0.5 Rec =

1
2 + 1

= 0.3333

Notice that as mentioned in Section 4.3.2.1, we have followed a pessimistic
estimate of precision and recall with respect to the reports that have not been
inspected. Because of this, the prediction of fraud for the report in the second
position of the ranking, which has the value unkn, is considered an error as
we are not sure whether or not it is a fraud.

We will use this type of post-processing of the outlier rankings to obtain
their scores in terms of precision and recall as well as the respective PR curves.

Lift charts provide a different perspective of the model predictions. These
graphs give more importance to the values of recall and thus are, in a way,
more adequate to our objectives, as mentioned in the end of Section 4.3.2.1.
The x-axis of these graphs is the value of the rate of positive predictions
(RPP), which is the probability that the model predicts a positive class. This
is estimated by the proportion of positive class predictions divided by the total
number of test cases. In the example of Table 4.1, this would have the value
of (1 + 1)/7. In the context of our application, we can look at this statistic as
the proportion of reports selected for inspection. The y-axis of lift charts is
the value of recall divided by the value of RPP.

Lift charts can be obtained with the infrastructure provided by the ROCR
package. The following is an illustrative example of its use with the corre-
sponding lift chart shown in the left-most graph of Figure 4.6:

192 Data Mining with R: Learning with Case Studies

> pred <- prediction(ROCR.simple$predictions, ROCR.simple$labels)

> perf <- performance(pred, "lift", "rpp")

> plot(perf, main = "Lift Chart")

Despite their usefulness lift charts are not exactly what we search for in our
particular application. A more interesting graph would be one that shows the
recall values in terms of the inspection effort that is captured by the RPP. We
will call this type of graph the cumulative recall chart ; it can be implemented
by the following function thanks to the ROCR package:

> CRchart <- function(preds, trues, ...) {

+ require(ROCR, quietly = T)

+ pd <- prediction(preds, trues)

+ pf <- performance(pd, "rec", "rpp")

+ plot(pf, ...)

+ }

Using again the artificial example, we obtain the right-most graph of Fig-
ure 4.6:

> CRchart(ROCR.simple$predictions, ROCR.simple$labels,

+ main='Cumulative Recall Chart')

Rate of positive predictions

Li
ft

va
lu

e

0.0 0.2 0.4 0.6 0.8 1.0

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

Rate of positive predictions

R
ec

al
l

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lift Chart Cumulative Recall Chart

FIGURE 4.6: Lift (left) and cumulative recall (right) charts.

For cumulative recall charts, the nearer the curve of a model is to the top-
left corner of the graph, the better. The CRchart() function is also included
in our book package so you can use it at any time, provided you load the
package.

Detecting Fraudulent Transactions 193

4.3.2.3 Normalized Distance to Typical Price

The measures we have seen in previous sections only evaluate the quality of
the rankings in terms of the labeled reports. They are supervised classification
evaluation metrics. The rankings obtained by the models will most probably
also contain unlabeled reports in the top positions. Are these unlabeled cases
correctly positioned in the ranking? We cannot be sure about this as we have
not inspected them. Nevertheless, we can say something about them. For
instance, we can compare their unit price with the typical price of the reports
of the same product. We would expect that the difference between these prices
is high, as this is an indication that something is wrong with the report. In
this context, the distance between the unit price of a report and the typical
unit price of the respective product is a good indicator of the quality of the
outlier ranking obtained by a model.

Different products have a different scale of unit prices, as we have seen in
Figure 4.4. To avoid the effects of these differences in our proposed measure
of outlier ranking quality, we will normalize the distance to the typical unit
price. We use the IQR to normalize this distance:

NDTPp(u) =
|u− Ũp|
IQRp

(4.2)

where Ũp is the typical unit price of the product p, measured by the median
unit price of its transactions, and IQRp is the respective inter-quartile range
of the unit prices of that product.

In our experiments we will use the average value of NDTPp as one of
the evaluation metrics to characterize the performance of the models. The
following function calculates the value of this statistic:

> avgNDTP <- function(toInsp,train,stats) {

+ if (missing(train) && missing(stats))

+ stop('Provide either the training data or the product stats')
+ if (missing(stats)) {

+ notF <- which(train$Insp != 'fraud')
+ stats <- tapply(train$Uprice[notF],

+ list(Prod=train$Prod[notF]),

+ function(x) {

+ bp <- boxplot.stats(x)$stats

+ c(median=bp[3],iqr=bp[4]-bp[2])

+ })

+ stats <- matrix(unlist(stats),

+ length(stats),2,byrow=T,

+ dimnames=list(names(stats),c('median','iqr')))
+ stats[which(stats[,'iqr']==0),'iqr'] <-

+ stats[which(stats[,'iqr']==0),'median']
+ }

+

+ mdtp <- mean(abs(toInsp$Uprice-stats[toInsp$Prod,'median']) /

194 Data Mining with R: Learning with Case Studies

+ stats[toInsp$Prod,'iqr'])
+ return(mdtp)

+ }

The function receives, as the main argument, the set of transactions that
a model selects for inspection. Then it must receive either the training set
to obtain the median and IQR of each product, or an already prepared data
structure with this information, to increase the computational efficiency of
repeated calls to this function. If the training data is received, the function
calculates the median and IQR values of the nonfraudulent transactions of each
product in the training set. It may happen that the IQR is zero, particularly in
products with very few transactions. To avoid division by zero in calculating
NDTPp, we have set the IQR of these cases to the value of the median.

4.3.3 Experimental Methodology

The dataset we are using has a very reasonable size. In this context, it makes
sense to select the Hold Out method for our experimental comparisons. This
method consists of randomly splitting the available dataset in two partitions
(typically in 70%/30% proportions). One of the partitions is used for obtaining
the models, while the other is used for testing them. The process can eventually
be repeated a few times to ensure more reliability, if necessary. The size of our
dataset ensures that the values we obtain are statistically reliable. If we select
30% of the cases for the test set, this corresponds to 120,343 reports.

One additional difficulty in this situation is the imbalance between the
distributions of the different types of reports, namely on the labeled cases. A
normal re-sampling strategy may lead to a test set with a different distribution
of the normal/fraudulent reports. Whenever we have this type of imbalanced
class distributions, it is recommended to use a stratified sampling strategy.
This strategy consists of randomly sampling from bags with the observations
of the different classes, ensuring that the obtained sample respects the distri-
bution of the initial dataset. For instance, if we have 10% of cases of class X
and the remaining 90% of another class Y , we will put these observations in
two separate bags. If we want a random stratified sample with 100 cases, we
will randomly pick ten cases from the bag with the X class cases, and the re-
maining 90 from the bag with the Y s, thus respecting the original proportions
of the classes.

In our book package we have the function holdOut() that can be used
to carry out hold-out experiments in a similar fashion to the functions used
in previous chapters for cross-validation and Monte Carlo experiments. One
of the parameters of the function is an object of the class hldSettings that
specifies the settings of the experiment. Among other parameters, this object
allows you to specify that a stratified sampling is to be used. In Section 4.4 we
provide several examples of using this function to obtain hold-out estimates
of our selected evaluation statistics. These statistics are precision, recall and
the average NDTP . The following function calculates these metrics:

Detecting Fraudulent Transactions 195

> evalOutlierRanking <- function(testSet,rankOrder,Threshold,statsProds) {

+ ordTS <- testSet[rankOrder,]

+ N <- nrow(testSet)

+ nF <- if (Threshold < 1) as.integer(Threshold*N) else Threshold

+ cm <- table(c(rep('fraud',nF),rep('ok',N-nF)),ordTS$Insp)
+ prec <- cm['fraud','fraud']/sum(cm['fraud',])
+ rec <- cm['fraud','fraud']/sum(cm[,'fraud'])
+ AVGndtp <- avgNDTP(ordTS[nF,],stats=statsProds)

+ return(c(Precision=prec,Recall=rec,avgNDTP=AVGndtp))

+ }

The function requires the user to supply the test set, the ranking proposed
by the model for this set, a threshold specifying the inspection limit effort
(either as a percentage or as a number of reports), and the statistics (median
and IQR) of the products.

In Section 4.2.3.2 we observed that the products are rather different, and
that some products have, in effect, few transactions. In this context, we may
question whether it makes sense to analyze the transactions of all products
together. An argument in favor of checking them together is that there is a vari-
able (the product ID) that can be used to discriminate among the products,
and thus the modeling techniques can use the variable if necessary. Moreover,
by putting all transactions together, the models can take advantage of some
eventual relationships among products. Nevertheless, an alternative would be
to analyze each product in turn, ranking its transactions by some outlier score.
This would require an extra step of obtaining the final global ranking from
the individual product rankings but this should be simple. We will experiment
with modeling approaches that follow a different strategy with respect to this
issue. From the perspective of the experimental methodology, we will put all
products together. With these transactions we will randomly select a test set
using a stratified hold-out strategy. This test set will be given to different
modeling techniques that should return a ranking of these transactions ac-
cording to their estimated probability of being frauds. Internally, the models
may decide to analyze the products individually or all together.

4.4 Obtaining Outlier Rankings

This section describes the different models we will try with the goal of ob-
taining outlier rankings. For each attempt we will estimate its results using a
stratified 70%/30% hold-out strategy.

196 Data Mining with R: Learning with Case Studies

4.4.1 Unsupervised Approaches

4.4.1.1 The Modified Box Plot Rule

In Section 4.2.2 we described the box plot rule, which can be used to detect
outliers of a continuous variable provided it follows a near-normal distribution.
This is the case of the unit price of the products. In this context, one can think
of this simple rule as the baseline method that we can apply to our data.

The application of the box plot rule to detect unusual unit price values
of the transactions of each product will result in the identification of some
values as potential outliers. We can use this rule on each set of transactions
of the products appearing in a given test set. In the end we will have a set
of potential outliers for each of the products. We have to decide how to move
from these sets into an outlier ranking of all test sets. This means we have to
distinguish the outliers to be able to rank them. A possibility is to use the idea
of the normalized distance to the typical (median) unit price (NDTP) that
we described in Section 4.3.2.3. This measure can be seen as a variation of the
box plot rule because both use a kind of distance from the central values to
decide on the “outlyingness” of a value. The advantage of the NDTP is that
it is a unitless metric and thus we can mix together the values for the different
products and thus produce a global ranking of all test cases.

The idea outlined above can be implemented by the following function that
receives a set of transactions and obtains their ranking order and score:

> BPrule <- function(train,test) {

+ notF <- which(train$Insp != 'fraud')
+ ms <- tapply(train$Uprice[notF],list(Prod=train$Prod[notF]),

+ function(x) {

+ bp <- boxplot.stats(x)$stats

+ c(median=bp[3],iqr=bp[4]-bp[2])

+ })

+ ms <- matrix(unlist(ms),length(ms),2,byrow=T,

+ dimnames=list(names(ms),c('median','iqr')))
+ ms[which(ms[,'iqr']==0),'iqr'] <- ms[which(ms[,'iqr']==0),'median']
+ ORscore <- abs(test$Uprice-ms[test$Prod,'median']) /

+ ms[test$Prod,'iqr']
+ return(list(rankOrder=order(ORscore,decreasing=T),

+ rankScore=ORscore))

+ }

The parameters of the function are the training and test data sets. Af-
ter calculating the median and IQR values per product, the function uses
these statistics to obtain the outlier score using the formula of Equation (4.2).
Finally, it returns a list with this score and the rank order of the test set
observations. Given that this method uses the NDTP values to obtain its
ranking, it is foreseeable that it will score very well in terms of the average
value of this metric.

As a side note, we should remark that this is the place where we could have

Detecting Fraudulent Transactions 197

used the information on the similarity between products. In effect, for products
with very few transactions, we could consider checking if there is a product
that has a distribution of unit prices that is significantly similar. If there is
such a product, we could add its transactions and thus obtain the estimate of
the median and IQR statistics using a larger sample. This should be done in
the call to the tapply() function, where we could incorporate the information
on the similar products that was saved in the file “similarProducts.Rdata” (see
end of Section 4.2.3.2). We leave this as an exercise for the reader.

We will now evaluate this simple method using the hold-out experimental
methodology. We start by calculating the values of the median and IQR for
each product required to calculate the average NDTP score. We will use
all available data for this calculation as our goal is to have the most precise
estimate of these values to correctly evaluate the outlier ranking capabilities
of the models. Because this global information is not passed to the modeling
techniques, this cannot be regarded as giving information from the test data
to the models. It is just a form of obtaining more reliable estimates of the
ability of our models for detecting unusual values.

> notF <- which(sales$Insp != 'fraud')
> globalStats <- tapply(sales$Uprice[notF],

+ list(Prod=sales$Prod[notF]),

+ function(x) {

+ bp <- boxplot.stats(x)$stats

+ c(median=bp[3],iqr=bp[4]-bp[2])

+ })

> globalStats <- matrix(unlist(globalStats),

+ length(globalStats),2,byrow=T,

+ dimnames=list(names(globalStats),c('median','iqr')))
> globalStats[which(globalStats[,'iqr']==0),'iqr'] <-

+ globalStats[which(globalStats[,'iqr']==0),'median']

The holdOut() function needs to call a routine to obtain and evaluate the
BPrule method for each iteration of the experimental process. In previous
chapters we created similar user-defined functions for other learning systems in
the context of cross-validation and Monte Carlo experiments. Those functions
should return a vector with the values of the evaluation statistics of a model
given the training and test sets. This time we need to return more information.
To plot the PR and cumulative recall curves, the ROCR package functions need
to know the predicted and true values of each test observation. In this context,
we also need to return these predicted and true values from our function so
that the curves can be plotted later. The information needed to plot the curves
was illustrated by the small artificial example in Section 4.3.2.2. The following
function, which will be called from the holdOut() routine, returns the value
of the evaluation statistics with an attached attribute with the predicted and
true values:

> ho.BPrule <- function(form, train, test, ...) {

198 Data Mining with R: Learning with Case Studies

+ res <- BPrule(train,test)

+ structure(evalOutlierRanking(test,res$rankOrder,...),

+ itInfo=list(preds=res$rankScore,

+ trues=ifelse(test$Insp=='fraud',1,0)
+)

+)

+ }

Most R objects can have attributes attached to them. These are, in effect,
other R objects that we attach to the former. Usually they convey extra infor-
mation on the object (e.g., its dimension, etc.). In this case we are attaching
to the vector with the scores of the BPrule method, a list containing the pre-
dicted and true values that originated these scores. The function structure()
can be used to create an object and specify the values of its attributes. These
attributes must have a name and contain an R object. In this application of
structures, we need to create an object with an attribute named itInfo. The
holdOut() function stores this information for each iteration of the exper-
imental process. In order for this storage to take place, we need to call the
holdOut() function with the optional parameter itsInfo=T. This ensures that
whatever is returned as an attribute with name itInfo by the user-defined
function will be collected in a list and returned as an attribute named itsInfo
of the result of the holdOut() function.

With this function we are ready to run the holdOut() function to obtain
estimates of the selected statistics for the BPrule system. As experimental
settings we will use a 70%/30% division of the full dataset using a stratified
sampling strategy, and calculate the precision/recall statistics for a predefined
inspection limit effort of 10% of the test set. This last setting is somewhat ar-
bitrary and any other threshold could have been selected. A more global per-
spective of the performance of the system over different limits will be given by
the PR and cumulative recall curves. The hold-out estimates will be obtained
based on three repetitions of this process.

> bp.res <- holdOut(learner('ho.BPrule',
+ pars=list(Threshold=0.1,

+ statsProds=globalStats)),

+ dataset(Insp ~ .,sales),

+ hldSettings(3,0.3,1234,T),

+ itsInfo=TRUE

+)

Setting the fourth parameter of the hldSettings() function to TRUE indi-
cates that a stratified sampling should be used. The other parameters specify
the number of repetitions, the percentage of cases included in the hold-out
set, and the random number generator seed, respectively.

The summary of the results of this experiment can be obtained as follows:

> summary(bp.res)

Detecting Fraudulent Transactions 199

== Summary of a Hold Out Experiment ==

Stratified 3 x 70 %/ 30 % Holdout run with seed = 1234

* Dataset :: sales

* Learner :: ho.BPrule with parameters:

Threshold = 0.1

statsProds = 11.34 ...

* Summary of Experiment Results:

Precision Recall avgNDTP

avg 0.016630574 0.52293272 1.87123901

std 0.000898367 0.01909992 0.05379945

min 0.015992004 0.51181102 1.80971393

max 0.017657838 0.54498715 1.90944329

invalid 0.000000000 0.00000000 0.00000000

The results of precision and recall are rather low. On average, only 52% of
the known frauds are included in the top 10% reports of the rank produced by
the BPrule. The low values of recall could mean that the 10% effort was not
enough for including all frauds, but that is not possible given the proportion
of frauds in the test set and also the low values in precision. The extremely low
value of precision means that this method is putting on the top 10% positions
mostly unkn or ok cases. In the case of unkn reports, this is not necessarily
bad, as these may actually be fraudulent reports. Given the relatively high
score of NDTP , we can at least be sure that the unit price of these top
reports is rather different from the typical price of the respective products. In
effect, an average value of 1.8 for NDTP means that the difference between
the unit price of these reports and the median price of the reports of the same
product is around 1.8 times the value of the IQR of these prices. Given that
the IQR includes 50% of the reports, this means that the unit prices of these
transactions are rather unusual.

To obtain the PR and cumulative recall charts, we need access to the actual
outlier scores of the method on each hold-out repetition, as well as the true
“class” labels. The function we have used to apply the ranking method on
each iteration (ho.BPrule()) returns these values as attributes of the vector
of statistics. The function holdOut() collects this extra information for each
iteration on a list. This list is returned as an attribute named itsInfo of
the objected produced by the holdOut() function. To obtain the necessary
information in the format required by the plotting functions, we need some
extra steps as detailed below. The result of the following code are the curves
shown in Figure 4.7.

> par(mfrow=c(1,2))

> info <- attr(bp.res,'itsInfo')
> PTs.bp <- aperm(array(unlist(info),dim=c(length(info[[1]]),2,3)),

200 Data Mining with R: Learning with Case Studies

+ c(1,3,2)

+)

> PRcurve(PTs.bp[,,1],PTs.bp[,,2],

+ main='PR curve',avg='vertical')
> CRchart(PTs.bp[,,1],PTs.bp[,,2],

+ main='Cumulative Recall curve',avg='vertical')

The first statement allows you to divide the graph window in two to visu-
alize both figures side by side. The second statement uses the function attr()
to extract the list that contains the predicted and true values returned by the
ho.BPrule() on each iteration. This function can be used to obtain the value
of any attribute of an object by its name. This list is then transformed into
an array with three dimensions. The first dimension is the test case and the
second is the repetition of the hold-out experiment. The third dimension is
the type of value (1 for the predicted values, 2 for the true values). For in-
stance, the value PTs.bp[3,2,1] is the predicted value of the method for the
third test case on the second repetition of the hold-out process. The function
aperm() can be used to permute the dimensions of an array. If you are having
difficulty understanding this composed statement, try calling each function in
turn and inspect its output (use sub-setting to avoid huge outputs as some of
these objects are rather large).

Average recall

Av
er

ag
e

pr
ec

is
io

n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Average rate of positive predictions

Av
er

ag
e

re
ca

ll

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PR curve Cumulative Recall curve

FIGURE 4.7: The PR (left) and cumulative recall (right) curves of the
BPrule method.

Both curves are obtained by vertically averaging the curves of each repeti-
tion of the hold-out process. The cumulative recall chart gives a more global
perspective of the performance of the method. We can observe that the method
obtains around 40% of recall with a very low inspection effort. However, to

Detecting Fraudulent Transactions 201

achieve values around 80%, we already need to inspect roughly 25% to 30%
of the reports.

4.4.1.2 Local Outlier Factors (LOF)

Outlier ranking is a well-studied research topic. Breunig et al. (2000) have
developed the local outlier factor (LOF) system that is usually considered a
state-of-the-art outlier ranking method. The main idea of this system is to
try to obtain an outlyingness score for each case by estimating its degree of
isolation with respect to its local neighborhood. The method is based on the
notion of the local density of the observations. Cases in regions with very low
density are considered outliers. The estimates of the density are obtained using
the distances between cases. The authors defined a few concepts that drive
the algorithm used to calculate the outlyingness score of each point. These are
the (1) concept of core distance of a point p, which is defined as its distance
to its kth nearest neighbor, (2) concept of reachability distance between the
case p1 and p2, which is given by the maximum of the core distance of p1

and the distance between both cases, and (3) local reachability distance of a
point, which is inversely proportional to the average reachability distance of
its k neighbors. The LOF of a case is calculated as a function of its local
reachability distance.

Our book package includes an implementation of the LOF algorithm
based on the work by (Acuna et al., 2009). Namely, we provide the func-
tion lofactor() that receives as arguments a dataset and the value of k that
specifies the size of the neighborhood used in calculating the LOF of the
observations. This implementation of the LOF system is limited to datasets
described by numeric variables. This is, in effect, a frequent limitation for
many modeling algorithms. As we have seen, our dataset includes several
nominal variables. This means that we cannot apply this function directly to
our dataset. There are several ways of overcoming this issue. A first alter-
native would be to change the source code of the implementation of LOF
so that a mixed-mode distance function is used. There are several distance
functions that can calculate the distance between observations described by
variables of different type. An example is given by the function daisy() in
the cluster package. Another alternative consists of re-coding the nominal
variables so that the observations are described by continuous variables only.
Any nominal variable with n possible values can be re-coded into n−1 binary
(0/1) variables. These variables, frequently called dummy variables, indicate
the presence (absence) of any of the n values. The application of this method
to our dataset has a problem. The ID variable has 6,016 possible values while
the variable Prod has 4,546. This means that if we use this strategy, we would
obtain a dataset with 10,566 variables. This is an absurd increase in the di-
mensionality of the original data. This method is inadequate for this problem.
The third alternative consists of handling each product individually, as we
have done with the BPrule method. By proceeding this way, not only do

202 Data Mining with R: Learning with Case Studies

we decrease significantly the computational requirements to handle this prob-
lem, but we also eliminate the need for the variable Prod. Moreover, handling
the products separately was always a plausible approach, given the observed
differences between them (see Section 4.2.3.2). Nevertheless, we still have to
decide what to do with the information on the salespeople (the variable ID).
Eliminating also this variable would mean assuming the fact that we con-
sider some report unusual is independent of the salesman reporting it. This
assumption does not seem too risky. The fact is that even if some salesperson
is more prone to fraud, this should also be reflected in the unit prices that he
reports. In this context, the alternative of eliminating both columns and treat-
ing the products separately seems clearly more reasonable than the option of
re-coding the variables. Summarizing, we will apply the LOF algorithm to a
dataset of reports described only by the unit price:

> ho.LOF <- function(form, train, test, k, ...) {

+ ntr <- nrow(train)

+ all <- rbind(train,test)

+ N <- nrow(all)

+ ups <- split(all$Uprice,all$Prod)

+ r <- list(length=ups)

+ for(u in seq(along=ups))

+ r[[u]] <- if (NROW(ups[[u]]) > 3)

+ lofactor(ups[[u]],min(k,NROW(ups[[u]]) %/% 2))

+ else if (NROW(ups[[u]])) rep(0,NROW(ups[[u]]))

+ else NULL

+ all$lof <- vector(length=N)

+ split(alllof,allProd) <- r

+ all$lof[which(!(is.infinite(all$lof) | is.nan(all$lof)))] <-

+ SoftMax(all$lof[which(!(is.infinite(all$lof) | is.nan(all$lof)))])

+ structure(evalOutlierRanking(test,order(all[(ntr+1):N,'lof'],
+ decreasing=T),...),

+ itInfo=list(preds=all[(ntr+1):N,'lof'],
+ trues=ifelse(test$Insp=='fraud',1,0))
+)

+ }

The above function obtains the evaluation statistics resulting from apply-
ing the LOF method to the given training and test sets. Our approach was
to merge the train and test datasets and use LOF to rank this full set of
reports. From the obtained ranking we then select the outlier scores of the
cases belonging to the test set. We could have ranked only the test set but
this would not use the information on the training data. The alternative of
ranking only the training data would also not make sense because this is an
unsupervised method whose result cannot be used to make “predictions” for
a test set.

The function split() was used to divide the unit prices of this full dataset
by product. The result is a list whose components are the unit prices of the
respective products. The for loop goes over each of these sets of prices and

Detecting Fraudulent Transactions 203

applies the LOF method to obtain an outlier factor for each of the prices.
These factors are collected in a list (r) also organized by product. We only
used the LOF method if there were at least three reports; otherwise all values
were tagged as normal (score 0). After the main loop, the obtained outlier
factors are “attached” to the respective transactions in the data frame all,
again using the split() function. The next statement has the goal of changing
the outlier factors into a 0..1 scale. It uses the function SoftMax() from our
book package for this purpose. This function “squashes” a range of values into
this scale. Due to the fact that the lofactor() function produced some Inf
and NaN values for some transactions, we had to constrain the application of
the SoftMax() function. Finally, the evaluation scores of the obtained ranking,
together with the predicted and true values, are returned as the result of the
function.

The next step is to use a hold-out process to obtain the estimates of our
evaluation metrics, as done before for the BPrule method. We have used the
same settings as before and, in particular, have used the same random number
generator seed to ensure that the exact same data partitions are used. We have
set the value of the k parameter of the lofactor() function to 7. Further
experiments could be carried out to tune this parameter. A word of warning
before you execute the following code: depending on your hardware, this may
start to take a bit too long, although still on the minutes scale.

> lof.res <- holdOut(learner('ho.LOF',
+ pars=list(k=7,Threshold=0.1,

+ statsProds=globalStats)),

+ dataset(Insp ~ .,sales),

+ hldSettings(3,0.3,1234,T),

+ itsInfo=TRUE

+)

The results of the LOF method were the following:

> summary(lof.res)

== Summary of a Hold Out Experiment ==

Stratified 3 x 70 %/ 30 % Holdout run with seed = 1234

* Dataset :: sales

* Learner :: ho.LOF with parameters:

k = 7

Threshold = 0.1

statsProds = 11.34 ...

* Summary of Experiment Results:

Precision Recall avgNDTP

avg 0.022127825 0.69595344 2.4631856

204 Data Mining with R: Learning with Case Studies

std 0.000913681 0.02019331 0.9750265

min 0.021405964 0.67454068 1.4420851

max 0.023155089 0.71465296 3.3844572

invalid 0.000000000 0.00000000 0.0000000

As you may observe, the values of precision and recall for this 10% in-
spection effort are higher than the values obtained by the BPrule method.
In particular, the value of recall has increased from 52% to 69%. Moreover,
this is accompanied by an increase in the average value of NDTP (from 1.8
to 2.4).

A more global perspective can be obtained with the PR and cumulative
recall curves. To enable a better comparison with the BPrule method, we
have also plotted the curves of this method, using the parameter add=T to
make more than one curve appear on the same graph (Figure 4.8):

> par(mfrow=c(1,2))

> info <- attr(lof.res,'itsInfo')
> PTs.lof <- aperm(array(unlist(info),dim=c(length(info[[1]]),2,3)),

+ c(1,3,2)

+)

> PRcurve(PTs.bp[,,1],PTs.bp[,,2],

+ main='PR curve',lty=1,xlim=c(0,1),ylim=c(0,1),
+ avg='vertical')
> PRcurve(PTs.lof[,,1],PTs.lof[,,2],

+ add=T,lty=2,

+ avg='vertical')
> legend('topright',c('BPrule','LOF'),lty=c(1,2))
> CRchart(PTs.bp[,,1],PTs.bp[,,2],

+ main='Cumulative Recall curve',lty=1,xlim=c(0,1),ylim=c(0,1),
+ avg='vertical')
> CRchart(PTs.lof[,,1],PTs.lof[,,2],

+ add=T,lty=2,

+ avg='vertical')
> legend('bottomright',c('BPrule','LOF'),lty=c(1,2))

The analysis of the PR curves (Figure 4.8, left), shows that for smaller
recall values, the BPrule generally achieves a considerably higher precision.
For values of recall above 40%, the tendency is inverse although with not so
marked differences. In terms of recall achieved by inspection effort (Figure
4.8, right), we can say that generally the LOF method dominates the BPrule
for inspection efforts below 25% to 30%. For higher inspection efforts, the
differences are not so clear, and the results are rather comparable. Given
that the interest of the company is obviously on lower inspection efforts to
decrease its costs (provided a good recall is achieved), we would say that the
LOF method is more interesting. In effect, with an effort around 15% to 20%,
one can capture roughly 70% to 80% of the frauds. Moreover, we should note
that the values of NDTP of LOF were clearly above those obtained by the
BPrule method for an inspection effort of 10%.

Detecting Fraudulent Transactions 205

Average recall

Av
er

ag
e

pr
ec

is
io

n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BPrule
LOF

Average rate of positive predictions

Av
er

ag
e

re
ca

ll

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BPrule
LOF

PR curve Cumulative Recall curve

FIGURE 4.8: The PR (left) and cumulative recall (right) curves of the LOF ,
and BPrule models.

4.4.1.3 Clustering-Based Outlier Rankings (ORh)

The next outlier ranking method we consider is based on the results of a
clustering algorithm. The ORh method (Torgo, 2007) uses a hierarchical ag-
glomerative clustering algorithm to obtain a dendrogram of the given data.
Dendrograms are visual representations of the merging process of these clus-
tering methods. Cutting these trees at different height levels produces different
clusterings of the data. At the lowest level we have a solution with as many
groups as there are observations on the given training data. This is the ini-
tial solution of the iterative algorithm used by these methods. The next steps
of this algorithm decide which two groups from the previous step should be
merged into a single cluster. This merging process is guided by some criterion
that tries to put together observations that are more similar to each other. The
iterative process is stopped when the last two groups are merged into a single
cluster with all observations. The dendrogram describes the entire merging
process. The function hclust() of the base package stats implements sev-
eral variants of this type of clustering. The object returned by this function
includes a data structure (merge) that includes information on which cases are
involved in each merging step. The ORh method uses the information in this
data structure as the basis for the following outlier ranking method. The ba-
sic idea is that outliers should offer greater resistance to be merged and thus,
when they are finally merged, the size difference between the group to which
they belong and the group to which they are being merged should be very
large. This reflects the idea that outliers are rather different from other obser-

206 Data Mining with R: Learning with Case Studies

vations, and thus their inclusion in groups with more “normal” observations
should clearly decrease the homogeneity of the resulting group. Occasionally,
outliers are merged at initial stages with other observations, but only if these
are similar outliers. Otherwise, they will only be merged at later stages of the
clustering process and usually with a much larger group of cases. This is the
general idea that is captured by the ORh method. This method calculates the
outlier score of each case as follows. For each merging step i involving two
groups (gx,i and gy,i), we calculate the following value:

ofi(x) = max
(

0,
|gy,i| − |gx,i|
|gy,i|+ |gx,i|

)
(4.3)

where gx,i is the group to which x belongs, and |gx,i| is the group cardinality.
Note that the members of the larger group involved in the merge get the

score 0, as we are interested in members of small groups. Each observation
can be involved in several merges throughout the iterative process of the hi-
erarchical clustering algorithm—sometimes as members of the larger group,
others as members of the smaller group. The final outlier score of each case in
the data sample is given by

OFH(x) = max
i
ofi(x) (4.4)

The function outliers.ranking() of our book package implements this
method. The following function uses the ORh method to obtain the outlier
score of a test set of reports and obtains the usual evaluation statistics:

> ho.ORh <- function(form, train, test, ...) {

+ ntr <- nrow(train)

+ all <- rbind(train,test)

+ N <- nrow(all)

+ ups <- split(all$Uprice,all$Prod)

+ r <- list(length=ups)

+ for(u in seq(along=ups))

+ r[[u]] <- if (NROW(ups[[u]]) > 3)

+ outliers.ranking(ups[[u]])$prob.outliers

+ else if (NROW(ups[[u]])) rep(0,NROW(ups[[u]]))

+ else NULL

+ all$orh <- vector(length=N)

+ split(allorh,allProd) <- r

+ all$orh[which(!(is.infinite(all$orh) | is.nan(all$orh)))] <-

+ SoftMax(all$orh[which(!(is.infinite(all$orh) | is.nan(all$orh)))])

+ structure(evalOutlierRanking(test,order(all[(ntr+1):N,'orh'],
+ decreasing=T),...),

+ itInfo=list(preds=all[(ntr+1):N,'orh'],
+ trues=ifelse(test$Insp=='fraud',1,0))
+)

+ }

Detecting Fraudulent Transactions 207

The function is very similar to the one presented previously for the LOF
method. Once again we have used the approach of handling the products
individually, primarily for the same reasons described for the LOF method.
Nevertheless, the outliers.ranking() function can receive as argument a
distance matrix of the observations being ranked, instead of the dataset. This
means that we can obtain this matrix using any distance function that handles
mixed-mode data (e.g., function daisy() in package cluster). However, if you
decide to try this you will need large computation resources as clustering such
a large dataset will require a large amount of main memory and also a fast
processor. Even using this approach of handling each product separately, the
following code that runs the full hold-out experiments will surely take a while
to run on any normal computer.

As with LOF , we have not carried out any thorough exploration of the
several parameter values that the ORh method accepts, simply using its de-
faults:

> orh.res <- holdOut(learner('ho.ORh',
+ pars=list(Threshold=0.1,

+ statsProds=globalStats)),

+ dataset(Insp ~ .,sales),

+ hldSettings(3,0.3,1234,T),

+ itsInfo=TRUE

+)

A summary of the results of the ORh method is shown below:

> summary(orh.res)

== Summary of a Hold Out Experiment ==

Stratified 3 x 70 %/ 30 % Holdout run with seed = 1234

* Dataset :: sales

* Learner :: ho.ORh with parameters:

Threshold = 0.1

statsProds = 11.34 ...

* Summary of Experiment Results:

Precision Recall avgNDTP

avg 0.0220445333 0.69345072 0.5444893

std 0.0005545834 0.01187721 0.3712311

min 0.0215725471 0.67979003 0.2893128

max 0.0226553390 0.70133333 0.9703665

invalid 0.0000000000 0.00000000 0.0000000

The results of the ORh system in terms of both precision and recall are
very similar to the values of BPrule and LOF . With respect to the average

208 Data Mining with R: Learning with Case Studies

NDTP , the result is considerably lower than the scores of the other two
methods.

The PR and cumulative recall curves of this method are shown in Fig-
ure 4.9, together with the curves of the other unsupervised methods we have
tried previously. The following code was used to generate these graphs:

> par(mfrow=c(1,2))

> info <- attr(orh.res,'itsInfo')
> PTs.orh <- aperm(array(unlist(info),dim=c(length(info[[1]]),2,3)),

+ c(1,3,2)

+)

> PRcurve(PTs.bp[,,1],PTs.bp[,,2],

+ main='PR curve',lty=1,xlim=c(0,1),ylim=c(0,1),
+ avg='vertical')
> PRcurve(PTs.lof[,,1],PTs.lof[,,2],

+ add=T,lty=2,

+ avg='vertical')
> PRcurve(PTs.orh[,,1],PTs.orh[,,2],

+ add=T,lty=1,col='grey',
+ avg='vertical')
> legend('topright',c('BPrule','LOF','ORh'),
+ lty=c(1,2,1),col=c('black','black','grey'))
> CRchart(PTs.bp[,,1],PTs.bp[,,2],

+ main='Cumulative Recall curve',lty=1,xlim=c(0,1),ylim=c(0,1),
+ avg='vertical')
> CRchart(PTs.lof[,,1],PTs.lof[,,2],

+ add=T,lty=2,

+ avg='vertical')
> CRchart(PTs.orh[,,1],PTs.orh[,,2],

+ add=T,lty=1,col='grey',
+ avg='vertical')
> legend('bottomright',c('BPrule','LOF','ORh'),
+ lty=c(1,2,1),col=c('black','black','grey'))

As you can see, the results of the ORh method are comparable to those
of LOF in terms of the cumulative recall curve. However, regarding the PR
curve, the ORh system clearly dominates the score of LOF , with a smaller
advantage over BPrule.

4.4.2 Supervised Approaches

In this section we explore several supervised classification approaches to our
problem. Given our goal of obtaining a ranking for a set of transaction reports,
we will have to constrain the selection of models. We will use only systems
that are able to produce probabilistic classifications. For each test case, these
methods output the probability of belonging to each of the possible classes.
This type of information will allow us to rank the test reports according to
their probability of belonging to our “target” class: the fraudulent reports.

Detecting Fraudulent Transactions 209

Average recall

Av
er

ag
e

pr
ec

is
io

n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BPrule
LOF
ORh

Average rate of positive predictions

Av
er

ag
e

re
ca

ll

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BPrule
LOF
ORh

PR curve Cumulative Recall curve

FIGURE 4.9: The PR (left) and cumulative recall (right) curves of the ORh,
LOF , and BPrule models.

Before describing a few concrete classification algorithms that we will use,
we address a particular problem of our dataset: the imbalanced distribution
of the class labels.

4.4.2.1 The Class Imbalance Problem

Our dataset has a very imbalanced proportion of normal and fraudulent re-
ports. The latter are a clear minority, roughly 8.1% of the inspected reports
(i.e., supervised cases). Problems of this type can create all sorts of difficulties
in the task of obtaining predictive models. First, they require proper evalua-
tion metrics as it is well known that the standard accuracy (or its complement
error rate) is clearly inadequate for these domains. In effect, for our applica-
tion it would be easy to obtain around 90% accuracy by predicting that all
reports are normal. Given the prevalence of this class, this would get us to this
apparently very high accuracy level. Another problem with class imbalance is
that it has a strong impact on the performance of the learning algorithms that
tend to disregard the minority class given its lack of statistical support. This
is particularly problematic in situations where this minority class is exactly
the most relevant class, as is the case in our domain.

There are several techniques that have been developed with the purpose of
helping the learning algorithms overcome the problems raised by class imbal-
ance. They generally group in two families: (1) methods that bias the learning
process by using specific evaluation metrics that are more sensitive to minority
class examples; and (2) sampling methods that manipulate the training data

210 Data Mining with R: Learning with Case Studies

to change the class distribution. In our attempt to use supervised classification
methods in our problem, we will use a method belonging to this second group.

Several sampling methods have been proposed to change the class imbal-
ance of a dataset. Under-sampling methods select a small part of the majority
class examples and add them to the minority class cases, thereby building
a dataset with a more balanced class distribution. Over-sampling methods
work the other way around, using some process to replicate the minority class
examples. Many variants of these two general sampling approaches exist. A
successful example is the SMOTE method (Chawla et al., 2002). The general
idea of this method is to artificially generate new examples of the minority
class using the nearest neighbors of these cases. Furthermore, the majority
class examples are also under-sampled, leading to a more balanced dataset.
We have implemented this sampling method in a function called SMOTE(),
which is included in our book package. Given an imbalanced sample, this
function generates a new data set with a more balanced class distribution.
The following code shows a simple illustration of its use:

> data(iris)

> data <- iris[, c(1, 2, 5)]

> data$Species <- factor(ifelse(data$Species == "setosa", "rare",

+ "common"))

> newData <- SMOTE(Species ~ ., data, perc.over = 600)

> table(newData$Species)

common rare

600 350

This small example uses the iris data to create an artificial dataset with
two predictor variables (for easier visualization) and a new target variable
that has an unbalanced class distribution. The code calls the function SMOTE()
with the value 600 for the parameter perc.over, which means that six new
examples will be created for each case in the initial dataset that belongs to
the minority class. These new cases are created by some form of random
interpolation between the case and its nearest neighbors (by default, 5). Our
implementation uses a mixed-mode distance function so you can use SMOTE()
on datasets with both continuous and nominal variables.

We can get a better idea of what was done by plotting the original and
SMOTE’d datasets. This is the purpose of the following code, with the results
shown in Figure 4.10:

> par(mfrow = c(1, 2))

> plot(data[, 1], data[, 2], pch = 19 + as.integer(data[, 3]),

+ main = "Original Data")

> plot(newData[, 1], newData[, 2], pch = 19 + as.integer(newData[,

+ 3]), main = "SMOTE'd Data")

In our experiments with supervised classification algorithms, we will try
variants of the methods using training sets balanced by this SMOTE method.

Detecting Fraudulent Transactions 211

l

l

l

l

l

l

l l

l

l

l

l

ll

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

ll

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

ll l

l

l

l

l

l

l

l

l

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

2
.0

2
.5

3
.0

3
.5

4
.0

Original Data

data[, 1]

d
a
ta

[,
 2

]

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l l

l

l

l

l

l

ll l

l

l

ll

l

l

l

l

l

ll

l

l

l

l

l

ll

l

l

l

l

l

l l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

ll

l

l

ll

l

ll

l

l

l

l

l

l

l

ll

l

l

l

l

l

l ll

l

ll

ll

l l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l l

l

l

l

ll

l

lll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l ll

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l l l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

ll

l l

l

l

l

l

l

l ll

l

l ll

l l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

ll

l

l

l

ll

l

l

l

l

l l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l ll ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

ll

l

l

l

l

ll

l

ll

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

ll

ll

l

l

l

l

l

l

l l

l

l

l

l

ll

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

llllll

ll

l
l
ll

llll

l

l
ll

l
l

ll

l

l

l
l
l

l

l
l

l

l

l

l

l

l

l

ll

l

l
l

lll

l

l

ll
l

ll

l

l

l
l
l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

ll

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

llll

l
l

l

l
l

l

l

l

l
l

l

l

l
l l

lll

l

l

l

l

l

l

l

l

l

l

l

l

lll
l

ll

ll

l

l l

l

l
l
ll

ll

lll

l
l
l l

ll
ll
l

l

l

l

ll

l

ll

l

ll

l

l
l

ll

l
l

l

l

l
l

l
l

l

l

l

l
l

l
l

l

l

l

l

l

l
l

ll
l

l

l

ll

l
l
l

l

l
l

ll l
llll

l
l

l

l
l

ll
l

l
l
l

l
l
l

l
lllll

l

l

l

l

l
l

l
l

l

l

l

l

l

l
l
ll

l

ll
l
lll

l

l

ll

ll

ll

l l

l

l

ll ll
ll

l

l
l

l
l

l

l
l
l
l

l

l

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

2
.0

2
.5

3
.0

3
.5

4
.0

SMOTE'd Data

newData[, 1]

n
e
w

D
a
ta

[,
 2

]

FIGURE 4.10: Using SMOTE to create more rare class examples.

Further readings on class imbalance

Class imbalance is a well-studied subject. Examples of this research can be found in several
workshops on this specific topic, such as the AAAI’2000 and ICML’2003 Workshops on Imbal-
anced datasets, or the special issue on Learning from Imbalanced Datasets in SIGKDD (Chawla
et al., 2004). A good overview of the existent work can be found in Chawla (2005). Class im-
balance has implications in several relevant subjects of predictive modeling. Examples include
the evaluation of prediction models (e.g., Provost and Fawcett (1997, 2001); Provost et al.
(1998)), or cost sensitive learning (e.g., Domingos (1999); Drummond and Holte (2006); Elkan
(2001)). Regarding sampling-based approaches to class imbalance, some reference works include
Kubat and Matwin (1997), Japkowicz (2000), and Weiss and Provost (2003), among others.
Specifically on SMOTE, the main references are Chawla et al. (2002) and Chawla et al. (2003).

4.4.2.2 Naive Bayes

Naive Bayes is a probabilistic classifier based on the Bayes theorem that uses
very strong assumptions on the independence between the predictors. These
assumptions rarely hold for real-world problems—and thus the name naive.
Nevertheless, this method has been successfully applied to a large number of
real-world applications.

The Bayes theorem specifies that P (A|B) = P (B|A)P (A)
P (B) . Using this the-

orem, the Naive Bayes classifier calculates the probability of each class for a
given test case as

P (c|X1, · · · , Xp) =
P (c)P (X1, · · · , Xp|c)

P (X1, · · · , Xp)
(4.5)

212 Data Mining with R: Learning with Case Studies

where c is a class and X1, · · · , Xp are the observed values of the predictors for
the given test case.

The probability P (c) can be seen as the prior expectation of the class c.
P (X1, · · · , Xp|c) is the likelihood of the test case given the class c. Finally,
the denominator is the probability of the observed evidence. This equation is
calculated for all possible class values to determine the most probable class of
the test case. This decision only depends on the numerator of the equation,
as the denominator will be constant over all classes. Using some statistical
definitions on conditional probabilities and assuming (naively) conditional in-
dependence between the predictors, we reduce the numerator of the fraction
to

P (c)P (X1, · · · , Xp|c) = P (c)
p∏
i=1

P (Xi|c) (4.6)

Naive Bayes implementations estimate these probabilities from the training
sample using relative frequencies. Using these estimates, the method outputs
the class probabilities for each test case according to Equation 4.5.

R has several implementations in the Naive Bayes method. We will use the
function naiveBayes() from package e1071. Package klaR (Weihs et al., 2005)
also includes an implementation of this classifier, together with interesting
visualization functions.

The following function uses Naive Bayes to obtain the ranking scores of
a test set of reports. It uses the inspected reports from the given training
sample to obtain a Naive Bayes model. The outlier ranking is obtained using
the estimated probabilities of the class being fraud:

> nb <- function(train, test) {

+ require(e1071, quietly = T)

+ sup <- which(train$Insp != "unkn")

+ data <- train[sup, c("ID", "Prod", "Uprice", "Insp")]

+ data$Insp <- factor(data$Insp, levels = c("ok", "fraud"))

+ model <- naiveBayes(Insp ~ ., data)

+ preds <- predict(model, test[, c("ID", "Prod", "Uprice",

+ "Insp")], type = "raw")

+ return(list(rankOrder = order(preds[, "fraud"], decreasing = T),

+ rankScore = preds[, "fraud"]))

+ }

The next function is to be called from the hold-out routines and obtains
the selected evaluation statistics for the Naive Bayes predictions:

> ho.nb <- function(form, train, test, ...) {

+ res <- nb(train,test)

+ structure(evalOutlierRanking(test,res$rankOrder,...),

+ itInfo=list(preds=res$rankScore,

+ trues=ifelse(test$Insp=='fraud',1,0)
+)

Detecting Fraudulent Transactions 213

+)

+ }

Finally, we call our holdOut() function to carry out the experiments with
this model using the same settings as for the unsupervised models of previous
sections:

> nb.res <- holdOut(learner('ho.nb',
+ pars=list(Threshold=0.1,

+ statsProds=globalStats)),

+ dataset(Insp ~ .,sales),

+ hldSettings(3,0.3,1234,T),

+ itsInfo=TRUE

+)

The results of the Naive Bayes model for the 10% inspection effort are the
following:

> summary(nb.res)

== Summary of a Hold Out Experiment ==

Stratified 3 x 70 %/ 30 % Holdout run with seed = 1234

* Dataset :: sales

* Learner :: ho.nb with parameters:

Threshold = 0.1

statsProds = 11.34 ...

* Summary of Experiment Results:

Precision Recall avgNDTP

avg 0.013715365 0.43112103 0.8519657

std 0.001083859 0.02613164 0.2406771

min 0.012660336 0.40533333 0.5908980

max 0.014825920 0.45758355 1.0650114

invalid 0.000000000 0.00000000 0.0000000

The scores are considerably worse than the best scores obtained previously
with the unsupervised methods.

Next we obtain the usual curves to get a better overall perspective of the
performance of the model. We compare Naive Bayes with one of the best
unsupervised models, ORh:

> par(mfrow=c(1,2))

> info <- attr(nb.res,'itsInfo')
> PTs.nb <- aperm(array(unlist(info),dim=c(length(info[[1]]),2,3)),

+ c(1,3,2)

+)

214 Data Mining with R: Learning with Case Studies

> PRcurve(PTs.nb[,,1],PTs.nb[,,2],

+ main='PR curve',lty=1,xlim=c(0,1),ylim=c(0,1),
+ avg='vertical')
> PRcurve(PTs.orh[,,1],PTs.orh[,,2],

+ add=T,lty=1,col='grey',
+ avg='vertical')
> legend('topright',c('NaiveBayes','ORh'),
+ lty=1,col=c('black','grey'))
> CRchart(PTs.nb[,,1],PTs.nb[,,2],

+ main='Cumulative Recall curve',lty=1,xlim=c(0,1),ylim=c(0,1),
+ avg='vertical')
> CRchart(PTs.orh[,,1],PTs.orh[,,2],

+ add=T,lty=1,col='grey',
+ avg='vertical')
> legend('bottomright',c('NaiveBayes','ORh'),
+ lty=1,col=c('black','grey'))

The graphs of Figure 4.11 show very clearly that the Naive Bayes method
is inferior to the ORh method for this particular application. Both curves
indicate that the latter method dominates over all possible setups.

Average recall

Av
er

ag
e

pr
ec

is
io

n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NaiveBayes
ORh

Average rate of positive predictions

Av
er

ag
e

re
ca

ll

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NaiveBayes
ORh

PR curve Cumulative Recall curve

FIGURE 4.11: The PR (left) and cumulative recall (right) curves of the
Naive Bayes and ORh methods.

A possible cause for the poor performance of the Naive Bayes may be the
class imbalance of this problem. In Section 4.4.2.1 we discussed several meth-
ods for addressing this problem and, in particular, the SMOTE algorithm. We
will now apply the Naive Bayes classifier using a training set obtained using
SMOTE.

Detecting Fraudulent Transactions 215

The main difference from the previous code lies in the following function
where we call the naiveBayes() function but this time with a modified train-
ing set:

> nb.s <- function(train, test) {

+ require(e1071, quietly = T)

+ sup <- which(train$Insp != "unkn")

+ data <- train[sup, c("ID", "Prod", "Uprice", "Insp")]

+ data$Insp <- factor(data$Insp, levels = c("ok", "fraud"))

+ newData <- SMOTE(Insp ~ ., data, perc.over = 700)

+ model <- naiveBayes(Insp ~ ., newData)

+ preds <- predict(model, test[, c("ID", "Prod", "Uprice",

+ "Insp")], type = "raw")

+ return(list(rankOrder = order(preds[, "fraud"], decreasing = T),

+ rankScore = preds[, "fraud"]))

+ }

The following statements obtain the hold-out estimates for this SMOTE’d
version of Naive Bayes:

> ho.nbs <- function(form, train, test, ...) {

+ res <- nb.s(train,test)

+ structure(evalOutlierRanking(test,res$rankOrder,...),

+ itInfo=list(preds=res$rankScore,

+ trues=ifelse(test$Insp=='fraud',1,0)
+)

+)

+ }

> nbs.res <- holdOut(learner('ho.nbs',
+ pars=list(Threshold=0.1,

+ statsProds=globalStats)),

+ dataset(Insp ~ .,sales),

+ hldSettings(3,0.3,1234,T),

+ itsInfo=TRUE

+)

The results of this version of the Naive Bayes model for the 10% inspection
effort are the following:

> summary(nbs.res)

== Summary of a Hold Out Experiment ==

Stratified 3 x 70 %/ 30 % Holdout run with seed = 1234

* Dataset :: sales

* Learner :: ho.nbs with parameters:

Threshold = 0.1

statsProds = 11.34 ...

216 Data Mining with R: Learning with Case Studies

* Summary of Experiment Results:

Precision Recall avgNDTP

avg 0.014215115 0.44686510 0.8913330

std 0.001109167 0.02710388 0.8482740

min 0.013493253 0.43044619 0.1934613

max 0.015492254 0.47814910 1.8354999

invalid 0.000000000 0.00000000 0.0000000

These results are almost indistinguishable from the results of the “nor-
mal” Naive Bayes. The scores are only slightly superior but still very far from
the best results of the unsupervised models. It seems that despite the over-
sampling of the minority class carried out by SMOTE, Naive Bayes is still not
able to correctly predict which are the fraudulent reports. Let us check the
graphs for a more global perspective of the performance of this variant:

> par(mfrow=c(1,2))

> info <- attr(nbs.res,'itsInfo')
> PTs.nbs <- aperm(array(unlist(info),dim=c(length(info[[1]]),2,3)),

+ c(1,3,2)

+)

> PRcurve(PTs.nb[,,1],PTs.nb[,,2],

+ main='PR curve',lty=1,xlim=c(0,1),ylim=c(0,1),
+ avg='vertical')
> PRcurve(PTs.nbs[,,1],PTs.nbs[,,2],

+ add=T,lty=2,

+ avg='vertical')
> PRcurve(PTs.orh[,,1],PTs.orh[,,2],

+ add=T,lty=1,col='grey',
+ avg='vertical')
> legend('topright',c('NaiveBayes','smoteNaiveBayes','ORh'),
+ lty=c(1,2,1),col=c('black','black','grey'))
> CRchart(PTs.nb[,,1],PTs.nb[,,2],

+ main='Cumulative Recall curve',lty=1,xlim=c(0,1),ylim=c(0,1),
+ avg='vertical')
> CRchart(PTs.nbs[,,1],PTs.nbs[,,2],

+ add=T,lty=2,

+ avg='vertical')
> CRchart(PTs.orh[,,1],PTs.orh[,,2],

+ add=T,lty=1,col='grey',
+ avg='vertical')
> legend('bottomright',c('NaiveBayes','smoteNaiveBayes','ORh'),
+ lty=c(1,2,1),col=c('black','black','grey'))

The graphs of Figure 4.12 confirm the disappointing results of the
SMOTE’d version of Naive Bayes. In effect, it shows the same poor results as
the standard Naive Bayes when compared to ORh and, moreover, its perfor-
mance is almost always surpassed by the standard version.

Detecting Fraudulent Transactions 217

Average recall

Av
er

ag
e

pr
ec

is
io

n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NaiveBayes
smoteNaiveBayes
ORh

Average rate of positive predictions

Av
er

ag
e

re
ca

ll

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NaiveBayes
smoteNaiveBayes
ORh

PR curve Cumulative Recall curve

FIGURE 4.12: The PR (left) and cumulative recall (right) curves for the
two versions of Naive Bayes and ORh methods.

Given these results, we might question whether the fact that we have not
split the model construction by product, as done in the unsupervised methods,
may be causing difficulties with this model. As an exercise you can try to
follow this approach with Naive Bayes. You need to adapt the code used for
the unsupervised models that splits the transactions by product to the Naive
Bayes model. An additional difficulty that you will meet, if you decide to
carry out this exercise, is the fact that you will have very few supervised
reports by product. In effect, even without the restriction of being labeled,
we have observed that several products have too few transactions. If we add
the restriction of only using the labeled transactions, this problem will surely
increase.

Further readings on Naive Bayes

Naive Bayes is a well-known classification algorithm studied in many research areas. Some in-
teresting additional references on this topic include the works by Domingos and Pazzani (1997),
Rish (2001), Hand and Yu (2001); and Kononenko (1991).

4.4.2.3 AdaBoost

AdaBoost (Freund and Shapire, 1996) is a learning algorithm that belongs to
the class of ensemble models. These types of models are, in effect, formed by
a set of base models that contribute to the prediction of the algorithm using
some form of aggregation. AdaBoost uses an adaptive boosting method to ob-
tain the set of base models. Boosting is a general method that can be used to

218 Data Mining with R: Learning with Case Studies

improve the performance of any base algorithm provided it is better than the
random classifier. The construction of the AdaBoost model is obtained sequen-
tially. Each new member of the sequence is obtained by improving on the errors
of the previous model of the sequence. The improvements are obtained using
a weighting schema that increases the weights of the cases that are incorrectly
classified by the previous model. This means that the base learner is used on
different distributions of the training data. After some number of iterations of
this process, the result is a set of base models obtained on different training
samples. This ensemble can be used to obtain predictions for test cases of the
original problem. The predictions are obtained by a weighted average of the
predictions of the individual base models. These weights are defined so that
larger values are given to the last models in the sequence (theoretically the
ones with lower error).

The case weighting schema used by AdaBoost is interesting from the per-
spective of learning with imbalance class distributions. Even if at the initial
iterations the cases of the minority class are disregarded by the models, their
weight is increased and the models are “forced” to focus on learning them.
Theoretically, this should lead the resulting ensemble to be more accurate at
predicting these rare cases.

AdaBoost.M1 is a particular instantiation of the AdaBoost method. It
uses as base learners classification trees with a small number of nodes. This
method is implemented in function adaboost.M1() of the extra package
adabag (Cortes et al., 2010). Unfortunately, the predict method that is pro-
vided for these models is unable to return class probabilities. This is a serious
limitation for our application. As mentioned before, we need these class prob-
abilities because we use the probability of each report being of class fraud to
obtain an outlier ranking. In this context, we will not use this implementation
of the AdaBoost.M1 algorithm. At the time of writing this book, this was the
only package providing such implementation. However, we have an alternative
using the Weka2 data mining software. Weka is an open source software for
data mining and machine learning. This excellent tool provides many learn-
ing algorithms with a nice graphical user interface. Compared to R, it offers
several algorithms that are not available in R, and it offers an easy and nice
user interface. R, on the other hand, offers much more flexibility in terms of
software development/prototyping and many more available modeling tools
spanning a much wider set of research areas. Thanks to the R extra package
RWeka (Hornik et al., 2009), we can easily use most Weka facilities within R.
Installing this package will also install Weka on your computer, provided you
already have Java installed on it. The installation process will complain and
give you clear instructions on what to do if that is not your case. We strongly
suggest that after installing the package, you read its help pages to get an idea
of the many methods that are available through RWeka.

The function AdaBoostM1() provided in package RWeka obtains

2http://www.cs.waikato.ac.nz/ml/weka/.

http://www.cs.waikato.ac.nz/ml/weka/

Detecting Fraudulent Transactions 219

AdaBoost.M1 classification models using the Weka implementation of this
algorithm. Contrary to the implementation of package adabag, the predict
method of this algorithm is able to output a probabilistic classification and
thus can be used to obtain outlier rankings for our problem. By default, the
Weka implementation uses decision stumps as the base learners. These models
are a special type of classification trees formed by a single test node. This and
other settings are parameters of the function that can be changed if required.
The function WOW() allows you to check which parameters are available for a
particular Weka learning algorithm. The following is an example of its use for
our target model:

> library(RWeka)

> WOW(AdaBoostM1)

-P Percentage of weight mass to base training on. (default

100, reduce to around 90 speed up)

Number of arguments: 1.

-Q Use resampling for boosting.

-S Random number seed. (default 1)

Number of arguments: 1.

-I Number of iterations. (default 10)

Number of arguments: 1.

-D If set, classifier is run in debug mode and may output

additional info to the console

-W Full name of base classifier. (default:

weka.classifiers.trees.DecisionStump)

Number of arguments: 1.

-

-D If set, classifier is run in debug mode and may output

additional info to the console

The value of some parameter can be changed when we call the re-
spective function, with the help of the parameter control and the func-
tion Weka_control(). Here is a small illustrative example of applying
AdaBoostM1() to the well-known iris data set, using 100 iterations instead
of the default 10:

> data(iris)

> idx <- sample(150,100)

> model <- AdaBoostM1(Species ~ .,iris[idx,],

+ control=Weka_control(I=100))

> preds <- predict(model,iris[-idx,])

> head(preds)

[1] setosa setosa setosa setosa setosa setosa

Levels: setosa versicolor virginica

> table(preds,iris[-idx,'Species'])

220 Data Mining with R: Learning with Case Studies

preds setosa versicolor virginica

setosa 19 0 0

versicolor 0 13 1

virginica 0 2 15

> prob.preds <- predict(model,iris[-idx,],type='probability')
> head(prob.preds)

setosa versicolor virginica

2 0.9999942 5.846673e-06 2.378153e-11

4 0.9999942 5.846673e-06 2.378153e-11

7 0.9999942 5.846673e-06 2.378153e-11

9 0.9999942 5.846673e-06 2.378153e-11

10 0.9999942 5.846673e-06 2.378153e-11

12 0.9999942 5.846673e-06 2.378153e-11

This small example also illustrates how to obtain probabilistic classifica-
tions with this model.

We now provide the functions necessary to apply this type of model to our
outlier ranking problem. As with the Naive Bayes algorithm, we will apply the
AdaBoost.M1 method to all transactions—and not individually by product.
The following function obtains the report rankings for the given train and test
sets:

> ab <- function(train,test) {

+ require(RWeka,quietly=T)

+ sup <- which(train$Insp != 'unkn')
+ data <- train[sup,c('ID','Prod','Uprice','Insp')]
+ data$Insp <- factor(data$Insp,levels=c('ok','fraud'))
+ model <- AdaBoostM1(Insp ~ .,data,

+ control=Weka_control(I=100))

+ preds <- predict(model,test[,c('ID','Prod','Uprice','Insp')],
+ type='probability')
+ return(list(rankOrder=order(preds[,'fraud'],decreasing=T),
+ rankScore=preds[,'fraud'])
+)

+ }

The function to be called from the hold-out routines is the following:

> ho.ab <- function(form, train, test, ...) {

+ res <- ab(train,test)

+ structure(evalOutlierRanking(test,res$rankOrder,...),

+ itInfo=list(preds=res$rankScore,

+ trues=ifelse(test$Insp=='fraud',1,0)
+)

+)

+ }

Finally, we have the code to run the hold-out experiments:

Detecting Fraudulent Transactions 221

> ab.res <- holdOut(learner('ho.ab',
+ pars=list(Threshold=0.1,

+ statsProds=globalStats)),

+ dataset(Insp ~ .,sales),

+ hldSettings(3,0.3,1234,T),

+ itsInfo=TRUE

+)

The results of AdaBoost for the 10% effort are the following:

> summary(ab.res)

== Summary of a Hold Out Experiment ==

Stratified 3 x 70 %/ 30 % Holdout run with seed = 1234

* Dataset :: sales

* Learner :: ho.ab with parameters:

Threshold = 0.1

statsProds = 11.34 ...

* Summary of Experiment Results:

Precision Recall avgNDTP

avg 0.0220722972 0.69416565 1.5182034

std 0.0008695907 0.01576555 0.5238575

min 0.0214892554 0.68241470 0.9285285

max 0.0230717974 0.71208226 1.9298286

invalid 0.0000000000 0.00000000 0.0000000

These results are among the best we have seen thus far. In effect, these
scores compare well with the best scores we have obtained with both LOF
and ORh. Moreover, we note that this model is using only a very small part
of the given reports (the inspected ones) to obtain its rankings. Despite this,
it achieved a robust 69% of recall with a good 1.5 score in terms of average
NDTP .

The PR and cumulative recall curves can be obtained as before:

> par(mfrow=c(1,2))

> info <- attr(ab.res,'itsInfo')
> PTs.ab <- aperm(array(unlist(info),dim=c(length(info[[1]]),2,3)),

+ c(1,3,2)

+)

> PRcurve(PTs.nb[,,1],PTs.nb[,,2],

+ main='PR curve',lty=1,xlim=c(0,1),ylim=c(0,1),
+ avg='vertical')
> PRcurve(PTs.orh[,,1],PTs.orh[,,2],

+ add=T,lty=1,col='grey',
+ avg='vertical')

222 Data Mining with R: Learning with Case Studies

> PRcurve(PTs.ab[,,1],PTs.ab[,,2],

+ add=T,lty=2,

+ avg='vertical')
> legend('topright',c('NaiveBayes','ORh','AdaBoostM1'),
+ lty=c(1,1,2),col=c('black','grey','black'))
> CRchart(PTs.nb[,,1],PTs.nb[,,2],

+ main='Cumulative Recall curve',lty=1,xlim=c(0,1),ylim=c(0,1),
+ avg='vertical')
> CRchart(PTs.orh[,,1],PTs.orh[,,2],

+ add=T,lty=1,col='grey',
+ avg='vertical')
> CRchart(PTs.ab[,,1],PTs.ab[,,2],

+ add=T,lty=2,

+ avg='vertical')
> legend('bottomright',c('NaiveBayes','ORh','AdaBoostM1'),
+ lty=c(1,1,2),col=c('black','grey','black'))

The graphs in Figure 4.13 confirm the excellent performance of the Ad-
aBoost.M1 algorithm, particularly in terms of the cumulative recall curve.
This curve shows that for most effort levels, AdaBoost.M1 matches the
score obtained by ORh. In terms of precision/recall, the performance of Ad-
aBoost.M1 is not that interesting, particularly for low levels of recall. However,
for higher recall levels, it clearly matches the precision of the best scores we
have obtained thus far. Moreover, we note that these higher recall levels are
exactly what matters for this application.

Average recall

Av
er

ag
e

pr
ec

is
io

n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NaiveBayes
ORh
AdaBoostM1

Average rate of positive predictions

Av
er

ag
e

re
ca

ll

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NaiveBayes
ORh
AdaBoostM1

PR curve Cumulative Recall curve

FIGURE 4.13: The PR (left) and cumulative recall (right) curves of the
Naive Bayes, ORh, and AdaBoost.M1 methods.

Summarizing, we have seen that AdaBoost.M1 is a very competitive al-

Detecting Fraudulent Transactions 223

gorithm for this application. Despite the difficulties of class imbalance, this
ensemble method has managed to achieve top performance with the rankings
it produces.

Further readings on boosting

The AdaBoost.M1 algorithm is an example of a wider class of boosting algorithms that try
to obtain good predictive performance using an ensemble of weak learners (learners that are
marginally better than random guessing). The reference work on AdaBoost is the paper by
Freund and Shapire (1996). Other important historical references on boosting are the works
by Shapire (1990) and Freund (1990). Some important analyses can also be found in Breiman
(1998), Friedman (2002), and Rätsch et al. (2001). A very good description of boosting can be
found in Chapter 10 of the book by Hastie et al. (2001).

4.4.3 Semi-Supervised Approaches

This section describes an attempt to use both inspected and non-inspected
reports to obtain a classification model to detect fraudulent reports. This
means we need some form of semi-supervised classification method (see Sec-
tion 4.3.1.3).

Self-training (e.g., Rosenberg et al. (2005); Yarowsky (1995)) is a well-
known form of semi-supervised classification. This approach consists of build-
ing an initial classifier using the given labeled cases. This classifier is then
used to predict the labels of the unlabeled cases in the given training set.
The cases for which the classifier has higher confidence in the predicted label
are added to the labeled set, together with their predicted labels. With this
larger dataset, a new classifier is obtained and so on. This iterative process is
continued until some criteria are met. The last classifier is the result of the
learning process. This methodology can be applied to any base classification
algorithm, provided it is able to output some indication of its confidence in the
predictions. This is the case of probabilistic classifiers like the two we described
in Section 4.4.2. The self-training method has three relevant parameters: (1)
the base learner, (2) the threshold on the confidence of classifications that
determines which cases are added to the new training set, and (3) the criteria
to decide when to terminate the self-training process. In our book package
we have included a general function (SelfTrain()) that can be used with
any probabilistic classifier to learn a model based on a training set with both
labeled and unlabeled cases.

Below you can find a simple example that illustrates its use with the iris
dataset. We have artificially created a few unlabeled examples in this dataset
to make semi-supervised classification potentially useful:

> library(DMwR)

> library(e1071)

> data(iris)

> idx <- sample(150, 100)

> tr <- iris[idx,]

224 Data Mining with R: Learning with Case Studies

> ts <- iris[-idx,]

> nb <- naiveBayes(Species ~ ., tr)

> table(predict(nb, ts), ts$Species)

setosa versicolor virginica

setosa 12 0 0

versicolor 0 21 1

virginica 0 0 16

> trST <- tr

> nas <- sample(100, 90)

> trST[nas, "Species"] <- NA

> func <- function(m, d) {

+ p <- predict(m, d, type = "raw")

+ data.frame(cl = colnames(p)[apply(p, 1, which.max)],

+ p = apply(p, 1, max))

+ }

> nbSTbase <- naiveBayes(Species ~ ., trST[-nas,])

> table(predict(nbSTbase, ts), ts$Species)

setosa versicolor virginica

setosa 12 0 0

versicolor 0 18 2

virginica 0 3 15

> nbST <- SelfTrain(Species ~ ., trST, learner("naiveBayes",

+ list()), "func")

> table(predict(nbST, ts), ts$Species)

setosa versicolor virginica

setosa 12 0 0

versicolor 0 20 2

virginica 0 1 15

The above code obtains three different Naive Bayes models. The first (nb)
is obtained with a sample of 100 labeled cases. This set of 100 cases is then
transformed in another set where 90 of the cases were unlabeled by setting
the target variable to NA. Using the remaining ten labeled cases we obtain the
second Naive Bayes model (nbSTbase). Finally, the dataset with the mixed
labeled and unlabeled cases are given to the SelfTrain() function and an-
other model (nbST) obtained. As you can observe, in this small example, the
self-trained model is able to almost reach the same level of performance as the
initial model obtained with all 100 labeled cases.

In order to use SelfTrain(), the user must create a function (func() on
the code above) that given a model and a test set is able to return a data
frame with two columns and the same number of rows as the test set. The
first column of this data frame contains the labels predicted for the cases,
while the second column has the respective probability of that classification.

Detecting Fraudulent Transactions 225

This needs to be defined outside the SelfTrain() function because not all
predict methods use the same syntax to obtain probabilistic classifications.

The SelfTrain() function has several parameters that control the itera-
tive process. Parameter thrConf (defaulting to 0.9) sets the required probabil-
ity for an unlabeled case to be merged into the labeled set. Parameter maxIts
(default value of 10) allows the user to indicate a maximum number of self-
training iterations, while parameter percFull (default value of 1) indicates
that the process should stop if the labeled set reaches a certain percentage
of the given dataset. The self-training iterative process finishes if either there
are no classifications that reach the required probability level, if the maximum
number of iterations is reached, or if the size of the current labeled training set
is already the target percentage of the given dataset. A final note on the fact
that the SelfTrain() function requires that the unlabeled cases be signaled
as such by having the value NA on the target variable.

We have applied this self-training strategy with the Naive Bayes model
as base classifier. The following functions implement and run the hold-out
experiments with this self-trained Naive Bayes. A word of warning is in order
concerning the computational resources that are necessary for carrying out
these experiments. Depending on your hardware, this can take some time,
although always on the order of minutes (at least on my average computer):

> pred.nb <- function(m,d) {

+ p <- predict(m,d,type='raw')
+ data.frame(cl=colnames(p)[apply(p,1,which.max)],

+ p=apply(p,1,max)

+)

+ }

> nb.st <- function(train,test) {

+ require(e1071,quietly=T)

+ train <- train[,c('ID','Prod','Uprice','Insp')]
+ train[which(train$Insp == 'unkn'),'Insp'] <- NA

+ train$Insp <- factor(train$Insp,levels=c('ok','fraud'))
+ model <- SelfTrain(Insp ~ .,train,

+ learner('naiveBayes',list()),'pred.nb')
+ preds <- predict(model,test[,c('ID','Prod','Uprice','Insp')],
+ type='raw')
+ return(list(rankOrder=order(preds[,'fraud'],decreasing=T),
+ rankScore=preds[,'fraud'])
+)

+ }

> ho.nb.st <- function(form, train, test, ...) {

+ res <- nb.st(train,test)

+ structure(evalOutlierRanking(test,res$rankOrder,...),

+ itInfo=list(preds=res$rankScore,

+ trues=ifelse(test$Insp=='fraud',1,0)
+)

+)

+ }

226 Data Mining with R: Learning with Case Studies

> nb.st.res <- holdOut(learner('ho.nb.st',
+ pars=list(Threshold=0.1,

+ statsProds=globalStats)),

+ dataset(Insp ~ .,sales),

+ hldSettings(3,0.3,1234,T),

+ itsInfo=TRUE

+)

The results of this self-trained model are the following:

> summary(nb.st.res)

== Summary of a Hold Out Experiment ==

Stratified 3 x 70 %/ 30 % Holdout run with seed = 1234

* Dataset :: sales

* Learner :: ho.nb.st with parameters:

Threshold = 0.1

statsProds = 11.34 ...

* Summary of Experiment Results:

Precision Recall avgNDTP

avg 0.013521017 0.42513271 1.08220611

std 0.001346477 0.03895915 1.59726790

min 0.012077295 0.38666667 0.06717087

max 0.014742629 0.46456693 2.92334375

invalid 0.000000000 0.00000000 0.00000000

These results are rather disappointing. They are very similar to the results
obtained with a Naive Bayes model learned only on the labeled data. With
the exception of the average NDTP , which has improved slightly, all other
statistics are roughly the same, and thus still far from the best scores we have
obtained thus far. Moreover, even this better score is accompanied by a large
standard deviation.

Figure 4.14 shows the PR and cumulative recall curves of this model as well
as those of the standard Naive Bayes and ORh methods. They were obtained
with the following code:

> par(mfrow=c(1,2))

> info <- attr(nb.st.res,'itsInfo')
> PTs.nb.st <- aperm(array(unlist(info),dim=c(length(info[[1]]),2,3)),

+ c(1,3,2)

+)

> PRcurve(PTs.nb[,,1],PTs.nb[,,2],

+ main='PR curve',lty=1,xlim=c(0,1),ylim=c(0,1),
+ avg='vertical')
> PRcurve(PTs.orh[,,1],PTs.orh[,,2],

Detecting Fraudulent Transactions 227

+ add=T,lty=1,col='grey',
+ avg='vertical')
> PRcurve(PTs.nb.st[,,1],PTs.nb.st[,,2],

+ add=T,lty=2,

+ avg='vertical')
> legend('topright',c('NaiveBayes','ORh','NaiveBayes-ST'),
+ lty=c(1,1,2),col=c('black','grey','black'))
> CRchart(PTs.nb[,,1],PTs.nb[,,2],

+ main='Cumulative Recall curve',lty=1,xlim=c(0,1),ylim=c(0,1),
+ avg='vertical')
> CRchart(PTs.orh[,,1],PTs.orh[,,2],

+ add=T,lty=1,col='grey',
+ avg='vertical')
> CRchart(PTs.nb.st[,,1],PTs.nb.st[,,2],

+ add=T,lty=2,

+ avg='vertical')
> legend('bottomright',c('NaiveBayes','ORh','NaiveBayes-ST'),
+ lty=c(1,1,2),col=c('black','grey','black'))

The graphs confirm the disappointing performance of the self-trained Naive
Bayes classifier. For this particular problem, this semi-supervised classifier is
clearly not competitive even with the standard Naive Bayes model obtained
with a considerable smaller dataset.

Average recall

Av
er

ag
e

pr
ec

is
io

n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NaiveBayes
ORh
NaiveBayes−ST

Average rate of positive predictions

Av
er

ag
e

re
ca

ll

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NaiveBayes
ORh
NaiveBayes−ST

PR curve Cumulative Recall curve

FIGURE 4.14: The PR (left) and cumulative recall (right) curves of the
self-trained Naive Bayes, together with the standard Naive Bayes and ORh
methods.

We have also used the self-training approach with the AdaBoost.M1 algo-
rithm. The following code carries out these experiments:

228 Data Mining with R: Learning with Case Studies

> pred.ada <- function(m,d) {

+ p <- predict(m,d,type='probability')
+ data.frame(cl=colnames(p)[apply(p,1,which.max)],

+ p=apply(p,1,max)

+)

+ }

> ab.st <- function(train,test) {

+ require(RWeka,quietly=T)

+ train <- train[,c('ID','Prod','Uprice','Insp')]
+ train[which(train$Insp == 'unkn'),'Insp'] <- NA

+ train$Insp <- factor(train$Insp,levels=c('ok','fraud'))
+ model <- SelfTrain(Insp ~ .,train,

+ learner('AdaBoostM1',
+ list(control=Weka_control(I=100))),

+ 'pred.ada')
+ preds <- predict(model,test[,c('ID','Prod','Uprice','Insp')],
+ type='probability')
+ return(list(rankOrder=order(preds[,'fraud'],decreasing=T),
+ rankScore=preds[,'fraud'])
+)

+ }

> ho.ab.st <- function(form, train, test, ...) {

+ res <- ab.st(train,test)

+ structure(evalOutlierRanking(test,res$rankOrder,...),

+ itInfo=list(preds=res$rankScore,

+ trues=ifelse(test$Insp=='fraud',1,0)
+)

+)

+ }

> ab.st.res <- holdOut(learner('ho.ab.st',
+ pars=list(Threshold=0.1,

+ statsProds=globalStats)),

+ dataset(Insp ~ .,sales),

+ hldSettings(3,0.3,1234,T),

+ itsInfo=TRUE

+)

The results of the self-trained AdaBoost for the 10% effort are the following:

> summary(ab.st.res)

== Summary of a Hold Out Experiment ==

Stratified 3 x 70 %/ 30 % Holdout run with seed = 1234

* Dataset :: sales

* Learner :: ho.ab.st with parameters:

Threshold = 0.1

statsProds = 11.34 ...

Detecting Fraudulent Transactions 229

* Summary of Experiment Results:

Precision Recall avgNDTP

avg 0.022377700 0.70365350 1.6552619

std 0.001130846 0.02255686 1.5556444

min 0.021322672 0.68266667 0.5070082

max 0.023571548 0.72750643 3.4257016

invalid 0.000000000 0.00000000 0.0000000

Although not impressive, these scores represent a slight improvement over
the AdaBoost.M1 model obtained using only the labeled data. While precision
stayed basically the same, there were small improvements in recall and average
NDTP . The value of recall is the highest value we have observed across all
tried models for a 10% effort level.

Figure 4.15 shows the curves of this self-trained model, together with the
standard AdaBoost.M1 and ORh methods. The curves were obtained as usual.

> par(mfrow = c(1, 2))

> info <- attr(ab.st.res, "itsInfo")

> PTs.ab.st <- aperm(array(unlist(info), dim = c(length(info[[1]]),

+ 2, 3)), c(1, 3, 2))

> PRcurve(PTs.ab[, , 1], PTs.ab[, , 2], main = "PR curve",

+ lty = 1, xlim = c(0, 1), ylim = c(0, 1), avg = "vertical")

> PRcurve(PTs.orh[, , 1], PTs.orh[, , 2], add = T, lty = 1,

+ col = "grey", avg = "vertical")

> PRcurve(PTs.ab.st[, , 1], PTs.ab.st[, , 2], add = T, lty = 2,

+ avg = "vertical")

> legend("topright", c("AdaBoostM1", "ORh", "AdaBoostM1-ST"),

+ lty = c(1, 1, 2), col = c("black", "grey", "black"))

> CRchart(PTs.ab[, , 1], PTs.ab[, , 2], main = "Cumulative Recall curve",

+ lty = 1, xlim = c(0, 1), ylim = c(0, 1), avg = "vertical")

> CRchart(PTs.orh[, , 1], PTs.orh[, , 2], add = T, lty = 1,

+ col = "grey", avg = "vertical")

> CRchart(PTs.ab.st[, , 1], PTs.ab.st[, , 2], add = T, lty = 2,

+ avg = "vertical")

> legend("bottomright", c("AdaBoostM1", "ORh", "AdaBoostM1-ST"),

+ lty = c(1, 1, 2), col = c("black", "grey", "black"))

The cumulative recall curve confirms that the self-trained AdaBoost.M1
is the best model from the ones we have considered for this fraud detection
problem. In particular, for inspection efforts above 15% to 20% it clearly dom-
inates the other systems in terms of the proportion of frauds that it detects.
In terms of precision, the scores are not that interesting, but as we mentioned
before, this is not necessarily bad if the unlabeled reports that the model puts
on higher positions in the ranking are confirmed as frauds.

230 Data Mining with R: Learning with Case Studies

Average recall

Av
er

ag
e

pr
ec

is
io

n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AdaBoostM1
ORh
AdaBoostM1−ST

Rate of positive predictions

Av
er

ag
e

re
ca

ll

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AdaBoostM1
ORh
AdaBoostM1−ST

PR curve Cumulative Recall curve

FIGURE 4.15: The PR (left) and cumulative recall (right) curves of Ad-
aBoost.M1 with self-training together with ORh and standard AdaBoost.M1
methods.

4.5 Summary

The main goal of this chapter was to introduce the reader to a new class of
data mining problems: outliers ranking. In particular, we have used a dataset
that enabled us to tackle this task from different perspectives. Namely, we
used supervised, unsupervised- and semi-supervised approaches to the prob-
lem. The application used in this chapter can be regarded as an instantiation
of the general problem of finding unusual observations of a phenomenon hav-
ing a limited amount of resources. Several real-world applications map into
this general framework, such as detecting frauds in credit card transactions,
telecommunications, tax declarations, etc. In the area of security, there are
also several applications of this general concept of outlier ranking.

In methodological terms we have introduced the reader to a few new topics:

• Outlier detection and ranking

• Clustering methods

• Semi-supervised learning

• Semi-supervised classification through self-training

• Imbalanced class distributions and methods for handling this type of
problems

Detecting Fraudulent Transactions 231

• Naive Bayes classifiers

• AdaBoost classifiers

• Precision/recall and cumulative recall curves

• Hold-out experiments

From the perspective of learning R, we have illustrated,

• How to obtain several evaluation statistics and how to visualize them
using the ROCR package

• How to obtain hold-out estimates of evaluation metrics

• How to obtain local outlier factors with the LOF method

• How to obtain outlier rankings using the ORh method

• How to fight class imbalance through SMOTE

• How to obtain Naive Bayes classification models

• How to obtain AdaBoost.M1 classifiers

• How to use methods from the Weka data mining system with the RWeka
package

• How to apply a classifier to a semi-supervised dataset using self-training

Chapter 5

Classifying Microarray Samples

The fourth case study is from the area of bioinformatics. Namely, we will ad-
dress the problem of classifying microarray samples into a set of alternative
classes. More specifically, given a microarray probe that describes the gene
expression level of a patient, we aim to classify this patient into a pre-defined
set of genetic mutations of acute lymphoblastic leukemia. This case study
addresses several new data mining topics. The main focus, given the charac-
teristics of this type of datasets, is on feature selection, that is, how to reduce
the number of features that describe each observation. In our approach to
this particular application we will illustrate several general methods for fea-
ture selection. Other new data mining topics addressed in this chapter include
k-nearest neighbors classifiers, leave one out cross-validation, and some new
variants of ensemble models.

5.1 Problem Description and Objectives

Bioinformatics is one of the main areas of application of R. There is even an
associated project based on R, with the goal of providing a large set of analysis
tools for this domain. The project is called Bioconductor.1 This case study
will use the tools provided by this project to address a supervised classification
problem.

5.1.1 Brief Background on Microarray Experiments

One of the main difficulties faced by someone coming from a nonbiological
background is the huge amount of “new” terms used in this field. In this very
brief background section, we try to introduce the reader to some of the“jargon”
in this field and also to provide some mapping to more “standard” data mining
terminology.

The analysis of differential gene expression is one of the key applications of
DNA microarray experiments. Gene expression microarrays allow us to char-
acterize a set of samples (e.g., individuals) according to their expression levels

1http://www.bioconductor.org.

233

http://www.bioconductor.org

234 Data Mining with R: Learning with Case Studies

on a large set of genes. In this area a sample is thus an observation (case) of
some phenomenon under study. Microarray experiments are the means used
to measure a set of “variables” for these observations. The variables here are
a large set of genes. For each variable (gene), these experiments measure an
expression value. In summary, a dataset is formed by a set of samples (the
cases) for which we have measured expression levels on a large set of genes
(the variables). If these samples have some disease state associated with them,
we may try to approximate the unknown function that maps gene expression
levels into disease states. This function can be approximated using a dataset
of previously analyzed samples. This is an instantiation of supervised classi-
fication tasks, where the target variable is the disease type. The observations
in this problem are samples (microarrays, individuals), and the predictor vari-
ables are the genes for which we measure a value (the expression level) using a
microarray experiment. The key hypothesis here is thus that different disease
types can be associated with different gene expression patterns and, moreover,
that by measuring these patterns using microarrays we can accurately predict
what the disease type of an individual is.

There are several types of technologies created with the goal of obtaining
gene expression levels on some sample. Short oligonucleotide arrays are an
example of these technologies. The output of oligonucleotide chips is an im-
age that after several pre-processing steps can be mapped into a set of gene
expression levels for quite a large set of genes. The bioconductor project has
several packages devoted to these pre-processing steps that involve issues like
the analysis of the images resulting from the oligonucleotide chips, normal-
ization tasks, and several other steps that are necessary until we reach a set
of gene expression scores. In this case study we do not address these initial
steps. The interested reader is directed to several informative sources available
at the bioconductor site as well as several books (e.g., Hahne et al. (2008)).

In this context, our starting point will be a matrix of gene expression levels
that results from these pre-processing steps. This is the information on the
predictor variables for our observations. As we will see, there are usually many
more predictor variables being measured than samples; that is, we have more
predictors than observations. This is a typical characteristic of microarray data
sets. Another particularity of these expression matrices is that they appear
transposed when compared to what is “standard” for data sets. This means
that the rows will represent the predictors (i.e., genes), while the columns are
the observations (the samples). For each of the samples we will also need the
associated classification. In our case this will be an associated type of mutation
of a disease. There may also exist information on other co-variates (e.g., sex
and age of the individuals being sampled, etc.).

5.1.2 The ALL Dataset

The dataset we will use comes from a study on acute lymphoblastic
leukemia (Chiaretti et al., 2004; Li, 2009). The data consists of microarray

Classifying Microarray Samples 235

samples from 128 individuals with this type of disease. Actually, there are two
different types of tumors among these samples: T-cell ALL (33 samples) and
B-cell ALL (95 samples).

We will focus our study on the data concerning the B-cell ALL samples.
Even within this latter group of samples we can distinguish different types of
mutations. Namely, ALL1/AF4, BCR/ABL, E2A/PBX1, p15/p16 and also in-
dividuals with no cytogenetic abnormalities. In our analysis of the B-cell ALL
samples we will discard the p15/p16 mutation as we only have one sample.
Our modeling goal is to be able to predict the type of mutation of an individ-
ual given its microarray assay. Given that the target variable is nominal with
4 possible values, we are facing a supervised classification task.

5.2 The Available Data

The ALL dataset is part of the bioconductor set of packages. To use it, we
need to install at least a set of basic packages from bioconductor. We have not
included the dataset in our book package because the dataset is already part
of the R “universe”.

To install a set of basic bioconductor packages and the ALL dataset, we
need to carry out the following instructions that assume we have a working
Internet connection:

> source("http://bioconductor.org/biocLite.R")

> biocLite()

> biocLite("ALL")

This only needs to be done for the first time. Once you have these packages
installed, if you want to use the dataset, you simply need to do

> library(Biobase)

> library(ALL)

> data(ALL)

These instructions load the Biobase (Gentleman et al., 2004) and the
ALL (Gentleman et al., 2010) packages. We then load the ALL dataset, that
creates an object of a special class (ExpressionSet) defined by Bioconductor.
This class of objects contains significant information concerning a microarray
dataset. There are several associated methods to handle this type of object.
If you ask R about the content of the ALL object, you get the following infor-
mation:

> ALL

http://bioconductor.org/biocLite.R

236 Data Mining with R: Learning with Case Studies

ExpressionSet (storageMode: lockedEnvironment)

assayData: 12625 features, 128 samples

element names: exprs

phenoData

sampleNames: 01005, 01010, ..., LAL4 (128 total)

varLabels and varMetadata description:

cod: Patient ID

diagnosis: Date of diagnosis

...: ...

date last seen: date patient was last seen

(21 total)

featureData

featureNames: 1000_at, 1001_at, ..., AFFX-YEL024w/RIP1_at (12625 total)

fvarLabels and fvarMetadata description: none

experimentData: use 'experimentData(object)'
pubMedIds: 14684422 16243790

Annotation: hgu95av2

The information is divided in several groups. First we have the assay data
with the gene expression levels matrix. For this dataset we have 12,625 genes
and 128 samples. The object also contains a lot of meta-data about the samples
of the experiment. This includes the phenoData part with information on the
sample names and several associated co-variates. It also includes information
on the features (i.e., genes) as well as annotations of the genes from biomedical
databases. Finally, the object also contains information that describes the
experiment.

There are several methods that facilitate access to all information in the
ExpressionSet objects. We give a few examples below. We start by obtaining
some information on the co-variates associated to each sample:

> pD <- phenoData(ALL)

> varMetadata(pD)

labelDescription

cod Patient ID

diagnosis Date of diagnosis

sex Gender of the patient

age Age of the patient at entry

BT does the patient have B-cell or T-cell ALL

remission Complete remission(CR), refractory(REF) or NA. Derived from CR

CR Original remisson data

date.cr Date complete remission if achieved

t(4;11) did the patient have t(4;11) translocation. Derived from citog

t(9;22) did the patient have t(9;22) translocation. Derived from citog

cyto.normal Was cytogenetic test normal? Derived from citog

citog original citogenetics data, deletions or t(4;11), t(9;22) status

mol.biol molecular biology

fusion protein which of p190, p210 or p190/210 for bcr/able

mdr multi-drug resistant

kinet ploidy: either diploid or hyperd.

ccr Continuous complete remission? Derived from f.u

Classifying Microarray Samples 237

relapse Relapse? Derived from f.u

transplant did the patient receive a bone marrow transplant? Derived from f.u

f.u follow up data available

date last seen date patient was last seen

> table(ALL$BT)

B B1 B2 B3 B4 T T1 T2 T3 T4

5 19 36 23 12 5 1 15 10 2

> table(ALL$mol.biol)

ALL1/AF4 BCR/ABL E2A/PBX1 NEG NUP-98 p15/p16

10 37 5 74 1 1

> table(ALLBT, ALLmol.bio)

ALL1/AF4 BCR/ABL E2A/PBX1 NEG NUP-98 p15/p16

B 0 2 1 2 0 0

B1 10 1 0 8 0 0

B2 0 19 0 16 0 1

B3 0 8 1 14 0 0

B4 0 7 3 2 0 0

T 0 0 0 5 0 0

T1 0 0 0 1 0 0

T2 0 0 0 15 0 0

T3 0 0 0 9 1 0

T4 0 0 0 2 0 0

The first two statements obtain the names and descriptions of the existing
co-variates. We then obtain some information on the distribution of the sam-
ples across the two main co-variates: the BT variable that determines the type
of acute lymphoblastic leukemia, and the mol.bio variable that describes the
cytogenetic abnormality found on each sample (NEG represents no abnormal-
ity).

We can also obtain some information on the genes and samples:

> featureNames(ALL)[1:10]

[1] "1000_at" "1001_at" "1002_f_at" "1003_s_at" "1004_at"

[6] "1005_at" "1006_at" "1007_s_at" "1008_f_at" "1009_at"

> sampleNames(ALL)[1:5]

[1] "01005" "01010" "03002" "04006" "04007"

This code shows the names of the first 10 genes and the names of the first
5 samples.

As mentioned before, we will focus our analysis of this data on the B-cell
ALL cases and in particular on the samples with a subset of the mutations,
which will be our target class. The code below obtains the subset of data that
we will use:

238 Data Mining with R: Learning with Case Studies

> tgt.cases <- which(ALL$BT %in% levels(ALL$BT)[1:5] &

+ ALL$mol.bio %in% levels(ALL$mol.bio)[1:4])

> ALLb <- ALL[,tgt.cases]

> ALLb

ExpressionSet (storageMode: lockedEnvironment)

assayData: 12625 features, 94 samples

element names: exprs

phenoData

sampleNames: 01005, 01010, ..., LAL5 (94 total)

varLabels and varMetadata description:

cod: Patient ID

diagnosis: Date of diagnosis

...: ...

date last seen: date patient was last seen

(21 total)

featureData

featureNames: 1000_at, 1001_at, ..., AFFX-YEL024w/RIP1_at (12625 total)

fvarLabels and fvarMetadata description: none

experimentData: use 'experimentData(object)'
pubMedIds: 14684422 16243790

Annotation: hgu95av2

The first statement obtains the set of cases that we will consider. These
are the samples with specific values of the BT and mol.bio variables. Check
the calls to the table() function we have shown before to see which ones we
are selecting. We then subset the original ALL object to obtain the 94 samples
that will enter our study. This subset of samples only contains some of the
values of the BT and mol.bio variables. In this context, we should update the
available levels of these two factors on our new ALLb object:

> ALLb$BT <- factor(ALLb$BT)

> ALLb$mol.bio <- factor(ALLb$mol.bio)

The ALLb object will be the dataset we will use throughout this chapter.
It may eventually be a good idea to save this object in a local file on your
computer, so that you do not need to repeat these pre-processing steps in case
you want to start the analysis from scratch:

> save(ALLb, file = "myALL.Rdata")

5.2.1 Exploring the Dataset

The function exprs() allows us to access the gene expression levels matrix:

> es <- exprs(ALLb)

> dim(es)

[1] 12625 94

Classifying Microarray Samples 239

The matrix of our dataset has 12,625 rows (the genes/features) and 94
columns (the samples/cases).

In terms of dimensionality, the main challenge of this problem is the fact
that there are far too many variables (12,625) for the number of available
cases (94). With these dimensions, most modeling techniques will have a hard
time obtaining any meaningful result. In this context, one of our first goals
will be to reduce the number of variables, that is, eliminate some genes from
our analysis. To help in this task, we start by exploring the expression levels
data.

The following instruction tells us that most expression values are between
4 and 7:

> summary(as.vector(es))

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.985 4.122 5.469 5.624 6.829 14.040

A better overview of the distribution of the expression levels can be
obtained graphically. We will use a function from package genefilter
Gentleman et al. (2010). This package must be installed before using it. Please
notice that this is a Bioconductor package, and these packages are not installed
from the standard R repository. The easiest way to install a Bioconductor
package is through the script provided by this project for this effect:

> source("http://bioconductor.org/biocLite.R")

> biocLite("genefilter")

The first instruction loads the script and then we use it do download and
install the package. We can now proceed with the above-mentioned graphical
display of the distribution of the expression levels:

> library(genefilter)

> hist(as.vector(es),breaks=80,prob=T,

+ xlab='Expression Levels',
+ main='Histogram of Overall Expression Levels')
> abline(v=c(median(as.vector(es)),

+ shorth(as.vector(es)),

+ quantile(as.vector(es),c(0.25,0.75))),

+ lty=2,col=c(2,3,4,4))

> legend('topright',c('Median','Shorth','1stQ','3rdQ'),
+ lty=2,col=c(2,3,4,4))

The results are shown in Figure 5.1. We have changed the default number
of intervals of the function hist() that obtains histograms. With the value
80 on the parameter breaks, we obtain a fine-grained approximation of the
distribution, which is possible given the large number of expression levels we
have. On top of the histogram we have plotted several lines showing the me-
dian, the first and third quartiles, and the shorth. This last statistic is a robust

http://bioconductor.org/

240 Data Mining with R: Learning with Case Studies

estimator of the centrality of a continuous distribution that is implemented
by the function shorth() of package genefilter. It is calculated as the mean
of the values in a central interval containing 50% of the observations (i.e., the
inter-quartile range).

Histogram of Overall Expression Levels

Expression Levels

D
e

n
s
it
y

2 4 6 8 10 12 14

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

Median
Shorth
1stQ
3rdQ

FIGURE 5.1: The distribution of the gene expression levels.

Are the distributions of the gene expression levels of the samples with a
particular mutation different from each other? The following code answers this
question:

> sapply(levels(ALLb$mol.bio), function(x) summary(as.vector(es[,

+ which(ALLb$mol.bio == x)])))

ALL1/AF4 BCR/ABL E2A/PBX1 NEG

Min. 2.266 2.195 2.268 1.985

1st Qu. 4.141 4.124 4.152 4.111

Median 5.454 5.468 5.497 5.470

Mean 5.621 5.627 5.630 5.622

3rd Qu. 6.805 6.833 6.819 6.832

Max. 14.030 14.040 13.810 13.950

As we see, things are rather similar across these subsets of samples and,
moreover, they are similar to the global distribution of expression levels.

Classifying Microarray Samples 241

5.3 Gene (Feature) Selection

Feature selection is an important task in many data mining problems. The
general problem is to select the subset of features (variables) of a problem
that is more relevant for the analysis of the data. This can be regarded as
an instantiation of the more general problem of deciding the weights (impor-
tance) of the features in the subsequent modeling stages. Generally, there are
two types of approaches to feature selection: (1) filters and (2) wrappers. As
mentioned in Section 3.3.2 the former use statistical properties of the fea-
tures to select the final set, while the latter include the data mining tools in
the selection process. Filter approaches are carried out in a single step, while
wrappers typically involve a search process where we iteratively look for the
set of features that is more adequate for the data mining tools we are applying.
Feature wrappers have a clear overhead in terms of computational resources.
They involve running the full filter+model+evaluate cycle several times until
some convergence criteria are met. This means that for very large data mining
problems, they may not be adequate if time is critical. Yet, they will find a
solution that is theoretically more adequate for the used modeling tools. The
strategies we use and describe in this section can be seen as filter approaches.

5.3.1 Simple Filters Based on Distribution Properties

The first gene filtering methods we describe are based on information concern-
ing the distribution of the expression levels. This type of experimental data
usually includes several genes that are not expressed at all or show very small
variability. The latter property means that these genes can hardly be used
to differentiate among samples. Moreover, this type of microarray usually has
several control probes that can be safely removed from our analysis. In the
case of this study, which uses Affymetric U95Av2 microarrays, these probes
have their name starting with the letters “AFFX”.

We can get an overall idea of the distribution of the expression levels
of each gene across all individuals with the following graph. We will use the
median and inter-quartile range (IQR) as the representatives of these distri-
butions. The following code obtains these scores for each gene and plots the
values producing the graph in Figure 5.2:

> rowIQRs <- function(em)

+ rowQ(em,ceiling(0.75*ncol(em))) - rowQ(em,floor(0.25*ncol(em)))

> plot(rowMedians(es),rowIQRs(es),

+ xlab='Median expression level',
+ ylab='IQR expression level',
+ main='Main Characteristics of Genes Expression Levels')

The function rowMedians() from package Biobase obtains a vector of the

242 Data Mining with R: Learning with Case Studies

medians per row of a matrix. This is an efficient implementation of this task.
A less efficient alternative would be to use the function apply().2 The rowQ()
function is another efficient implementation provided by this package with the
goal of obtaining quantiles of a distribution from the rows of a matrix. The
second argument of this function is an integer ranging from 1 (that would give
us the minimum) to the number of columns of the matrix (that would result
in the maximum). In this case we are using this function to obtain the IQR by
subtracting the 3rd quartile from the 1st quartile. These statistics correspond
to 75% and 25% of the data, respectively. We have used the functions floor()
and ceiling() to obtain the corresponding order in the number of values of
each row. Both functions take the integer part of a floating point number,
although with different rounding procedures. Experiment with both to see the
difference. Using the function rowQ(), we have created the function rowIQRs()
to obtain the IQR of each row.

4 6 8 10 12

0
1

2
3

4
5

Median expression level

IQ
R

 e
xp

re
ss

io
n

le
ve

l

Main Characteristics of Gene Expression Levels

FIGURE 5.2: The median and IQR of the gene expression levels.

Figure 5.2 provides interesting information. Namely, we can observe that
a large proportion of the genes have very low variability (IQRs near 0). As
mentioned above, if a gene has a very low variability across all samples, then
it is reasonably safe to conclude that it will not be useful in discriminating
among the different types of mutations of B-cell ALL. This means that we
can safely remove these genes from our classification task. We should note

2As an exercise, time both alternatives using function system.time() to observe the
difference.

Classifying Microarray Samples 243

that there is a caveat on this reasoning. In effect, we are looking at the genes
individually. This means that there is some risk that some of these genes
with low variability, when put together with other genes, could actually be
useful for the classification task. Still, the gene-by-gene approach that we will
follow is the most common for these problems as exploring the interactions
among genes with datasets of this dimension is not easy. Nevertheless, there are
methods that try to estimate the importance of features, taking into account
their dependencies. That is the case of the RELIEF method (Kira and Rendel,
1992; Kononenko et al., 1997).

We will use a heuristic threshold based on the value of the IQR to eliminate
some of the genes with very low variability. Namely, we will remove any genes
with a variability that is smaller than 1/5 of the global IQR. The function
nsFilter() from the package genefilter can be used for this type of filtering:

> library(genefilter)

> ALLb <- nsFilter(ALLb,

+ var.func=IQR,

+ var.cutoff=IQR(as.vector(es))/5,

+ feature.exclude="^AFFX")

> ALLb

$eset

ExpressionSet (storageMode: lockedEnvironment)

assayData: 4035 features, 94 samples

element names: exprs

phenoData

sampleNames: 01005, 01010, ..., LAL5 (94 total)

varLabels and varMetadata description:

cod: Patient ID

diagnosis: Date of diagnosis

...: ...

mol.bio: molecular biology

(22 total)

featureData

featureNames: 41654_at, 35430_at, ..., 34371_at (4035 total)

fvarLabels and fvarMetadata description: none

experimentData: use 'experimentData(object)'
pubMedIds: 14684422 16243790

Annotation: hgu95av2

$filter.log

$filter.log$numLowVar

[1] 4764

$filter.log$numDupsRemoved

[1] 2918

$filter.log$feature.exclude

[1] 19

244 Data Mining with R: Learning with Case Studies

$filter.log$numRemoved.ENTREZID

[1] 889

As you see, we are left with only 4,035 genes from the initial 12,625. This
is a rather significant reduction. Nevertheless, we are still far from a dataset
that is “manageable” by most classification models, given that we only have
94 observations.

The result of the nsFilter() function is a list with several components.
Among these we have several containing information on the removed genes,
and also the component eset with the “filtered” object. Now that we have
seen the result of this filtering, we can update our ALLb and es objects to
contain the filtered data:

> ALLb <- ALLb$eset

> es <- exprs(ALLb)

> dim(es)

[1] 4035 94

5.3.2 ANOVA Filters

If a gene has a distribution of expression values that is similar across all possi-
ble values of the target variable, then it will surely be useless to discriminate
among these values. Our next approach builds on this idea. We will compare
the mean expression level of genes across the subsets of samples belonging to
a certain B-cell ALL mutation, that is, the mean conditioned on the target
variable values. Genes for which we have high statistical confidence of having
the same mean expression level across the groups of samples belonging to each
mutation will be discarded from further analysis.

Comparing means across more than two groups can be carried out using
an ANOVA statistical test. In our case study, we have four groups of cases,
one for each of the gene mutations of B-cell ALL we are considering. Filtering
of genes based on this test is rather easy in R, thanks to the facilities provided
by the genefilter package. We can carry out this type of filtering as follows:

> f <- Anova(ALLb$mol.bio, p = 0.01)

> ff <- filterfun(f)

> selGenes <- genefilter(exprs(ALLb), ff)

> sum(selGenes)

[1] 752

> ALLb <- ALLb[selGenes,]

> ALLb

Classifying Microarray Samples 245

ExpressionSet (storageMode: lockedEnvironment)

assayData: 752 features, 94 samples

element names: exprs

phenoData

sampleNames: 01005, 01010, ..., LAL5 (94 total)

varLabels and varMetadata description:

cod: Patient ID

diagnosis: Date of diagnosis

...: ...

mol.bio: molecular biology

(22 total)

featureData

featureNames: 266_s_at, 33047_at, ..., 40698_at (752 total)

fvarLabels and fvarMetadata description: none

experimentData: use 'experimentData(object)'
pubMedIds: 14684422 16243790

Annotation: hgu95av2

The function Anova() creates a new function for carrying out ANOVA
filtering. It requires a factor that determines the subgroups of our dataset and
a statistical significance level. The resulting function is stored in the variable
f. The filterfun() function works in a similar manner. It generates a fil-
tering function that can be applied to an expression matrix. This application
is carried out with the genefilter() function that produces a vector with
as many elements as there are genes in the given expression matrix. The vec-
tor contains logical values. Genes that are considered useful according to the
ANOVA statistical test have the value TRUE. As you can see, there are only
752. Finally, we can use this vector to filter our ExpressionSet object.

Figure 5.3 shows the median and IQR of the genes selected by the ANOVA
test. The figure was obtained as follows:

> es <- exprs(ALLb)

> plot(rowMedians(es),rowIQRs(es),

+ xlab='Median expression level',
+ ylab='IQR expression level',
+ main='Distribution Properties of the Selected Genes')

The variability in terms of IQR and median that we can observe in Fig-
ure 5.3 provides evidence that the genes are expressed in different scales of val-
ues. Several modeling techniques are influenced by problems where each case
is described by a set of variables using different scales. Namely, any method
relying on distances between observations will suffer from this type of problem
as distance functions typically sum up differences between variable values. In
this context, variables with a higher average value will end up having a larger
influence on the distance between observations. To avoid this effect, it is usual
to standardize (normalize) the data. This transformation consists of subtract-
ing the typical value of the variables and dividing the result by a measure of

246 Data Mining with R: Learning with Case Studies

4 6 8 10 12

1
2

3
4

Median expression level

IQ
R

 e
xp

re
ss

io
n

le
ve

l

Distribution Properties of the Selected Genes

FIGURE 5.3: The median and IQR of the final set of genes.

spread. Given that not all modeling techniques are affected by this data char-
acteristic we will leave this transformation to the modeling stages, making it
depend on the tool to be used.

5.3.3 Filtering Using Random Forests

The expression level matrix resulting from the ANOVA filter is already of
manageable size, although we still have many more features than observations.
In effect, in our modeling attempts described in Section 5.4, we will apply the
selected models to this matrix. Nevertheless, one can question whether better
results can be obtained with a dataset with a more “standard” dimensionality.
In this context, we can try to further reduce the number of features and then
compare the results obtained with the different datasets.

Random forests can be used to obtain a ranking of the features in terms
of their usefulness for a classification task. In Section 3.3.2 (page 112) we saw
an example of using random forests to obtain a ranking of importance of the
variables in the context of a prediction problem.

Before proceeding with an illustration of this approach, we will change the
names of the genes. The current names are non-standard in terms of what
is expected in data frames that are used by many modeling techniques. The
function make.names() can be used to “solve” this problem as follows:

Classifying Microarray Samples 247

> featureNames(ALLb) <- make.names(featureNames(ALLb))

> es <- exprs(ALLb)

The function featureNames() provides access to the names of the genes
in an ExpressionSet.

Random forests can be used to obtain a ranking of the genes as follows,

> library(randomForest)

> dt <- data.frame(t(es), Mut = ALLb$mol.bio)

> rf <- randomForest(Mut ~ ., dt, importance = T)

> imp <- importance(rf)

> imp <- imp[, ncol(imp) - 1]

> rf.genes <- names(imp)[order(imp, decreasing = T)[1:30]]

We construct a training set by adding the mutation information to the
transpose of the expression matrix.3 We then obtain a random forest with
the parameter importance set to TRUE to obtain estimates of the importance
of the variables. The function importance() is used to obtain the relevance
of each variable. This function actually returns several scores on different
columns, according to different criteria and for each class value. We select
the column with the variable scores measured as the estimated mean decrease
in classification accuracy when each variable is removed in turn. Finally, we
obtain the genes that appear at the top 30 positions of the ranking generated
by these scores.

We may be curious about the expression levels distribution of theses 30
genes across the different mutations. We can obtain the median level for these
top 30 genes as follows:

> sapply(rf.genes, function(g) tapply(dt[, g], dt$Mut, median))

X40202_at X1674_at X1467_at X1635_at X37015_at X34210_at

ALL1/AF4 8.550639 3.745752 3.708985 7.302814 3.752649 5.641130

BCR/ABL 9.767293 5.833510 4.239306 8.693082 4.857105 9.204237

E2A/PBX1 7.414635 3.808258 3.411696 7.562676 6.579530 8.198781

NEG 7.655605 4.244791 3.515020 7.324691 3.765741 8.791774

X32116_at X34699_at X40504_at X41470_at X41071_at X36873_at

ALL1/AF4 7.115400 4.253504 3.218079 9.616743 7.698420 7.040593

BCR/ABL 7.966959 6.315966 4.924310 5.205797 6.017967 3.490262

E2A/PBX1 7.359097 6.102031 3.455316 3.931191 6.058185 3.634471

NEG 7.636213 6.092511 3.541651 4.157748 6.573731 3.824670

X35162_s_at X38323_at X1134_at X32378_at X1307_at X1249_at

ALL1/AF4 4.398885 4.195967 7.846189 8.703860 3.368915 3.582763

BCR/ABL 4.924553 4.866452 8.475578 9.694933 4.945270 4.477659

E2A/PBX1 4.380962 4.317550 8.697500 10.066073 4.678577 3.257649

NEG 4.236335 4.286104 8.167493 9.743168 4.863930 3.791764

X33774_at X40795_at X36275_at X34850_at X33412_at X37579_at

ALL1/AF4 6.970072 3.867134 3.618819 5.426653 10.757286 7.614200

3Remember that expression matrices have genes (variables) on the rows.

248 Data Mining with R: Learning with Case Studies

BCR/ABL 8.542248 4.544239 6.259073 6.898979 6.880112 8.231081

E2A/PBX1 7.385129 4.151637 3.635956 5.928574 5.636466 9.494368

NEG 7.348818 3.909532 3.749953 6.327281 5.881145 8.455750

X37225_at X39837_s_at X37403_at X37967_at X2062_at X35164_at

ALL1/AF4 5.220668 6.633188 5.888290 8.130686 9.409753 5.577268

BCR/ABL 3.460902 7.374046 5.545761 9.274695 7.530185 6.493672

E2A/PBX1 7.445655 6.708400 4.217478 8.260236 7.935259 7.406714

NEG 3.387552 6.878846 4.362275 8.986204 7.086033 7.492440

We can observe several interesting differences between the median expres-
sion level across the types of mutations, which provides a good indication of
the discriminative power of these genes. We can obtain even more detail by
graphically inspecting the concrete expression values of these genes for the 94
samples:

> library(lattice)

> ordMut <- order(dt$Mut)

> levelplot(as.matrix(dt[ordMut,rf.genes]),

+ aspect='fill', xlab='', ylab='',
+ scales=list(

+ x=list(

+ labels=c('+','-','*','|')[as.integer(dt$Mut[ordMut])],
+ cex=0.7,

+ tck=0)

+),

+ main=paste(paste(c('"+"','"-"','"*"','"|"'),
+ levels(dt$Mut)

+),

+ collapse='; '),
+ col.regions=colorRampPalette(c('white','orange','blue'))
+)

The graph obtained with this code is shown in Figure 5.4. We observe that
there are several genes with marked differences in expression level across the
different mutations. For instance, there are obvious differences in expression
level at gene X36275_at between ALL1/AF4 and BCR/ABL. To obtain this graph
we used the function levelplot() of the lattice package. This function can
plot a color image of a matrix of numbers. In this case we have used it to plot
our expression level matrix with the samples ordered by type of mutation.

5.3.4 Filtering Using Feature Clustering Ensembles

The approach described in this section uses a clustering algorithm to obtain 30
groups of variables that are supposed to be similar. These 30 variable clusters
will then be used to obtain an ensemble classification model where m models
will be obtained with 30 variables, each one randomly chosen from one of the
30 clusters.

Ensembles are learning methods that build a set of predictive models and

Classifying Microarray Samples 249

"+" ALL1/AF4; "−" BCR/ABL; "*" E2A/PBX1; "|" NEG

X40202_at

X1674_at

X1467_at

X1635_at

X37015_at

X34210_at

X32116_at

X34699_at

X40504_at

X41470_at

X41071_at

X36873_at

X35162_s_at

X38323_at

X1134_at

X32378_at

X1307_at

X1249_at

X33774_at

X40795_at

X36275_at

X34850_at

X33412_at

X37579_at

X37225_at

X39837_s_at

X37403_at

X37967_at

X2062_at

X35164_at

++++++++++−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−* * * * * |

3

4

5

6

7

8

9

10

11

FIGURE 5.4: The expression level of the 30 genes across the 94 samples.

250 Data Mining with R: Learning with Case Studies

then classify new observations using some form of averaging of the predictions
of these models. They are known for often outperforming the individual models
that form the ensemble. Ensembles are based on some form of diversity among
the individual models. There are many forms of creating this diversity. It
can be through different model parameter settings or by different samples of
observations used to obtain each model, for instance. Another alternative is
to use different predictors for each model in the ensemble. The ensembles we
use in this section follow this latter strategy. This approach works better if
the pool of predictors from which we obtain different sets is highly redundant.
We will assume that there is some degree of redundancy on our set of features
generated by the ANOVA filter. We will try to model this redundancy by
clustering the variables. Clustering methods are based on distances, in this
case distances between variables. Two variables are near (and thus similar)
each other if their expression values across the 94 samples are similar. By
clustering the variables we expect to find groups of genes that are similar to
each other. The Hmisc package contains a function that uses a hierarchical
clustering algorithm to cluster the variables of a dataset. The name of this
function is varclus(). We can use it as follows:

> library(Hmisc)

> vc <- varclus(t(es))

> clus30 <- cutree(vc$hclust, 30)

> table(clus30)

clus30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

27 26 18 30 22 18 24 46 22 20 24 18 56 28 47 32 22 31 18 22 18 33 20 20 21

26 27 28 29 30

17 9 19 30 14

We used the function cutree() to obtain a clustering formed by 30 groups
of variables. We then checked how many variables (genes) belong to each
cluster. Based on this clustering we can create sets of predictors by randomly
selecting one variable from each cluster. The reasoning is that members of the
same cluster will be similar to each other and thus somehow redundant.

The following function facilitates the process by generating one set of vari-
ables via randomly sampling from the selected number of clusters (defaulting
to 30):

> getVarsSet <- function(cluster,nvars=30,seed=NULL,verb=F)

+ {

+ if (!is.null(seed)) set.seed(seed)

+

+ cls <- cutree(cluster,nvars)

+ tots <- table(cls)

+ vars <- c()

+ vars <- sapply(1:nvars,function(clID)

+ {

Classifying Microarray Samples 251

+ if (!length(tots[clID])) stop('Empty cluster! (',clID,')')
+ x <- sample(1:tots[clID],1)

+ names(cls[cls==clID])[x]

+ })

+ if (verb) structure(vars,clusMemb=cls,clusTots=tots)

+ else vars

+ }

> getVarsSet(vc$hclust)

[1] "X41346_at" "X33047_at" "X1044_s_at" "X38736_at" "X39814_s_at"

[6] "X649_s_at" "X41672_at" "X36845_at" "X40771_at" "X38370_at"

[11] "X36083_at" "X34964_at" "X35228_at" "X40855_at" "X41038_at"

[16] "X40495_at" "X40419_at" "X1173_g_at" "X40088_at" "X879_at"

[21] "X39135_at" "X34798_at" "X39649_at" "X39774_at" "X39581_at"

[26] "X37024_at" "X32585_at" "X41184_s_at" "X33305_at" "X41266_at"

> getVarsSet(vc$hclust)

[1] "X40589_at" "X33598_r_at" "X41015_at" "X38999_s_at" "X37027_at"

[6] "X32842_at" "X37951_at" "X35693_at" "X36874_at" "X41796_at"

[11] "X1462_s_at" "X31751_f_at" "X34176_at" "X40855_at" "X1583_at"

[16] "X38488_s_at" "X32542_at" "X32961_at" "X32321_at" "X879_at"

[21] "X38631_at" "X37718_at" "X948_s_at" "X38223_at" "X34256_at"

[26] "X1788_s_at" "X38271_at" "X37610_at" "X33936_at" "X36899_at"

Each time we call this function, we will get a “new” set of 30 variables.
Using this function it is easy to generate a set of datasets formed by different
predictors and then obtain a model using each of these sets. In Section 5.4 we
present a function that obtains ensembles using this strategy.

Further readings on feature selection

Feature selection is a well-studied topic in many disciplines. Good overviews and references
of the work in the area of data mining can be obtained in Liu and Motoda (1998), Chizi and
Maimon (2005), and Wettschereck et al. (1997).

5.4 Predicting Cytogenetic Abnormalities

This section describes our modeling attempts for the task of predicting the
type of cytogenetic abnormalities of the B-cell ALL cases.

5.4.1 Defining the Prediction Task

The data mining problem we are facing is a predictive task. More precisely, it is
a classification problem. Predictive classification consists of obtaining models

252 Data Mining with R: Learning with Case Studies

designed with the goal of forecasting the value of a nominal target variable
using information on a set of predictors. The models are obtained using a set
of labeled observations of the phenomenon under study, that is, observations
for which we know both the values of the predictors and of the target variable.

In this case study our target variable is the type of cytogenetic abnormal-
ity of a B-cell ALL sample. In our selected dataset, this variable will take four
possible values: ALL1/AF4, BCR/ABL, E2A/PBX1, and NEG. Regarding the pre-
dictors, they will consist of a set of selected genes for which we have measured
an expression value. In our modeling attempts we will experiment with differ-
ent sets of selected genes, based on the study described in Section 5.3. This
means that the number of predictors (features) will vary depending on these
trials. Regarding the number of observations, they will consist of 94 cases of
B-cell ALL.

5.4.2 The Evaluation Metric

The prediction task is a multi-class classification problem. Predictive classi-
fication models are usually evaluated using the error rate or its complement,
the accuracy. Nevertheless, there are several alternatives, such as the area un-
der the ROC curve, pairs of measures (e.g., precision and recall), and also
measures of the accuracy of class probability estimates (e.g., the Brier score).
The package ROCR provides a good sample of these measures.

The selection of the evaluation metric for a given problem often depends
on the goals of the user. This is a difficult decision that is often impaired
by incomplete information such as the absence of information on the costs of
misclassifying a class i case with class j (known as the misclassification costs).

In our case study we have no information on the misclassification costs,
and thus we assume that it is equally serious to misclassify, for instance,
an E2A/PBX1 mutation as NEG, as it is to misclassify ALL1/AF4 as BCR/ABL.
Moreover, we have more than two classes, and generalizations of ROC analysis
to multi-class problems are not so well established, not to mention recent
drawbacks discovered in the use of the area under the ROC curve (Hand,
2009). In this context, we will resort to the use of the standard accuracy that
is measured as

acc = 1− 1
N

N∑
i=1

L0/1(yi, ŷi) (5.1)

where N is the size of test sample, and L0/1() is a loss function defined as

L0/1(yi, ŷi) =
{

0 if yi = ŷi
1 otherwise (5.2)

Classifying Microarray Samples 253

5.4.3 The Experimental Procedure

The number of observations of the dataset we will use is rather small: 94
cases. In this context, the more adequate experimental methodology to obtain
reliable estimates of the error rate is the Leave-One-Out Cross-Validation
(LOOCV) method. LOOCV is a special case of the k-fold cross-validation
experimental methodology that we have used before, namely, when k equals
the number of observations. Briefly, LOOCV consists of obtaining N models,
where N is the dataset size, and each model is obtained using N −1 cases and
tested on the observation that was left out. In the book package you may find
the function loocv() that implements this type of experiment. This function
uses a process similar to the other functions we have described in previous
chapters for experimental comparisons. Below is a small illustration of its use
with the iris dataset:

> data(iris)

> rpart.loocv <- function(form,train,test,...) {

+ require(rpart,quietly=T)

+ m <- rpart(form,train,...)

+ p <- predict(m,test,type='class')
+ c(accuracy=ifelse(p == resp(form,test),100,0))

+ }

> exp <- loocv(learner('rpart.loocv',list()),
+ dataset(Species~.,iris),

+ loocvSettings(seed=1234,verbose=F))

> summary(exp)

== Summary of a Leave One Out Cross Validation Experiment ==

LOOCV experiment with verbose = FALSE and seed = 1234

* Dataset :: iris

* Learner :: rpart.loocv with parameters:

* Summary of Experiment Results:

accuracy

avg 93.33333

std 25.02795

min 0.00000

max 100.00000

invalid 0.00000

The function loocv() takes the usual three arguments: the learner, the
dataset, and the settings of the experiment. It returns an object of class
loocvRun that we can use with the function summary() to obtain the results
of the experiment.

254 Data Mining with R: Learning with Case Studies

The user-defined function (rpart.loocv() in the example above) should
run the learner, use it for obtaining predictions for the test set, and return
a vector with whatever evaluation statistics we wish to estimate by LOOCV.
In this small illustration it simply calculates the accuracy of the learner. We
should recall that in LOOCV the test set is formed by a single observation
on each iteration of the experimental process so in this case we only need to
check whether the prediction is equal to the true value.

5.4.4 The Modeling Techniques

As discussed before we will use three different datasets that differ in the pre-
dictors that are used. One will have all genes selected by an ANOVA test,
while the other two will select 30 of these genes. All datasets will contain 94
cases of B-cell ALL. With the exception of the target variable, all information
is numeric.

To handle this problem we have selected three different modeling tech-
niques. Two of them have already been used before in this book. They are
random forests and support vector machines (SVMs). They are recognized
as some of the best off-the-shelf prediction methods. The third algorithm we
will try on this problem is new. It is a method based on distances between
observations, known as k-nearest neighbors.

The use of random forests is motivated by the fact that these models
are particularly adequate to handle problems with a large number of fea-
tures. This property derives from the algorithm used by these methods (see
Section 5.4.4.1) that randomly selects subsets of the full set of features of
a problem. Regarding the use of k-nearest neighbors, the motivation lies on
the assumption that samples with the same mutation should have a similar
gene “signature,” that is, should have similar expression values on the genes
we use to describe them. The validity of this assumption is strongly depen-
dent on the genes selected to describe the samples. Namely, they should have
good discrimination properties across the different mutations. As we will see
in Section 5.4.4.2, k-nearest neighbors methods work by assessing similarities
between cases, and thus they seem adequate for this assumption. Finally, the
use of SVMs is justified with the goal of trying to explore nonlinear rela-
tionships that may eventually exist between gene expression and cytogenetic
abnormalities.

SVMs were described in Section 3.4.2.2 (page 127). They are highly non-
linear models that can be used on both regression and classification problems.
Once again, among the different implementations of SVMs that exist in R, we
will use the svm() function of package e1071.

5.4.4.1 Random Forests

Random forests (Breiman, 2001) are an example of an ensemble model, that
is, a model that is formed by a set of simpler models. In particular, random

Classifying Microarray Samples 255

forests consist of a set of decision trees, either classification or regression trees,
depending on the problem being addressed. The user decides the number of
trees in the ensemble. Each tree is learned using a bootstrap sample obtained
by randomly drawing N cases with replacement from the original dataset,
where N is the number of cases in that dataset. With each of these training
sets, a different tree is obtained. Each node of these trees is chosen considering
only a random subset of the predictors of the original problem. The size of
these subsets should be much smaller than the number of predictors in the
dataset. The trees are fully grown, that is, they are obtained without any post-
pruning step. More details on how tree-based models are obtained appear in
Section 2.6.2 (page 71).

The predictions of these ensembles are obtained by averaging over the
predictions of each tree. For classification problems this consists of a voting
mechanism. The class that gets more votes across all trees is the prediction of
the ensemble. For regression, the values predicted by each tree are averaged
to obtain the random forest prediction.

In R, random forests are implemented in the package randomForest. We
have already seen several examples of the use of the functions provided by this
package throughout the book, namely, for feature selection.

Further readings on random forests

The reference on Random Forests is the original work by Breiman (2001). Further infor-
mation can also be obtained at the site http://stat-www.berkeley.edu/users/breiman/

RandomForests/.

5.4.4.2 k-Nearest Neighbors

The k-nearest neighbors algorithm belongs to the class of so-called lazy learn-
ers. These types of techniques do not actually obtain a model from the training
data. They simply store this dataset. Their main work happens at prediction
time. Given a new test case, its prediction is obtained by searching for similar
cases in the training data that was stored. The k most similar training cases
are used to obtain the prediction for the given test case. In classification prob-
lems, this prediction is usually obtained by voting and thus an odd number
for k is desirable. However, more elaborate voting mechanisms that take into
account the distance of the test case to each of the k neighbors are also possi-
ble. For regression, instead of voting we have an average of the target variable
values of the k neighbors.

This type of model is strongly dependent on the notion of similarity be-
tween cases. This notion is usually defined with the help of a metric over the
input space defined by the predictor variables. This metric is a distance func-
tion that can calculate a number representing the “difference” between any
two observations. There are many distance functions, but a rather frequent
selection is the Euclidean distance function that is defined as

http://stat-www.berkeley.edu/users/breiman/RandomForests/
http://stat-www.berkeley.edu/users/breiman/RandomForests/

256 Data Mining with R: Learning with Case Studies

d(xi,xj) =

√√√√ p∑
k=1

(Xi,k −Xj,k)2 (5.3)

where p is the number of predictors, and xi and xj are two observations.
These methods are thus very sensitive to both the selected metric and also

to the presence of irrelevant variables that may distort the notion of similarity.
Moreover, the scale of the variables should be uniform; otherwise we might
underestimate some of the differences in variables with lower average values.

The choice of the number of neighbors (k) is also an important parameter of
these methods. Frequent values include the numbers in the set {1, 3, 5, 7, 11},
but obviously these are just heuristics. However, we can say that larger val-
ues of k should be avoided because there is the risk of using cases that are
already far away from the test case. Obviously, this depends on the density
of the training data. Too sparse datasets incur more of this risk. As with any
learning model, the “ideal” parameter settings can be estimated through some
experimental methodology.

In R, the package class (Venables and Ripley, 2002) includes the function
knn() that implements this idea. Below is an illustrative example of its use
on the iris dataset:

> library(class)

> data(iris)

> idx <- sample(1:nrow(iris), as.integer(0.7 * nrow(iris)))

> tr <- iris[idx,]

> ts <- iris[-idx,]

> preds <- knn(tr[, -5], ts[, -5], tr[, 5], k = 3)

> table(preds, ts[, 5])

preds setosa versicolor virginica

setosa 14 0 0

versicolor 0 14 2

virginica 0 1 14

As you see, the function knn() uses a nonstandard interface. The first
argument is the training set with the exception of the target variable column.
The second argument is the test set, again without the target. The third
argument includes the target values of the training data. Finally, there are
several other parameters controlling the method, among which the parameter
k determines the number of neighbors. We can create a small function that
enables the use of this method in a more standard formula-type interface:

> kNN <- function(form, train, test, norm = T, norm.stats = NULL,

+ ...) {

+ require(class, quietly = TRUE)

+ tgtCol <- which(colnames(train) == as.character(form[[2]]))

+ if (norm) {

Classifying Microarray Samples 257

+ if (is.null(norm.stats))

+ tmp <- scale(train[, -tgtCol], center = T, scale = T)

+ else tmp <- scale(train[, -tgtCol], center = norm.stats[[1]],

+ scale = norm.stats[[2]])

+ train[, -tgtCol] <- tmp

+ ms <- attr(tmp, "scaled:center")

+ ss <- attr(tmp, "scaled:scale")

+ test[, -tgtCol] <- scale(test[, -tgtCol], center = ms,

+ scale = ss)

+ }

+ knn(train[, -tgtCol], test[, -tgtCol], train[, tgtCol],

+ ...)

+ }

> preds.norm <- kNN(Species ~ ., tr, ts, k = 3)

> table(preds.norm, ts[, 5])

preds.norm setosa versicolor virginica

setosa 14 0 0

versicolor 0 14 3

virginica 0 1 13

> preds.notNorm <- kNN(Species ~ ., tr, ts, norm = F, k = 3)

> table(preds.notNorm, ts[, 5])

preds.notNorm setosa versicolor virginica

setosa 14 0 0

versicolor 0 14 2

virginica 0 1 14

This function allows the user to indicate if the data should be normalized
prior to the call to the knn() function. This is done through parameter norm.
In the example above, you see two examples of its use. A third alternative is
to provide the centrality and spread statistics as a list with two components in
the argument norm.stats. If this is not done, the function will use the means
as centrality estimates and the standard deviations as statistics of spread. In
our experiments we will use this facility to call the function with medians and
IQRs. The function kNN() is actually included in our book package so you do
not need to type its code.

Further readings on k-nearest neighbors

The standard reference on this type of methods is the work by Cover and Hart (1967). Good
overviews can be found in the works by Aha et al. (1991) and Aha (1997). Deeper analysis can
be found in the PhD theses by Aha (1990) and Wettschereck (1994). A different, but related,
perspective of lazy learning is the use of so-called local models (Nadaraya, 1964; Watson, 1964).
Good references on this vast area are Atkeson et al. (1997) and Cleveland and Loader (1996).

258 Data Mining with R: Learning with Case Studies

5.4.5 Comparing the Models

This section describes the process we have used to compare the selected models
using a LOOCV experimental methodology.

In Section 5.3, we have seen examples of several feature selection methods.
We have used some basic filters to eliminate genes with low variance and also
control probes. Next, we applied a method based on the conditioned distribu-
tion of the expression levels with respect to the target variable. This method
was based on an ANOVA statistical test. Finally, from the results of this test
we tried to further reduce the number of genes using random forests and clus-
tering of the variables. With the exception of the first simple filters, all other
methods depend somehow on the target variable values. We may question
whether these filtering stages should be carried out before the experimental
comparisons, or if we should integrate these steps into the processes being
compared. If our goal is to obtain an unbiased estimate of the classification
accuracy of our methodology on new samples, then we should include these
filtering stages as part of the data mining processes being evaluated and com-
pared. Not doing so would mean that the estimates we obtain are biased by
the fact that the genes used to obtain the models were selected using infor-
mation of the test set. In effect, if we use all datasets to decide which genes
to use, then we are using information on this selection process that should be
unknown as it is part of the test data. In this context, we will include part
of the filtering stages within the user-defined functions that implement the
models we will compare.

For each iteration of the LOOCV process, a feature selection process, is
carried out, prior to the predictive model construction, using only the training
data provided by the LOOCV routines. The initial simple filtering step will be
carried out before the LOOCV comparison. The genes removed by this step
would not change if we do it inside the LOOCV process. Control probes would
always be removed, and the genes removed due to very low variance would
most probably still be removed if a single sample is not given (which is what
the LOOCV process does at each iteration).

We will now describe the user-defined functions that need to be supplied
to the LOOCV routines for running the experiments. For each of the modeling
techniques, we will evaluate several variants. These alternatives differ not only
on several parameters of the techniques themselves, but also on the feature
selection process that is used. The following list includes the information on
these variants for each modeling technique:

> vars <- list()

> vars$randomForest <- list(ntree=c(500,750,100),

+ mtry=c(5,15,30),

+ fs.meth=list(list('all'),
+ list('rf',30),
+ list('varclus',30,50)))
> vars$svm <- list(cost=c(1,100,500),

+ gamma=c(0.01,0.001,0.0001),

Classifying Microarray Samples 259

+ fs.meth=list(list('all'),
+ list('rf',30),
+ list('varclus',30,50)))
> vars$knn <- list(k=c(3,5,7,11),

+ norm=c(T,F),

+ fs.meth=list(list('all'),
+ list('rf',30),
+ list('varclus',30,50)))

The list has three components, one for each of the algorithms being com-
pared. For each model the list includes the parameters that should be used.
For each of the parameters a set of values is given. The combinations of all
these possible values will determine the different variants of the systems. Re-
garding random forests, we will consider three values for the parameter ntree
that sets the number of trees in the ensemble, and three values for the mtry
parameter that determines the size of the random subset of features to use
when deciding the test for each tree node. The last parameter (fs.meth) pro-
vides the alternatives for the feature selection phase that we describe below.
With respect to SVMs, we consider three different values for both the cost
and gamma parameters. Finally, for the k-nearest neighbors, we try four values
for k and two values for the parameter that determines if the predictors data
is to be normalized or not.

As mentioned above, for each of the learners we consider three alternative
feature sets (the parameter fs.meth). The first alternative (list(’all’))
uses all the features resulting from the ANOVA statistical test. The second
(list(’rf’,30)) selects 30 genes from the set obtained with the ANOVA
test, using the feature ranking obtained with a random forest. The final al-
ternative select 30 genes using the variable clustering ensemble strategy that
we described previously and then builds an ensemble using 50 models with
30 predictors randomly selected from the variable clusters. In order to imple-
ment the idea of the ensembles based on different variable sets generated by
a clustering of the genes, we have created the following function:

> varsEnsembles <- function(tgt,train,test,

+ varsSets,

+ baseLearner,blPars,

+ verb=F)

+ {

+ preds <- matrix(NA,ncol=length(varsSets),nrow=NROW(test))

+ for(v in seq(along=varsSets)) {

+ if (baseLearner=='knn')
+ preds[,v] <- knn(train[,-which(colnames(train)==tgt)],

+ test[,-which(colnames(train)==tgt)],

+ train[,tgt],blPars)

+ else {

+ m <- do.call(baseLearner,

+ c(list(as.formula(paste(tgt,

+ paste(varsSets[[v]],

260 Data Mining with R: Learning with Case Studies

+ collapse='+'),
+ sep='~')),
+ train[,c(tgt,varsSets[[v]])]),

+ blPars)

+)

+ if (baseLearner == 'randomForest')
+ preds[,v] <- do.call('predict',
+ list(m,test[,c(tgt,varsSets[[v]])],

+ type='response'))
+ else

+ preds[,v] <- do.call('predict',
+ list(m,test[,c(tgt,varsSets[[v]])]))

+ }

+ }

+ ps <- apply(preds,1,function(x)

+ levels(factor(x))[which.max(table(factor(x)))])

+ ps <- factor(ps,

+ levels=1:nlevels(train[,tgt]),

+ labels=levels(train[,tgt]))

+ if (verb) structure(ps,ensemblePreds=preds) else ps

+ }

The first arguments of this function are the name of the target variable,
the training set, and the test set. The next argument (varsSets) is a list
containing the sets of variable names (the obtained clusters) from which we
should sample a variable to generate the predictors of each member of the
ensemble. Finally, we have two arguments (baseLearner and blPars) that
provide the name of the function that implements the learner to be used
on each member of the ensemble and respective list of learning arguments.
The result of the function is the set of predictions of the ensemble for the
given test set. These predictions are obtained by a voting mechanism among
the members of the ensemble. The difference between the members of the
ensemble lies only in the predictors that are used, which are determined by
the varsSets parameters. These sets result from a variable clustering process,
as mentioned in Section 5.3.4.

Given the similarity of the tasks to be carried out by each of the learners,
we have created a single user-defined modeling function that will receive as one
of the parameters the learner that is to be used. The function genericModel()
that we present below implements this idea:

> genericModel <- function(form,train,test,

+ learner,

+ fs.meth,

+ ...)

+ {

+ cat('=')
+ tgt <- as.character(form[[2]])

+ tgtCol <- which(colnames(train)==tgt)

Classifying Microarray Samples 261

+

+ # Anova filtering

+ f <- Anova(train[,tgt],p=0.01)

+ ff <- filterfun(f)

+ genes <- genefilter(t(train[,-tgtCol]),ff)

+ genes <- names(genes)[genes]

+ train <- train[,c(tgt,genes)]

+ test <- test[,c(tgt,genes)]

+ tgtCol <- 1

+

+ # Specific filtering

+ if (fs.meth[[1]]=='varclus') {

+ require(Hmisc,quietly=T)

+ v <- varclus(as.matrix(train[,-tgtCol]))

+ VSs <- lapply(1:fs.meth[[3]],function(x)

+ getVarsSet(v$hclust,nvars=fs.meth[[2]]))

+ pred <- varsEnsembles(tgt,train,test,VSs,learner,list(...))

+

+ } else {

+ if (fs.meth[[1]]=='rf') {

+ require(randomForest,quietly=T)

+ rf <- randomForest(form,train,importance=T)

+ imp <- importance(rf)

+ imp <- imp[,ncol(imp)-1]

+ rf.genes <- names(imp)[order(imp,decreasing=T)[1:fs.meth[[2]]]]

+ train <- train[,c(tgt,rf.genes)]

+ test <- test[,c(tgt,rf.genes)]

+ }

+

+ if (learner == 'knn')
+ pred <- kNN(form,

+ train,

+ test,

+ norm.stats=list(rowMedians(t(as.matrix(train[,-tgtCol]))),

+ rowIQRs(t(as.matrix(train[,-tgtCol])))),

+ ...)

+ else {

+ model <- do.call(learner,c(list(form,train),list(...)))

+ pred <- if (learner != 'randomForest') predict(model,test)

+ else predict(model,test,type='response')
+ }

+

+ }

+

+ c(accuracy=ifelse(pred == resp(form,test),100,0))

+ }

This user-defined function will be called from within the LOOCV routines
for each iteration of the process. The experiments with all these variants on

262 Data Mining with R: Learning with Case Studies

the microarray data will take a long time to complete.4 In this context, we do
not recommend that you run the following experiments unless you are aware
of this temporal constraint. The objects resulting from this experiment are
available at the book Web page so that you are able to proceed with the rest
of the analysis without having to run all these experiments. The code to run
the full experiments is the following:

> require(class,quietly=TRUE)

> require(randomForest,quietly=TRUE)

> require(e1071,quietly=TRUE)

> load('myALL.Rdata')
> es <- exprs(ALLb)

> # simple filtering

> ALLb <- nsFilter(ALLb,

+ var.func=IQR,var.cutoff=IQR(as.vector(es))/5,

+ feature.exclude="^AFFX")

> ALLb <- ALLb$eset

> # the dataset

> featureNames(ALLb) <- make.names(featureNames(ALLb))

> dt <- data.frame(t(exprs(ALLb)),Mut=ALLb$mol.bio)

> DSs <- list(dataset(Mut ~ .,dt,'ALL'))
> # The learners to evaluate

> TODO <- c('knn','svm','randomForest')
> for(td in TODO) {

+ assign(td,

+ experimentalComparison(

+ DSs,

+ c(

+ do.call('variants',
+ c(list('genericModel',learner=td),
+ vars[[td]],

+ varsRootName=td))

+),

+ loocvSettings(seed=1234,verbose=F)

+)

+)

+ save(list=td,file=paste(td,'Rdata',sep='.'))
+ }

This code uses the function experimentalComparison() to test all vari-
ants using the LOOCV method. The code uses the function variants() to
generate all learner objects from the variants provided by the components
of list vars that we have seen above. Each of these variants will be evaluated
by an LOOCV process. The results of the code are three compExp objects
with the names knn, svm, and randomForest. Each of these objects contains
the results of the variants of the respective learner. All of them are saved in
a file with the same name as the object and extension “.Rdata”. These are

4On my standard desktop computer it takes approximately 3 days.

Classifying Microarray Samples 263

the files that are available at the book Web site, so in case you have not run
all these experiments, you can download them into your computer, and load
them into R using the load() function (indicating the name of the respective
file as argument):

> load("knn.Rdata")

> load("svm.Rdata")

> load("randomForest.Rdata")

The results of all variants of a learner are contained in the respective object.
For instance, if you want to see which were the best SVM variants, you may
issue

> rankSystems(svm, max = T)

$ALL

ALLaccuracy

system score

1 svm.v2 86.17021

2 svm.v3 86.17021

3 svm.v5 86.17021

4 svm.v6 86.17021

5 svm.v9 86.17021

The function rankSystems() takes an object of class compExp and obtains
the best performing variants for each of the statistics that were estimated in
the experimental process. By default, the function assumes that “best” means
smaller values. In case of statistics that are to be maximized, like accuracy,
we can use the parameter max as we did above.5

In order to have an overall perspective of all trials, we can join the three
objects:

> all.trials <- join(svm, knn, randomForest, by = "variants")

With the resulting compExp object we can check the best overall score of
our trials:

> rankSystems(all.trials, top = 10, max = T)

$ALL

ALLaccuracy

system score

1 knn.v2 88.29787

2 knn.v3 87.23404

3 randomForest.v4 87.23404

4 randomForest.v6 87.23404

5In case we measure several statistics, some that are to be minimized and others maxi-
mized, the parameter max accepts a vector of Boolean values.

264 Data Mining with R: Learning with Case Studies

5 svm.v2 86.17021

6 svm.v3 86.17021

7 svm.v5 86.17021

8 svm.v6 86.17021

9 svm.v9 86.17021

10 svm.v23 86.17021

The top score is obtained by a variant of the k-nearest neighbor method.
Let us check its characteristics:

> getVariant("knn.v2", all.trials)

Learner:: "genericModel"

Parameter values

learner = "knn"

k = 5

norm = TRUE

fs.meth = list("rf", 30)

This variant uses 30 genes filtered by a random forest, five neighbors and
normalization of the gene expression values. It is also interesting to observe
that among the top ten scores, only the last one (“svm.v23”) does not use
the 30 genes filtered with a random forest. This tenth best model uses all
genes resulting from the ANOVA filtering. However, we should note that the
accuracy scores among these top ten models are rather similar. In effect, given
that we have 94 test cases, the accuracy of the best model means that it made
11 mistakes, while the model on the tenth position makes 13 errors.

It may be interesting to know which errors were made by the models, for
instance, the best model. Confusion matrices (see page 120) provide this type
of information. To obtain a confusion matrix we need to know what the actual
predictions of the models are. Our user-defined function does not output the
predicted classes, only the resulting accuracy. As a result, the compExp objects
do not have this information. In case we need this sort of extra information, on
top of the evaluation statistics measured on each iteration of the experimental
process, we need to make the user-defined functions return it back to the
experimental comparison routines. These are prepared to receive and store
this extra information, as we have seen in Chapter 4. Let us imagine that
we want to know the predictions of the best model on each iteration of the
LOOCV process. The following code allows us to obtain such information.
The code focuses on the best model but it should be easily adaptable to any
other model.

> bestknn.loocv <- function(form,train,test,...) {

+ require(Biobase,quietly=T)

+ require(randomForest,quietly=T)

+ cat('=')
+ tgt <- as.character(form[[2]])

Classifying Microarray Samples 265

+ tgtCol <- which(colnames(train)==tgt)

+ # Anova filtering

+ f <- Anova(train[,tgt],p=0.01)

+ ff <- filterfun(f)

+ genes <- genefilter(t(train[,-tgtCol]),ff)

+ genes <- names(genes)[genes]

+ train <- train[,c(tgt,genes)]

+ test <- test[,c(tgt,genes)]

+ tgtCol <- 1

+ # Random Forest filtering

+ rf <- randomForest(form,train,importance=T)

+ imp <- importance(rf)

+ imp <- imp[,ncol(imp)-1]

+ rf.genes <- names(imp)[order(imp,decreasing=T)[1:30]]

+ train <- train[,c(tgt,rf.genes)]

+ test <- test[,c(tgt,rf.genes)]

+ # knn prediction

+ ps <- kNN(form,train,test,norm=T,

+ norm.stats=list(rowMedians(t(as.matrix(train[,-tgtCol]))),

+ rowIQRs(t(as.matrix(train[,-tgtCol])))),

+ k=5,...)

+ structure(c(accuracy=ifelse(ps == resp(form,test),100,0)),

+ itInfo=list(ps)

+)

+ }

> resTop <- loocv(learner('bestknn.loocv',pars=list()),
+ dataset(Mut~.,dt),

+ loocvSettings(seed=1234,verbose=F),

+ itsInfo=T)

The bestknn.loocv() function is essentially a specialization of the func-
tion genericModel() we have seen before, but focused on 5-nearest neighbors
with random forest filtering and normalization using medians and IQRs. Most
of the code is the same as in the genericModel() function, the only exception
being the result that is returned. This new function, instead of returning the
vector with the accuracy of the model, returns a structure. We have seen be-
fore that structures are R objects with appended attributes. The structure()
function allows us to create such “enriched” objects by attaching to them a
set of attributes. In the case of our user-defined functions, if we want to re-
turn some extra information to the loocv() function, we should do it on an
attribute named itInfo. In the function above we are using this attribute to
return the actual predictions of the model. The loocv() function stores this
information for each iteration of the experimental process. In order for this
storage to take place, we need to call the loocv() function with the optional
parameter itsInfo=T. This ensures that whatever is returned as an attribute
with name itInfo by the user-defined function, it will be collected in a list
and returned as an attribute named itsInfo of the result of the loocv()

266 Data Mining with R: Learning with Case Studies

function. In the end, we can inspect this information and in this case see what
were the actual predictions of the best model on each iteration.

We can check the content of the attribute containing the wanted informa-
tion as follows (we are only showing the first 4 predictions):

> attr(resTop, "itsInfo")[1:4]

[[1]]

[1] BCR/ABL

Levels: ALL1/AF4 BCR/ABL E2A/PBX1 NEG

[[2]]

[1] NEG

Levels: ALL1/AF4 BCR/ABL E2A/PBX1 NEG

[[3]]

[1] BCR/ABL

Levels: ALL1/AF4 BCR/ABL E2A/PBX1 NEG

[[4]]

[1] ALL1/AF4

Levels: ALL1/AF4 BCR/ABL E2A/PBX1 NEG

The function attr() allows us to obtain the value of any attribute of an
R object. As you see, the itsInfo attribute contains the predictions of each
iteration of the LOOCV process. Using this information together with the true
value of the class of the dataset, we can obtain the confusion matrix:

> preds <- unlist(attr(resTop, "itsInfo"))

> table(preds, dt$Mut)

preds ALL1/AF4 BCR/ABL E2A/PBX1 NEG

ALL1/AF4 10 0 0 0

BCR/ABL 0 33 0 4

E2A/PBX1 0 0 3 1

NEG 0 4 2 37

The confusion matrix can be used to inspect the type of errors that the
model makes. For instance, we can observe that the model correctly predicts
all cases with the ALL1/AF4 mutation. Moreover, we can also observe that
most of the errors of the model consist of predicting the class NEG for a case
with some mutation. Nevertheless, the reverse also happens with five samples
with no mutation, incorrectly predicted as having some abnormality.

Classifying Microarray Samples 267

5.5 Summary

The primary goal of this chapter was to introduce the reader to an impor-
tant range of applications of data mining that receives a lot of attention from
the R community: bioinformatics. In this context, we explored some of the
tools of the project Bioconductor, which provides a large set of R packages
specialized for this type of applications. As a concrete example, we addressed
a bioinformatics predictive task: to forecast the type of genetic mutation as-
sociated with samples of patients with B-cell acute lymphoblastic leukemia.
Several classification models were obtained based on information concerning
the expression levels on a set of genes resulting from microarray experiments.
In terms of data mining concepts, this chapter focused on the following main
topics:

• Feature selection methods for problems with a very large number of
predictors

• Classification methods

• Random forests

• k-Nearest neighbors

• SVMs

• Ensembles using different subsets of predictors

• Leave-one-out cross-validation experiments

With respect to R, we have learned a few new techniques, namely,

• How to handle microarray data

• Using ANOVA tests to compare means across groups of data

• Using random forests to select variables in classification problems

• Clustering the variables of a problem

• Obtaining ensembles with models learned using different predictors

• Obtaining k-nearest neighors models

• Estimating the accuracy of models using leave-one-out cross-validation.

Bibliography

Acuna, E., and Members of the CASTLE group at UPR-Mayaguez, (2009).
dprep: Data preprocessing and visualization functions for classification. R
package version 2.1.

Adler, D., Glaser, C., Nenadic, O., Oehlschlagel, J., and Zucchini, W. (2010).
ff: Memory-efficient storage of large data on disk and fast access functions.
R package version 2.1-2.

Aha, D. (1990). A Study of Instance-Based Learning Algorithms for Supervised
Learning Tasks: Mathematical, Empirical, and Psychological Evaluations.
Ph.D. thesis, University of California at Irvine, Department of Information
and Computer Science.

Aha, D. (1997). Lazy learning. Artificial Intelligence Review, 11, 7–10.

Aha, D., Kibler, D., and Albert, M. (1991). Instance-based learning algo-
rithms. Machine Learning, 6(1):37–66.

Atkeson, C. G., Moore, A., and Schaal, S. (1997). Locally weighted learning.
Artificial Intelligence Review, 11:11–73.

Austin, J. and Hodge, V. (2004). A survey of outlier detection methodologies.
Artificial Intelligence Review, 22:85–126.

Barnett, V. and Lewis, T. (1994). Outliers in statistical data (3rd edition).
John Wiley.

Bontempi, G., Birattari, M., and Bersini, H. (1999). Lazy learners at work:
The lazy learning toolbox. In Proceedings of the 7th European Congress on
Intelligent Tecnhiques & Soft Computing (EUFIT’99).

Breiman, L. (1996). Bagging predictors. Machine Learning, 24:123–140.

Breiman, L. (1998). Arcing classifiers (with discussion). Annals of Statistics,
26:801–849.

Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.

Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984). Classification and
regression trees. Statistics/Probability Series. Wadsworth & Brooks/Cole
Advanced Books & Software.

269

270 Data Mining with R: Learning with Case Studies

Breunig, M., Kriegel, H., Ng, R., and Sander, J. (2000). LOF: identifying
density-based local outliers. In ACM Int. Conf. on Management of Data,
pages 93–104.

Carl, P. and Peterson, B. G. (2009). PerformanceAnalytics: Econometric tools
for performance and risk analysis. R package version 1.0.0.

Chambers, J. (2008). Software for data analysis: Programming with R.
Springer.

Chan, R. (1999). Protecting rivers & streams by monitoring chemical con-
centrations and algae communities. In Proceedings of the 7th European
Congress on Intelligent Tecnhiques & Soft Computing (EUFIT’99).

Chandola, V., Banerjee, A., and Kumar, V. (2007). Outlier detection: A
survey. Technical Report TR 07-017, Department of Computer Science and
Engineering, University of Minnesota.

Chatfield, C. (1983). Statistics for technology. Chapman and Hall, 3rd edition.

Chawla, N. (2005). The data mining and knowledge discovery handbook, chap-
ter on data mining for imbalanced datasets: an overview, pages 853–867.
Springer.

Chawla, N., Japkowicz, N., and Kokz, A. (2004). SIGKDD Explorations spe-
cial issue on learning from imbalanced datasets.

Chawla, N., Lazarevic, A., Hall, L., and Bowyer, K. (2003). Smote-boost:
Improving prediction of the minority class in boosting. In Seventh Eu-
ropean Conference on Principles and Practice of Knowledge Discovery in
Databases, pages 107–119.

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002).
Smote: Synthetic minority over-sampling technique. Journal of Artificial
Intelligence Research, 16:321–357.

Chen, C., Hardle, W., and Unwin, A., Editors (2008). Handbook of data
visualization. Springer.

Chiaretti, S., Li, X., Gentleman, R., Vitale, A., Vignetti, M., Mandelli, F.,
Ritz, J., and Foa, R. (2004). Gene expression profile of adult T-cell acute
lymphocytic leukemia identifies distinct subsets of patients with different
response to therapy and survival. Blood, 103(7), 2771–2778.

Chizi, B. and Maimon, O. (2005). The data mining and knowledge discovery
handbook, chapter on dimension reduction and feature selection, pages 93–
111. Springer.

Cleveland, W. (1993). Visualizing data. Hobart Press.

Bibliography 271

Cleveland, W. (1995). The elements of graphing data. Hobart Press.

Cleveland, W. and Loader, C. (1996). Smoothing by local regression: Princi-
ples and methods, statistical theory and computational aspects of smooth-
ing. Edited by W. Haerdle and M. G. Schimek, Springer, 10–49.

Cortes, E. A., Martinez, M. G., and Rubio, N. G. (2010). adabag: Applies
Adaboost.M1 and Bagging. R package version 1.1.

Cover, T. M. and Hart, P. E. (1967). Nearest neighbor pattern classification.
IEEE Transactions on Information Theory, 13(1):21–27.

Dalgaard, P. (2002). Introductory statistics with R. Springer.

Deboeck, G., Editor. (1994). Trading on the edge. John Wiley & Sons.

Demsar, J. (2006). Statistical comparisons of classifiers over multiple data
sets. Journal of Machine Learning Research, 7:1–30.

Devogelaere, D., Rijckaert, M., and Embrechts, M. J. (1999). 3rd international
competition: Protecting rivers and streams by monitoring chemical concen-
trations and algae communities solved with the use of gadc. In Proceedings
of the 7th European Congress on Intelligent Tecnhiques & Soft Computing
(EUFIT’99).

Dietterich, T. G. (1998). Approximate statistical tests for comparing super-
vised classification learning algorithms. Neural Computation, 10:1895–1923.

Dietterich, T. G. (2000). Ensemble methods in machine learning. Lecture
Notes in Computer Science, 1857:1–15.

Dimitriadou, E., Hornik, K., Leisch, F., Meyer, D., and Weingessel, A. (2009).
e1071: Misc Functions of the Department of Statistics (e1071), TU Wien.
R package version 1.5-19.

Domingos, P. (1999). Metacost: A general method for making classifiers cost-
sensitive. In KDD’99: Proceedings of the 5th International Conference on
Knowledge Discovery and Data Mining, pages 155–164. ACM Press.

Domingos, P. and Pazzani, M. (1997). On the optimality of the simple
Bayesian classifier under zero-one loss. Machine Learning, 29:103–137.

Drapper, N. and Smith, H. (1981). Applied Regression Analysis. John Wiley
& Sons, 2nd edition.

Drummond, C. and Holte, R. (2006). Cost curves: An improved method for
visualizing classifier performance. Machine Learning, 65(1):95–130.

DuBois, P. (2000). MySQL. New Riders.

272 Data Mining with R: Learning with Case Studies

Elkan, C. (2001). The foundations of cost-sensitive learning. In IJCAI’01:
Proceedings of 17th International Joint Conference of Artificial Intelligence,
pages 973–978. Morgan Kaufmann Publishers Inc.

Fox, J. (2009). car: Companion to Applied Regression. R package version
1.2-16.

Freund, Y. (1990). Boosting a weak learning algorithm by majority. In Pro-
ceedings of the Third Annual Workshop on Computational Learning Theory.

Freund, Y. and Shapire, R. (1996). Experiments with a new boosting al-
gorithm. In Proceedings of the 13th International Conference on Machine
Learning. Morgan Kaufmann.

Friedman, J. (1991). Multivariate adaptive regression splines. The Annals of
Statistics, 19(1):1–144.

Friedman, J. (2002). Stochastic gradient boosting. Computational Statistics
and Data Analysis, 38(4):367–378.

Gama, J. and Gaber, M., Editors. (2007). Learning from data streams.
Springer.

Gama, J., Medas, P., Castillo, G., and Rodrigues, P. (2004). Learning with
drift detection. In Bazzan, A. and Labidi, S., Editors, Advances in artificial
intelligence-SBIA 2004, volume 3171 of Lecture Notes in Computer Science,
pages 286–295. Springer.

Gentleman, R., Carey, V., Huber, W., and Hahne, F. (2010). genefilter: gene-
filter: methods for filtering genes from microarray experiments. R package
version 1.28.2.

Gentleman, R. C., Carey, V. J., Bates, D. M., et al. (2004). Bioconductor:
Open software development for computational biology and bioinformatics.
Genome Biology, 5:R80.

Hahne, F., Huber, W., Gentleman, R., and Falcon, S. (2008). Bioconductor
case studies. Springer.

Han, J. and Kamber, M. (2006). Data mining: concepts and techniques (2nd
edition). Morgan Kaufmann Publishers.

Hand, D., Mannila, H., and Smyth, P. (2001). Principles of data mining. MIT
Press.

Hand, D. and Yu, K. (2001). Idiot’s Bayes — Not so stupid after all? Inter-
national Statistical Review, 69(3):385–399.

Hand, D. J. (2009). Measuring classifier performance: A coherent alternative
to the area under the roc curve. Machine Learning, 77(1):103–123.

Bibliography 273

Harrell, Jr., F. E. (2009). Hmisc: Harrell miscellaneous. R package version
3.7-0. With contributions from many other users.

Hastie, T. and Tibshirani, R. (1990). Generalized additive models. Chapman
& Hall.

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The elements of statistical
learning: data mining, inference and prediction. Springer.

Hawkins, D. M. (1980). Identification of outliers. Chapman and Hall.

Hong, S. (1997). Use of contextual information for feature ranking and
discretization. IEEE Transactions on Knowledge and Data Engineering,
9(5):718–730.

Hornik, K., Buchta, C., and Zeileis, A. (2009). Open-source machine learning:
R meets Weka. Computational Statistics, 24(2):225–232.

Ihaka, R. and Gentleman, R. (1996). R: A language for data analysis and
graphics. Journal of Computational and Graphical Statistics, 5(3):299–314.

James, D. A. and DebRoy, S. (2009). RMySQL: R interface to the MySQL
database. R package version 0.7-4.

Japkowicz, N. (2000). The class imbalance problem: Significance and strate-
gies. In Proceedings of the 2000 International Conference on Artificial In-
telligence (IC-A1’2000):Special Track on Inductive Learning.

Karatzoglou, A., Smola, A., Hornik, K., and Zeileis, A. (2004). kernlab —
an S4 package for kernel methods in R. Journal of Statistical Software,
11(9):1–20.

Kaufman, L. and Rousseeuw, P. (1990). Finding groups in data: An introduc-
tion to cluster analysis. John Wiley & Sons, New York.

Kifer, D., Ben-David, S., and Gehrke, J. (2004). Detecting change in data
streams. In VLDB 04: Proceedings of the 30th International Conference on
Very Large Data Bases, pages 180–191. Morgan Kaufmann.

Kira, K. and Rendel, L. (1992). The feature selection problem: Traditional
methods and a new algorithm. In Proc. Tenth National Conference on
Artificial Intelligence, pages 129–134. MIT Press.

Klinkenberg, R. (2004). Learning drifting concepts: example selection vs.
example weighting. Intelligent Data Analysis, 8(3):281–300.

Kononenko, I. (1991). Semi-naive Bayesian classifier. In EWSL-91: Proceed-
ings of the European Working Session on Learning on Machine Learning,
pages 206–219. Springer.

274 Data Mining with R: Learning with Case Studies

Kononenko, I., Simec, E., and Robnik-Sikonja, M. (1997). Overcoming the
myopia of induction learning algorithms with relieff. Applied Intelligence,
17(1):39–55.

Kubat, M. and Matwin, S. (1997). Addressing the curse of imbalanced training
sets: one-sided selection. In Proceedings of the Fourteenth International
Conference on Machine Learning, pages 179–186.

Leisch, F., Hornik, K., and Ripley., B. D. (2009). mda: Mixture and flexible
discriminant analysis, S original by Trevor Hastie and Robert Tibshirani. R
package version 0.3-4.

Li, X. (2009). ALL: A data package. R package version 1.4.7.

Liaw, A. and Wiener, M. (2002). Classification and regression by randomfor-
est. R News, 2(3):18–22.

Liu, H. and Motoda, H. (1998). Feature selection for knowledge discovery and
data mining. Kluwer Academic Publishers.

McCulloch, W. and Pitts, W. (1943). A logical calculus of the ideas immanent
in nervous activity. Bulletin of Mathematical Biophysics, 5:115–133.

Milborrow, S. (2009). Earth: Multivariate adaptive regression spline models,
derived from mda:mars by Trevor Hastie and Rob Tibshirani. R package
version 2.4-0.

Minsky, M. and Papert, S. (1969). Perceptrons: an introduction to computa-
tional geometry. MIT Press.

Murrell, P. (2006). R graphics. Chapman & Hall/CRC.

Murtagh, F. (1985). Multidimensional clustering algorithms. COMPSTAT
Lectures 4, Wuerzburg: Physica-Verlag.

Myers, R. (1990). Classical and modern regression with applications. 2nd
edition. Duxbury Press.

Nadaraya, E. (1964). On estimating regression. Theory of Probability and its
Applications, 9:141–142.

Nemenyi, P. (1969). Distribution-free Multiple Comparisons. Ph.D. thesis,
Princeton University.

Ng, R. and Han, J. (1994). Efficient and effective clustering method for spatial
data mining. In Proceedings of the 20th International Conference on Very
Large Data Bases, page 144. Morgan Kaufmann.

Oakland, J. (2007). Statistical process control, 6th edition. Butterworth-
Heinemann.

Bibliography 275

Provost, F. and Fawcett, T. (1997). Analysis and visualization of classifier
performance: Comparison under imprecise class and cost distributions. In
KDD’97: Proceedings of the 3rd International Conference on Knowledge
Discovery and Data Mining, pages 43–48. AAAI Press.

Provost, F. and Fawcett, T. (2001). Robust classification for imprecise envi-
ronments. Machine Learning, 42(3), 203–231.

Provost, F., Fawcett, T., and Kohavi, R. (1998). The case against accuracy
estimation for comparing induction algorithms. In Proc. 15th International
Conf. on Machine Learning, pages 445–453. Morgan Kaufmann, San Fran-
cisco, CA.

Pyle, D. (1999). Data preparation for data mining. Morgan Kaufmann.

Quinlan, R. (1993). C4.5: programs for machine learning. Morgan Kaufmann.

R Special Interest Group on Databases, R.-S.-D. (2009). DBI: R Database
Interface. R package version 0.2-5.

Rätsch, G., Onoda, T., and Müller, K. (2001). Soft margins for AdaBoost.
Machine Learning, 42(3):287–320.

Rijsbergen, C. V. (1979). Information retrieval. 2nd edition. Dept. of Com-
puter Science, University of Glasgow.

Rish, I. (2001). An empirical study of the Naive Bayes classifier. In IJCAI 2001
Workshop on Empirical Methods in Artificial Intelligence, pages 41–46.

Rogers, R. and Vemuri, V. (1994). Artificial neural networks forecasting time
series. IEEE Computer Society Press.

Rojas, R. (1996). Neural networks. Springer-Verlag.

Ronsenblatt, F. (1958). The perceptron: A probabilistic models for informa-
tion storage and organization in the brain. Psychological Review, 65:386–
408.

Rosenberg, C., Hebert, M., and Schneiderman, H. (2005). Semi-supervised
self-training of object detection models. In Proceedings of the 7th IEEE
Workshop on Applications of Computer Vision, pages 29–36. IEEE Com-
puter Society.

Rumelhart, D., Hinton, G., and Williams, R. (1986). Learning internal repre-
sentations by error propagation. In Rumelhart, D.E. et al., Editors, Parallel
distributed processing, volume 1. MIT Press.

Ryan, J. A. (2009). quantmod: Quantitative financial modelling framework. R
package version 0.3-13.

276 Data Mining with R: Learning with Case Studies

Ryan, J. A. and Ulrich, J. M. (2010). xts: Extensible time series. R package
version 0.7-0.

Sarkar, D. (2010). lattice: Lattice graphics. R package version 0.18-3.

Seeger, M. (2002). Learning with Labeled and Unlabeled Data. Technical
report, Institute for Adaptive and Neural Computation, University of Ed-
inburgh.

Shapire, R. (1990). The strength of weak learnability. Machine Learning,
5:197–227.

Shawe-Taylor, J. and Cristianini, N. (2000). An introduction to support vector
machines. Cambridge University Press.

Sing, T., Sander, O., Beerenwinkel, N., and Lengauer, T. (2009). ROCR:
Visualizing the performance of scoring classifiers. R package version 1.0-4.

Smola, A. and Schölkopf, B. (2004). A tutorial on support vector regression.
Statistics and Computing, 14:199–222.

Smola, A. J. and Schölkopf, B. (1998). A tutorial on support vector regression.
NeuroCOLT Technical Report TR-98-030.

Therneau, T. M. and Atkinson, B.; port by Brian Ripley. (2010). rpart: Re-
cursive Partitioning. R package version 3.1-46.

Torgo, L. (1999a). Inductive Learning of Tree-based Regression Models. Ph.D.
thesis, Faculty of Sciences, University of Porto.

Torgo, L. (1999b). Predicting the density of algae communities using local
regression trees. In Proceedings of the 7th European Congress on Intelligent
Tecnhiques & Soft Computing (EUFIT’99).

Torgo, L. (2000). Partial linear trees. In Langley, P., Editor, Proceedings
of the 17th International Conference on Machine Learning (ICML 2000),
pages 1007–1014. Morgan Kaufmann.

Torgo, L. (2007). Resource-bounded fraud detection. In Neves, J. et. al,
Editors, Proceedings of the 13th Portuguese Conference on Artificial Intel-
ligence (EPIA’07), pages 449–460, Springer.

Trapletti, A. and Hornik, K. (2009). tseries: Time series analysis and com-
putational finance. R package version 0.10-22.

Ulrich, J. (2009). TTR: Technical trading rules. R package version 0.20-1.

Vapnik, V. (1995). The nature of statistical learning theory. Springer.

Vapnik, V. (1998). Statistical Learning Theory. John Wiley & Sons.

Bibliography 277

Venables, W. N. and Ripley, B. D. (2002). Modern applied statistics with S.
fourth edition, Springer.

Watson, G. S. (1964). Smooth regression analysis. Sankhya: The Indian
Journal of Statistics, Series A, 26:359–372.

Weihs, C., Ligges, U., Luebke, K., and Raabe, N. (2005). klar analyzing
German business cycles. In Baier, D., Decker, R., and Schmidt-Thieme,
L., Editors, Data analysis and decision support, pages 335–343, Springer-
Verlag.

Weiss, G. and F. Provost (2003). Learning when training data are costly: The
effect of class distribution on tree induction. Journal of Artificial Intelli-
gence Research, 19:315–354.

Weiss, S. and Indurkhya, N. (1999). Predictive data mining. Morgan Kauf-
mann.

Werbos, P. (1974). Beyond Regression — New Tools for Prediction and Anal-
ysis in the Behavioral Sciences. Ph.D. thesis, Harvard University.

Werbos, P. (1996). The roots of backpropagation — from observed derivatives
to neural networks and political forecasting. John Wiley & Sons.

Wettschereck, D. (1994). A Study of Distance-Based Machine Learning Algo-
rithms. Ph.D. thesis, Oregon State University.

Wettschereck, D., Aha, D., and Mohri, T. (1997). A review and empirical eval-
uation of feature weighting methods for a class of lazy learning algorithms.
Artificial Intelligence Review, 11:11–73.

Wilson, D. and Martinez, T. (1997). Improved heterogeneous distance func-
tions. Journal of Artificial Intelligence Research, 6:1–34.

Yarowsky, D. (1995). Unsupervised word sense disambiguation rivaling super-
vised methods. In Proceedings of the 33rd Annual Meeting of the Association
for Computational Linguistics (ACL), pages 189–196.

Zeileis, A. and Grothendieck, G. (2005). zoo: S3 infrastructure for regular and
irregular time series. Journal of Statistical Software, 14(6):1–27.

Zhu, X. (2005). Semi-Supervised Learning with Graphs. Ph.D. thesis, School
of Computer Science, Carnegie Mellon University.

Zhu, X. (2006). Semi-Supervised Literature Survey. Technical report TR 1530,
University of Wisconsin–Madison.

Zirilli, J. (1997). Financial prediction using neural networks. International
Thomson Computer Press.

	Contents
	Preface
	Acknowledgments
	List of Figures
	List of Tables
	1. Introduction
	1.1 How to Read This Book?
	1.2 A Short Introduction to R
	1.2.1 Starting with R
	1.2.2 R Objects
	1.2.3 Vectors
	1.2.4 Vectorization
	1.2.5 Factors
	1.2.6 Generating Sequences
	1.2.7 Sub-Setting
	1.2.8 Matrices and Arrays
	1.2.9 Lists
	1.2.10 Data Frames
	1.2.11 Creating New Functions
	1.2.12 Objects, Classes, and Methods
	1.2.13 Managing Your Sessions

	1.3 A Short Introduction to MySQL

	2. Predicting Algae Blooms
	2.1 Problem Description and Objectives
	2.2 Data Description
	2.3 Loading the Data into R
	2.4 Data Visualization and Summarization
	2.5 Unknown Values
	2.5.1 Removing the Observations with Unknown Values
	2.5.2 Filling in the Unknowns with the Most Frequent Values
	2.5.3 Filling in the Unknown Values by Exploring Correlations
	2.5.4 Filling in the Unknown Values by Exploring Similarities between Cases

	2.6 Obtaining Prediction Models
	2.6.1 Multiple Linear Regression
	2.6.2 Regression Trees

	2.7 Model Evaluation and Selection
	2.8 Predictions for the Seven Algae
	2.9 Summary

	3. Predicting Stock Market Returns
	3.1 Problem Description and Objectives
	3.2 The Available Data
	3.2.1 Handling Time-Dependent Data in R
	3.2.2 Reading the Data from the CSV File
	3.2.3 Getting the Data from the Web
	3.2.4 Reading the Data from a MySQL Database

	3.3 Defining the Prediction Tasks
	3.3.1 What to Predict?
	3.3.2 Which Predictors?
	3.3.3 The Prediction Tasks
	3.3.4 Evaluation Criteria

	3.4 The Prediction Models
	3.4.1 How Will the Training Data Be Used?
	3.4.2 The Modeling Tools

	3.5 From Predictions into Actions
	3.5.1 How Will the Predictions Be Used?
	3.5.2 Trading-Related Evaluation Criteria
	3.5.3 Putting Everything Together: A Simulated Trader

	3.6 Model Evaluation and Selection
	3.6.1 Monte Carlo Estimates
	3.6.2 Experimental Comparisons
	3.6.3 Results Analysis

	3.7 The Trading System
	3.7.1 Evaluation of the Final Test Data
	3.7.2 An Online Trading System

	3.8 Summary

	4. Detecting Fraudulent Transactions
	4.1 Problem Description and Objectives
	4.2 The Available Data
	4.2.1 Loading the Data into R
	4.2.2 Exploring the Dataset
	4.2.3 Data Problems

	4.3 Defining the Data Mining Tasks
	4.3.1 Different Approaches to the Problem
	4.3.2 Evaluation Criteria
	4.3.3 Experimental Methodology

	4.4 Obtaining Outlier Rankings
	4.4.1 Unsupervised Approaches
	4.4.2 Supervised Approaches
	4.4.3 Semi-Supervised Approaches

	4.5 Summary

	5. Classifying Microarray Samples
	5.1 Problem Description and Objectives
	5.1.1 Brief Background on Microarray Experiments
	5.1.2 The ALL Dataset

	5.2 The Available Data
	5.2.1 Exploring the Dataset

	5.3 Gene (Feature) Selection
	5.3.1 Simple Filters Based on Distribution Properties
	5.3.2 ANOVA Filters
	5.3.3 Filtering Using Random Forests
	5.3.4 Filtering Using Feature Clustering Ensembles

	5.4 Predicting Cytogenetic Abnormalities
	5.4.1 Defining the Prediction Task
	5.4.2 The Evaluation Metric
	5.4.3 The Experimental Procedure
	5.4.4 The Modeling Techniques
	5.4.5 Comparing the Models

	5.5 Summary

	Bibliography

