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The management of severe congestion in complex urban networks calls for dynamic traffic
assignment (DTA) models that can replicate real traffic situations with long queues and
spillbacks. DynaMIT-P, a mesoscopic traffic simulation system, was enhanced and cali-
brated to capture the traffic characteristics in a sub-area of Beijing, China. The network
had 1698 nodes and 3180 directed links in an area of around 18 square miles. There were
2927 non-zero origin–destination (OD) pairs and around 630,000 vehicles were simulated
over 4 h of the morning peak. All demand and supply parameters were calibrated simulta-
neously using sensor counts and floating car travel time data. Successful calibration was
achieved with the Path-size Logit route choice model, which accounted for overlapping
routes. Furthermore, explicit representations of lane groups were required to properly
model traffic delays and queues. A modified treatment of acceptance capacity was required
to model the large number of short links in the transportation network (close to the length
of one vehicle). In addition, even though bicycles and pedestrians were not explicitly mod-
eled, their impacts on auto traffic were captured by dynamic road segment capacities.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Background

The design, operation and management of urban traffic systems call for network models that can replicate real traffic sit-
uations with reasonable computational resource requirements. Specifically this paper focuses on the modeling of highly con-
gested urban traffic networks, which are generally characterized by the following: (1) number of directional links in the
order of thousands or more, (2) large number of relatively short links, at-grade intersections and separate-grade inter-
changes, (3) closely-spaced on- and off-ramps connecting elevated expressways and surface roads, (4) severe congestion
with queues and spillbacks throughout the network, and (5) potentially significant interferences from non-motorized traffic
at intersections.

These characteristics pose challenges that only advanced models could handle. While the coarse estimates of traffic im-
pacts from a conventional static traffic assignment model might be adequate to analyze major infrastructure changes, the
. All rights reserved.
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needs to evaluate demand management and traffic control strategies, such as high-occupancy-vehicle (HOV), high-occu-
pancy-toll (HOT) lanes and congestion pricing, requires models that can realistically capture the dynamic nature of both
the travel demand and the traffic flows.

As the result of a recent effort to model a highly congested urban network in the city of Beijing, China, this paper presents
an equilibrium dynamic traffic assignment (DTA) model enhanced to address the challenges. Our first several attempts to
calibrate a DTA model in the same Beijing network failed due to the high level of congestion and complicated network topol-
ogy. Unrealistic queues formed and accumulated along the ring roads and arterials. Few cars could get to their destination,
and most of the sensor counts reported by the simulator were close to zero. To overcome the problem, several critical issues
in existing models were identified and the solutions were implemented. While some of the solutions (such as the use of
Path-size Logit model for route choice and the lane-group queuing model) have been studied in earlier research, albeit some-
times in a different context, the problem cannot be solved by any single one of them. The synthesis of solutions on both the
demand and supply sides is found to be crucial for the successful simulation and calibration in such a complicated traffic
network.

1.2. Simulation-based DTA

Enabled by the ever-increasing computational power, high-fidelity DTA models are developed for large and complex net-
works. There have been a plethora of research on DTA models, and a recent comprehensive review can be found in Peeta and
Ziliaskopoulos (2001). The focus of this paper is on the simulation-based DTA models, which, according to some existing lit-
eratures (see, e.g., Peeta and Ziliaskopoulos, 2001; Ziliaskopoulos et al., 2004; Balakrishna, 2006), are often more suitable for
real-world applications. The main advantages of a simulation-based DTA model over an analytical one come from two fea-
tures: the realistic modeling of traffic dynamics through vehicle-to-vehicle interactions and the wide range of operational
strategies that can be more adequately evaluated at the individual vehicle level, e.g., personalized traffic information provi-
sion, HOV and HOT lanes (especially when the tolls are set dynamically).

Generally, simulation-based DTA models consist of two main components: a method to determine time-varying path flow
rates with a given level of service, and a network loading method to simulate traffic dynamics and derive time-varying net-
work performance measures with given path flows (see, e.g., Florian et al., 2001; Cascetta, 2001). They correspond to the
‘‘demand’’ and the ‘‘supply’’ side of the model, respectively. The demand model estimates and predicts the origin–destination
(OD) flows and drivers’ decisions, then converts these aggregate OD flows into individual vehicles (also known as ‘‘packets’’)
as the input of the supply model. Typically, the OD flows are not directly observed and have to be estimated during the mod-
el calibration; they are generally assumed to be rigid in the short-term with within-day fluctuations. The supply model
explicitly simulates the interaction between the demand and the network. Measurements such as time-varying flows, travels
times, and queue lengths are generated from the supply model. It is through the interactions between demand and supply
models that a DTA model captures the complicated traffic dynamics and replicates congestion.

Although traffic simulations are originally intended for evaluating operational strategies, with the fast development of
computer hardware, simulation-based DTA models have gained popularity for transportation planning applications. Exam-
ples of simulation-based DTA models that have been applied to real-life networks include DynaMIT (Ben-Akiva et al., 1998;
Wen et al., 2006b; Balakrishna et al., 2008), DYNASMART (Mahmassani and Hawas, 1997; Mahmassani et al., 2004), VISTA
(Ziliaskopoulos et al., 2004), DynusT (Chiu et al., 2008), Dynameq (Florian et al., 2005, 2006), AIMSUN (Barcelo and Casas,
2002a, 2002b, 2006), TRANSCAD (Caliper Corporation, 2009), INTEGRATION (Aerde et al., 1996) and METROPOLIS (de Palma
and Marchal, 2002).

1.3. Modeling congested real-world networks

While the idea of using DTA models to study transportation network was originated decades ago, it is till recent years that
they have been applied on realistic and complicated networks, as the efficiency and accuracy of DTA models have been sig-
nificantly improved.

To handle congested real-world networks, the computational efficiency of DTA models has become an important research
topic, with approaches ranging from the design of more efficient data structures and algorithms (Wen et al., 2006a; Ziliask-
opoulos et al., 2004) to the utilization of distributed computing resources (Wen, 2009). Additionally, DTA systems may
choose to adopt various levels of compromise between the realism and computational efficiency in their demand and supply
models, allowing them to deal with non-trivial networks yet still provide satisfactorily realistic depictions of the traffic
dynamics. For example, several DTA models (Ben-Akiva et al., 2001; Mahmassani, 2001; Mahut, 2001; Taylor, 2003) have
employed mesoscopic supply simulation, which uses aggregate traffic flow relationships to model individual vehicle move-
ments, and gains computational efficiencies over the time-consuming microscopic simulation.

Besides computational efficiency, the major difficulty in applying DTA to congested urban networks is how to realisti-
cally replicate the congestion. As previously mentioned, the characteristics of urban networks incur challenges in several
aspects, including modeling complicated intersections, short links, and route choice. For instance, significant interferences
from non-motorized traffic at intersections are not uncommon in developing countries. If a DTA model does not consider
this phenomenon, congestion levels at intersections are likely to be underestimated. On the other hand, the model should
not over-predict congestion. Inadequate modeling of short links (the link length is comparable to that of a car) could result
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in unrealistic queues and spillbacks. Frequent on- and off-ramps create a large number of weaving sections, and thus a
model failing to distinguish lane-based movements might likely predict non-existing jams. Small errors in modeling route
choice can also lead to a prediction of non-existing congestion when the traffic is heavy and a slight overestimation of
flows on a route could move the traffic from a stable to unstable stage. It is not surprising that unrealistic gridlocks occur
in a DTA model if these complications are not addressed properly (Hughes, 2002; Ben-Akiva et al., 2001; Ziliaskopoulos
et al., 2004).

A DTA model should be calibrated against historical surveillance data before applied to any transportation systems man-
agement, investment or policy evaluation. The variables to be calibrated usually include OD flows, socio-economic charac-
teristics, and speed-density relationships for the segments or links. Peeta and Ziliaskopoulos (2001) pointed out that
estimating (and predicting) time-dependent OD demand is among the most difficult tasks for applying DTA for planning
applications. While the calibration itself has begun to receive more attentions (see, e.g., Kunde, 2002; Mahut et al., 2004;
Balakrishna et al., 2006; Balakrishna, 2006), few in the literature have focused on specific issues in real-world congested ur-
ban networks. In fact, the lack of specific model features to deal with the full complexity of urban networks might cause
additional problems for the calibration, as it became evident during the early stage of our calibration efforts.

1.4. Paper organization

The remainder of the paper is organized as follows. First we discuss problems encountered during the simulation of a
highly congested urban network and the corresponding solutions for each major challenge. What follows is a case study
in the city of Beijing, China, where DynaMIT-P, a state-of-the-art simulation-based DTA system with mesoscopic traffic (sup-
ply) simulator, was calibrated successfully by applying the model enhancements presented here. The off-line calibration
methodology is discussed briefly and a traffic management case analysis is presented using the calibrated model. Finally con-
clusions and recommendations for future research are made.
2. Modeling challenges and solutions

The main contribution of the paper is the identification of an array of important modeling features that are required for
the application of DTA models in real-world congested urban networks, including (1) a route choice model that can account
for overlapping routes, (2) explicit representations of lane groups to properly model traffic queues and spillbacks, (3) the
ability to handle a large number of short links, and (4) the impacts of bicycles and pedestrians on auto traffic modeled by
dynamic road capacities. These features are discussed in the following subsections.

It should be noted that, while DynaMIT-P (as described in Section 3.1) was used for this study, the features and problems
covered here are generally applicable to most simulation-based DTA models and by no means restricted to DynaMIT-P.

2.1. Path-size Logit

DTA models employ various types of route choice models to map OD flows into path flows, which in turn determine the
link flows. We focus on probabilistic route choice models, as empirical evidence (see, e.g., Ben-Akiva et al., 2004) has shown
that only a small percentage of travelers choose the minimum distance, minimum travel time or minimum generalized cost
paths where the path attributes (travel time, cost, etc.) are obtained from a network model.

The Multinomial Logit (MNL) model is a popular candidate for probabilistic route choice models. It has many desirable
features including a closed-form formula to compute the probability of choosing a path among a known set of paths that
could be used by an individual vehicle. MNL route choice models have been successfully applied in a number of network
models (see, e.g., Wen et al., 2006a), and it was adopted to calculate path choice probabilities in the early stage of our study.

However we observed excessive congestion, usually with jam densities and speeds close to zero on the ring roads (ele-
vated expressways), but little flow on the parallel roads in the initial simulation results. Further analysis showed that route
choices were biased toward the ring roads, yet the adjustment of the route choice model parameters had little effect in mit-
igating the bias. It was therefore suspected that an inherent limitation of MNL played an important role there.

MNL has a critical limitation in terms of its assumption that the error terms are identically and independently distributed
(i.i.d.). Such an assumption generally does not hold in an urban network with overlapping alternative paths. Specifically in
the Beijing network, a large number of paths share the same expressway links. See an example in Fig. 2-1 for a subset of the
choice set for a certain OD pair (the average route choice set size is around 30). As a result, it was likely that the MNL route
choice model significantly over-predicted the probabilities of choosing paths containing expressway links, which led to unre-
alistic congestion along those roads.

To tackle this problem, researchers have followed two major lines of research. One is to abandon the MNL model and con-
sider the correlations among overlapping paths explicitly, e.g., Probit (Daganzo, 1977; Yai et al., 1997), Cross-Nested Logit
(Vovsha and Bekhor, 1998), Error Component (Bekhor et al., 2002; Frejinger and Bierlaire, 2007). The other approach, which
is the focus of this paper, adds a deterministic correction term to the MNL utility function for overlapping paths to take
advantage of the simplicity of MNL and the resulting applicability to real-life networks. The first attempt was made by
Cascetta et al. (1996). They added a ‘‘commonality factor’’ (CF) term to the deterministic part of the utility function that



Fig. 2-1. Overlapping paths for OD pair 1616–1584 (note: the choice set has more than eight paths.).
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captures the degree of similarity between alternatives in the choice set. The modified model is referred to as the C-Logit
model, where Pn(i), the probability of user n choosing path i among his/her individual choice set Cn, is defined in the follow-
ing equation:
PnðiÞ ¼
eVin�CFinP

j2Cn
eVjn�CFjn

: ð2-1Þ
Here Vin is the systematic utility of path i for individual n, the deterministic part (before adjustment) of the total utility and
CFin the commonality factor. Four different forms for the commonality factor correction were suggested, but no guidance was
provided as to which form should be used.

Motivated by the C-Logit model, Ben-Akiva and Ramming (1998) proposed the Path-size Logit model (PSL) (see also
Ben-Akiva and Bierlaire, 2003), which had a similar form but used a ‘‘Path Size’’ (PS) attribute (instead of the CF term) as
the correction for the utility for overlapping paths. The PS attribute was originally derived from the discrete choice the-
ory for aggregate alternatives (Ben-Akiva and Lerman, 1985), and was intended to reflect the fact that an overlapping
path was perceived as less than an elementary alterative (with a ‘‘size’’ less than 1), in analogy to an aggregate alter-
native (e.g., a zone in a destination choice model) perceived as more than one elementary alternative (with a ‘‘size’’
greater than 1). Ben-Akiva and Ramming (1998) defined the correction term PSin as the ‘‘size’’ of the path i, as in the
following equation:
PSin ¼
X
a2Ci

la
Li

1P
j2Cn

daj
; ð2-2Þ
where Ci is the set of links on path i, la the travel time on link a, Li the total travel time on path i, Cn the choice set of paths for
individual n, and daj a binary variable which equals 1 if link a is a part of path j and 0 otherwise. Note that PS is not affected by
link segmentation, as the contribution of each link is proportional to its travel time to the path travel time. For a path not
overlapping with any other path, the path size is 1, and the systematic utility is not adjusted. For a path partially overlapping
with other paths, the path size is less than 1, and the systematic utility is downwards adjusted. For a path completely over-
lapping with J � 1 other paths (J being the size of the choice set Cn), the path size is 1/J. Note that static link travel times are
generally used in the calculation, as the PS variable is designed to reflect a traveler’s perception of an alternative’s ‘‘size’’ that
should not change in a within-day context (e.g., from 8:00 am to 8:15 am). Further empirical evidence is desired to validate
the hypothesis.

Once the PS attribute is defined, the utility associated with path i for individual n is adjusted as Vin + lnPSin, and the path
choice probability Pni) is computed as in the following equation:
PnðiÞ ¼
eVinþln PSinP

j2Cn
eVjnþln PSin

: ð2-3Þ
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Fig. 2-2. (a) The overlapping path problem; (b) choice probabilities for the overlapping path network.

66 M.E. Ben-Akiva et al. / Transportation Research Part C 24 (2012) 62–82
An example as shown in Fig. 2-2a has been used in the literature (e.g., Cascetta et al., 1996; Ramming, 2002) to illustrate
the overlapping path problem. Ramming (2002) has shown how the PSL choice probabilities compare with other model
types, especially with MNL model. There are three paths with the same total travel time T. Paths 1 and 2 overlap from Origin
to Intermediate Node with an overlapping travel time of T–d. The MNL model will predict equal shares for the three paths,
one third each. This is correct only when d = T, i.e., there is no overlap.

The choice probability as a function of non-overlapping fraction (d/T) for the overlapping path (Path 1 or 2) is presented in
Fig. 2-2b. When the fraction approaches zero, Paths 1 and 2 are the same physical path with two separate ‘‘labels’’. In this
case, we expect that the combined choice probabilities for Paths 1 and 2 are 50%, and Path 3, the other physical path, should
have a choice probability of 50%. The PSL reflects our expectation, but the MNL model gives a flat choice probability at 33%
that is not sensitive to the overlapping.

Consider a similar example in the context of complicated urban networks, where a traveler makes route choice from
home to work. The overlapping segments usually lie on the expressway, and there are N different paths to the work place
after getting off the expressway. In addition, he/she has another alternative to use the arterial road right after leaving home.
Suppose, in the simplest case, all the N + 1 paths have the same travel time. If the overlapping segment is sufficiently long, we
can expect the probability of the freeway being chosen is approximately 50%, which is in accordance with the prediction
given by the PSL model. However, the MNL model will give a probability of N

Nþ1 to the expressway, and a probability of
1

Nþ1 to the arterial. This indicates more demand will be allocated to the expressway when N is greater than one. In a dense
urban network, N is potentially very large, and therefore the bias could cause serious congestion in the traffic simulation
model.

Recognizing such an issue with MNL, we verified that this bias existed in the simulation of the Beijing network (Wei,
2010), and adopted PSL for modeling route choice. After the enhancement, the gridlock situation was mostly resolved,
and the route choice led to a more realistic traffic flow and density distributions on the network.
2.2. Lane groups

In the supply models used by DTA systems, roads are typically modeled as links connected at intersections (modeled as
nodes). In some models, it may also be possible to divide a link into multiple segments to capture within-link capacity
changes due to, for example, changing section geometries such as the number of lanes. Each segment may contain two parts
with distinct traffic behaviors: a ‘‘moving part’’ starting from the upstream side of the segment where vehicles entering the
segment can move at a relatively high speed and a dynamic ‘‘queuing part’’ at the downstream end of segment where
stop-and-go traffic is present. The boundary of the moving part and the queuing part depends on the traffic condition on
the segment and may vary as the simulation proceeds. In the moving part, in-flow vehicles typically move at a certain speed
governed by the speed-density relationship, while in the queuing part, (lane- or link-based) queues are formed following a
queuing model. The ability to explicitly model queuing in its supply model is a crucial feature for DTA systems to realistically
estimate congestion.

Without loss of generality, we assume the within-link supply model is defined at a segment level, i.e., each segment has
its own set of supply parameters describing the speed-density relationship and the capacities. For those models that only
have links defined but no explicit segment representations, they can be thought of as a one-segment-per-link special case.

One of the simplest queuing models used by DTA is a deterministic queuing model illustrated in Fig. 2-3 (see, e.g., Ben-
Akiva et al., 2001 and the references therein). During a time period of length t (usually the simulation time step in the range



Fig. 2-3. Deterministic queuing model.
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of one to several seconds) starting at time 0, qt vehicles leave the queue, where q is the output capacity of the segment. At
time t, given that there is a vehicle reaching the end of the queue, the position of the end of the queue is calculated as:
qðtÞ ¼ qð0Þ þ lðm� qtÞ; ð2-4Þ
where q(0) is the position of the end of the queue at time t = 0, l the average length of vehicles (including headways), and m
the number of moving vehicles between the vehicle in question (in black in Fig. 2-3) and the end of the queue at time t = 0.
Here the position of the queue is measured from the downstream end of the segment.

Note that the model is relevant only when 0 6 q(t) 6 L, where L is the length of the segment. If q(t) < 0, it means that the
queue has already dissipated by time t and q(t) should be set to 0. As the segment storage capacity is explicitly accounted for
when vehicles from upstream segments are entering, the number of vehicles on the current segment will never exceed its
storage capacity and thus q(t) > L will never occur.

Different DTA models may treat the queue in different ways. Some models build a single queue for each segment, while
others allow separate queues to form on individual lanes and vehicles in one lane does not block movements in others. Most
existing mesoscopic simulation studies employ segment-level implementations of queues, ignoring the lane connection
restrictions at the intersections. In other words, if two segments are connected at the intersection, all lanes on the upstream
segment are connected to all lanes in the downstream segment. This is probably because networks and lane restrictions for
many previous studies are not complicated enough (e.g., highway networks) to entail the non-trivial efforts required for the
implementation of explicit lanes, such as coding lane connection restrictions and dynamically switch between a lane-based
and segment-based representation according to the queue length. The segment-level queuing model also has the run-time
efficiency compared to the more elaborate lane-based one.

Segment-based queuing models are simple to implement yet they have drawbacks. One of them is the blocking effects
between different movements. Specifically, queues spilled back from the downstream segment can be mistakenly allowed
to form in all lanes in the upstream segment. For instance, the left turn queue may block the through and right turn traffic
because the model will generate a single queue for the segment, regardless of the turning movement (Fig. 2-4). In our study
network of Beijing, lane restrictions at complicated intersections are commonly seen. Moreover, on- and off-ramps connect-
ing the expressways and side roads are often highly congested. Consequently, lane restrictions have significant impact on the
throughput of those intersections. Unrealistic congestion caused by an exit queue blocking through traffic was found to be
one of the major reasons of gridlock at the early stage of our study, as we initially used the segment-based queuing model in
DynaMIT.
Fig. 2-4. Left-turn lane block the through and right turn traffic.



68 M.E. Ben-Akiva et al. / Transportation Research Part C 24 (2012) 62–82
Liu et al. (2008) proposed a set of lane group-based macroscopic formulations to address such drawbacks. Chiu and Vill-
alobos (2008) also presented the lane group structure in AMS, a mesoscopic simulator. This structure is designed to account
for spillbacks from downstream segments and ensure that vehicles located in turning bays do not artificially impede through
traffic. DynaMIT was initially designed with capability in flexible network representation (Ben-Akiva et al., 2001). Its model
allows both segment-based queuing as well as lane-based queuing, in which case the lanes serving the same direction can be
put into lane groups.

To address the aforementioned issue, a lane-based queuing model should be used and in our study ‘‘lane groups’’ are used
to capture the lane restrictions. A lane group is defined as a set of lanes established at an intersection approach for separate
capacity and level-of-service analysis (Transportation Research Board, 2000). In a lane group model, lanes are grouped
according to their specific turning movements. For example, Fig. 2-5 shows an approach to an intersection with the queuing
part comprising of three lane groups: left only, through, and right only. Note that in a mesoscopic model lane groups are only
relevant for the queuing part of the segment; there is no need to distinguish which lane a vehicle is on when it is in the mov-
ing part (i.e., there is only one lane group that contains all the lanes). This reduces the complexity of the moving part and
helps improve the run-time efficiency.

To effectively apply the lane group-based queuing feature, the construction of lane groups should take into account both
geometry changes and lane restrictions at intersections. We generated the lane connections following the guideline given by
Highway Capacity Manual (Transportation Research Board, 2000). Table 2-1 shows the typical lane groups for analysis.

Constructing the lane group information in the model required non-trivial work, especially if the lane restrictions infor-
mation were initially missing as it was in our case. In addition to the manual work to verify lane restrictions at the intersec-
tions, extra care was paid to calibrate the capacities for the lane groups. The effort proved to be necessary in our Beijing
network – with a queuing part based on lane groups, the mistakenly formed queues due to the limited capacity from another
lane group were removed, and a large number of unrealistic bottlenecks disappeared. This feature combined with the Path-
size Logit model contributed significantly in resolving the unrealistic gridlocks generated in the simulations.
2.3. Short links

Short links are not uncommon in real-world networks. The Beijing network, for example, has complicated interchanges
(such as the one shown in Fig. 2-6) with many short links, some of which are around the length of a car. Such links are often
seen at an at-grade intersection connecting two same-direction roadways separated only by a divider. For models whose net-
work representation maintains high fidelity to the real-world road network, short links are kept as the way they are, rather
than removed to obtain simplified intersections. This in turn poses challenges for the model to replicate realistic traffic
dynamics.

During the early stages of our simulation study in the Beijing network, we observed excessive congestion originated from
those short links. It turned out that the congestion resulted from two distinct types of problems: (1) vehicles moving unre-
alistically slowly on short links, and (2) vehicles queuing unnecessarily upstream of a short link. As the causes of the two
problems are different, they are discussed separately in the rest of this section. The commonality between the two problems
is that inaccuracies introduced by approximations in a mesoscopic supply model for it to run efficiently in a congested real-
world network are magnified to an extreme extent on very short links.

Following the modeling terminologies introduced in Section 2.2, the discussion will be based on segments for the moving
part problem in Section 2.3.1 as no lane group details are needed for the moving part, and based on lane groups for the queu-
ing part problem in Section 2.3.2.
Moving part Queuing part

LG1

LG2

LG3

Fig. 2-5. Group of lanes based on turning movement.



Table 2-1
Typical lane groups for analysis.

Number of lanes Movement by lanes and possible lane groups

1

2

2

3

4

Fig. 2-6. A complicated interchange with short links.

M.E. Ben-Akiva et al. / Transportation Research Part C 24 (2012) 62–82 69
2.3.1. The unusual impact of the minimum speed on short segments
An abnormal phenomenon we observed was that vehicles moving at a normal/high speed on the relatively long segments

might decelerate to an unnecessarily slow speed on the short segments. When investigating the cause of the problem, we
realized that, for shorts segments, the length of a segment might play a significant role in the calculation of the speed of
a moving vehicle, which is otherwise negligible in a network with relatively long segments.

In the mesoscopic traffic simulators of many DTA models, the speed of a vehicle at the moving part of a segment is gov-
erned by the segment’s speed-density relationship, which might take a form similar to the one in the following equation:
v ¼max vmin; vmax 1� maxðk� kmin;0Þ
kjam � kmin

� �b
 !a( )

; ð2-5Þ
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where v is the speed, k the density, vmin the minimum speed on a segment, vmax the maximum speed on a segment, kmin the
density below which the speed is fixed at vmax and kjam the jam density. Typically, vmin, vmax, kmin, kjam, a, and b are param-
eters to be calibrated.

As the speed-density relationship is originally developed for relatively long road segments with stable flows, its applica-
tion to extremely short segments should be examined carefully. For a short segment, the density increases drastically from
zero whenever a car enters the segment. For example, if the segment’s length equals to that of a typical car, then k could only
be either 0 or kjam, which results in two possible calculated speed following:
v ¼
vmax; if k ¼ 0
vmin; if k ¼ kjam

�
: ð2-6Þ
In other words, the speed on this segment will drop to vmin whenever it is occupied, effectively making the average sim-
ulated speed equal to vmin. Hence if vmin is lower than the average observed speed, this segment would almost always cause
unrealistic congestion.

Since the minimum speed vmin is to be calibrated, one possible solution is to increase the starting value of the calibration
variable to the average observed speed for each of those short segments, and restrict this value from deviating too far from
the mean. This method was effective for the Beijing study.

2.3.2. The acceptance capacity at the absence of queuing
In mesoscopic traffic simulators, vehicle-to-vehicle interactions at the intersections are sometimes modeled by simple

constructs defined at an aggregate level. Specifically, the impacts of traffic signals are implemented as ‘‘output capacities’’.
A lane group’s output capacity defines the maximum number of vehicles that can move out of the lane group at a given unit
of time. Similarly, the rate at which vehicles can enter a lane group is sometimes referred to as the ‘‘acceptance capacity’’.
While output capacities are to be calibrated, the acceptance capacities are dynamically determined by the available space on
the downstream lane groups and how fast the vehicles are moving out of these lane groups.

Capacities control various aspects (such as the spillbacks) of the queuing behavior in the mesoscopic simulation models. A
queue for a given turning movement is formed on a lane group when either the output capacity of the lane group or the
acceptance capacity of the downstream lane group is binding. In other words, the ‘‘effective capacity’’ – the actual flow rate
leaving lane group j at time t – can be computed as in the following equation:
Cjt
eff ¼ min Cjt

out;C
jt
acc

� �
; ð2-7Þ
where Cjt
out is the output capacity of lane group j at time t, and Cjt

acc the acceptance capacity of lane group j0, the down-
stream lane group of lane group j, at time t. Note that for discrete time-based simulation models, ‘‘time t’’ actually means
‘‘time-step t’’.

Cjt
acc is determined by the available space the downstream lane group j0 has. The more vehicles are on the downstream

lane group, the less acceptance capacity it has. For time-based simulation models, the acceptance capacity at time t is often
computed from the lane group’s available space at time (t � 1), as shown in the following equation:
Cj0t
acc ¼

Lj0 �mj0=L� nj0 ðt�1Þ � Dnj0t
� �
DT

; ð2-8Þ
where Lj0 is the effective length of lane group j0, mj0 the number of lanes in lane group j0, L the average effective vehicle length,
nj0 ðt�1Þ the number of vehicles on lane group j0 at time (t � 1), Dnj0t the (expected) number of vehicles to move out of lane
group j0 between time t � 1 and t, and DT the time-step size.

Note that the number of vehicles moving out of lane group j0 depends on the speed and capacity of the current lane group
and its downstream lane group. Therefore, at the beginning of time-step t, Dnj0t is generally unknown, unless the current and
downstream lane groups have been processed in the simulation. Typically, the simulator may need to ‘‘guess’’ the value of
Dnj0t . For example, one could use the value from the previous time-step (Dnj0t�1), or even simply assume a value of zero.

When the assumed Dnj0t is smaller than the actual value, the acceptance capacity is effectively underestimated. However,
one may argue that the impact of Dnj0t is not as significant as it appears. Roughly speaking, if the network is not too congested
and lane group j’ has sufficient space, then the binding constraint in Eq. (2-7) is likely to be Cjt

out (as long as Cjt
out 6 Cj0t

acc). On the
other hand, if the network is congested and lane group j0 does not have much available space, then Dnj0t is likely to be small,
as vehicles tend to move slowly and the downstream lane group j0 may have queues preventing a fast discharge. Therefore,
under most circumstances, the underestimation caused by Dnj0t is insignificant.

While the above argument may hold when the lane group is sufficiently long, it is not the case for short links (and thus
short lane groups). Suppose the downstream lane group j0 can only hold one vehicle, i.e., Lj0=L, and mj0 ¼ 1. If we ignore Dnj0t ,
then whenever there is a vehicle on it (i.e., nj0 ðt�1Þ=1), its acceptance capacity computed from Eq. (2-8) is zero, in which case
‘‘no more space is available on the lane group’’. In reality, however, if the vehicle is moving, as soon as it moves out the lane
group, another vehicle can be accepted.

Failing to recognize the inaccuracy in the calculation of acceptance capacities may over-predict congestion, especially for
highly congested networks or real-time applications. In those situations, for computational efficiency considerations,
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typically the acceptance capacity is not updated every time a vehicle is moved; instead, it may be assumed constant for a
short period of time (such as a minute). In such cases, if there is a vehicle on the short lane group when the acceptance capac-
ity is updated, the acceptance capacity stays zero during the whole period until the next update, and this effectively blocks
the upstream traffic unnecessarily.

Our solution is to ignore the acceptance capacity constraint when there is no queue in the downstream segment (and thus
the lane group is the segment), namely using Eq. (2-9) instead of Eq. (2-7):
Cjt
eff ¼min Cjt

out; d
j0t
q M þ Cj0t

acc

� �
; ð2-9Þ
where dj0t
q is a binary variable which equals 1 if there is no queue on lane group j’ at time-step t and 0 otherwise, and M an

sufficiently large positive number (a practical positive infinity). Eq. (2-9) is equivalent to Eq. (2-7) when there is a queue on
lane group j0; however, when there is no queue, dj0t

q M þ Cj0t
acc is always greater than Cjt

out , making the output capacity binding
and thus ignoring the acceptance capacity.

After accounting for the vehicles’ moving state, a revised capacity model was implemented in the DTA model, and the
abnormal queuing phenomenon was eliminated.
2.4. Variable output capacity

In urban networks (as often seen in developing countries), the mixed traffic condition is commonly seen. The impact of
bicycles and pedestrians on road intersections, for example, cannot be ignored. To model this impact, we introduced the var-
iable output capacity in the DTA model. Note that we only dealt with the impacts of non-motorized traffic on vehicular traf-
fic, but not those of vehicular on non-motorized traffic. A more comprehensive treatment of the issue should include the
two-way interaction between them.

As briefly described in Section 2.3.2, the output capacity is a parameter for each lane group (or segment) in the supply
model, and it is typically calibrated and validated offline. In most previous studies, the output capacity was fixed during
the whole simulation period, i.e., Cjt

out in Eq. (2-7) or Eq. (2-9) was constant across all possible time-step t. We refer to it
as static capacity.

Static capacity does not fully reflect the traffic situation with significant interferences from bicycles and pedestrians,
which may cause capacity reductions for motorized traffic at the intersections, especially during rush hours. Since most bicy-
cle and pedestrian trips are for commuting purposes, their flows are also time-dependent. Therefore, the conflicts between
bicycles/pedestrians and vehicles are different during different times of the day. To capture such time-dependent capacity
reductions, we should drop the static assumption on Cjt

out and make it a time-dependent variable.
In our model with dynamic output capacity, for each lane group, the output capacity may assume different values at dif-

ferent time-of-day; those values are treated as parameters to the supply model, and can be calibrated during the off-line cal-
ibration process. This small relaxation brings the flexibility of variable output capacity to our model, and avoids the
unnecessary constraints that would potentially reduce the fit of the calibration.
3. Case study

3.1. DynaMIT-P

In this case study, we used the DynaMIT-P (Dynamic network assignment for the Management of Information to Travel-
ers) DTA system to model a highly congested urban network in Beijing. DynaMIT-P is a simulation-based DTA system (Ben-
Akiva et al., 1997, 2001, 2002) for planning applications. It uses a built-in microscopic demand simulator, which disaggre-
gates the OD flows and simulates individual vehicles’ choices, a mesoscopic supply simulator, which simulates the moving of
vehicles whose speeds are governed by macroscopic speed-density relationships instead of micro-level vehicle-to-vehicle
interactions, and captures complex demand–supply interactions. It models travelers’ short-term and within-day decisions,
such as choices related to trip frequency, destination, departure time, mode, and routes, assuming the long-term travel deci-
sions (such as residential locations and auto-ownership) are given. Details about the features and framework of DynaMIT-P
can be found in Appendix A of Balakrishna (2006). The travel decisions are modeled in the discrete choice framework (Ben-
Akiva and Lerman, 1985), where the aggregate OD flows are converted into individual vehicles (packets) through DynaMIT-
P’s demand simulator. The route choice set for each OD pair is generated in the pre-processing stage using a combination of
the link elimination and simulation methods (Section 3.2, Ramming, 2002). The packets with the chosen routes are then sim-
ulated in the mesoscopic supply simulator to obtain the network performance measurements such as time-dependent flows,
travel times, and queue lengths. By adopting the mesoscopic simulation approach in DynaMIT-P, we are able to significantly
shorten the running time for the simulation of the network in comparison to typical microscopic traffic simulators.

In previous studies, DynaMIT-P and its corresponding real-time version have been applied successfully in major cities in
the United States. In Los Angeles, California, a real-time version was calibrated and deployed as a route guidance system in
the South Park area for traffic state estimation and prediction (Wen et al., 2006a,b). In Lower Westchester County, New York,
DynaMIT-P was combined with NYSDOT’s ITS infrastructure for traffic condition improvements (Rathi et al., 2008). In Boston,



72 M.E. Ben-Akiva et al. / Transportation Research Part C 24 (2012) 62–82
Massachusetts, DynaMIT-P was used for the evaluation of emergency evacuation plans (Balakrishna et al., 2008). The Beijing
study is, however, the first highly congested urban network DynaMIT-P is applied to.
3.2. Network and data

Beijing, China is one of the ten most populated megacities in the world. In recent years, the vehicle volume has increased
at an annual rate of 20%. In 2008, there were reportedly 3.5 million registered motor vehicles (the number reached 4 million
at the end of 2009), of which 2.3 million were private passenger cars. Urban trips within the Sixth Ring Road, the outermost
ring road of the city, reached 35 million trips per day (including 8.8 million walking trips). The significant pressure on the
transportation system results in severe traffic congestion and air pollution. As an illustration of the traffic problem, Fig. 3-
1 shows the link volume-over-capacity (V/C) ratios during morning peak hours on weekdays in 2007 from a static transpor-
tation planning package, where red roughly indicates a level of service D (Transportation Research Board, 2000) or worse.

As shown in Fig. 3-2, the skeleton of Beijing urban transportation network comprises a series of ring roads connected by
arterial roads, and the area for our study is the West 2nd Ring Road network and its northern and southern extensions. Sev-
eral major ring roads and arterial roads intersect the 2nd Ring Road within this area resulting in 14 interchanges. The ring
roads are elevated roadways supplemented by parallel side roads with frequent on- and off-ramps. These ramps are gener-
ally spaced between 200 and 600 feet to ensure access to and egress from the ring roads (Fig. 3-3). The network under study
passes the center of the city and it is not uncommon for the northern part of the West 2nd Ring Road to be in a complete jam
condition extending several miles. The situation is further complicated by the presence of unusually short links – some as
short as 20 feet, which could cause unexpected problems for the simulation model. Modeling such conditions is difficult be-
cause the congestion is so severe that a small overestimation in the demand or a small underestimation in the supply capac-
ity would result in a gridlock.

The computer representation of the study network consists of 1698 nodes connected by 3180 directed links (Fig. 3-4) in
an area of around 18 square miles. The historical dataset includes static demand during the AM peak hours for 2927 non-zero
OD pairs, derived from the most recent household surveys and calibrated against counts and speeds from Remote Traffic
Microwave Sensors (RTMSs) and travel times from Floating Car Data (FCD). The static demand was processed to derive an
initial time-dependent demand in 15 min intervals. The simulation ran from 6:00 am to 10:00 am. The demand was assumed
fixed and approximately 630,000 vehicles were simulated.
3.2.1. Surveillance data
Surveillance information used in the Beijing case study includes traffic counts and link travel times from 6 weekdays dur-

ing December 2007 between the hours of 6:00 am and 10:00 am.
The traffic counts were obtained from RTMS. Within the study area, there were altogether 154 RTMS detectors deployed.

Most of them (the triangles shown in the Fig. 3-4) were on the expressways. It was reported that 140 of those sensors were
functioning normally, providing 24-h traffic flow information continuously.

The link travel times are extracted from the FCD, which was obtained from GPS (Global Positioning System) equipped taxi
fleets. Nearly 90% of all the major roads in Beijing, including expressways, ramps, arterials, secondary roads and local roads,
are covered by the FCD, which can partially make up for the lack of count observations on arterials and local roads.
Fig. 3-1. Network V/C ratios of morning peak on a weekday, 2007.



Fig. 3-2. Study area (within the black rectangle).

Fig. 3-3. Frequent on- and off-ramps along a ring road.
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Both count and travel time data were processed by Beijing Transportation Research Center (BTRC); we did not have access
to the raw data. Particularly, the observed counts were aggregated in 15-min intervals, while the link travel time data were
provided as averages at 5-min internals. Additionally, some initial pre-processing was done to remove observations from
malfunctioning sensors. Over the 4-h study period, we eventually received 1694 traffic count observations, and 52,545 link
travel time observations.

3.3. Calibration

3.3.1. Calibration variables
Due to the lack of references on the dynamic characteristics of highly congested networks like the Beijing one, all the de-

mand and supply parameters of DynaMIT-P need to be calibrated for the Beijing network before we can use it for further
applications and analysis. Specifically, a total number of 69,093 variables were identified, and these include

� 46,832 time-dependent OD flows from 2927 OD pairs over the 16 time periods, each of which corresponds to a 15-min
interval from 6 am to 10 am.



Fig. 3-4. Network of the study area.
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� One coefficient of travel time bTT in the route choice model to compute the path utility Vi = bTTTTi, where Vi is the system-
atic utility of path i and TTi is the travel time on path i. In an ongoing study, a more elaborate route choice model is esti-
mated with individual GPS traces and then incorporated into the DTA model. The results will be reported in a succeeding
paper.
� 19,080 speed-density parameters (6 parameters, vmax, kmin, kjam, a, b and vmin for each segment); and 3180 segment

capacities of ring roads and arterials. Lane group capacities are not calibrated separately, and calculated as fractions of
the segment capacities based on the number of lanes in the lane group. Note that given the study period is during the
AM peak when the bicycle and pedestrian interferences are constantly high, the segment capacities are treated as static,
although the time-dependent capacity feature is implemented in DynaMIT-P.
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3.3.2. Methodologies for calibration
All the demand and supply parameters of DynaMIT-P are calibrated simultaneously. The calibration problem is formu-

lated as a constrained minimization problem. Let the time period of interest be divided into intervals h = 1,2, . . . , H. Let xh

denote the vector of OD flows departing from their respective origins during time interval h. Let bh be the vector of simula-
tion model parameters that must be calibrated together with the OD flows. The objective function is a weighted sum of dis-
tances between time-dependent location-specific simulated measurements and field measurements (both counts and link
travel times) and distances between calibrated variable values and their respective a priori values.
minimize
x1 ;...xH ;b1 ;...;bH

XH

h¼1

w1kBc
h � Fc

hk
2 þw2kBt

h � Ft
hk

2 þw3kxh � xa
hk

2 þw4kbh � ba
hk

2
h i

; ð3-1Þ
subject to the following constraints:
ðFc
h; F

t
hÞ ¼ f ðx1; . . . ; xh;b1; . . . ; bh;G1; . . . ;GhÞ

lx
h 6 xh 6 ux

h

lbh 6 bh 6 ub
h

g1ðbhÞ ¼ 0; g2ðbhÞ ¼ 0; . . . ; gnðbhÞ ¼ 0

9>>>>=
>>>>;
; 8h 2 1;2; . . . Hf g; ð3-2Þ
where Bc
h and Fc

h are the observed and fitted counts for interval h respectively, Bt
h and Ft

h the observed and fitted link travel
times for interval h respectively, xa

h and ba
h the a priori values of OD flow xh and model parameters bh for interval h respec-

tively. f(�), the simulation-based DTA model, takes as arguments the OD flows xh, the network Gh and model parameters bh up
to interval h. lx

h and ux
h are the lower and upper bound of OD flow xh, and lbh and ub

h the lower and upper bound of model
parameters bh. gi(�) is a function that specifies the physical relationship between the model parameters, e.g., the free flow
speed, vmax cannot be smaller than the minimum speed, vmin, and n is the number of such physical relationship expressions.
The weights w1, . . . ,w4 depend on the relative confidence one can attribute to the corresponding measurements and a priori
values. For example, if sensors are not reliable, a lower weight might be put on counts. The weights also depend on the order
of magnitude of the measurement in order to avoid a situation where a parameter with a bigger magnitude or more obser-
vations dominates the others in the fitting function.

Initially, we attribute a weight of 1 (w1) to the sensor count measurements, 0.05 (w2) to the floating car travel times due
to the high volume of observations, and 1 (w3) to the a priori values. These weights are adjusted dynamically during the cal-
ibration in response to the performance of the SPSA iterations to accelerate the optimization process.

Note that to avoid the potential problem of over-fitting with the large number of calibration variables, the distances from
the a priori values of the OD flows and model parameters are included in the objective function, where the a prior values are
the best results achieved through manual adjustment whose reasonableness has been checked. The bounds on the param-
eters and their physical relationships in Eq. (3-2) also ensure that the variables will not take unrealistic values.

The optimization problem is solved using the Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm,
originally developed in Spall (1992, 1998, 1999) and applied to DTA calibration in Balakrishna (2006) and Balakrishna
et al. (2006). The SPSA algorithm is attractive for large problems because of its efficient gradient approximation by perturb-
ing all variables at once. It is also designed for stochastic problems and allows for inputs corrupted by noise, which is usually
the case in simulation-based DTA models.

In each SPSA iteration, DynaMIT-P is run three times. Two runs are needed to generate the gradient approximation, and a
third run to produce traffic conditions with the adjusted parameters. Output link travel times from this run are then used as
input link travel times to the demand simulator of DynaMIT-P for the next SPSA iteration. The difference between the input
and output link travel times measures the convergence of the fixed-point problem of demand–supply interaction and is
monitored over iterations. On a computer with an Intel Core 2 Duo processor at 2.00 GHz, each DynaMIT-P run takes around
8 min and uses around 1 GB memory.

3.3.3. Results
The quantification of errors in the model performance is important for the evaluation of the calibration. The fit of counts

and travel times are computed across all reliable sensors and all available floating car observations. The following two error
statistics have been adopted to measure the discrepancies between observed (yi) and simulated (ŷi) quantities, where S is the
dimension of the unknown vector:

� Root mean square error (RMSE) (Pindyck and Rubinfeld, 1997)
RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPS
i¼1
ðyi � ŷiÞ2

S

vuuut
: ð3-3Þ
� Normalized root mean square error (RMSN) (Ashok and Ben-Akiva, 2002)
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RMSN ¼ RMSEPS
i¼1

yi

� �
=S
: ð3-4Þ
The first 30 min of the study period (6:00–10:00 am) is used to warm up and load the network. Thus the calibration and
evaluation is limited to 6:30–10:00 am.

A lower value of RMSE or RMSN indicates a lower discrepancy between the simulation results and the observations. The
calibration starting point in terms of error statistics is given in Table 3-1:

The parameters for the SPSA algorithm and objective function weights are adjusted during the calibration to accelerate
the process. The objective function value usually changes significantly right after an adjustment. Fig. 3-5 shows the last
530 iterations of SPSA, where the weights and SPSA parameters are kept constant. The objective function value does not al-
ways decrease over iterations, since the problem is stochastic and the gradients are approximated. The improvement in the
objective function value at the end of calibration indicates that the SPSA algorithm is appropriate for this particular problem
(note that it is not guaranteed the global minimum has been found). The RMSN between the time-dependent input and out-
put link travel times from these iterations is stable and about 0.08, which suggests that an equilibrium state might have been
reached.

The calibrated model reflects the high congestion level in the study area. Over the course of the simulation, queues appear
on 591 links, among which there are 33 spillbacks (one spillback is a set of concatenated links where the queue on the most
downstream link spillbacks to all upstream links). The longest spillback extends 3.20 km (1.99 miles) and the average length
of spillback is 441 m (0.274 miles).

Table 3-2 contains the error statistics on the fit to counts and fit to link travel time across all time horizons.
An intuitive illustration is given in Fig. 3-6 for the fit-to-counts during the peak periods from 8:30 to 9:00 am. The x-axis is

the observed sensor counts and the y-axis is the calibrated sensor counts. The 45� line indicates a perfect match between the
simulated counts and the observed counts. The sensors with counts deviating more than 50% from the observed values were
marked with sensor numbers. Most of the observed and simulated sensor counts fall around the 45� line, indicating that
most of the deviations between the simulated and observed counts are within an acceptable range.

Fig. 3-7 shows the RMSN and RMSE of counts at different flow rates. The first group gives the overall calibration result,
and the remaining ones are by flow rate levels: high (>1400 veh/15 min), medium (1000–1400 veh/15 min), low
(0–1000 veh/15 min). Each group contains three bars, indicating the data average, simulation average and RMSE respec-
tively. The RMSN for each group is noted above the bars. The small difference between the data and simulation averages
-1
t before the calibration.

No. of observations Observation average Simulation average RMSE RMSN

ts (Veh/15 min) 1680 1.20 � 103 445 946 0.792
travel time (s) 52,545 39.7 57.4 166 4.16

Fig. 3-5. The trend of objective value for the last 530 iterations.



Table 3-2
Overall calibration results.

No. of observations Observation average Simulation average RMSE RMSN

Counts (Veh/15 min) 1680 1.24 � 103 1.23 � 103 384 0.308
Link travel time (s) 52,545 39. 7 38.7 17.3 0.436

Fig. 3-6. Calibration results for the peak periods (left: 8:30–8:45; right: 8:45–9:00).
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suggest that the calibration is unbiased. It is also found that the high and medium groups have better fits than the low-flow
group. The best fit to count exists in the high-flow group with a RMSN around 25%.

A previous DynaMIT application in Los Angeles, CA (Wen et al., 2006a,b) had RMSN for counts in the range of 20–24%
depending on the road type. The Beijing case study has a more complicated network, higher demand, more calibration
variables, and smaller number of count stations, and it is not surprising that the model fit cannot achieve the previous
levels.
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Similar analysis on floating car travel time was conducted and is shown in Fig. 3-8. The floating car data are grouped into
four categories according to link travel time: 0–20 s, 20–40 s, 40–60 s and longer than 60 s. The best fit for travel time is
reached in the range of 40–60 s, with a 26% RMSN.

In-depth analysis was also performed on the path travel time in order to better evaluate the model capability of replicat-
ing realistic traffic situation. Since the floating car data are given in the form of link by link travel time, not every link in an
OD path has floating car data available. In order to carry out this analysis, given a set of paths for an OD pair, we have to check
the data availability in the floating car data first. In our case, we found 3996 paths with floating car data available. The com-
parisons between simulated and observed path travel time is given in Fig. 3-9. Most of the red dots are around the 45� line,
indicating a good match of the simulated path travel time with the observed data.

Given the large number of calibration parameters, it is likely that there are multiple local minima to the optimization
problem. The SPSA algorithm is generally notable for its ability to find the global minimum for problems corrupted by noises
(Spall, 1992, 1998; Balakrishna, 2006), yet we still checked the reasonableness of the calibrated parameters manually with
engineering judgment to gain more confidence on the results.
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3.4. Application analysis

DTA systems like DynaMIT-P, once calibrated, can be used to evaluate various types of traffic management strategies and
scenarios. We demonstrate this by conducting an analysis for the short-term benefit evaluation of the ‘‘Rotating No-Driving
Day restriction’’ scenario in Beijing. This restriction is a strategy proposed by the Beijing municipal government to reduce
pollution and relieve traffic. Implemented as part of a 6-month trial that took effect after the 2008 Olympics, it prevents pri-
vate cars from being on the roads 1 weekday per week according to a rotation schedule based on license plate numbers. For
example, cars with a license plate number ending with 1 or 6 are not allowed to be driven on Mondays. Those with plate
numbers ending in 2 or 7 are banned from road on Tuesdays, and so on. This restriction has reduced Beijing’s 3.5 million
car network demand significantly.

The initial demand for the base case is estimated from the field observations in the calibration process described in Sec-
tion 3.3. To model the above mentioned scenario, we decrease the initial demand by 20%, assuming that the last digit of the
license plate number is randomly distributed. Note that this is only appropriate for short-term analyses, as it does not ac-
count for the long-term demand increase caused by reaction to this restriction strategy if it became a long-term policy.

We then compare the simulation results of different scenarios with a control case that does not have the restriction. First,
we focus on the two most congested areas of interest for transportation management. The GuangAnMen area (Fig. 3-10) and
XiZhiMen area (Fig. 3-11) are two areas that typically experience bottlenecks on the West 2nd Ring Road during the AM/PM
Fig. 3-10. GuangAnMen area, 7:00 am, restricted case (left) vs. base case (right).

Fig. 3-11. XiZhiMen area, 7:15 am, restricted case (left) vs. base case (right).



Table 3-3
Analysis of Rotating No-Driving Day restriction.

With restriction No. restriction

Number of vehicles reaching destinations (Veh) 5.51 � 105 6.02 � 105

Average travel time for all OD pairs in the case study network (s) 497 606
Average travel time for OD pairs from South end to North end (s) 2.70 � 103 3.39 � 103

Number of links with queuing time >30 min 58 112
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peak hours. The pictures below are screenshots of the simulation results during the same time period, for different scenarios,
in each location. The pictures on the left correspond to the results of the Rotating No-Driving Day restriction. The pictures on
the right present the control case without any restriction (base-case). As shown in the legend, the color of the segment de-
notes its density, with red indicating high density and thus severe congestion. It is found that the reduction of demand re-
sulted in significant drops in link densities.

Quantitative analyses have also been performed, and several criteria are considered as summarized in Table 3-3:

(1) Number of vehicles reaching the destinations. In the scenario with restrictions, the number of vehicles that reach their
destination during the simulation time period (i.e., 550,588, as shown in Table 3-3) is only 8.4% less than the control
(base) case, although the overall traffic demand is 20% less. This implies that the Rotating No-Driving Day restriction
improved the network throughput significantly.

(2) Average travel time. Under the restriction scenario, the overall average travel time, aggregated from the travel time of
every vehicle that reaches its destination within the simulation time period, is about 2 min less (or 17.9%) than the
control scenario. The average travel time for some major OD pairs is also calculated individually, and consistent reduc-
tion is observed. For example, the average travel time from the south end to the north end of the study area is about
45 min, which is 20% less than the base case.

(3) The number of links with long queuing time. The queuing time of a link is defined as the amount of time during which
the link has one or more lanes containing queues. The number of links with queuing time longer than 30 min is
reduced by 50% under the restriction scenario.

Overall, based on the simulation results, imposing such a restriction policy on demand could significantly increase road
efficiency and reduce congestion in the short term. This case study demonstrates the enhanced DTA model’s ability to eval-
uate traffic management strategies.
4. Conclusion and future directions

In this study, we identified important features required for the accurate replication of traffic conditions in highly con-
gested urban networks. Such networks are characterized by large number of short links, complicated intersections and inter-
changes, frequent on- and off-ramps and significant interferences from non-motorized traffic. These features include (1) a
route choice model which can account for overlapping routes, (2) explicit representations of lane groups to properly model
traffic queues and spillbacks, (3) the ability to handle short links, and (4) the impacts of bicycles and pedestrians on auto
traffic modeled by calibrated dynamic road segment capacities.

These features were implemented in DynaMIT-P and applied to a highly congested area in Beijing. We calibrated the mod-
el using surveillance data including traffic counts from traffic sensors and travel times from floating car data. An application
case study demonstrated the ability of the enhanced DTA model to evaluate management strategies for transportation
planning.

To further improve our model, we plan to develop and calibrate a new route choice model for Beijing using vehicle tra-
jectory data. In addition, higher quality input including enhanced network coding and more accurate surveillance data are
expected to improve the model accuracy.
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