1 - Introdução

Potencial do gênero Medicago para produção de

 A Adaptação a diversas condições ambicalo e devido ao seu potencial de produção, a alta qualidade mundo, inclusive no Brasil. A alfafá é utilizadạ tanto para pastejo como nas formas de feno e silagem, sendo a fenação a principal forma de uso no Brasil e em países como os Estados Unidos.No Brasil, a introdução da alfafa provavelmente ocorreu no Rio Grande do Sul, através da Argentina e Uruguai. No entanto, existem cvidências de que os colonizadores

 em 1994, varios estudos foram conduzidos nos estados acima e em outros das regiões
Nordeste e Centro-Oeste, objetivando selecionar cultivares de alfafa adaptadas a esses
 fertilização, identificação de pragas e doenças, entre outros.
Apesar do potencial da alfafa para produção de ruminantes, notadamente para vacas em lactação de alto potencial produtivo, ela apresenta algumas limitações, tais como, desconhecimento das técnicas de produção por parte dos produtores, necessidade de irrigação; produção de sementes e manejo para pastejo e produção de feno ou silagem ainda pouco estudados.
2-O complexo Medicago sativa

[^0]Inicialmente, buscava-se o desenvolvimento de cultivares com maior tolerância ao até 12 anos para desenvolver uma cultivar. Finalmente, esses passos demandam muito tempo, de modo que o melhorista pode levar passo requer a maior parte dos recursos, em termos de tempo, trabalho, materiais e capital.

 que suas cultivares possam ser descritas de acordo com a resposta média de todas as sendo cada planta geneticamente diferente da outra (Barnes \& Sheaffer, 1995). Isto possibilita o valor final da cultivar. Portanto, uma cultivar de alfafa é uma população de plantas,
 através de gerações (Bouton, 1998). No desenvolvimento de cultivares de alfafa, os

serip!!seiq sooд!puoo se sepezdepe ejefie әр sәien!
 trazido sementes diretamente da Europa, estabelecendo os primeiros alfafais,

do Chile para a California, como trevo chileno, durante a corrida do ouro. 1800 atingiu a América do Norte, após várias introduções do México por missionários, e China e Índia. No século XVI, esta foi introduzida no México e Peru, pelos espanhóis. Em originais de cultivo, a alfafa difundiu-se para a Mesopotâmia, Velho Mundo, República da
 ens әпb ә 'sour 0006 ع 0008 рч ерел!

vagens espiraladas e cobertas por tricomas.

pronunciada (Quiros \& Bauchan, 1988; Bouton, 1999).

 кun แนว кр!nq!
regiões do Brasil, a cultivar crioula apresentou-se a mais produtiva.
 últimos dez anos, nas reuniões anuais da Sociedade Brasileira de Zootecnia. Tabela 1, constata-se o aumento no número de trabalhos publicados sobre alfafa nos produtoras de leite do país, as pesquisas com alfafa experimentaram uma nova fase. Na citados por Saibro, 1985). Todavia, a partir da década de 90, com a criação da RENACAL, rendimento em matéria seca superior à de outras 13 cultivares avaliadas (Jacques et al., se ensaios comparativos de cultivares de alfafa, em que a cultivar crioula apresentou Brasil, foram realizadas no Rio Grande do Sul, a partir de meados da década de 60 , efetuandocultivar mais utilizada em nosso país (Saibro, 1985). As primeiras pesquisas com alfafa, no
 nos estados de Goiás, Mato Grosso, Mato Grosso do Sul e Rio de Janeiro.

 estão sendo testados pela RENACAL, criada em 1994 (Botrel \& Alvim, 1994).

 total é de aproximadamente 276 cultivares (Bouton, 1998).

285
Contudo, é oportuno destacar que, embora a cultivar crioula apresente um elenco
de características positivas, com relação à adaptação, produtividade, qualidade da forragem
e persistência das plantas em nossas condições, essa população ainda apresenta problemas
que afetam seu desempenho no campo (Saibro, 1985).
4 - Valor nutritivo e qualidade
 ser definida com precisão. Segundo Hintz (1995), várias tentativas foram realizadas nos últimos 200 anos para se definir qualidade de forragem. A dificuldade em se chegar a uma definição única de qualidade de forragem, deve-se ao fato de, na maioria das vezes, esta
 de feno que os alimentam com alfafa, normalmente usam características físicas como cor, folhosidade e espessura do caule para descrever a "qualidade" da alfafa. Por outro lado, produtores comerciais de feno podem definir como "qualidade", aquele feno que proporciona maior lucro. Entretanto, do ponto de vista da nutrição de ruminantes, qualidade

 1995; Lacefield, 2004).
Avaliações laboratoriais e visuais são importantes para determinação da qualidade do feno (Tabela 3) e devem ser usadas em conjunto. A inspeção visual é especialmente útil para detectar invasoras, mofo e materiais estranhos, uma vez que estes não podem ser

 sensíveis a mofo e poeira.
Para Fisher et al. (1995), o valor nutritivo refere-se aos aspectos da composição bromatológica da forragem, independentemente do consumo voluntário, enquanto que a

Tabela 3 - Confiança relativa da inspeção visual e da análise química para avaliação da

Fator de qualidade	Confiança relativa	
	Inspecão visual	Análise química
Estádio de maturidade	Pobre	Excelente
Folhosidade	Boa	Excelente
Material estranho	Excelente	Pobre
Condição	Excelente	Pobre
Cor verde	Excelente	Pobre
Textura	Excelente	Pobre
Fonte: Orloff \& Marble (1997).		

Segundo Lacefield (2004), dentre os fatores que afetam a qualidade da alfafa destacam-se: solo e fertilidade, cultivares, outras espécies, pragas, condições de crescimento, estação do ano, estádio de maturidade, armazenamento e tempo. Todos esses

Ano	Local	Números de trabalhos
1995	Brasilia	01
1996	Fortaleza	14
1997	Juiz de Fora	07
1998	Botucatu	13
1999	Porto Alegre	14
2000	Viçosa	08
2001	Piracicaba	09
2002	Recife	21
2003	Santa Maria	14
2004	Campo Grande	07

Tabela 2 - Cultivares de alfafa recomendadas para diferentes regiões do Brasil, com base na produtividade.

Estado	Local	Cultivares
RS	Guaiba ${ }^{\text {a }}$	Crioula
	Eldorado do Sul ${ }^{2}$	Crioula, Victoria, Rio, P30
SC	Lages ${ }^{1}$	Crioula
	Chapecó ${ }^{3}$	Alto, BR3
PR	Bandeirantes ${ }^{1}$	Crioula, Moapa
	Bandeirantes4	Aurora, Tifecta
SP	São Carlos ${ }^{1}$	Crioula, Florida 77, P30
	Sertãozinho ${ }_{5}$	Florida 77, CUF-101, Moapa, BR2
	Sertãozinho ${ }^{5}$	SW8210, Monarca, Victoria, Araucana, Maricopa
	Botucatu ${ }^{1}$	Crioula, Florida 77, CUF-101, Moapa
	Piracicaba ${ }^{1}$	Florida 77, Crioula, Moapa
RJ	Paty do Alferes ${ }^{6}$	Crioula, Florida 77, P30
MG	Coronel Pacheco ${ }^{1}$	Crioula
	Sete Lagoas ${ }^{7}$	Crioula, P30
	Lavras ${ }^{8}$	Crioula, P30, Victoria, SP inta
	Governador Valadares ${ }^{9}$	Crioula importada, Victoria SP
GO	Rio Verde ${ }^{10}$	SW Crioula Honda, Crioula importada

não estruturais da raiz. crescimento imaturo não permitem tempo suficiente para restabelecimento dos carboidratos e a persistência do alfafal, uma vez que plantas cortadas repetidamente no estádio de importante destacar que cortes freqüentes em alfafa têm influência marcante sobre o vigor frequientes, via de regra, resultam em alta qualidade e baixo rendimento. Contudo, é produtor, que normalmente busca alto rendimento e alta qualidade ao mesmo tempo. Cortes aumenta, a qualidade decresce e vice-versa. Isto representa um grande dilema para o a relação entre rendimento e qualidade em alfafa. Observa-se que, quando o rendimento

uṣo (pasto, feno ou silagem).

animais. portanto, aumenta a taxa de passagem, com conseqüente incremento no consumo pelos

 indisponível ao animal.

 se na Tabela 5.

florescimento pleno suplementadas com 71% de concentrado.

pastejo severo e lotação contínua, em que as plantas sobreviventes são multiplicadas e

 sua dormência e sem perdas de produtividade ou resistência a pragas.

Segundo Bouton (1999), até o lançamento da cultivar Alfagraze, a maioria dos
 perder os estandes, do timpanismo, ou de não conseguir implementar as práticas de manejo
 nəs ou әрер!!!q! sistema de produção, notadamente no manejo do pastejo.

A Alfagraze foi desenvolvida como uma cultivar tolerante ao pastejo, cuja seleção das linhagens parentais, usadas no cruzamento para a obtenção do novo material, foi feita com base na habilidade dessas linhagens de sobreviver a um processo de superpastejo contínuo (Bouton et al., 1991; Bouton, 1994). A cultivar Alfagraze mostrou-se extremamente persistente sob pastejo, possuindo boa produtividade de forragem e de sementes (Smith

 deste método no programa de seleção (Bouton, 1997, citado por Bouton, 1999). Primeiro,
 deposição de dejetos, dentre outros danos), sendo o mesmo princípio que aquele utilizado

 estande da alfafa, tornam importante que a cultivar seja capaz de sobreviver a esse período de estresse a que for submetida.

 desenvolvimento de cultivares de alfafa tolerantes ao pastejo. O autor destaca, ainda, que a adoção e o uso bem sucedido da característica de tolerância ao pastejo a cultivares de inverno não dormentes, têm o potencial de tornarem-se importantes para o desenvolvimento de sistemas de produção animal que incluam a alfafa sob pastejo em diversos países,

Genótipo	Método de pastejo	
	Lotação contínua	Lotação rotacionada
ABT 805	26,6 Aa	17,6 Ab
Alfagraze	26,3 Aa	$13,3 \mathrm{Bb}$
Crioula	$19,9 \mathrm{Bb}$	$18,3 \mathrm{Ab}$
CUF 101	$19,4 \mathrm{Bb}$	$17,7 \mathrm{Ab}$
$\frac{\text { Pionner } 5432}{\text { AB }}$	24,3 Aa	$15,3 \mathrm{Bb}$

melhor produção e valor nutritivo semelhante aos genótipos tolerantes. podem utilizar os genótipos não-tolerantes (Crioula e CUF/01), pois estes apresentaram contínua, enquanto que aqueles sistemas que adotam o método de lotação rotacionada maiores vantagens na sua utilização em sistemas de produção animal em pasto, sob lotação que os genotipos tolerantes ao pastejo (ABT 805, Alfagraze e Pionner 5432) apresentam dados de acúmulo total de forragem, durante todo o período experimental. O autor concluiu pelo método de pastejo, genótipo e pela interação destes. Na Tabela 6 encontram-se os

 segundo, com desfolhas a cada quatro semanas na primavera-verão e a cada seis semanas contínua e a lotação rotacionada. O primeiro, foi simulado por desfolhas semanais e, o

 anımais, tendo como conseqüência um pastejo rápido e uniforme. Os genótipos avaliados mob-grazing, que consiste em colocar, em uma determinada área, um grande número de

 corte, boa produtividade, boa distribuição estacional da produção e grande persistência

 lotação rotacionada (Tabela 7). avaliados por Otoni (2003), revelaram maior sobrevivência de todos os genótipos na

 morte prematura de plantas e menor produção de forragem (Ferragine, 2003, citando vários

 plantas atingirem uma altura residual de 15 a 20 cm . severamente rebaixadas, promovendo-se a retirada dos animais da área assim que as

 estacionais (Cornacchione, 2003).

Por fim, a associação entre floração e rebrotações da coroa na alfafa permite as
decisões mais adequadas com relação ao momento de uso do alfafal, favorecendo o balanço entre quantidade e qualidade da forragem produzida (Cornacchione, 2003). Em termos práticos, se recomenda o corte ou o pastejo quando aparecem as primeiras flores no
 apresentam uma altura média inferior a 5 cm (Cornacchione, 2003). Na Tabela 8, encontramse algurnas recomendações para frequiências de desfolhações em plantas de alfafa.

Tabela 8 - Recomendações para utilização de plantas de alfafa.

Grau de dormência	Método	Estação do ano		
		Primavera/verão	outono	inverno
Sem dormência (8 e 9)	DF	28-30	35	56
	DF e EF Estádio fenológico	28-30	Rebrotação basal	
		Botão	Rebrotação basal	
Dormência	DF	28-30	40	70
Intermediária (6e 7)	DFeEF Estádio fenológico	28-30	Rebrotação basal Rebrotação basal	
		botão		

[^1]VOLUMOSOS NA PRODUÇÃO DE RUMINANTES
2. Tabela 7- Sobrevivência de genótipos de alfafa sob pastejo em lotação contínua e rotacionada, aos sete e 330 dias após o início do experimento ${ }^{1}$ rotacionada, aos sete e 330 dias após o início do experimento ${ }^{1}$.

No Brasil, Vilela et al. (1994) utilizaram períodos de descanso de 24 dias na primavera/
verão, e 36 dias, no outono/inverno, com um dia de ocupação. Segundo Vilela (1994), períodos de descanso maiores que 28 dias, no verão, interferem na qualidade do caule da alfafa, reduzindo significativamente o valor nutritivo da planta. Na Argentina, o pastejo em faixas, uma modalidade da lotação rotacionada, é o método de pastejo mais utilizado na maioria dos sistemas de produção de leite em pastos de alfafa. Comeron (1994) relata que alguns produtores com nível tecnológico alto e médio usam períodos de ocupação de 1 dia ou apenas algumas horas, com carga animal instantânea elevada, visando reduzir o risco de timpanismo. Entretanto, esse manejo pode afetar à persistência do alfafal.
 a lotação animal média da pastagem, o período de ocupação foi ampliado de 1 para até 5 dias. O consumo, a produção de leite e a eficiência de utilização do pasto não variaram quando o período de ocupação passou de 1 para 5 dias. A única diferença ocorreu para variação diária da produção, que foi mais estável para menores períodos de ocupação. Esta variação foi atribuída à oferta de forragem (kg MS vaca ${ }^{-1}$ dia $^{-1}$). O autor destaca também, que o nível crítico no decréscimo da produção de leite corresponde àquele em que a produção de leite no último dia de pastejo, for equivalente a 85% da produção
 оұепsว ор ‘оли̣! inferior do pasto, constituído em grande parte por caules. Na Figura 2, encontra-se a composição bromatológica de um pasto de alfafa em diferentes estratos.
pastejo, que podem atingir até 40% da forragem produzida. Comeron (1994) relata que para pastejo e a baixa eficiência de uso da forragem, provocada pelas elevadas perdas no

 18 a $25 \mathrm{~kg} \mathrm{vaca}^{-1}$ dia $^{-1}$, em pasto exclusivo de alfafa, fazendo-se necessária a suplementação

com free-stall

 LL'L8L ID Coll

 Atividade financeira (US $\$ /$ vaca/294 dias)

[^2] bruta dos dois sistemas avaliados. Tabela 9 encontram-se os dados referentes à produção e composição do leite e margem vaca $^{-1}$ dia $^{-1}$, sem comprometer o peso vivo e a eficiência reprodutiva dos animais. Na apresentando potencial para suportar 3 vacas ha ${ }^{-1}$ e produção média de leite de 20 kg , pasto de alfafa, como alimento exclusivo para vacas em lactação, mostrou-se viável, animais receberam silagem de milho e ração concentrada. Os autores concluíram que o

 de leite, sendo um constituído exclusivamente de pasto de alfafa, sob

aumentado a viscosidade do líquido ruminal, formando uma espuma estável impedindo,
 dificuldade respiratório e circulatória, com asfixia e morte do animal.

ous!uedu!̣ ор әодио

 alfafa por bovinos de corte é praticamente inexistente

 ह1se 'son!

5.5 - Produção de carne

alfafal, sob regime de corte ou pastejo, conforme já citado. destacar que o estádio de 10% de florescimento é uma indicação prática para o manejo do
 оұәш!! para produzir cerca de 18 litros vaca ${ }^{-1} \mathrm{dia}^{-1}$, enquanto que com 10% de floração, essa

específica de animais (Figura 3). Face a isto, a alfafa de uma determinada qualidade é mais adequada para uma categoria do animal, estado reprodutivo e do nível de produção de leite (Undersander et al., 1992).

perdas de matéria seca do pasto de $38,5 \pm 15,7 \%$. агелепs!

 $\overline{\text { S6Z }}$
 dependente das condições climáticas. No Brasil, a principal forma de conservação é a fenação (Dall'Agnol \& Schefer- Basso, 2000), estando o processo de ensilagem restrito à bacia leiteira de Castro-PR (Giardine, 1993, citado por Costa \& Monteiro, 1997).

De acordo com Rangrab et al. (2000), a conservação da alfafa na forma de silagem permite utilização mais racional, sob aspectos econômicos, por apresentar menores perdas de matéria seca; nutricionais, pela menor perda de nutrientes durante a conservação; e de manejo, por favorecer o fornecimento em dietas totalmente misturadas. Segundo McDonald et al. (1991), a conservação de forrageiras na forma de silagem possui a vantagem de depender menos das condições climáticas, quando comparada à confecção do feno.
 suficiente para inibir o crescimento de microorganismos indesejáveis, melhorando, assim, a preservação dos nutrientes da forragem.

Embora apresente elevado valor nutritivo, a alfafa possui características indesejáveis para o adequado processo de fermentação, como alta umidade no momento do corte, alto poder tampão, baixos teores de carboidratos solúveis e caule tubular e oco, o que impede a completa retirada do ar no momento da ensilagem (McAllister et al., 1998). Além disso, essas características indescjáveis supracitadas são mais acentuadas quando o valor nutricional da alfafa é mais elevado, ou seja, quando a planta é mais jovem. Como conseqüência dessas características indesejáveis, ocorre o aparecimento de bactérias do gênero Clostridium que tendem a dominar a fermentação da forragem ensilada, a menos que esta passe por um processo de emurchecimento ou seja ensilada com aditivos, afim de minimizar os efeitos deletérios dessas bactérias.
 alfafa submetidas a dois tratamentos: sem emurchecimento - alfafa fresca congelada

 submetidas à prática do emurchecimento apresentaram características apropriadas de
 influenciou o poder tampão das mesmas.
 condições climáticas, como temperatura, radiação solar, velocidade do vento, umidade relativa do ar e teor de umidade do solo (Pitt, 1990),

O feno é produzido a partir da desidratação de forragens verdes (menos de 15% de umidade), o que permite que seja armazenado, desde que adequadamente, sem deterioração de seu valor nutritivo.

O processo de fenação da alfafa deve ser cuidadoso, pois o processo de secagem excessiva ao sol provoca a queda das folhas, que correspondem à parte mais nutritiva da
ocorrência de chuvas sobre o feno antes do enfardamento, liviviacão de nutrientes solúveis e perdas por respiração (Pitt, 1990). A chuva, além da lixiviação de
 causa uma situação de desconforto para o animal, fazendo com que o mesmo pare de se alimentar. Gilderleeve (1997) destaca os seguintes sintomas do timpanismo: urinação e defecação, traseiro arqueado, respiração forçada e exteriorização da língua. Como implicações econômicas, destacam-se: ganho de peso e eficiência alimentar reduzidos, menor produção de leite e aumentos dos custos veterinários.

Gildersleeve (1997) e Lacefield et al. (2001) sugeriram as seguintes medidas como alternativas para reduzir o risco de timpanismo em ruminantes.

- Usar pasto consorciado de alfafa com gramíneas, sugestão esta difícil de ser adotada na maioria das regiões do Brasil;
- Fornecer feno de gramíneas ou grãos durante as duas primeiras semanas; - Não colocar animais com fome em pastos exclusivos de alfafa; - Usar rumensina ou outros produtos que previnam timpanismo; - Não permitir o pastejo em pastos de alfafa no estádio vegetativo;
 timpanismo.

Outra forma de evitar o timpanismo é a utilização de cultivares de alfafa com baixa concentração de proteína solúvel, ou com teor de tanino suficiente para diminuir a solubilidade da proteína. Vieira et al. (2001) estudaram os teores de saponinas e taninos de 28 cultivares de alfafa e conciluíram que os teores de saponinas, que variaram de 1,78 a $0,78 \%$, não se constituíram em fatores limitantes para o uso dessas cultivares na alimentação animal. Os teores de taninos totais não modificaram a solubilidade da proteína bruta, que foi baixa, $54,81 \%$, em média.

$0{ }^{\circ} \mathrm{D}$	9^{c} ZI	$8^{\prime} \varepsilon$ I	$\dagger^{\text {¢ }}$ II	ε^{6} II	LGN
99×8	－1．8	$89^{\prime} 8$	$5{ }^{5}{ }^{\text {¢ }} 8$	86.9	NGA
2Z＇0	$1 \varepsilon^{\text {c }}$	sz＇0	$8{ }^{\text {c }} 0$	¢ で0	日g
\dagger て＇$^{\text {c }}$	$1]^{\text {＇}}$ ¢	$0 S^{\prime} \varepsilon$	$6 L^{\prime} 2$	て9「て	Gd
$0{ }^{6} 61$	s＇oz	$\dagger^{\prime} 0 \mathrm{O}$	$0^{\circ} \mathrm{LI}$	L＇8I	SW
WS＋ 2 Od	WS＋VH	WS	OPA	Vd	

II PIəqPL
 рре！！чея
 е $8 c^{*} \downarrow$ в

səoŋ́ey

constatado por Jobim et al（2001） também，maior margem bruta para aquela ração contendo silagem de milho，a exemplo do consumos dos nutrientes das respectivas dietas（Tabela 11）．Os autores registraram， isso parece não ter uma explicação lógica，uma vez que não ocorreram diferenças entre os maiores produções de leite，que por sua vez não diferiram entre si．Segundo os autores， se que os animais que receberam dietas contendo SM e esta associada ao FA revelaram Tabela 10 encontram－se os dados referentes à produção e composição do leite．Observa－ 60：40，na base da matéria seca，usando－se uma ração concentrada para cada volumoso．Na $50 \% \mathrm{FCC}+50 \%$ SM como volumosos．Foi adotada uma relação volumoso：concentrado de
 vacas HPC e mestiças，com peso médio de 540 kg ，recebendo dietas contendo feno de әр ә！！

dietética da forragem，quando oferecida de forma associada com a silagem de alfafa．

PEREIRA et aI.
301

Segundo Broderick (1994), fontes ricas em energia como milho grão podem ser
fornecidas com silagem de alfafa para estimular a utilização de sua grande quantidade de nitrogênio não protéico, para síntese de proteína microbiana.
nitrogênio não protéico, para síntese de proteína microbiana. Messman et al. (1994) observaram aumentos nos teores de compostos nitrogenados não

 valor nutritivo, bem como favorecer a síntese de proteína microbiana no rúmen.

7 - Fatores limitantes à expansão da alfafa no Brasil

Segundo Paim (1994) as dificuldades para expansão do cultivo da alfafa no Brasil vão desde o desconhecimento da cultura, passando pelos aspectos de fertilidade do solo, jo, irrigação em áreas secas, produção de sementes e a necessidade de seleção de cultivares mais adaptadas e em equilíbrio com as principais pragas e doenças da alfa A clevada exigência em fertilidade do solo certamente é um fător limitante à expansão

 solos na região de origem da alfafa, em geral, possuíam pH próximo à neutralidade, com
 esta cultura como exigente em fertilidade (Sá \& Petrere, 1991, citados por Costa \& Monteiro,酉
 pela nodulação em raízes de alfafa, nãoé encontrada naturalmente nos solos, não ocorrendo nodulação das raízes de alfafa com as estirpes nativas, havendo a necessidade de noculação das sementes e, também, a correção do pH do solo, para aumentar a eficiência da nodulação e produção da cultura (Franco, 1994)

Os resultados de Xavier et al. (2005) comprovaram que a população autóctone de
 alfafa e que o dois inoculantes comerciais testados foram eficientes na nodulação e desenvolvimento da alfafa em solo de cerrado.

Outro aspecto a ser considerado é que a alfafa é bastante sensível à acidez do solo, mostrando a necessidade da aplicação de calcário para maximizar a nodulação e o

 couheça realmente o potencial de utilização de alfafa para ruminantes, em regiỗes tropicais desta natureza, num contexto de sistema de produção, são fundamentais para que se manejo para exploração da alfafa, como forragem conservada. Acredita-se que estudos destaca-se, também, a necessidade da condução de estudos envolvendo práticas de notadamente sob condições de pastejo, e que estes sejann de longa duração. Além disto,

aumentado nos últimos dez anos, a perspectiva de expansão de seu cultivo é incerta.

SIEUIE SOQJ์EIOPISUOD - 8

para a exploração de ruminantes no Brasil é incerta.

 elevadas lotações que algumas gramíneas como aquelas dos gêneros Pennisetum, Panicum

 de produção. Tradicionalmente, as gramíneas são de estabelecimento satisfatório, de mais
 de ordem cultural, que vai desde o desconhecimento da cultura, passando pela tradição

 indicam que a alfafa pode ser restabelecida sem autotoxidade significativa se a semeadura

PEREIRA et al.	305

EMBRAPA. Cultivo da alfafa. 2005. http://sistemadeproduçao.cnptia.embrapa.br/cultivares/
EVAVGELISTA, A. R.: SALES E. C. J.; OLIVEIRA, S. G et al Producõ de 34 cultivares de alfaf

 BRASLEIRADE ZOOTECNIA, 38., 2001, Piracicaba, SP. Anais...Piracicaba: SBZ, 2001, p. $240-$
FERRAGINE, M. D. C. Determinantes morfofisiológicos de produtividade e persistência de genótipos de alfafa sob pastejo. Piracicaba, SP:ESALQ, 2003, 116p. Tese (Doutorado em Ciência nimal e Pastagens) - ESALQ, 2003.
AN INTRODUCTION TO GRASSLAND AGRICULTURE. Vol. 1. Barnes, R. F.; Miller, D. A. Nelson, C. J. (Eds.) 5 ed. Iowa State University Press, Ames. Iowa. p. 105-160. 1995 (Medica, Po C.R.; MARTINS, C. E.; COSER, A. C. et al. Produção e níveis de nutrientes em alfafa

 de Fora. Anais... Juiz de Fora, MG: EMBRAPA, 1994. . GILDERSLEEVE, R. R. Grazing management. In: INTERMOUNTAIN ALFALFA p.127-131
 गpd $\left.26-56 / 566 / /{ }^{2}\right)$
 меш! alfalfa to concentrate ratio on lactation performance of dairy cows. J. Dairy Sci., 73(10):2842$8854,1990$.

 LACEFIELD, G. D. Alfalfa quality: What is it? What can we do about it? And, will it pay? In: opsnpo.ñ ap sonsuartu seuazs! animal a pasto. In: SIMPÓSIO SOBRE MANEJO DA PASTAGEM, 14. 1997, Piracicaba. McALLISTER, T.A.; FENIUK, R.; MIR, Z. et al. Ynoculants for alfalfa silage: effects on aerobic stability, digestibility and the growth performance of feedlot steers. Livestock and Production McDONALD, P., HENDERSON, A. R., HERON, S.J.E. The biochemistry of silage. 2 ed Marlow: Chalcombe, 1991. 340p.

BOLLAND, E. J. Utilización de alfafa en produción de leche. In: WORKSHOP SOBRE O BOLLAND, E. J. Utilizacion de alfafa en producion de leche. In: WORKSHOP SO9RE de Fora. Anais... Juiz de Fora, MG: EMBRAPA, 1994. p. 201-203. BOTREL, M. A.; ALVIM, M. J. Rede nacional de avaliação de cultivares dc alfafa (Renacal). In.
WORKSHOP SOBRE O POTENCIAL FORRAGEIRO DA ALFAFA (Medicago sativa L.) NOS TROPICOS, 1994. Juiz de Fora. Anais... Juiz de Fora, MG: EMBRAPA, 1994. p. 225-23. da Mata Atlântica no Estado de Minas Gerais. Pesquisa Agropecuária Brasileira, 36 (11): 1437BOUTON, J. H.; SMITH, S. R.; WOOD, D. T. et al. Registration of "alfagraze" alfalfa. Crop BOUTON. J. H. Desenvolvimento de cultivares tolerantes ao pastejo e à acidez do solo. Ini: SIMPÓSIO SOBRE MAANEJO DA PASTAGEM, 16, 1999. Piracicaba. Anais... Piracicaba: FEALQ, BOUTON, J. How alfalfa varieties are developed. 1998. Htto://ucann.org/alf_symp/1998/98189.pdf.
BOUTON, J. H. Alfalfa. In: INTERNATIONAL GRASSLAND CONGRESS, 19. São Pedro, 2001. Proceedings: Sao Pedro: Braziilan Society of Animal Hubaudry, 2001.p.p.t5-54i.
BRODERICK, G A. Alfalfa silage or hay versus corn silage as sole forage for lactating dairy cows.
 on alfalfa forage. In: WORKSHOP SOBRE O POTENCIAL FORRAGEIRO DA ALFAFA (Medicago sativa L.) NOS TROPICOS, 1994. Juiz de Fora. Anais... Juiz de Fora, MG: EMBRAPA, CADDEL, J.; STRITZKKE J.; BERBERET, R. et al. Alfalfa in Oklahoma. 2005. http:// alaffa.orstate.edu/pub/alafafa.production/guide1.pdif (07/06/05). ${ }^{\text {CLARCK, J. H.; KLUDMEYER, T. H.; CAMERON, M. R. Microbial protein synthesis and }}$ CLARCK, Jitrg.; fructionseo of the duodenum of dairy cows. J. Dairy Sci., 75:2304-2223, 1992.
flows of nitrogen form COELHO JUNIOR, W. Produção de sementes de alfafa: Aspectos e considcraçõ̃s sobre
comercializacão In. WORKSHOP SOBRE O POTENCIAL FORRAGEIRO DA ALFAFA (Medicago sativa L.) NOS TRÓPICOS, 1994. Juiz de Fora. Anais... Juiz de Fora, MG: EMBRAPA, 1994. p. 81-90.

COMERON, E. Sistemas de utilización de alfafa para gamado lechero. In: WORKSHOP SOBREO de Fora. Anais... Juiz de Fora, MG: EMBRAPA, 1994. p. 195-199. cadena forragera de los sistemas ganaderos locales. 2003. http:///roduccionbovina.com/ CORSI, M.; MARTHA JUNIOR, G. $\overline{\mathbf{B}}$.; GONÇALVES, J. R. S. et al. Desempenho animal em pastagem de alfafa. In SIMPOSIO SOBRE MANEJO DA PASTAGEM, 16, 1999. Piracicaba. COSTA, C.; MONTEIRO, A. L. G. Alfafa como forrageira para corte e pastejo. In: SIMPÓSIO SOBREMANEJO DA PASTAGEM, 3, 1997. Jaboticabal. Anais... Jaboticabal:FCAV, 1997. p.297-

DALL'AGNOL, M.; SCHEFFER-BASSO, S. M. Produção e utilização de alfafa. In: SIMPÓSIO SOBRE MANEJO DA PASTAGEM, 17, 2000. Piracicaba. Anais... Piracicaba:FEALQ, 2000.

DE PETERS, Ed.: WEISS, B. The importance of alfalfa in Califomia dairy rations. In: NATIONAL ALFALFA SYMPOSIUM, 27, 1996, San Diego, 1996. Proceedings. Http://ucanr.org/alf_symp/ DHIMAN, T. R.; SATTER, L. D. Yield response of dairy cows fed different proportions of alfalfa
 alfafa (Medicago sativa) em Paty Alferes/RJ. In: REUNIÃO ANUAL DA SOCIEDADE ald
BRASLEERA DE ZOOTECNIA, 33, 1996, Fortaleza, CE Anais... Fotaleza: SBZ, 1996, p.32-34.
308

[^0]: O gênero Medicago compreende mais de 60 espécies diferentes entre anuais e Nordeste da Turipal cenn de origem deste gênero corresponde ao Noroeste do tra sativa ssp. sativa: M. A especie Medicago sativa é composta por quatro subespécies: M. (Quiros \& Bauchan, 1988). Ainda, segundo esses sp. glutinosa e M. sativa ssp. coerulea três níveis de ploidia: diplóide, tetraplóide e hexaplóide, sendo o número básico $x=8 \mathrm{o}$ normal para as espécies perenes.

[^1]: Comerón et al. (1996), citados por Corsi et al. (1999)
 $\mathrm{DF}=$ dias fixos e EF= estádio fisiológico

[^2]:

 Tabela 9 - Produção média de leite ($\mathrm{kg} \mathrm{vacas}^{-1} \mathrm{dia}^{-1}$) de vacas em pastagem de alfafa ou em

