EFEITO DE AMBIENTE SOBRE A QUALIDADE E
CONSERVACAÃO DE ALIMENTOS PARA ANIMAIS
CONSERVAÇÃO DE ALIMENTOS PARA ANIMAIS
Dr. Luiz Gustavo Nussio ${ }^{1}$; Laísse Garcia de Lima ${ }^{2}$
${ }^{2}$ Professor do Departamento de Zootecnia - ESALQ/USP.
${ }^{2}$ Aluna de Mestrado no Departamento de Zootecnia -ESALQ/USP.

 energética de forragens e alimentos concentrados é baseada em equações de regressão estabelecidas entre componentes da parede celular de vegetais (FDA,

 Van Soest \& Hall, 1998). Apesar da relevância dessas informaçōes no estudo do valor nutritivo de alimentos, existe limitada disponibilidade de dados quantitativos avaliando o efeito do ambiente.
Este trabalho tem como objetivo enfocaro efeito do ambiente na qualidade de alimentos, e o faz de forma sumarizada. São apresentados sob a forma de revisão trabalhos cientificos, onde alteraçōes climáticas foram correlacionadas com variações no padrão de crescimento de plantas, e/ou no processo de conservação de plantas forrageiras.
әр әрер!пи!!иоэsəp e oussəu no 'seэ!! ! investigação cientffica nesse segmento sob condiçōes tropicais, associadas à

INTRODUÇĀO

Lockart este modelo poderia ser demonstrado à partir da seguinte expressão: célula implica na regulação de quebra e reconstrução da parede celular. Segundo
 әрер!!!q!!

 이sododd !oㅇ 리sey ep seoupu!!
celular e espessamento da parede celular.
 (Brett \& Waldron, 1996). O crescimento plástico (não-reversível) da célula, se

 que estimula o estresse sobre a parede celular. A membrana resiste, o que resulta

 pressiona o protoplasto (conteúdo celular) radialmente contra a parede celular, e água. Este crescimento depende da pressão de turgor ($P_{\text {p }}$) interna na célula que parede celular tem seu crescimento fortemente mediado pela disponibilidade de

Alterações dos processos fisiológicos no crescimento de plantas
multidisciplinaridade característica desses eventos biológicos, sugerem cautela
digestibilidade de gramíneas tem sido investigada nesses últimos 30 anos. Alguns autores reportam reduções médias de 8 unidades percentuais na digestibilidade da matéria seca de gramíneas, quando estas foram submetidas à um regime térmico diurno/noturno de $25 / 20^{\circ} \mathrm{C}$ contra $15 / 10^{\circ} \mathrm{C}$. Gramíneas temperadas apresentaram redução na digestibilidade de $6.6 \mathrm{~g} \mathrm{~kg}^{-1}$ para cada ${ }^{\circ} \mathrm{C}$ de incremento na temperatura, enquanto que para tropicais aumentos similares na temperatura
 digestibilidade associada com altas temperaturas não é efeito exclusivo do aumento na concentração de parede celular na planta, conforme Tabela 1, mas também a redução da digestibilidade da parede celular.
Tabela 1. Efeito da temperatura durante o crescimento na composição e digestibilidade da parede celular de hastes e de folhas em forragens.

Adaptado Wilson et al (1991)

 que perde valor nutritivo continuamente ao longo da maturação. Devido a grande complexidade intrínseca aos polímeros formadores da parede celular, não e simples prever a capacidade de digestão desta fração sem a utilização de recursos

crescimento de verão ($32^{\circ} \mathrm{C}$ dia/ $26^{\circ} \mathrm{C}$ noite), e de $29 \mathrm{~nm} / \mathrm{h}$ quando a temperatura

 әр səұuә!

 Wilson e Mertens (1995).

 impostas à digestão da parede celular de gramíneas tropicais. revisões de Jung et al (1993) e Jung e Allen (1995) relatam com detalhes as limitações

no 'Hd oןəd sepeuo!!!puoo e!

 sоиәш se a 日d \% ' $\forall a \ddagger \%$ 'әsonnəә!

 'eumnbuäдə

 оџиәш!

Radiação e Fotoperíodo

-

? spөpuen แй (

Efeito de Ambiente sobre a Qualidade e Conservaçāo de Alimentos para Animais

 intensificada sob alta temperatura, e esta por sua vez é aumentada em função da atividade biológica remanescente no interior da massa ensilada. Os aumentos de temperatura na massa logo após a ensilagem são consequentes da presença de oxigênio remanescente, associado à respiração de microrganismos. Entretanto, a

 condutividade da parede e do tamanho do silo (O'Donnell et al, 1997). A deformação de alguns substratos sob compactação ê acelerada quando altas temperaturas são predominantes, além disso a viscosidade do efluente produzido após a morte celular, sofre incrementos quando da elevação da temperatura. Na tabela 2 são Anais do I Simpósio Brasileiro de Ambiência na Produção de Leite

- Ensilagem

esseu ep әрер!suәр ә әциәп|əə
Tabela 2. Efeito da temperatura na composição da silagem, produ;cão de
, densidade da massa e estimativa de perdas na ensilagem de azevém perene. apresentados os efeitos da temperatura sobre alguns parâmetros de fermentação
Efeito de Ambiente sobre a Qualidade e Conservação de Alimentos para Animais
Buxton, D.R. and S.L. Fales , 1994. Plant Environment and Quality. In: Forage Quality, Evaluation and Utilization. Ed. Fahey Jr et al, ASA, CSSA and SSSA, Madison, Wisconsin, USA, 998p. and digestibility of leaf and stem of tropical and temperate forage species. Netherland Journal Agric. Sci. 39:31-48.
Goering, H. K.; Van Soest, P. J. Forage fibre analyses. Agriculture handbook n.
379, USDA-ARS. (US Government Printing Office: Washington, DC.) 1970.

digestibility of forages by ruminants. Journal of Animal Science. v. 73, p. 2774-2790, 1995.
Ventrella, M. C.; Rodella, R. A.; Costa, C.; Curi, P. R. Anatomia e bromatologia de espécies forrageiras de Cynodon Rich. I-Folha. In: Reunião Anual da Sociedade Brasileira de Zootecnia, 34. ; Juiz de Fora, 1997. Anais. Juiz de Fora, SBZ, 1997. p. 3-5.
Ventrella, M. C.; Rodellia, R. A.; Costa, C.; Curi, P. R. Anatomia e bromatologia de espécies forrageiras de Cynodon Rich. II - Caule. In: Reunião Anual da Sociedade Brasileira de Zootecnia, 34. ; Juiz de Fora, 1997. Anais. Juiz de Fora, SBZ, 1997.p.6-8.

 during stem development: consequences for fibre degradation by rumen microflora.

microbial digestion of forage. Crop Science. v. 35, p. 251-259, 1995.
Anas dol Simpósio Brasilero de Ambiancia na Produça de Leite

[1833]

